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1 Introduction

We examine near-arbitrage strategies in the market for interest rate derivatives.
Using futures and forward rate agreements, we construct replication portfolios
that match cash flows of vanilla interest rate swaps. Standard arbitrage theory
suggests that the difference, or basis, between swap rates implied from futures
and forward rate agreements and the market swap rate should be close to zero.

Despite being some of the largest and most liquid markets in the world, we find
mispricings using both futures and forward rate agreements.

Our contribution to existing literature is three-fold. First, we use futures and
forward rate agreements to provide a method for replicating cash flows of an
interest rate swap in a post-crisis framework. Secondly, we use market prices
of forward rate agreements as opposed to theoretical prices to price interest rate
swaps. And lastly, we provide an overview of bases using both futures and forward
rate agreements for USD-, EUR- and GBP-linked interest rate swaps.

The thesis is structured as follows. We start with a tour of relevant literature,
highlighting previous research and underlining important changes in the valua-
tion of interest rate swaps after the 2007-2008 financial crisis. Later, we pro-
vide an overview of relevant theory which includes characteristics of interest rate
derivatives such as futures, forward rate agreements, and interest rate swaps.
We construct replication portfolios showing how markets of futures, forward rate
agreements and interest rate swaps are intimately linked. Motivated by these
replication portfolios, we provide a flexible pricing framework that works across
currencies. After that, we present an overview of the bases in all three currencies
for both futures and forward rate agreements. We highlight differences before
and after the financial crisis, and look at correlations between countries. Lastly,
we highlight factors limiting arbitrage for two apparent arbitrage opportunities
before we conclude the thesis.

2 Literature Review

The use of futures contracts to price interest rate swaps garnered much attention
in the 1990’s and early 2000’s. The empirical treatment of the futures basis, de-
fined as the difference between a futures implied swap rate and a market implied
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swap rate, has mostly focused on credit risk, liquidity and convexity as factors
to explain the basis. Minton (1997) investigates the differential between futures
implied swap rates and market swap rates, and claims the basis is caused by credit
risk in interest rate swaps. In contrast, Bomfim (2003) finds that credit risk should
not have a significant role on the futures basis, even in times of market stress. Both
futures contracts and interest rate swaps are collateralized (Johannes & Sundare-
san, 2007), and several empirical examinations assert that posting of collateral
close to eliminates credit risk (Collin-Dufresne & Solnik, 2001; Liu, Longstaff, &
Mandell, 2006; Feldhütter & Lando, 2008). Gupta and Subrahmanyam (2000)
extend Minton’s analysis to include credit risk, liquidity, asymmetric information
and convexity. They disagree with Minton and find that although credit risk is
statistically significant it is unlikely to be economically significant. They introduce
convexity as a factor explaining away most of the basis.

Research has accumulated over the years showing the relationship between fu-
tures and future prices. A key difference is the way in which futures contracts
are marked-to-market. A futures contract involves both an initial margin and a
variation margin that is updated daily based on interest rate movements. This
difference between futures rates and forward rates, often called convexity, re-
ceived much attention from researchers in the 1980’s and 1990’s. Jarrow and
Oldfield (1981) and Cox, Ingersoll and Ross (1981) were two of the first empirical
treatments of the differences between futures and forward rates. Grinblatt and
Jegadeesh (1996) show how theoretical futures and forward rates can be com-
puted using term-structure models based on Vasicek (1977) and Cox, Ingersoll
and Ross (2005). The goal of most these papers is to construct theoretical models
that reconcile the mark-to-market features of a futures contract with the non-
mark-to-market features of forward rates. At a general level, models for convexity
adjustments can be grouped in two: equilibrium models and no-arbitrage models
(Hull, 2018). Vasicek (1977) and Cox, Ingersoll, and Ross (2005) are equilibrium
models that both provide closed-form solutions to the convexity bias. Hull and
White (1990) is an example of a widely used no-arbitrage model, and its calibra-
tion involves fitting the current term-structure to a trinomial tree (Hull & White,
1994).

Pricing of interest rate swaps has gone through several changes in the decade fol-
lowing the 2007-2008 financial crisis. Mercurio (2009) and Ametrano & Bianchetti
(2013) provide overviews of the most important changes following the crisis. Im-
portant considerations includes specific tenor considerations when constructing
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forward curves. Another consideration is the discounting curve. Johannes and
Sundaresan (2007) claimed that collateralized instruments such as interest rate
swaps should be discounted by a rate lower than interbank offered rates (IBORs).
After the financial crisis, it has become commonly accepted to discount cash flows
without credit risk using OIS rates rather than IBORs (Hull &White, 2013). Prior
to the financial crisis, valuation of interest rate swaps could be done through the
construction of a single curve. In the post-crisis environment, valuations need to
be conducted using multiple curves (Veronesi, 2016).

A central concept in finance is arbitrage. If the cash flows following from two fi-
nancial instruments are equal, they should have the same price. If prices deviate,
an arbitrageur would sell the most expensive instrument and buy the least expen-
sive. Shleifer and Vishny’s (1997) seminal paper introduced limits to arbitrage,
showing how obvious arbitrage opportunities became unprofitable once practi-
cal considerations were included. Duarte, Longstaff and Yu (2006) provide an
overview of fixed-income arbitrage strategies and show that while some strategies
are profitable, their profits is a compensation of risk in the strategy. Boyarchenko,
Eisenbach, Gupta, Shachar, and Van Tassel (2018) provide an overview of post-
crisis regulations and show how small arbitrage opportunities quickly become
unprofitable.

3 Theory

3.1 Interest Rate Derivatives

The market for interest rate derivatives is one of the largest financial markets in
the world. Statistics from the Bank for International Settlements (BIS) estimates
its size at the end of 2018 to be close to $450 trillion, with most contracts being
denominated in USD or EUR (Bank for International Settlements, 2019). This
market has grown exponentially since interest rate derivatives were introduced in
the early 1980s. Interest rate derivatives are mainly used for hedging exposure to
interest rate risk or for speculating on future interest rate movements.

Most interest rate derivatives are indexed against an interbank offered rate (IBOR)
which is the rate of interest on short-term loans between large banks. In 2013,
LIBOR was used as the reference rate in more than $300 trillion of financial
contracts (Hou & Skeie, 2014). Below, we walk through some of the most popular
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types of interest rate derivatives.

3.1.1 Interest Rate Swaps (IRSs)

An interest rate swap is an agreement between two parties in which one party
agrees to pay a fixed rate, R, known as the swap rate, and the other pays a
floating rate, ri.

Fixed
Payer

Fixed
Receiver

R

ri

Payments happen at agreed upon dates in the future. For USD interest rate
swaps, the most common payment frequency is semiannual for the fixed leg and
quarterly for the floating leg. For other currencies, the payment frequencies are
different. In the case of a one-year USD IRS, the payments would occur at the
following times

r0.25 r0.50 r0.75 r1.00

R R

The floating rate is usually based on an IBOR rate. For USD swaps, it is common
for the floating payments to be equal to the three-month LIBOR rate prevailing
three months before the floating payment. In a sense, the floating rate becomes
fixed for three months. The dates at which the floating rates are fixed are called
reset dates.

Consider a one-year USD IRS running from December 20th, 2017 to December
20th, 2018. In the timelines below, we see that the floating payment on March
20th, 2018 will be fixed to the three-month LIBOR rate trading at December 18th,
20171. Let us denote the three-month LIBOR in December as rDec. The floating

1It is common for both USD and EUR IBORs to settle two days after their trade date. This
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payment in March will be the notional, N , of the swap multiplied by a LIBOR
rate fixed three months ago, rDec, and finally multiplied by a year-fraction, τ ,
which is the actual number of days (also known as the accrual period) between
December 20th, 2017 and March 20th, 2018 divided by 360.

20.03.2018
First Cash Flow

20.06.2018
Second Cash Flow

20.09.2018
Third Cash Flow

20.12.2018
Fourth Cash Flow

First Reset
18.12.2017

Second Reset
16.03.2018

Third Reset
18.06.2018

Fourth Reset
18.09.2018

NrDecτ NrMarτ NrJunτ NrSepτ

The date schedule is key to understanding interest rate swaps. This schedule
determines when payments from each leg are made, the accrual periods for the
rates, and the reset dates. There are other details to consider as well, but we get
back to those later.

The market for interest rate swaps has adapted to several large regulatory changes
throughout the years. Developments like the ISDA Master Agreement, first in-
troduced in the mid-1980s, have tried to reduce the default risk in interest rate
swap transactions. The ISDA Master Agreement is a legal framework that parties
involved in a swap transaction agree to follow. It is of particular relevance for over-
the-counter swaps. A key element in the agreement deals with collateralization.
When the value of the swap contract becomes negative for one of the counterpar-
ties, they need to post collateral. This reduces the risk of this counterparty not
meeting future payments, thereby reducing the default risk.

3.1.2 Forward Rate Agreements (FRAs)

A forward rate agreement is an interest derivative where the difference between a
prevailing market rate and the forward rate is cash-settled at some point in the
future. Consider a trader buying the 3x6 forward rate agreement at the rate rFRA3x6

and with notional N . The number of days in the accrual period (i.e. between 3-
and 6-months) divided by 360 is given by τ 2. Denoting the IBOR rate in three

rate would settle on December 20th, 2017 and cover the period until March 20th, 2018. For
GBP IBORs, settlement is usually on the same date as the trade date.

2This day-count convention holds for USD and EUR where ACT/360 is used. For GBP,
ACT/365 is used.
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months time as rIBOR3x6 , the value of the FRA in three months time, and the
amount that will be cash-settled can be written as

VFRA,3 = N
(rIBOR3x6 − rFRA3x6 )τ

1 + rIBOR3x6 τ

FRAs enable us to lock in implied three-month IBOR rates in the future. Conve-
niently, their date schedules tend to align well with the date schedules of interest
rate swaps. This allows users of IRSs to hedge their floating payments by en-
tering into consecutive positions in FRAs. For an IRS with quarterly payments
with floating payments fixed three months in advance, the 0x3 FRA can be used
to hedge the first payment, and the 3x6 FRA can be used to hedge the second
payment.

FRAs are available for most large currencies. For USD, EUR and GBP, the data
goes back to the early 2000’s. The liquidity in these contracts vary up until
2007/2008, after which they have become more popular instruments for users of
interest rate derivatives.

In contrast to IRSs, credit risk is a more pressing concern when using FRAs.
Collateralization is not as prevalent so positions in FRAs entail default risk.

3.1.3 Short-Term Interest Rate Futures (STIR-Futures)

STIR-futures are similar to FRAs insofar allowing us to lock in three-month rates
starting in the future. Being a futures contract, they are more standardized than
FRAs. As a result, their credit risk is minimal and more similar to a collater-
alized IRS. A potential drawback of this standardization involves date schedules
that rarely align perfectly with date schedules of IRSs. Hence, hedging float-
ing payments in an IRS with STIR-futures is not straightforward. Nevertheless,
STIR-futures remain popular instruments for hedgers and speculators.

STIR-futures contracts linked to USD-, EUR- and GBP-interest rates are called
Eurodollar futures, EURIBOR futures and Short Sterling futures respectively.
The markets for Eurodollar futures and EURIBOR futures are the two largest, and
they regularly trade in excess of one trillion $ and AC each day (Aikin, 2012). The
Eurodollar futures market deserves particular attention. It is one of the deepest
markets in the world, both in terms of volume and contract length. CME Group
allows trades in 40 Eurodollar contracts, allowing users to lock in forward rates
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between IMM dates3 for ten years into the future. This volume has historically
given STIR-futures markets a clear advantage over FRAs, and it has long been
common the express forward curves based of STIR-futures.

STIR-futures are derived from three-month interest rates. Prices of the contracts
are given as 100 minus the expectation of three-month IBOR at expiration of the
contract.

pSTIR = 100 − rSTIR

STIR-futures expire on the third Wednesday in the months March, June, Septem-
ber and December. On these dates, contracts are cash-settled against the prevail-
ing three-month IBOR.

Consider an example where we buy the March STIR-futures contract (i.e. the
contract expiring in March) on February 25th, 2019 at price pSTIRMar , essentially
locking in an implied forward rate from March to June denoted by rSTIRMar . This
contract will expire two business days4 before the third Wednesday in the next
IMM-month, which happens to be in March. At this date, March 18th, 2019, the
final value is determined as 100 minus the three-month IBOR on that day, rIBORMar .
Two days later, on the value date which in this case is March 20th, 2019, the
contract is cash-settled for a final value of

VMar = NτSTIR
(
rIBORMar − rSTIRMar

)
where N is the notional of the contract5 and τSTIR is the year-fraction for the
accrual period of the forward rate. The accrual period for Eurodollar, EURIBOR
and Short Sterling futures is 1/4 (OpenGamma, 2013).

Similarly as in an FRA, STIR-futures allow us to fix future three-month rates in
advance. For a swap in which the rates of the floating leg are fixed three-months
in advance, a March STIR-futures contract can be used to hedge the quarterly
payment in June. To lock in an implied forward rate from June to September,
we buy the June STIR-futures contract. This procedure of buying several STIR-
futures contract with expiries after each other is often referred to as creating strips.

3IMM dates, or International Monetary Market dates, are the third Wednesday in months
March, June, September and December.

4For Short Sterling futures, the expiry will be on the third Wednesday, i.e. no business day
lag.

5Notional for STIR-futures is equal to the number of contracts multiplied by the contract
amount. Contract amount for Eurodollar futures is $1, 000, 000, for Euribor-futures this is
AC1, 000, 000, and for Short Sterling futures it is £500, 000
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If the dates for which we cash settle the futures contract align with the payment
schedule of an IRS, we could hedge it perfectly. This explains the motivation to
price interest rate swaps of forward curves constructed using STIR-futures.

The date schedules of STIR-futures are important for understanding how these
instruments are used to price IRSs. Eurodollar and EURIBOR futures are both
settled two business days following the trade date. For Short Sterling futures,
the settle date coincide with the trade date. All STIR-futures have a cash set-
tlement on the value date, which is the nearest IMM date following the settle
date. Eurodollar and EURIBOR futures cash settle against an IBOR prevailing
two business days preceding the value date, on the date called expiration date,
whereas the Short Sterling futures contract cash settle against an IBOR prevailing
on the value date. The IBORs that the contracts are cash settled against start on
the value date and end on the end date. A visual example of these five important
dates are provided below for an Eurodollar contract bought on February 25th,
2019.

Trade Date
25.02.2019

Settle Date
27.02.2019

Expiration Date
18.03.2019

Value Date
20.03.2019

End Date
20.06.2019

3.1.4 Overnight Indexed Swaps (OIS)

An overnight index swap is similar to an interest rate swap. In contrast to the
floating payment in an interest rate swap that is based on an index such as three-
month IBOR, the floating payment in an OIS is based on a daily compounding of
daily OIS rates over the accrual period of the floating leg.

The underlying index of an OIS is typically rates for overnight uncollateralized
lending between banks. Examples of this include the Federal Funds rate in the
US, EONIA in the EU and SONIA in the UK. Being an overnight rate between
large banks, it captures the low credit risk in a collateralized swap better than
IBOR. As a result, both practitioners and academics tend to use OIS rates for
discounting payments in interest rate swaps.

Prior to 2007 practitioners used IBOR as a proxy for risk-free rate when valuing
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derivatives. After the credit crisis that began in 2007, this practice was called into
question (Hull & White, 2013). In the wake of the crisis, it has become common
to use an OIS rate to discount future cash flows. Hull and White conclude that
OIS should be used regardless of the portfolio being collateralized (Hull & White,
2013). In practice, the OIS rate is usually lower than IBOR, meaning that ceteris
paribus the swap rates with OIS discounting should be larger than swap rates
with IBOR discounting. Additionally, the impact of using OIS rather than IBOR
becomes more important with longer IRS tenors.

3.2 Pricing of Interest Rate Swaps

3.2.1 Constructing the Replication Portfolio

Using FRAs and STIR-futures, we show how floating payments in IRSs can be
replicated. In particular, we explain how uncertain floating payments can be fixed
in advance. Later, we use these replication portfolios to price interest rate swaps.

Consider a trader who is a fixed rate receiver on a one-year USD interest rate
swap. The trade date is set to December 18th, 2017 and settled two business days
later on December 20th, 2017. This trader needs to pay four floating payments
during the life of the swap. The first payment will take place on March 20th,
2018 where the floating rate is fixed to the three-month LIBOR prevailing three
months in advance (i.e. trade date December 18th, settle date December 20th,
and end date March 20th). The table below reports the realized USD LIBOR
rates.

Payment Date Fixing Date LIBOR Rates
20.03.2018 18.12.2017 1.63%
20.06.2018 16.03.2018 2.20%
20.09.2018 18.06.2018 2.32%
20.12.2018 18.09.2018 2.34%

These LIBOR rates are only known at the time of their fixing dates. So when
the swap is traded, the fixed receiver will only know the LIBOR-rate for the first
payment in March, 1.63%. For the second, third and fourth payment, the trader
doesn’t know what the floating rate will be.

Since December 20th, 2017 is an IMM-date, the value dates for the four next
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Eurodollar contracts align almost perfectly with the payment schedule of the
interest rate swap. In the table below, we see that the December Eurodollar
contract, EDZ17, settles on December 20th, 2017 against a three-month LIBOR
rate running from December 20th to March 20th. This is the exact same rate
that the first floating payment in the swap is fixed to. However, we must notice
that there is a slight mismatch between some of the LIBOR rates the Eurodollar
contracts will settle against and the LIBOR rates in the swap payment schedule.
As an example, the March Eurodollar contract settles against a LIBOR rate going
from March 21st to June 21st, whereas the swap is fixed against a LIBOR rate
going from March 20th to June 20th.

Eurodollar LIBOR 3M
Contract Value Date Start Date End Date
EDZ17 20.12.2017 20.12.2017 20.03.2018
EDH18 21.03.2018 21.03.2018 21.06.2018
EDM18 20.06.2018 20.06.2018 20.09.2018
EDU18 19.09.2018 19.09.2018 19.12.2018

If we ignore these small date mismatches, we can continue constructing the repli-
cation portfolio. Fixing the second floating payment in June to a rate known
today, involves buying the March Eurodollar contract (EDH18). This contract
is cash-settled on March 20th, 2018 against the three-month LIBOR rate, LMar,
prevailing on March 16th, 2018. The value of the cash settlement is given by the
difference between the three-month LIBOR, LMar, and the futures rate, rEDH18,
from the March Eurodollar contract bought December 18th, 2017.

This cash settlement will occur on March 20th (i.e. ignoring the one-day date
mismatch above), which is three months before the third floating payment. If
the payoff is positive, we invest the payoff for three months at LMar. In three
months, on June 20th, we receive the payoff from the futures contract plus the
interest from the three month deposit at the same time as we are supposed to
pay the floating payment in the swap. Once we sum these payments together,
we can see from the table6 below that we end up receiving the fixed rate, R,
and paying the floating leg of the futures rate, rEDH18 plus a small adjustment
term, LMar(LMar − rEDH18), that is positive if the payoff from the long position
in Eurodollar futures is positive.

6Notional, N , and the year-fractions for the accrual periods, τ , are omitted from the payoff
table for simplicity.
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Table 1: Replication Portfolio if Value of Long Eurodollar Position >0

March 20th, 2018 June 20th, 2018
Eurodollar: Long Position LMar − rEDH18 0
Invest ED Long @ LIBOR − (LMar − rEDH18) (LMar − rEDH18) (1 + LMar)
IRS: Receive Fixed, Pay Floating 0 R − LMar

Payoff 0 R − rEDH18 + LMar(LMar − rEDH18)

This example shows that we are able to set the future payment in the swap to a
value we know today, even if we do not know the value for the LIBOR rate that
the future floating payment will be fixed at. We removed uncertainty, and as a
result are able to hedge the payment almost perfectly today. A similar argument
can be made if the value of the long Eurodollar position is negative at settlement.
In that case, the trader would borrow at the repo rate instead of investing at
LIBOR.

To provide some evidence for this near-arbitrage strategy, we go through a quick
numerical example where we use market data. We already know the LIBORs that
the floating payments were fixed to. In addition, we have the following data on
Eurodollar contracts from December 18th, 2017

Instrument Yield
EDZ17 1.63%
EDH18 1.78%
EDM18 1.92%
EDU18 2.02%

The swap rate for the one-year USD IRS trading on December 18th, 2017 was
1.87%. Assuming quarterly floating payments and semiannual fixed payments, the
payment in June will be 1.87% ∗ 0.5 − LMar ∗ 0.25. Using the March Eurodollar
contract, the trader would expect a payment of 1.87%∗0.5−1.78%∗0.25 = 0.4891%
in June. Below we see that the actual payment ended up being 0.4897%, which
is only 0.06 bps from the the rate the trader fixed in advance, effectively showing
that we were able to fix the future cash flow of the swap to a value known today.

March 20th, 2018 June 20th, 2018
Eurodollar: Long Position 0.1067% 0
Invest ED Long @ LIBOR −0.1067% 0.1073%
IRS: Receive Fixed, Pay Floating 0 0.3825%
Payoff 0 0.4897%

Constructing a similar replication portfolio with FRAs is easier, and we should in
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theory not experience any discrepancies between the implied forward rates from
an FRA and the rate that we are able to lock in.

Table 2: Replication Portfolio if Value of Long FRA Position >0

March 20th, 2018 June 20th, 2018
FRA: Long Position

(
LMar − rFRAMar

)
/(1 + LMar) 0

Invest FRA Long @ LIBOR −
(
LMar − rFRAMar

)
/(1 + LMar) (LMar − rFRAMar )

IRS: Receive Fixed, Pay Floating 0 R − LMar

Payoff 0 R − rFRAMar

Motivated by these replication portfolios, we later use STIR-futures and FRAs to
replicate the floating legs of interest rate swaps. To do so, there are a number
of technicalities that we have not touched upon yet. Later, we see how we can
extend the futures-framework to account for non-IMM dates and we also treat the
alignment between the payment schedule of the swap and the value dates of the
STIR-futures with more care. But first, let us clearly define the pricing formulas
used to price interest rate swaps.

3.2.2 General Formula for Pricing Vanilla Interest Rate Swaps

A vanilla interest rate swap has one leg of floating payments and one leg of fixed
payments. These payments occur at different frequencies. In this example, we
assume the swap in question is a USD interest rate swap with semiannual fixed
payments and quarterly floating payments that are fixed to three-month LIBOR
three months in advance. The framework below is flexible, and other payment
frequencies and conventions can easily be added. At the trade date, swaps are
usually priced at par, meaning that the present values of both legs are equal.

The present value of the cash flow from the semiannual fixed leg is based on an
annual swap rate, R, multiplied by the correct year-fractions, τ fixj , to make it
reflect the semiannual payment and then discounted back to a present value by
multiplying with discount factors, Z(t, Tj)

PVfix(t) = NR
m∑
j=1

τ fixj Z(t, Tj)

where N is the notional of the swap and j would occur at the frequency of the
fixed leg (i.e. every six months for USD). The present value of the floating leg is
be similar, but the swap rate, R, is replaced by a floating rate, ri that is fixed to
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the three-month LIBOR prevailing three months before the floating payment

PVflt(t) = N
n∑
i=1

riτ
flt
i Z(t, Ti)

where i would occur at the frequency of the floating leg (i.e. every three months
for USD).

An interest rate swap priced at par (i.e. PVfix(t) = PVflt(t)) should have a present
value of fixed payments that is equal to the present value of floating payments.
From a fixed-payer perspective, the present value of an interest rate swap can be
written as

PV (t) = N [PVflt(t) − PVfix(t)]

Solving for the swap rate, we obtain

R =
∑n
i=1 riτ

flt
i Z(t, Ti)∑m

j=1 τ
fix
j Z(t, Tj)

where riτ flti can also be written as
(
Z(t,Ti−1)
Z(t,Ti) − 1

)
Prior to the 2007-2008 financial crisis, it was commonly accepted to extract both
forward rates, ri, and discount factors, Z(t, T ), from the same instruments, for
example LIBOR-indexed STIR-futures.

During the financial crisis, the perception of credit risk changed. The idea of
IBORs as good proxies for risk-free rates took a hit, especially at the collapse
of Lehman Brothers. In the aftermath of the crisis it is common to discount
collateralized payments such as the payments in a vanilla USD interest rate swap
by OIS rates(Hull & White, 2013). In practice, this involves constructing multiple
curves; the forward curve based on IBORs and the discounting curve based on
OIS-rates(Veronesi, 2016).

Another perspective introduced during the financial crisis involves payment fre-
quencies of rates with the same tenor. Along with the realization that "risk-free"
institutions such as banks could go bust, liquidity started trading at a premium.
For a contract of the same length, for example six months, a succession of smaller
length contracts, such as two three-month rates (0x3 and 3x6) were deemed less
risky than one six-month rate (0x6). Prior to this realization, it would have been
acceptable to bootstrap a 3x6 forward rate by combining a 0x3 and 0x6 rate.
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When stripping the floating rates, ri, we need to extract them from a curve that
has the same underlying index (White, 2012; Ametrano & Bianchetti, 2013). For
a USD swap indexed against three-month IBORs this involves only using instru-
ments with the same index.

Taking the tenor- and discounting-consideration into practice, the swap rate, R,
for a USD vanilla interest rate swap can be expressed as

R =
∑N
i=1 r

IBOR,3M
i τ flti ZOIS(t, Ti)∑M
j=1 τ

fix
j ZOIS(t, Tj)

where rIBOR,3Mi τ flti can also be written as
(
ZIBOR,3M (t,Ti−1)
ZIBOR,3M (t,Ti) − 1

)
Thus, finding the swap rate is a matter of constructing a discount curve from
OIS rates, and a forward curve from instruments with an underlying index of
three-months LIBOR, for example Eurodollar futures. For another currency, for
example EUR and GBP, the setup would be adapted to local conventions.

4 Convexity Adjustments for Futures Rates

Implied forward rates from STIR-futures and forward rate agreements are not
directly comparable. Consider a trader going short a STIR-futures contract and
long an FRA. At the trade date, the value of both legs are equal and the net
payoff is zero. However, as the interest rate changes, differences in how the two
instruments are settled leads to different valuations. The P&L for the futures
contract is settled daily against the variation margin, whereas the P&L for the
FRA is only realized once.

Value

Rate
r∗ = rate at trade date

0

STIR-Futures
FRA
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The figure above illustrates that the value of STIR-futures move linearly with
rate changes. The value of the FRA moves non-linearly, and we see that the value
of the futures contract is always lower than or equal to the value of the forward
rate agreement contract. To reconcile the differences, it is common to quote the
FRA with a lower rate at the trade date, effectively removing the advantage that
follows from the non-linear payoff.

This bias, often called convexity bias, becomes more important as the time to
contract expiration increases. Several models have been proposed to deal with
the computation of this convexity bias. Below, we walk through two such models:
the Vasicek model and the Hull-White one-factor model.

4.1 Vasicek Model

The short rate in the Vasicek model follows an Ornstein-Uhlenbeck process and
can be written as

dr = κ(µ− r)dt+ σdz

where µ is the unconditional mean of the short rate, κ is the speed of mean-
reversion for the short rate, and σ governs the volatility.

This model was first proposed by Vasicek (1977) and gained popularity due to
the interpretability of its parameters and the parsimonious setup. Gupta and
Subrahmanyam (2000) and Johannes and Sundaresan (2007) use the Vasicek-
model to compute convexity adjustments for STIR-futures. In most cases, this
model is used together with other models for computing convexity adjustments,
thereby giving the researchers a range of intervals for the convexity adjustments.

We provide a calibration procedure of the Vasicek model in the appendix where
we also show how convexity adjustments are computed.

The short-rate process under the Vasicek model is often criticized for being unable
to capture term-structure dynamics over time. This is mostly due to the way short
rates are treated. Under Vasicek, the short rate is independent of time.
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4.2 Hull-White One-Factor Model

An alternative to the Vasicek model that addresses some of the major drawbacks,
for example the poor fitting to initial term structures, is the Hull-White one-factor
model. The Hull-White one-factor model is given by

dr = [θ(t) − ar(t)]dt+ σdz

where a and σ are constants describing the mean-reversion and volatility of the
process. The instantaneous interest rate at time t is defined as r(t), θ(t) is a
parameter that captures the initial term structure, and dz is a Wiener process.

Calibration of the Hull-White one-factor model starts with finding values for the
constants a and σ. If the output from a calibrated HW-model is to be used for
STIR-futures convexity adjustments, it is common to start with caps, floors or
swaptions (Hull, 2018). These instruments are usually quoted in implied volatility.
In this thesis, our focus is mostly on swaptions, which are options on swaps. It
is common to refer to swaptions by expiry*tenor, so a 1x9 swaption would expire
in in one year, and be for a nine-year swap. Given a swaption volatility matrix
it is common to use swaptions along the diagonal (often called coterminals) to
calibrate the Hull-White one-factor model(Henrard, 2009; Hull & White, 2001).
For a 9x9 matrix this involves using implied volatility from swaptions with expiry
and tenor 1x9, 2x8, 3x7, 4x6, 5x5, 6x4, 7x3, 8x2 and 9x1.

Calibrating both a and σ can lead to unstable results, and it is common to fix
the mean-reversion variable when calibrating the Hull-White one-factor model
(Gurrieri, Nakabayashi, & Wong, 2009). It can be shown that the impact of the
mean-reversion variable is smaller than the impact of the sigma in the computation
of convexity bias, especially for shorter tenors. In that regard, it makes sense to
fix the mean-reversion if the goal is to compute convexity adjustments for STIR-
futures rates. In our experience, fixing the mean-reversion to a value of around
5% tend to yield reasonable and stable results7.

After the Hull-White one-factor model is calibrated, we can use the parameters to
compute convexity adjustments. Hull (2017) shows that the convexity adjustment

7Sokol (2014) finds that the mean-reversion for most major currencies historically have been
between 3% and 10%.
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for STIR-futures can be computed as

cvxHW = B(T1, T2)
T2 − T1

[
B(T1, T2)(1 − e−2aT1) + 2aB(0, T1)2

] σ2

4a

where B(t, T ) = 1−ea(T −t)

a

To compute the convexity-adjusted futures rate, we must transform futures rates
from quarterly compounded to continuously compounded

rSTIR,CC = ln

(
1 + rSTIR

4

)
4

before subtracting the convexity adjustment

rSTIR,CC,Cvx = rSTIR,CC − cvxHW

and transforming the convexity-adjusted futures rate back to quarterly compound-
ing

rSTIR,Cvx =
[
exp

(
rSTIR,CC,Cvx

4

)
− 1

]
4

5 Data and Computation of the Bases

5.1 Raw Data from Bloomberg

We use daily last prices from Bloomberg. The data used is for USD, EUR and
GBP. Our main focus in this section is the USD data. However, when there are
substantial differences between the currencies, we provide explanations on how
we treat those differences.

For the three-month deposit, we use the USD LIBOR three-month rate. Forward
rate agreements denominated in USD and with three-month USD LIBOR as un-
derlying are available from 2004 for contracts up to two years (i.e. up to 21x24).
The FRAs used for EUR and GBP have six-month IBORs as underlying (i.e. 0x6,
6x12, etc.), and their data start from the early 2000’s.

For STIR-futures, we use all 40 Eurodollar futures contracts given that they are
available. Our sample starts in 1986 where we have the first eight Eurodollar
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contracts available. From the end of 1993, last prices on all 40 Eurodollar contracts
are available. The liquidity on the short end of the futures curve is generally deep
whereas the liquidity of the long end can be poor, especially in during the 1990’s
and early 2000’s. STIR-futures for EUR and GBP are EURIBOR futures and
Short Sterling futures, both of which use three-month IBORs as the underlying
index. The history of the Short Sterling goes back to the 1980’s whereas the
EURIBOR futures start in the late 1990’s.

In addition to forward rate agreements and Eurodollar contracts, we include swap
rates for USD-denominated vanilla interest rate swaps with three-month LIBOR
as the underlying index. We use swap rates with tenors 2-, 3-, 5-, 7-, and 10-
years. These swap rates have coverage back to 1988. For EUR and GBP, the most
common IRSs, and thus most liquid, are IRSs quoted with six-month IBORs as
underlying index. To reconcile the EUR- and GBP-swaps with the STIR-futures
having three-month IBORs as underlying index, we also gather data on tenor
basis swaps where three-month IBORs are exchanged with six-month IBORs.
Using these, we are able to convert the IRSs in these two markets from having
six-month IBOR as underlying to having three-month IBOR as underlying. This
computation is based on arbitrage, and it yields reasonable values for synthetic
IRSs with three-month IBOR as underlying index. It is possible to obtain EUR-
and GBP-swaps that use three-month IBORs as the underlying index, but the
historical sample is smaller and the liquidity is poorer, especially prior to 2008.

There are a number of conventions that are specific to interest rate swaps. In iso-
lation, we could proceed and ignore them in our computations later on. However,
when considered together, the number of conventions is large enough to have a
substantial impact on the basis. A section in the appendix is dedicated to the
data sources used and specific conventions for the IRSs. Table 9 in the appendix
presents an overview of the most important conventions, and all variables used
are summarized in table 10 in the appendix.

The unsecured overnight rate for the US is the Federal Funds rate, so the OIS
rates in this market have the one-day Federal Funds rate as underlying. Although
the data go back to 2002 in the US market, the usage of OIS rates as a discounting
measure for interest rate swaps did not start increasing until after the 2007/2008.
We extract OIS rates on 6M, 9M, 1Y, 18M, 2Y, 3Y, 4Y and 5Y before we com-
pute synthetic OIS rates for 7- and 10-years, consistent with the methodology
Bloomberg uses for its construction of OIS curves in its "Swap Curve Builder"
on the Bloomberg Terminal. To compute these synthetic OIS rates, we combine
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LIBOR swap rates and a LIBOR-Fed Funds basis swaps (Bloomberg Quantitative
Analytics, 2017). For EUR and GBP we use OIS rates with EONIA and SONIA
as the underlying index.

5.2 Date Schedules for Interest Rate Swaps and STIR-
Futures

Allocating a specific section for the construction of date schedules may seem like
overkill. In our experience however, these date schedules are far from trivial. They
are core components of the interest rate derivatives used and extremely important
for the basis computations. In this section, we only cover the date schedules from
a USD interest rate swap perspective. The conventions used in an EUR IRS is
similar to its USD relative, but the GBP IRS can be quite different.

We used Python to compute the basis. In doing so, we extensively used a library
called QuantLib, especially for the construction of date schedules. QuantLib is an
open-source software framework for quantitative finance (Ballabio et al., 2019).
It is written in C++, but it includes functionality that allow Python and other
popular scripting languages such as R to access the library. One good resource
for Python-use of the QuantLib library can be found in Ballabio and Balaraman
(2017).

One benefit from using QuantLib is its ability to account for currency-specific
conventions when constructing date schedules for interest rate swaps. Each cur-
rency has a specific calendar with particular holidays. If we run into any of these
holidays, interest rate swaps have specific conventions on whether one should go
forward or backward one business day if that occurs. Most swaps use what is
called "modified following" meaning that we go forward, except if that day is in
another month, then we should go backward.

Another detail in the construction of date schedules for interest rate swaps is
whether we want to construct the schedule from the settle date to the last payment
date, or in the reverse. Most swaps use what is called "backward(EOM)". Despite
seeming slightly esoteric at first, this means that for a quarterly payment schedule,
we start at the last payment date and then go backwards in three-month intervals
until we reach the settle date. On most dates or for shorter tenors, going either way
(i.e. starting on settle date or starting on last payment date) cause no differences
or leave a small impact on the general date schedule. There are however dates
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where the difference can be large, and using the QuantLib library to account for
this allows us to compute synthetic swap rates whose underlying process is closer
to the market swap rate. To further complicate the date schedules, the date
schedule for two swaps having the same settle date, but different tenors, could be
slightly different. Using the backward-convention, the date schedule of a 2-year
swap will on most dates be equal to the first two years in the payment schedule
of a 5-year interest rate swap. However, if the last payment date for the 2-year
swap does not fall on the same day as the last payment date for the 5-year swap,
the date schedules could differ by a few days.

Using a framework such as QuantLib for construction of these date schedules al-
lows the process to be more efficient and less prone to human error. It also enables
us to better account for country-specific conventions. In isolation, details like this
can be ignored. However, pricing interest rate swaps using STIR-futures involves
several examples of these small details. Taken together, they might account for an
error of several basis points, enough to make our basis computation less robust.

We assume that the date schedules of the forward rate agreements perfectly align
with the computed payment schedules of swaps. This is not entirely true, since
it will sometimes yield mismatches of the magnitudes one or two days. However,
the effect from this is minor, and FRAs are in general less sensitive to dates than
STIR-futures.

The date schedules for STIR-futures are less complex than the dates for the IRSs,
but still far from straightforward. On any given date, there are five dates we
want to compute for STIR-futures. The first and easiest is the trade date, which
is set equal to the current date. Next, the settle date is set two business days
following the trade date. Except for the need to find two business days in a
specific calendar type, the computation of these two dates are straightforward.
Next we find the value date of the futures contracts. This involves finding the
next IMM date, or the next third Wednesday in a month in the March quarterly
cycle. At this point, we also need to account for the way Bloomberg reports futures
prices. As an example, the data reported two business preceding the IMM-date
in December would be the prices for a futures contract expiring in December.
The data reported one business day preceding the IMM-date in December would
be for a futures contract expiring in March. We use a function from QuantLib
that finds the next IMM-date given a date input where we also reconcile it with
the specific data from Bloomberg around IMM-dates. The two last dates needed
for the STIR-futures are easier. The expiration date is set as two business days
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preceding the value date, and the end date is set as three months after the value
date. The end date is the end date of the IBOR-index that the futures contract
settles against. This type of methodology is described briefly in Ametrano &
Bianchetti (2013) and our date schedules align perfectly with examples provided
in their paper.

Once these date schedules are constructed, we want to compute year fractions
between payments in order to obtain the year-fraction variables, τ , that we have
defined earlier. Although the two dates we want to compute the year-fraction
between are the same, the year-fraction will be slightly different depending on
what day-count convention we want to use. For USD swaps this is 30/360 for
the fixed leg and ACT/360 for the floating leg. Using QuantLib, we are able to
compute year-fractions that account for this.

5.3 Computing the Basis

The process for computing the basis for forward rate agreements and futures
contracts can be divided in three. First, we compute discount factors from both
IBOR- and OIS-rates. Then, we align these discount factors with the date schedule
of the interest rate swap by interpolation. Lastly, we use the pricing framework
developed earlier in the thesis to compute the futures- and forward-implied swap
rates before computing the basis.

For the futures-implied swap rates, we first construct an IBOR-indexed yield curve
by combining three-month deposits and STIR-futures. We start by finding the
end date of each contract, meaning settle date plus three months for the deposit
and the end date for the STIR-futures as defined earlier. We rank the annualized
rates, ri, from shortest time-to-maturity to longest. Using the year-fractions, τi,
between end dates of the instruments, which is around 0.25 in most cases, we
compute discount factors by taking a cumulative product

ZSTIR(t, T ) =
T∏
i=1

1
1 + riτi

where t is set equal to the settle date for the deposit- and futures-rates, and
τi accounts for the specific day-count convention of the instruments, ACT/360
for USD deposits and STIR-futures. If we wanted to do this for forward rate
agreements, we would keep the first three-month deposit and then replace ri with
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rates from FRA’s instead of STIR-futures contracts.

The method for stripping discount factors from OIS-rates differs from the method
of their IBOR counterpart. Let OISN be the OIS-rate for the Nth maturity and
τi be the year-fraction between maturity dates of a stream of OIS-rates (0.25 for
a quarterly difference in maturity dates). Using a methodology outlined by Smith
(2013), discount factors from OIS-rates up to one year can be extracted by

ZOIS
≤1Y r(t, TN) = 1

1 +OISN
∑N
i=1 τi

For OIS-rates with tenor longer than one year, we use a recursive procedure to
extract discount factors

ZOIS
>1Y r(t, TN) = 1 −OISN

∑N−1
i=1 ZOIS(t, Ti)τi

1 +OISNτN

After computing the discount factors, we align them so that they fit with the date
schedules of the interest rate swaps. We use IBOR discount factors to find the
forward curve for the swap. Given a set of IBOR discount factors, we compute
the year-fraction between the settle dates and the end dates of the IBOR-indexed
rates. In addition, we have the year-fractions between the settle dates and the
payment dates in the interest rate swap date schedule. As we have seen earlier,
these dates only align well on IMM-dates.

For perfect alignment, we use log-linear interpolation on the IBOR discount factors
to obtain synthetic discount factors that align with the swap date schedule. This
involves doing a log-transformation on the discount factors followed by linear
interpolation. The choice of this method is mostly motivated by the short distance
(i.e. three months) between the IBOR-instruments we are using. In addition,
since the liquidity of some STIR-futures contract, especially at the long end of
the curve can be poor at times, the local dependency in a linear interpolation
scheme is preferred compared to global dependency in cubic interpolation.

Given the cumulative year-fraction, κi, for a payment happening at time i, we
compute the interpolated discount factor, ZSTIR(t, Ti), by using

log
[
ZSTIR(t, Ti)

]
= log

[
ZSTIR(t, Ti−∆)

]
+
(
log

[
ZSTIR(t, Ti+∆)

]
− log

[
ZSTIR(t, Ti−∆)

]) κi − κi−∆

κi+∆ − κi−∆

where we find the two nearest known dates on each side of i, denoted by i − ∆
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and i + ∆, and use the known discount factors on these dates to interpolate for
the discount factor at time i. An example of this can be seen in figure 1 below.

Figure 1: Log-Linear Interpolation for USD LIBOR Discount Factors

For the discounting curve, we use OIS discount factors and interpolate discount
factors at swap payment dates by using log-cubic interpolation. This type of inter-
polation is a common choice when interpolating along the OIS-curve (Ametrano
& Bianchetti, 2013; Darbyshire, 2016).

Most popular programming languages have built-in functions that allow users
to set up log-cubic interpolation schemes. Ron (2000) provides an overview of
technical details regarding its implementations and Darbyshire (2016) highlights
a number of practical concerns surrounding its implementation. Intuitively, in-
terpolating discount factors through log-cubic interpolation involves choosing a
number of knot points, in this case the known discount factors, for which we fit
a cubic polynomial through. Naturally, as the number of knot points increase,
the result from log-cubic interpolation becomes more similar to the results from
log-linear interpolation. In practice, care should be taken, especially regarding
what known discount factors should be used as knots. By including a discount
factor for a tenor that is illiquid, one risks obtaining a cubic polynomial that do
not fit the data well.

After interpolating for the discount factors, ZOIS(t, T ), we compute the futures-
implied swap rate, RFut, by equating the present values of the floating leg and
fixed leg

RFut =
∑N
i=1

(
ZST IR(t,Ti−1)
ZST IR(t,Ti) − 1

)
ZOIS(t, Ti)∑M

j=1 τ
fix
j ZOIS(t, Tj)
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where
(
ZST IR(t,Ti−1)
ZST IR(t,Ti) − 1

)
= rSTIRi τ flti

We compute futures-implied swap rates for 2-year, 3-year, 5-year, 7-year and 10-
year tenors in all markets given that we have enough STIR-futures to cover all
tenors.

Through this setup we are able to respect both the tenor- and discounting con-
sideration that we touched upon earlier. By using OIS-rates to discount the cash
flows we are implicitly assuming default risk close to zero. This is a reasonable
assumption for collateralized swaps, and in line with what Johannes and Sundare-
san (2007) who claimed that interest rate swaps should be discounted at a rate
lower than LIBOR. This type of discounting has become market practice, and
the Bloomberg data is discounted with OIS. Despite this, we did not experience
that the choice between IBOR- or OIS-discounting made a large impact on the
futures-implied swap rates for most time-periods in our sample. An example of
this can be seen in the figure 1 below.

To compute the futures basis, we subtract the market swap rate, R, from the
futures-implied swap rate

BasisFut = RFut −R

For the swap rates used to compute the futures basis for EUR and GBP, we use
tenor basis swaps to convert the six-month underlying to a three-month under-
lying. This is easiest to illustrate with GBP swaps. The GBP tenor basis swap
have one leg with the six-month GBP LIBOR and one leg with the three-month
GBP LIBOR. Both legs have the day count convention ACT/365. The payment
frequency for the six-month leg is semiannual and the payment frequency for the
three-month leg is quarterly. The GBP IRS has semiannual payments for both the
floating and fixed leg, the day count conventions are ACT/365, and the floating
payment is based on a six-month GBP LIBOR. Using tenor basis swaps, we have

0.25 0.50 0.75 1.00
GBP IRS: Receive Fixed, Pay Floating R − r6M R − r6M

GBP Tenor Basis Swap: Receive 6M, Pay 3M −r3M r6M − r3M −r3M r6M − r3M

Payoff −r3M R − r3M −r3M R − r3M

created a new one-year GBP interest rate swap with quarterly floating payments
that is reset against a three-month IBOR, and the fixed payments are as before.
This allows us to use STIR-futures directly for the computation of the basis.
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The method for implied swap rates using forward rate agreements is similar to
the one presented above with the main difference meaning that we do not need to
interpolate since we assume that the end dates align perfectly well with the date
schedule of the swap. In addition, there is no need to include tenor basis swaps
for EUR and GBP since the FRAs we use are indexed to six-month IBORs.

5.4 Computing the Convexity Bias

One popular model for computing convexity bias on STIR-futures is the Hull-
White one-factor model. It fits within the no-arbitrage family of term-structure
models, and is used both empirically and in practice8.

We also tried computing convexity bias with a Vasicek model. In our experience,
the dynamics of this model failed to capture the behavior of the interest rates,
and as a result the convexity adjustments were more or less constant over time.
This lead us to change the model used to the Hull-White one-factor model.

The computation of the convexity bias under the Hull-White one-factor model
involves two parts: the calibration of the one-factor model where we obtain the
two parameters for mean-reversion and sigma, and the part where we use those
parameters to compute the convexity bias. Of the two parts, the calibration is
the most technically challenging.

For all currencies, we use European-style at-the-money coterminal swaptions whose
tenor+expiry is equal to ten (i.e. 1x9, 2x8, etc.). In the US, where the coverage is
best, we use both options quoted in lognormal volatilities from 2000, and normal
volatilities from 2005/2006. For EUR Swaptions, we only have normal volatilities
available and the coverage runs from 2006 to 2019.

Intuitively, the calibration process involves minimizing the difference between mar-
ket prices of swaptions and model prices of swaptions, and then use those parame-
ters in the Hull-White one-factor model. We implement this calibration in Python
using the QuantLib library. Using built-in functions, we are able to efficiently cal-
ibrate the Hull-White model for both USD and EUR swaptions. Good resources
for implementing the Hull-White model in Python can be found in Ballabio and
Balaraman (2017) and Katajamäki (2017).

8Convexity adjustments on the Bloomberg terminal are based on the Hull-White one-factor
model.
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We fix the mean-reversion parameter to 5%, consistent with previous theory, and
calibrate the volatility parameter by minimizing the difference between market
prices and model prices of coterminal swaptions. After calibrating the mean-
reversion and volatility, we use the parameters to compute convexity adjustments
for STIR-futures. To do so, we follow a setup described in Hull (2017) using
formulas outlined earlier in the theory section.

Both parameters obtained for the Hull-White model and the resulting convexity
bias have been checked with sources such as Ametrano & Bianchetti (2013) and it
yields similar convextiy adjustments as Burghardt(2003)9. In addition, a simple
plot of the level of convexity bias shows logical results. The bias is larger for
futures-contracts with longer tenors, and it is higher during periods of increased
market stress.

Figure 2: Convexity Adjustments for USD Swap Rates Using Hull-White One-
Factor Model

6 Implied Swap Rates

Following the methodology outlined above, we compute bases for currencies USD,
EUR and GBP using both STIR-futures and forward rate agreements. The level
of market swap rates in these currencies is given in figure 3. Previous research
(Gupta & Subrahmanyam, 2000; Minton, 1997; Johannes & Sundaresan, 2007;
Burghardt, 2003; Bomfim, 2003) and economic rationale suggest that the mag-
nitude of the bases should be close to zero for short tenors such as two years,

9Burghardt did not use Hull-White one-factor model for his convexity bias, but the results
should nevertheless be similar, something which they are.
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and somewhat larger, but not larger than 10-15 bps for longer tenors such as
five years. The size and liquidity of these markets mean that they are largely
driven by traditional supply- and demand-mechanics so large mispricings should
disappear quickly. We find similar evidence. Surprisingly, we also find large and
persistent basis, especially using GBP-denominated FRA’s in the period after the
referendum for Brexit was announced in 2016, suggesting that frictions do exist.

Figure 3: 5-Year Interest Rate Swap Rates in USD, EUR and GBP

Burghardt (2003) provides examples of the economic impact of the basis. A 5-
year swap mispriced by 2-3 bps is worth around $80, 000 on a 100 million IRS.
For swaps of longer tenors, the impact is larger.

In the next sections, we present descriptive statistics on the magnitude and be-
havior of the basis in the three currencies using different instruments. We split
the data in three periods. Pre-crisis is before 2007, crisis is from 2007 to 2009, and
post-crisis is after 2009. The figures below are all sampled at a monthly frequency,
more specifically the third Wednesday in a month. This choice is motivated by
the replication portfolio described earlier so that we are able to capture the basis
on some IMM-dates. All tables are based on daily data.

All bases are cross-referenced with available sources to verify their correctness. For
the date schedule for the futures rates, we compare with Ametrano and Bianchetti
(2013). For the date schedules on the interest rate swaps we use Labuszewski
(2010) and Burghardt (2003). Most previous research work with other types of
interest rate swaps. For example, the USD IRS used to compute the futures basis
in Gupta and Subrahmanyam (2000) has a six-month LIBOR as the underlying in-
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dex and some different conventions compared to the swap here. Burghardt (2003)
provides an example in his section on the convexity bias, and when comparing
with the Eurodollar-implied swap rates he obtains, our futures-implied swap rates
are similar, leading us to believe that our computations are correct.

Table 3: Comparison with Futures-Implied Swap Rates from Burghardt, Septem-
ber 10th, 2002

Without Convexity With Convexity
2Yr 3Yr 5Yr 7Yr 10Yr 2Yr 3Yr 5Yr 7Yr 10Yr

Author Rates 2.4988% 2.9858% 3.7121% 4.2460% 4.7862% 2.4831% 2.9520% 3.6271% 4.0962% 4.5265%
Burghardt Rates 2.5040% 2.9890% 3.7180% 4.2600% 4.8040% 2.4900% 2.9550% 3.6300% 4.1060% 4.5360%
Difference (in bps) 0.5186 0.3201 0.5926 1.3997 1.7841 0.6888 0.2996 0.2890 0.9843 0.9519

Note that these rates are computed using IBOR discounting. For dates when
OIS-data is available, we also compute implied swap rates with OIS discounting,
although it does not impact the futures basis much as seen in figure 8 in the
appendix.

6.1 Forward Basis

Empirical works have mostly focused on theoretical forward rates instead of using
market prices of FRAs. This is mostly due to lack of data. Using data from
Bloomberg, we have FRAs in USD from 2004, in EUR from 2000 and in GBP
from 2000.

Johannes and Sundaresan (2007) compute theoretical futures- and forward-rates
using term-structure models such as Vasicek and Cox, Ingersoll and Ross. They
posit that the market swap rate should lie above the swap rate implied by forward
rates, and below the swap rate implied by futures rates. If this holds, we would
expect to see a negative forward basis.

Table 5 provides summary statistics on the forward basis in the currencies USD,
EUR and GBP. Both the mean and median for the forward basis in all currencies
are closer to zero in the post-crisis period relative to the pre-crisis period, consis-
tent with more trading and better liquidity in the market for FRAs. The bases
for USD and EUR both fluctuate around zero, and their means are negative in all
the three sub-periods we defined above, seemingly following the theory outlined
by Johannes and Sundaresan (2007). The basis for GBP has a positive mean and
it’s magnitude is a few basis points, ranging from 3.7 bps in the post-crisis period
to 5.8 bps in the pre-crisis period. Looking at figure 4, it is clear that the GBP
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forward basis experienced longer periods of a positive basis in the pre-crisis period,
whereas the positive periods have been centered around shorter time-intervals in
the post-crisis period.

The standard deviations of the forward bases are all higher during the crisis-
period with the span of values taken on by both the USD and GBP bases being
wider compared to the two other periods. Standard deviations returned to pre-
crisis levels for both USD and EUR in the post-crisis period, whereas the GBP
standard deviation has remained high, potentially due to specific events such as
Brexit, a term used for describing the process following United Kingdom’s decision
to leave the European Union10.

As is evident in figure 4, the basis is not as close to zero as our replication portfolio
argument suggests, especially for currencies USD and GBP. The USD basis does
not exhibit persistent positive or negative levels, making it difficult to attribute the
basis to one particular driver. The GBP basis is large and persistent, particularly
between 2016 and 2018.

6.2 Futures Basis

The futures basis has been treated extensively in previous literature. Minton
(1997), Gupta and Subrahmanyam (2000), Bomfim (2003) and Johannes and
Sundaresan (2007) all examine the basis and provide insights on its behavior.
Most theory finds that the basis should be positive and for shorter tenors such
as two years it should be close to zero. This is similar to what we find in all
currencies.

Table 6 provides descriptive statistics on the futures basis in currencies USD,
EUR and GBP. The mean for the USD and EUR bases are positive in all three
sub-periods. The mean for the GBP basis is negative in two sub-periods, but it is
-0.07 and -0.08 bps meaning that it can be thought of as zero. The mean of the
bases are all close to zero in the three sub-periods.

Standard deviations of the bases exhibit similar levels in the pre- and post-crisis
periods. Unsurprisingly, the standard deviations increase during the crisis-period,
in particular for the USD futures basis, which makes sense since this was the
center of the credit crisis of 2007/2008.

10Referendum announced in February 2016, and referendum held in June 2016.
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Figure 4: Forward Basis for 2-Year in USD, EUR and GBP

The mean bases for the USD and GBP bases increased from the pre-crisis pe-
riod to the post-crisis period. The basis in EUR did not change much and it is
currently the basis closest to zero. The EUR interest rate swap has the lowest
rates throughout this time-period and it is also the futures basis closest to zero.
The futures basis for the 2- and 5-year tenors are both close to zero suggesting
that there were few exploitable arbitrage opportunities in this currency during our
historical sample. In comparison, around 50% of the daily two-year USD futures
basis observations have an absolute value larger than 3 bps.

Figure 5 plots the 2- and 5-year futures basis for currencies USD, EUR and GBP.
The 2-year USD futures basis is fluctuating around zero, with few long periods in
positive or negative territory. The 5-year basis tends to be more on the positive
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side of the basis, and it is also larger than the 2-year basis. This is consistent with
the effects reported by Gupta and Subrahmanyam (2000) that convexity is one of
the main drivers of the basis, and that it should be larger for longer tenors. An
example of this can be seen in figure 8 in the appendix where we show the effect
of convexity adjustment for the seven-year USD futures basis.

Figure 5: Futures Basis for 2- and 5-Year in USD, EUR and GBP

6.3 Basis Across Instruments

In this section, we look closer at the correlations between the futures- and forward
bases in individual currencies. Economic rationale posits that the correlations
should be similar unless instrument-specific risk factors are present. Examples of
this include credit risk in an FRA versus the more collateralized futures contract,
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or the liquidity concerns related to posting an initial margin and keeping up the
variation margin in a futures contract relative to an FRA with one payment only.

Figure 6 provides a scatter plot of the 2-year futures- and forward-basis in the
currencies USD, EUR and GBP. The x-axes show the level of the forward basis,
and the y-axes show the level of the futures basis. The scatter plots are divided
in three time-periods that we are familiar with from before.

Figure 6: Correlation Between Futures- and Forward-Basis

The correlation11 between the USD futures-and forward basis is strong at 0.82 in
the pre-crisis period, and 0.95 in the two other periods. This is less surprising
in the pre- and post-crisis periods where we would expect the two bases to move
similarly. However, during the crisis, when credit risk became more important,
it is noteworthy that market participants perception of credit risk did not reduce
the correlation between the collateralized futures-contracts and uncollateralized
forward rate agreements.

A similarly strong correlation during the crisis-period compared with other periods
can be witnessed in the two other markets as well.

Neither the EUR nor GBP bases displayed strong correlation in the pre-crisis
period. From the scatter plot in figure 6 we can see that this is mostly driven by

11Pearson correlation coefficient.
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occasional large values in the forward basis, potentially driven by less trading in
these types of products in the pre-crisis period.

In the post-crisis period, the EUR bases display strong correlation. Both EUR
bases have lower absolute levels compared to the other markets during this period.
The correlation between the GBP bases display weak correlation in the post-crisis
period. This is more visible from figures 4 and 5 where we saw that the GBP
forward basis reacted more to the Brexit event compared to the GBP futures
basis.

6.4 Basis Across Markets

After looking at the correlation between instruments, we turn our focus to correla-
tion across markets. Economic rationale asserts that correlations between markets
should increase during global financial crises. Additionally, a negative driver of
the correlation could be country-specific regulations or actions by central banks.

Figure 9 in the appendix shows the 2-year bases correlation between the forward
bases in different currencies in the pre-crisis-, crisis-, and post-crisis-periods. Cor-
relations across markets were low in the pre-crisis period, ranging from 0.13 for
GBP/USD to 0.21 for EUR/GBP and 0.46 for EUR/USD. During the global finan-
cial crisis of 2007/2008, correlations increase which in line with assertions from
theory. The EUR/USD correlation grows to 0.60 and the correlation between
EUR and GBP grows to 0.46. These correlation-levels are not strong, but they
nevertheless exhibit a linear relationship between the currencies, which becomes
evident as we look at the scatter plots in the appendix.

In the post-crisis period, correlations between markets revert back to pre-crisis
levels. The correlation between USD and EUR is of particular interest. This
correlation moves from 0.46 pre-crisis to 0.60 during the crisis to 0.28 in the
post-crisis period. One potential explanation for this collapse could be specific
regulations or actions by the central banks of each currency. As we have touched
upon earlier, the EUR forward basis is trading at levels closer to zero compared
to the other markets.

A similar figure for the futures bases is presented in figure 10 in the appendix. At
a general level, the correlations are similar to what we observed for the forward
bases. Compared to the correlations between the forward bases, the correlations

36

09808260944383GRA 19703

A1710105
Stamp

A1710105
Stamp



between the futures bases do not increase as markedly during the crisis. It is also
noticeable how correlations revert back to pre-crisis levels in the post-crisis period.
The only exception, which is also similar to what seen in the forward bases, is
the correlation between USD and EUR, which drops from 0.52 in the pre-crisis
to 0.25 in the post-crisis further suggesting that something happened in the EUR
market that separated it further from the USD market.

7 Limits to Arbitrage

We turn our focus towards factors explaining why apparent arbitrage opportuni-
ties are not exploited by arbitrageurs. In particular, we look at the GBP forward
basis between 2016 and 2019 and the USD futures basis for longer tenors. We
start by introducing factors related to credit risk and liquidity. After introducing
their intuition and linking them with the specific arbitrages, we propose some
specific factors for each arbitrage strategy.

Credit risk can be defined as the risk of partial or complete loss of future cash
flows when a counterparty fails to honor the contract. More concisely, credit risk
is the risk of default. Previous research asserts that posting of collateral close to
eliminates credit risk (Collin-Dufresne & Solnik, 2001; Liu et al., 2006; Feldhütter
& Lando, 2008). As a result, an uncollateralized FRA is likely to include more
credit risk than futures contracts or interest rate swaps.

Credit risk can be measured in multiple ways. The TED spread was used by
Gupta and Subrahmanyam (2000) for measuring credit risk. It is defined as the
spread between a three-month IBOR and Treasury bills of the same maturity. An
alternative might be the IBOR-OIS spread. This spread shows the risk premium
for an interbank rate with implicit credit risk (i.e. the IBOR) relative to an
unsecured overnight rate with no credit risk (i.e. a "risk-free" rate). In times of
market stress, when uncertainties around counterparties are larger, the IBOR-OIS
spread increases, reflecting the increased premium of interbank lending.

Liquidity is another well-studied factor in previous literature. In times when
liquidity is easily accessible, the replication portfolio described earlier should be
easier to trade, thereby reducing any near-arbitrage profits. In such times, an
arbitrageur could easily enter into positions large enough to benefit from the
basis. We have seen that the bases are of a smaller magnitude, so fully capturing
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economic profits require a generous amount of leverage. To test the effect of
liquidity on the arbitrage-strategies, we use tenor basis swaps. The swap rate of a
1M vs. 3M tenor basis swap represents the premium paid to receive a succession
of three one-month rates instead of one three-month rate. At the payment dates
in the swap, a one-month rate is swapped against a three-month rate, insofar the
payment dates of the two legs align. The rates swapped are all indexed against
the local IBOR.

We echo the interpretation of Du, Tepper and Verdelhan (2018) and use the tenor
basis swap as a measure of liquidity rather than credit risk. Darbyshire (2016)
extends the notion to also include optionality. Optionality in this case is best
understood through an example. An investor lending at a three-month rate locks
itself to one counterparty throughout the entire three-month period, creating a
rather illiquid asset. An investor lending three consecutive one-month rates has
the option of reallocating the second and third one-month lending period to other
counterparties or other endeavours, wherever the expected return is higher. This
built-in option has more value in times when uncertainty and liquidity is of higher
importance. Thus, liquidity and optionality become related.

7.1 The GBP Forward Basis Arbitrage

The FRA replication portfolio postulates that the forward basis should be zero.
Despite this, the GBP forward basis traded between 10 bps and 20 bps for longer
periods between 2016 and 2019. Compare that to levels around 0 bps in EUR,
and between -5 bps and 5 bps in USD, and it seems clear that there should be a
theoretical arbitrage. An arbitrageur would short the FRAs and go long a fixed
receiver IRS, locking in a profit of 10-20 bps multiplied by the notional and the
year-fraction for the fixed payments during the two-year swap. This deviation is
persistent, and below we look for potential limits to this arbitrage.

The spike in the GBP basis coincides with important events leading up to Brexit.
Brexit is a term for the process dealing with United Kingdom’s exit from the
European Union. The process started in February 2016 when British Prime Min-
ister David Cameron announced that a referendum regarding membership in the
European Union was taking place later the same year. At this point, we see a
large spike in the forward basis. In June the same year, the referendum was held
and the British people voted to exit the European Union, causing another spike
in the forward basis. The positive basis remains persistent and does not cross
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zero before 2018. In 2019, the basis moved upwards again, potentially due to
uncertainties surrounding the final Brexit deal between United Kingdom and the
European Union which was originally scheduled to take place in March or April
2019, but was postponed to October 2019.

A more interesting aspect from a financial perspective is what economic factors
drove the basis upwards. The persistence of the arbitrage cannot be explained
by traditional credit risk measures or open interest of the contracts. LIBOR-OIS
spread did not markedly increase in the period of 2016-2019. In fact, this spread
was higher during the financial crisis, a time in which the forward basis traded
at levels lower than Brexit levels. The Bank for International Settlements pro-
vides data on open interest in both over-the-counter and exchange-traded markets
across the world. Data12 shows that volume in FRAs linked to GBP decreased
significantly from 2014 with only small reductions from 2016 and onwards.

Liquidity in GBP FRAs worsened after important Brexit events. Using the rela-
tive bid-ask spread of the 6x12 FRA, we plot the relative bid-ask spread and the
forward basis below. The relationship between the forward basis and an increased
level of the relative bid-ask spread is apparent. This suggests that high trading
costs related to the arbitrage strategy could be an important limit for arbitrageurs
seeking to exploit the opportunity.

Figure 7: GBP Forward Basis and Relative Bid-Ask Spread

12See for example the dataset "OTC derivatives outstanding" on
https://www.bis.org/statistics/full_data_sets.htm
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7.2 The Long-Tenor Futures Basis Arbitrage

In contrast to the GBP forward basis arbitrage, the futures bases for longer tenors
have traded at large positive levels during most of our historical sample. This
futures basis arbitrage have been treated in the literature before, most notably
by Gupta and Subrahmanyam (2000). It has persisted for nearly 30 years, and is
worth some attention. This arbitrage is more of a near-arbitrage compared to the
FRA replication portfolio. Despite this, we should not expect to see such high
levels without any consistent factor explaining away most of the basis.

The means for the 5-, 7-, and 10-year USD futures basis in the post-crisis have
been 5.6 bps, 10.7 bps and 17.4 bps respectively. Similar values were found in the
other periods. At first sight this looks like arbitrage opportunities. We saw in the
replication portfolio that traders were able to closely replicate the cash flows of
the floating leg in an IRS. This begs the question why this arbitrage opportunity
exist.

Gupta and Subrahmanyam (2000) put forth nearly 20 years ago that convexity is
the main limit to arbitrage for the futures basis. Other factors like credit risk or
liquidity were found to be either statistically or economically insignificant.

We use a similar procedure, albeit with other proxies for credit risk and liquid-
ity. Our results are remarkably similar, showing the survival of their findings in
the post-crisis period. The convexity bias explains away most arbitrage profits,
showing the robustness of Gupta and Subrahmanyam’s initial finding. This is
surprising due to several factors. The mark-to-market feature of futures contracts
that leads to the convexity adjustments and the collateralization procedures of
most interest rate swaps are more similar today relative to 20 years ago. Follow-
ing from this, convexity should matter less, not more or equally much as before.
That could be one of the explanations for why we are finding that the convexity
bias is not able to explain the variation in the futures basis well, only the mean
level. This is in contrast to what Gupta and Subrahmanyam find.

To test the effect of credit risk on the futures basis arbitrage, we run regressions
with the basis for tenors 5, 7, and 10 as dependent variables and the LIBOR-OIS
spread, defined as three-month IBOR minus three-month OIS, as the independent
variable. To capture the effect of credit risk, and not the effect of discounting,
we use futures bases with OIS discounting. We run regressions on levels and
first differences and table 7 in the appendix reports the results. The LIBOR-OIS
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spread is statistically significant at the 5%-level, so a linear relationship exists,
but it is not strong. Its economical significance is small. For a 1 bps change in
LIBOR-OIS spread, the futures basis for the 5-year swap changes by 0.15 bps13.
Similar results are found in both crisis and post-crisis periods, suggesting that
credit risk is economically insignificant even in periods of market stress seemingly
in line with both Bomfim (2003).

For liquidity, we run the bases against tenor basis swaps with legs of one- and
three-month IBORs. Using first differences, we do not find any statistically sig-
nificant linear relationship between liquidity and the basis at any level, neither
during the crisis nor post-crisis. Results for the 5-year basis are reported in table
8 in the appendix. Similar results were found for 7- and 10-year tenors.

Table 4 below reports the summary statistics of the USD futures bases before
and after convexity bias is taken into account. Most notable, all means converge
towards no-arbitrage levels after we account for convexity. However, the standard
deviations stay at similar levels, suggesting that the convexity is able to reduce
the mean, but not explain the variation well. After accounting for convexity on
the 10-year basis, more than 25% of the observations have an absolute value of
more than 6 bps, an economically significant difference for IRSs with notionals
above $100 Mn.

However, relative to other near-arbitrage strategies, this futures basis arbitrage
for longer tenors require an enormous amount of maintenance, both in form of
margin requirements to be met, and waiting period for the payoff. The notionals
that need to be locked up to obtain large economic profits are potentially large,
a tighter regulations in the post-crisis environment may play a key role in the
ability of arbitrageurs to profit from small arbitrage opportunities (Boyarchenko
et al., 2018).

13As a comparison, similar regressions with the convexity bias as independent variable suggest
changes of 3 bps to 6 bps.
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2Yr, no Convexity 3Yr, no Convexity 5Yr, no Convexity 7Yr, no Convexity 10Yr, no Convexity
Count 2391.0000 2391.0000 2391.0000 2391.0000 2391.0000
Mean 0.6193 1.6735 5.5653 10.7449 17.3677
Std 2.6184 3.3431 4.4783 5.6701 7.9281
Min -12.1263 -16.5098 -14.0029 -7.8528 -0.5634
25% -0.6244 -0.1810 2.6958 6.9447 11.3156
50% 0.4874 1.4484 5.2324 10.0155 15.7785
75% 1.7153 3.2524 7.9891 14.2035 23.1105
Max 18.4315 21.9340 28.4668 35.8580 45.6846

(a) USD Futures Basis without Convexity Adjustments, Post-Crisis Period

2Yr, w/Convexity 3Yr, w/Convexity 5Yr, w/Convexity 7Yr, w/Convexity 10Yr, w/Convexity
Count 2387.0000 2387.0000 2387.0000 2387.0000 2387.0000
Mean -0.1774 -0.0644 1.0694 2.5635 2.4810
Std 2.6361 3.3957 4.4598 5.2050 6.2073
Min -12.5047 -19.0901 -20.6756 -19.9815 -18.8926
25% -1.4355 -1.8941 -1.6091 -0.7102 -1.5009
50% -0.3015 -0.2682 0.9883 2.3010 1.6051
75% 0.9810 1.6049 3.5145 5.5457 6.3103
Max 17.9088 20.7995 25.5346 27.0236 28.2532

(b) USD Futures Basis with Convexity Adjustments, Post-Crisis Period

Table 4: USD Futures Basis with and without Convexity

8 Conclusion

Our goal in this thesis was first to provide an updated framework of computing
futures- and forward basis. We provided a flexible method that allowed us to com-
pute bases for three markets. As a contribution to literature, we have shown how
forward rate agreements, OIS discounting and tenor basis swaps can be included
in the computations. In addition, we have tried to make the process as open as
possible by putting forth assumptions taken in addition to including the code for
computation of the bases in the appendix. All of this is fully implemented in
Python, and requires no costly programming languages with exception of access
to the relevant data.

Secondly, we updated and extended previous empirical research to include more
recent basis-levels. It was important for us to include the forward bases as it
has to a lesser extent been empirically examined. Our focus was centered around
presenting an overview of the patterns of the bases in addition to including some
correlation measures both across instruments and across markets. We showed
that despite markets being mostly efficient, there exist deviations from the theory
of the replication portfolios constructed. Furthermore, we explored two specific
arbitrage strategies and discussed drivers of limits to arbitrage in these specific
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strategies.

Limitations of the thesis include a shallow treatment of some of the practical
considerations for arbitrageurs wanting to trade on these strategies. It is not
unreasonable to assume that the arbitrage opportunities presented could be eaten
away by trading costs and restricted access to capital.

Further research could look more into correlations, in particular the collapse of
correlations between USD and EUR bases in post crisis, or the GBP forward and
futures basis in the post-crisis period. Alternatively, the behavior of the bases
was not well captured by any of our factors, and this also an interesting avenue
for further research.
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Pre-Crisis USD Pre-Crisis EUR Pre-Crisis GBP
Count 720.0000 1788.0000 1767.0000
Mean -0.9424 -0.3183 5.8308
Std 2.4139 1.9147 3.8113
Min -16.4285 -25.3972 -22.7776
25% -1.3330 -0.6390 4.4071
50% -0.8355 -0.1684 5.6957
75% -0.2944 0.1895 7.2832
Max 14.9328 12.9445 24.3809

(a) Pre-Crisis Forward Basis, Daily Data

Crisis USD Crisis EUR Crisis GBP
Count 760.0000 767.0000 760.0000
Mean -0.6883 -0.5635 4.2704
Std 6.9474 4.1942 6.0336
Min -33.0276 -25.9814 -19.5868
25% -4.6703 -2.8223 0.1816
50% -0.8952 -0.5680 5.0099
75% 2.8504 1.4486 8.4852
Max 33.6223 21.2174 25.2247

(b) Crisis Forward Basis, Daily Data

Post-Crisis USD Post-Crisis EUR Post-Crisis GBP
Count 2391.0000 2423.0000 2382.0000
Mean -0.0430 -0.1023 3.7169
Std 2.8025 1.8772 6.4506
Min -15.3381 -21.2994 -12.4831
25% -1.4115 -0.6426 -0.2736
50% -0.0823 -0.0826 1.2916
75% 1.2289 0.4796 5.4370
Max 19.0340 17.3626 25.7842

(c) Post-Crisis Forward Basis, Daily Data

Table 5: Summary Statistics, 2-Year Forward Basis
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Pre-Crisis USD Pre-Crisis EUR Pre-Crisis GBP
Count 720.0000 1788.0000 1767.0000
Mean 0.2624 0.2015 -0.0840
Std 2.1813 1.5972 1.5899
Min -16.1409 -12.2832 -10.6190
25% -0.4516 -0.5871 -0.8258
50% 0.3245 0.2021 -0.0605
75% 1.1222 1.0056 0.7141
Max 16.0300 10.5921 13.3493

(a) Pre-Crisis Futures Basis, Daily Data

Crisis USD Crisis EUR Crisis GBP
Count 760.0000 767.0000 760.0000
Mean 0.6595 0.3191 -0.0761
Std 6.4580 4.2317 4.7036
Min -29.1625 -24.7040 -22.9400
25% -3.1490 -1.8503 -2.6309
50% 0.3316 0.1930 -0.1451
75% 3.7583 1.9723 2.5234
Max 37.3810 24.4225 20.7323

(b) Crisis Futures Basis, Daily Data

Post-Crisis USD Post-Crisis EUR Post-Crisis GBP
Count 2391.0000 2423.0000 2382.0000
Mean 0.6407 0.2425 0.4805
Std 2.6214 1.8889 1.9404
Min -11.9754 -17.3593 -10.4513
25% -0.6031 -0.4067 -0.5218
50% 0.5022 0.1089 0.4229
75% 1.7413 0.7153 1.4413
Max 18.6262 17.4476 13.1402

(c) Post-Crisis Futures Basis, Daily Data

Table 6: Summary Statistics, 2-Year Futures Basis
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Time-Period
Crisis Post-Crisis
(1) (2)

LIBOR-OIS Spread 0.018∗∗∗ -0.03∗∗∗

(0.005) (0.009)

Constant 5.009∗∗∗ 6.229∗∗∗

(0.417) (0.206)

Observations 760.0 2384.0
R2 0.019 0.005

Notes: ***p<0.01, **p<0.05, *p<0.10
Futures basis and LIBOR-OIS spread in bps

(a) Levels
Dependent Variable: 5-Year USD Futures Basis with OIS Discounting

Time-Period
Crisis Post-Crisis
(1) (2)

∆LIBOR-OIS Spread 0.143∗∗ 0.15∗∗

(0.069) (0.071)

Constant 0.018 -0.002
(0.365) (0.109)

Observations 759.0 2383.0
R2 0.006 0.002

Notes: ***p<0.01, **p<0.05, *p<0.10
Futures basis and LIBOR-OIS spread in bps

(b) First Differences
Dependent Variable: ∆5-Year USD Futures Basis with OIS Discounting

Table 7: Regression Table - Credit Risk
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Time-Period
Crisis Post-Crisis
(1) (2)

Tenor Basis 5Yr, 1M vs. 3M 0.469∗∗∗ 0.081∗∗∗

(0.072) (0.029)

Constant 3.841∗∗∗ 4.767∗∗∗

(0.458) (0.3)

Observations 760.0 2391.0
R2 0.052 0.003

Notes: ***p<0.01, **p<0.05, *p<0.10
Futures basis and tenor basis in bps

(a) Levels
Dependent Variable: 5-Year USD Futures Basis with OIS Discounting

Time-Period
Crisis Post-Crisis
(1) (2)

∆Tenor Basis 5Yr, 1M vs. 3M -0.105 0.103
(0.691) (0.279)

Constant 0.019 -0.0
(0.366) (0.109)

Observations 759.0 2390.0
R2 0.0 0.0

Notes: ***p<0.01, **p<0.05, *p<0.10
Futures basis and tenor basis in bps

(b) First Differences
Dependent Variable: ∆5-Year USD Futures Basis with OIS Discounting

Table 8: Regression Table - Liquidity and Optionality
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A.2 Supporting Figures

Figure 8: Difference in Futures Basis with OIS Discounting and Convexity Ad-
justments
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Pre-Crisis

Crisis

Post-Crisis

Figure 9: Scatter Plots of Forward Basis for Different Currencies
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Pre-Crisis

Crisis

Post-Crisis

Figure 10: Scatter Plots of Futures Basis for Different Currencies

53

09808260944383GRA 19703

A1710105
Stamp



A.3 Data Sources

Table 9: Conventions for Interest Rate Swaps in Currencies USD, EUR and GBP

USD EUR GBP
Bloomberg Code USSWAPx Curncy EUSAx Curncy BPSWx Curncy
Index 3M USD LIBOR 6M EURIBOR 6M GBP LIBOR
Settlement T+2 Days T+2 Days T+0 Days
Calendar United States Target England
Bus Adj Modified Following Modified Following Modified Following
Roll Conv Backward (EOM) Backward (EOM) Backward (EOM)
Float Leg: Day Count ACT/360 ACT/360 ACT/365
Float Leg: Pay Freq Quarterly Semiannual Semiannual
Fixed Leg: Day Count 30/360 30/360 (Bond Basis) ACT/365
Fixed Leg: Pay Freq Semiannual Annual Semiannual
Discounting OIS OIS OIS

54

09808260944383GRA 19703

A1710105
Stamp



Table 10: Bloomberg Codes for Data used in Computations

USD EUR GBP

Deposit Rates US0003M Index EUR003M Index
EUR006M Index

BP003M Index
BP006M Index

STIR-Futures
ED1 Comdty

...
ED40 Comdty

ER1 Comdty
...

ER24 Comdty

L 1 Comdty
...

L 24 Comdty

FRAs

USFR0CF Curncy
USFR0FI Curncy
USFR0I1 Curncy
USFR011C Curncy
USFR1C1F Curncy
USFR1F1I Curncy
USFR1I2 Curncy

EUR006M Index
EUFR0F1 Curncy
EUFR011F Curncy
EUFR1F2 Curncy

BP0006M Index
BPFR0F1 Curncy
BPFR011F Curncy
BPFR1F2 Curncy

OIS Rates

USSOC Curncy
USSOF Curncy
USSOI Curncy
USSO1 Curncy
USSO1F Curncy
USSO2 Curncy
USSO3 Curncy
USSO4 Curncy
USSO5 Curncy

EUSWEC Curncy
EUSWEF Curncy
EUSWEI Curncy
EUSWE1 Curncy
EUSWE1F Curncy
EUSWE2 Curncy
EUSWE3 Curncy
EUSWE4 Curncy
EUSWE5 Curncy
EUSWE7 Curncy

BPSWSC Curncy
BPSWSF Curncy
BPSWSI Curncy
BPSWS1 Curncy
BPSWS1F Curncy
BPSWS2 Curncy
BPSWS3 Curncy
BPSWS4 Curncy
BPSWS5 Curncy
BPSWS7 Curncy

IRSs

USSWAP2 Curncy
USSWAP3 Curncy
USSWAP5 Curncy
USSWAP7 Curncy
USSWAP10 Curncy

EUSA2 Curncy
EUSA3 Curncy
EUSA5 Curncy
EUSA7 Curncy

BPSW2 Curncy
BPSW3 Curncy
BPSW5 Curncy
BPSW7 Curncy

Swaptions

USSN019 Curncy
USSN028 Curncy
USSN037 Curncy
USSN046 Curncy
USSN055 Curncy
USSN064 Curncy
USSN073 Curncy
USSN082 Curncy
USSN091 Curncy
USSV019 Curncy
USSV028 Curncy
USSV037 Curncy
USSV046 Curncy
USSV055 Curncy
USSV064 Curncy
USSV073 Curncy
USSV082 Curncy
USSV091 Curncy

EUSN019 Curncy
EUSN028 Curncy
EUSN037 Curncy
EUSN046 Curncy
EUSN055 Curncy
EUSN064 Curncy
EUSN073 Curncy
EUSN082 Curncy
EUSN091 Curncy

Other
USBG7 Curncy
USBG10 Curncy
USBAAC Curncy

EUBSV2 Curncy
EUBSV3 Curncy
EUBSV5 Curncy
EUBSV7 Curncy

BPSFVC2 Curncy
BPSFVC3 Curncy
BPSFVC5 Curncy
BPSFVC7 Curncy
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A.4 Calibration of Vasicek Model

The Vasicek model can be written as

dr = κ(µ− r)dt+ σdz

Using a time series of three-month (or six-month) deposit rates denoted by rt, we
can calibrate parameters κ, µ and σ by the following regression model

rt+1 = a+ brt + εt

where a = µ(1 − e−κ∆t) and b = e−κ∆t.

After running this OLS regression, parameters can be backed out by using

κ = − ln(b)
∆t

µ = a

1 − e−k∆t

σ = std(ε)
√

2κ
1 − e−2κ∆t

The next steps involves finding theoretical futures and forward rates under the
Vasicek process with the calibrated parameters. Grinblatt and Jegadeesh (1996)
provide a clear overview of this process. The equations below are based on their
paper.

Vasicek (1977) shows that prices of pure discount bonds are given by

P (s, t) = a(s− t)exp(−b(s− t)r(s)

where s and t indicate time, and is measured in year-fractions (for example
ACT/360) and

b(x) = (1/κ)[1 − exp(−κx)]

a(x) = exp
[
(b(x) − x)(µ− σ2/2κ2) − (σ2/4κ)b(x)2

]
The prices of pure discount bonds imply that the Vasicek forward rate is given by

f(T1, T2) = d(T1, T2)
[
P (0, T1)
P (0, T2) − 1

]
= d(T1, T2)

[
a(T1)
a(T2)exp[(b(T2) − b(T1))r(0)]

]

where d(s, t) is 360 divided by number of days between s and t.
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The futures rate requires a few more steps, and is given by

F (T1, T2) = d(T1, T2) [(1/a(T2 − T1))E[exp(b(T2 − T1)r(T1))] − 1]

where

E[exp(b(T2 −T1)r(T1))] = exp[B(T2 −T1)E[r(T1)] + 1
2B(T2 −T1)2var[r(T1)]]

E[r(T1)] = exp(κT1)r(T2) + [1 − exp(−κT1)]µ∗

var[r(T1)] = σ2[1 − exp(−2κT1]
2κ

Once both theoretical futures rates and forward rates are derived, the convexity
adjustment under the Vasicek model is given by

cvxV asicek = F (T1, T2) − f(T1, T2)

A.5 Python Code for Computing the Futures Basis

1

2 # coding : utf 8
3

4 # In [ ] :
5

6

7 # IMPORT LIBRARIES
8 import math
9 import numpy as np

10 import pandas as pd
11 import seaborn as sns
12 import QuantLib as q l
13 from sc ipy import s t a t s
14 from fun c t o o l s import reduce
15 from datet ime import datet ime
16 from i t e r t o o l s import compress
17 from c o l l e c t i o n s import namedtuple
18 from sc ipy . i n t e r p o l a t e import inte rp1d
19

20

21 # In [ ] :
22

23

24 # CHOOSE CURRENCY AND WHETHER YOU WANT CONVEXITY ADJUSTMENT
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25 currency = ’USD ’
26 adjustCvx = True
27

28 #. . . based on these inputs , we s e t some
29 i f currency == ’USD ’ :
30 #. . . d e f i n e number o f days a f t e r t rade that dea l s e t t l e s
31 s e t t l eDays = 2
32 #. . . s p e c i f y ca l endar f o r market
33 c a l = q l . UnitedStates ( )
34 #. . . s p e c i f y day count convent ion
35 dayCount = q l . Actual360 ( )
36 dayCountFlt = q l . Actual360 ( )
37 dayCountFix = q l . Thirty360 ( )
38 #. . . d e f i n e f requency o f f l o a t i n g payments and other date r u l e s
39 f r e q = q l . Quarter ly
40 f r e qF l t = 4
41 conv = q l . Modi f i edFol lowing
42 dtRule = q l . DateGeneration . Backward
43 EOM = True
44 #. . . d e f i n e f requency o f f i x ed payments
45 f r eqF ixed = 2
46 #. . . f i l ename f o r input f i l e
47 f i l ename = ’ usd_data_June . x l sx ’
48 #. . . f i l ename f o r output f i l e
49 exce lF i l ename = ’USD Impl ied IRS ’+s t r ( q l . Date . todaysDate ( ) )+’ .

x l sx ’
50 #. . . f i l ename f o r input f i l e with convex i ty in fo rmat ion
51 f i lenameCvx = ’ swaption_usd . x l sx ’
52

53 i f currency == ’EUR’ :
54 #. . . d e f i n e number o f days a f t e r t rade that dea l s e t t l e s
55 s e t t l eDays = 2
56 #. . . s p e c i f y ca l endar f o r market
57 c a l = q l .TARGET()
58 #. . . s p e c i f y day count convent ion
59 dayCount = q l . Actual360 ( )
60 dayCountFlt = q l . Actual360 ( )
61 dayCountFix = q l . Thirty360 ( q l . Thirty360 . BondBasis )
62 #. . . d e f i n e f requency o f f l o a t i n g payments and other date r u l e s
63 f r e q = q l . Quarter ly
64 f r e qF l t = 4
65 conv = q l . Modi f i edFol lowing
66 dtRule = q l . DateGeneration . Backward
67 EOM = True
68 #. . . d e f i n e f requency o f f i x ed payments
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69 f r eqF ixed = 1
70 #. . . f i l ename f o r input f i l e
71 f i l ename = ’ eur_data_June . x l sx ’
72 #. . . f i l ename f o r output f i l e
73 exce lF i l ename = ’EUR Impl ied IRS ’+s t r ( q l . Date . todaysDate ( ) )+’ .

x l sx ’
74 #. . . f i l ename f o r input f i l e with convex i ty in fo rmat ion
75 f i lenameCvx = ’ swaption_eur . x l sx ’
76

77 i f currency == ’GBP’ :
78 #. . . d e f i n e number o f days a f t e r t rade that dea l s e t t l e s
79 s e t t l eDays = 0
80 #. . . s p e c i f y ca l endar f o r market
81 c a l = q l . UnitedKingdom ( )
82 #. . . s p e c i f y day count convent ion
83 dayCount = q l . Actual365Fixed ( )
84 dayCountFlt = q l . Actual365Fixed ( )
85 dayCountFix = q l . Actual365Fixed ( )
86 #. . . d e f i n e f requency o f f l o a t i n g payments and other date r u l e s
87 f r e q = q l . Quarter ly
88 f r e qF l t = 4
89 conv = q l . Modi f i edFol lowing
90 dtRule = q l . DateGeneration . Backward
91 EOM = True
92 #. . . d e f i n e f requency o f f i x ed payments
93 f r eqF ixed = 2#4
94 #. . . f i l ename f o r input f i l e
95 f i l ename = ’ gbp_data . x l sx ’
96 #. . . f i l ename f o r output f i l e
97 exce lF i l ename = ’GBP Impl ied IRS ’+s t r ( q l . Date . todaysDate ( ) )+’ .

x l sx ’
98

99

100 # In [ ] :
101

102

103 # IMPORT DATA
104 l i b o r_ra t e s = pd . read_excel ( f i l ename , sheet_name=’ ibo r ’ , index_col=’

Dates ’ )
105 f u t_pr i c e s = pd . read_excel ( f i l ename , sheet_name=’ f u tu r e s ’ , index_col=’

Dates ’ )
106 o i s_ra t e s = pd . read_excel ( f i l ename , sheet_name=’ o i s ’ , index_col=’ Dates ’

)
107 swap_rates = pd . read_excel ( f i l ename , sheet_name=’ swaps ’ , index_col=’

Dates ’ )
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108 fwd_rates = pd . read_excel ( f i l ename , sheet_name=’ forwards ’ , index_col=’
Dates ’ )

109 i f ( ( currency==’USD ’ ) | ( currency==’EUR’ ) ) & ( adjustCvx==True ) :
110 swap_rates_HW = pd . read_excel ( fi lenameCvx , sheet_name=’ swaps ’ ,

index_col=’ Dates ’ )
111 swaption_norm = pd . read_excel ( fi lenameCvx , sheet_name=’ normal ’ ,

index_col=’ Dates ’ )
112 i f currency == ’USD ’ :
113 swaption_black = pd . read_excel ( fi lenameCvx , sheet_name=’

lognormal ’ , index_col=’ Dates ’ )
114

115

116 # ### Compute Date Schedules f o r Futures and Swaps
117

118 # In [ ] :
119

120

121 # DEFINE USER DEFINED FUNCTIONS
122 de f createPmtSchedule ( s e t t l e , tenor , maxTenor ) :
123 pmtList = [ ]
124 i f t enor <= maxTenor :
125 maturityDate = ca l . advance ( s e t t l e , np . i n t ( tenor ) , q l . Years )
126 #. . . compute qua r t e r l y payment schedu le between s e t t l e and

maturity
127 swpPmtSchedule = q l . Schedule ( s e t t l e , maturityDate , q l . Per iod (

f r e q ) ,
128 ca l , conv , conv , dtRule , EOM)
129 #. . . e x t r a c t payment dates as a l i s t
130 pmtDates = l i s t ( swpPmtSchedule )
131 #. . . ad jus t pmtDates so that we get ac tua l payment dates
132 pmtDates = pmtDates [ tenor ∗ f r e qF l t : ]
133 #. . . append r e s u l t s to l i s t and convert to non QuantLib format
134 pmtList . append ( [ datet ime ( dt . year ( ) , dt . month ( ) , dt . dayOfMonth

( ) ) f o r dt in pmtDates ] )
135 e l s e :
136 pmtList . append (np . ones ( tenor ∗ f r e qF l t ) ∗np . nan )
137 re turn pmtList ;
138

139 de f yearFractionSwapPayments ( s e t t l e , tenor , maxTenor , daycount ) :
140 y fL i s t = [ ]
141 f o r dt in createPmtSchedule ( s e t t l e , tenor , maxTenor ) [ 0 ] :
142 t ry :
143 y fL i s t . append ( daycount . yearFract ion ( s e t t l e , q l . Date ( dt . day

, dt . month , dt . year ) ) )
144 except :
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145 y fL i s t . append (np . nan )
146 re turn y fL i s t ;
147

148

149 # In [ ] :
150

151

152 # Create l i s t s to s t o r e dates
153 depoValue = [ ]
154 fu ture sVa lue = [ ]
155 futuresEnd = [ ]
156 swpPmtDates2 = [ ]
157 swpPmtDates3 = [ ]
158 swpPmtDates5 = [ ]
159 swpPmtDates7 = [ ]
160 swpPmtDates10 = [ ]
161 yfDepos i t = [ ]
162 yfFuturesVal = [ ]
163 yfFuturesEnd = [ ]
164 yfSwapFlt2 = [ ]
165 yfSwapFlt3 = [ ]
166 yfSwapFlt5 = [ ]
167 yfSwapFlt7 = [ ]
168 yfSwapFlt10 = [ ]
169 yfSwapFix2 = [ ]
170 yfSwapFix3 = [ ]
171 yfSwapFix5 = [ ]
172 yfSwapFix7 = [ ]
173 yfSwapFix10 = [ ]
174

175 fu ture sExp i ry = [ ]
176

177 f o r dt , row in fu t_pr i c e s . i t e r r ows ( ) :
178

179 #############################
180 # SET UP GENERAL PARAMETERS #
181 #############################
182 #. . . convert date to QuantLib format
183 tradeDate = q l . Date ( dt . day , dt . month , dt . year )
184 #. . . check how many years we can compute swap r a t e s f o r in the

s p e c i f i c row
185 maxTenor = np . i n t (np . f l o o r ((~ row . i sna ( ) ) . sum( ) /4) )
186 #. . . s e t s e t t l e date at T+se t t l eDays days
187 s e t t l eDa t e = ca l . advance ( tradeDate , np . i n t ( s e t t l eDays ) , q l . Days ,

conv )
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188

189 ###########################################
190 # DATE SCHEDULES FOR DEPOSITS AND FUTURES #
191 ###########################################
192 #. . . compute value dates f o r 3 month depo s i t
193 depoDates = ca l . advance ( s e t t l eDate , 3 , q l . Months , conv )
194 #. . . compute value dates f o r f u tu r e s con t r a c t s
195 futDates = [ q l .IMM. nextDate ( c a l . advance ( s e t t l eDate , 1 , q l . Days ,

conv ) ) ]#[ q l .IMM. nextDate ( tradeDate ) ]
196 f o r mnth in range (maxTenor ∗ 4 1 ) :
197 futDates . append ( q l .IMM. nextDate ( futDates [ 1 ] ) )
198 #. . . compute end dates f o r f u tu r e s con t r a c t s ( as de f ined in f i g u r e

7 from Ametrano & Bianche t t i )
199 futEndDates = [ c a l . advance ( valDate , 3 , q l . Months , conv ) f o r

valDate in futDates ]
200 #. . . add r e s u l t s to l i s t s
201 depoValue . append ( [ datet ime ( depoDates . year ( ) , depoDates . month ( ) ,

depoDates . dayOfMonth ( ) ) ] )
202 fu ture sVa lue . append ( [ datet ime ( dt . year ( ) , dt . month ( ) , dt .

dayOfMonth ( ) ) f o r dt in futDates ] )
203 futuresEnd . append ( [ datet ime ( dt . year ( ) , dt . month ( ) , dt . dayOfMonth

( ) ) f o r dt in futEndDates ] )
204

205 futExpiryDates = [ c a l . advance ( dt , 2 , q l . Days , conv ) f o r dt in
futDates ]

206 fu ture sExp i ry . append ( [ datet ime ( dt . year ( ) , dt . month ( ) , dt .
dayOfMonth ( ) ) f o r dt in futExpiryDates ] )

207

208 #############################################
209 # PAYMENT SCHEDULES FOR INTEREST RATE SWAPS #
210 #############################################
211 swpPmtDates2 . append ( createPmtSchedule ( s e t t l eDate , 2 , maxTenor ) [ 0 ] )
212 swpPmtDates3 . append ( createPmtSchedule ( s e t t l eDate , 3 , maxTenor ) [ 0 ] )
213 swpPmtDates5 . append ( createPmtSchedule ( s e t t l eDate , 5 , maxTenor ) [ 0 ] )
214 swpPmtDates7 . append ( createPmtSchedule ( s e t t l eDate , 7 , maxTenor ) [ 0 ] )
215 swpPmtDates10 . append ( createPmtSchedule ( s e t t l eDate , 1 0 ,maxTenor )

[ 0 ] )
216

217 ###########################################
218 # YEAR FRACTIONS FOR DEPOSITS AND FUTURES #
219 ###########################################
220 #. . . compute the year f r a c t i o n between s e t t l e date and 3 month

depo s i t r a t e ( us ing dayCount va r i ab l e )
221 yfDep = dayCount . yearFract ion ( s e t t l eDate , depoDates )
222 #. . . compute the year f r a c t i o n between s e t t l e date and fu tu r e s
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value date ( us ing dayCount va r i ab l e )
223 yfFutVal = [ dayCount . yearFract ion ( s e t t l eDate , dt ) f o r dt in

futDates ]
224 #. . . compute the year f r a c t i o n between s e t t l e date and fu tu r e s end

date ( us ing dayCount va r i ab l e )
225 yfFutEnd = [ dayCount . yearFract ion ( s e t t l eDate , dt ) f o r dt in

futEndDates ]
226 #. . . append year f r a c t i o n s to l i s t s
227 yfDepos i t . append ( yfDep )
228 yfFuturesVal . append ( yfFutVal )
229 yfFuturesEnd . append ( yfFutEnd )
230

231 ##########################################
232 # YEAR FRACTIONS FOR INTEREST RATE SWAPS #
233 ##########################################
234 #. . . 2 year tenor
235 yfSwpFlt2 = yearFractionSwapPayments ( s e t t l eDate , 2 , maxTenor ,

dayCountFlt )
236 yfSwpFix2 = yearFractionSwapPayments ( s e t t l eDate , 2 , maxTenor ,

dayCountFix )
237 #. . . 3 year tenor
238 yfSwpFlt3 = yearFractionSwapPayments ( s e t t l eDate , 3 , maxTenor ,

dayCountFlt )
239 yfSwpFix3 = yearFractionSwapPayments ( s e t t l eDate , 3 , maxTenor ,

dayCountFix )
240 #. . . 5 year tenor
241 yfSwpFlt5 = yearFractionSwapPayments ( s e t t l eDate , 5 , maxTenor ,

dayCountFlt )
242 yfSwpFix5 = yearFractionSwapPayments ( s e t t l eDate , 5 , maxTenor ,

dayCountFix )
243 #. . . 7 year tenor
244 yfSwpFlt7 = yearFractionSwapPayments ( s e t t l eDate , 7 , maxTenor ,

dayCountFlt )
245 yfSwpFix7 = yearFractionSwapPayments ( s e t t l eDate , 7 , maxTenor ,

dayCountFix )
246 #. . . 1 0 year tenor
247 yfSwpFlt10 = yearFractionSwapPayments ( s e t t l eDate , 1 0 ,maxTenor ,

dayCountFlt )
248 yfSwpFix10 = yearFractionSwapPayments ( s e t t l eDate , 1 0 ,maxTenor ,

dayCountFix )
249 #. . . append year f r a c t i o n s to l i s t s
250 yfSwapFlt2 . append ( yfSwpFlt2 )
251 yfSwapFlt3 . append ( yfSwpFlt3 )
252 yfSwapFlt5 . append ( yfSwpFlt5 )
253 yfSwapFlt7 . append ( yfSwpFlt7 )
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254 yfSwapFlt10 . append ( yfSwpFlt10 )
255 yfSwapFix2 . append ( yfSwpFix2 )
256 yfSwapFix3 . append ( yfSwpFix3 )
257 yfSwapFix5 . append ( yfSwpFix5 )
258 yfSwapFix7 . append ( yfSwpFix7 )
259 yfSwapFix10 . append ( yfSwpFix10 )
260

261 #####################
262 # CREATE DATAFRAMES #
263 #####################
264 #. . . d epo s i t s and fu tu r e s
265 depoVal = pd . DataFrame ( depoValue , index=fut_pr i c e s . index , columns=[

l i b o r_ra t e s . columns [ 1 ] ] )
266 f u ture sVa l = pd . DataFrame ( futuresValue , index=fut_pr i c e s . index ,

columns=fu t_pr i c e s . columns )
267 futuresEnd = pd . DataFrame ( futuresEnd , index=fut_pr i c e s . index , columns

=fu t_pr i c e s . columns )
268 #. . . payment s chedu l e s f o r swaps
269 pmtSchedule2 = pd . DataFrame ( swpPmtDates2 , index=fut_pr i c e s . index ,
270 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) +

’M’ f o r n in range (2∗ f r e qF l t ) ] )
271 pmtSchedule3 = pd . DataFrame ( swpPmtDates3 , index=fut_pr i c e s . index ,
272 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) +

’M’ f o r n in range (3∗ f r e qF l t ) ] )
273 pmtSchedule5 = pd . DataFrame ( swpPmtDates5 , index=fut_pr i c e s . index ,
274 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) +

’M’ f o r n in range (5∗ f r e qF l t ) ] )
275 pmtSchedule7 = pd . DataFrame ( swpPmtDates7 , index=fut_pr i c e s . index ,
276 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) +

’M’ f o r n in range (7∗ f r e qF l t ) ] )
277 pmtSchedule10 = pd . DataFrame ( swpPmtDates10 , index=fut_pr i c e s . index ,
278 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) )

+ ’M’ f o r n in range (10∗ f r e qF l t ) ] )
279 #. . . year f r a c t i o n s f o r d epo s i t s and f u tu r e s
280 yfDepos i t = pd . DataFrame ( yfDepos it , index=fu t_pr i c e s . index , columns=[

l i b o r_ra t e s . columns [ 1 ] ] )
281 yfFuturesVal = pd . DataFrame ( yfFuturesVal , index=fu t_pr i c e s . index ,

columns=fu t_pr i c e s . columns )
282 yfFuturesEnd = pd . DataFrame ( yfFuturesEnd , index=fut_pr i c e s . index ,

columns=fu t_pr i c e s . columns )
283 #. . . year f r a c t i o n s f o r swaps
284 yfSwapFlt2 = pd . DataFrame ( yfSwapFlt2 , index=fu t_pr i c e s . index ,
285 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’

M’ f o r n in range (2∗ f r e qF l t ) ] )
286 yfSwapFlt3 = pd . DataFrame ( yfSwapFlt3 , index=fu t_pr i c e s . index ,
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287 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’
M’ f o r n in range (3∗ f r e qF l t ) ] )

288 yfSwapFlt5 = pd . DataFrame ( yfSwapFlt5 , index=fu t_pr i c e s . index ,
289 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’

M’ f o r n in range (5∗ f r e qF l t ) ] )
290 yfSwapFlt7 = pd . DataFrame ( yfSwapFlt7 , index=fu t_pr i c e s . index ,
291 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’

M’ f o r n in range (7∗ f r e qF l t ) ] )
292 yfSwapFlt10 = pd . DataFrame ( yfSwapFlt10 , index=fu t_pr i c e s . index ,
293 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) +

’M’ f o r n in range (10∗ f r e qF l t ) ] )
294 yfSwapFix2 = pd . DataFrame ( yfSwapFix2 , index=fut_pr i c e s . index ,
295 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’

M’ f o r n in range (2∗ f r e qF l t ) ] )
296 yfSwapFix3 = pd . DataFrame ( yfSwapFix3 , index=fut_pr i c e s . index ,
297 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’

M’ f o r n in range (3∗ f r e qF l t ) ] )
298 yfSwapFix5 = pd . DataFrame ( yfSwapFix5 , index=fut_pr i c e s . index ,
299 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’

M’ f o r n in range (5∗ f r e qF l t ) ] )
300 yfSwapFix7 = pd . DataFrame ( yfSwapFix7 , index=fut_pr i c e s . index ,
301 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’

M’ f o r n in range (7∗ f r e qF l t ) ] )
302 yfSwapFix10 = pd . DataFrame ( yfSwapFix10 , index=fu t_pr i c e s . index ,
303 columns =[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) +

’M’ f o r n in range (10∗ f r e qF l t ) ] )
304

305

306 # ### Convexity Adjustments
307

308 # In [ ] :
309

310

311 # DEFINE USER DEFINED FUNCTIONS
312 de f calibrateHW2Swaptions ( swap t i o nVo l a t i l i t i e s , depos i tRates ,

swapMktRates ,
313 volType=q l . Normal , meanRevLevel=0.05) :
314 ’ ’ ’
315 Given swaption v o l a t i l i t i e s , depo r a t e s and swap rate s ,
316 c a l i b r a t e s the HW parameters .
317 ’ ’ ’
318 meanReversionMeanFixed = [ ]
319 vo la t i l i tyMeanFixed = [ ]
320

321 i f volType == ql . Normal :
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322 div = 10000
323 e l s e :
324 div = 100
325

326 f o r dt , row in swap t i o nVo l a t i l i t i e s . i t e r r ows ( ) :
327 #. . .
328 tradeDate = q l . Date ( dt . day , dt . month , dt . year )
329 s e t t l eDa t e = ca l . advance ( tradeDate , np . i n t ( s e t t l eDays ) , q l .

Days , conv )
330 q l . S e t t i n g s . i n s t anc e ( ) . eva luat ionDate = tradeDate
331

332 #. . . check i f we have MeanFixed depos i t data and swap data f o r
the g iven date

333 i f ( depos i tRates . index . i s i n ( [ dt ] ) . sum( ) > 0) & ( swapMktRates .
index . i s i n ( [ dt ] ) . sum( ) > 0) :

334 #. . . s e t up term s t ru c tu r e : d epo s i t r a t e he lpe r
335 depoDates = [ q l . Per iod (3 , q l . Months ) ]
336 depoRates = [ depos i tRates . l o c [ dt ] . va lue s [ 0 ] ]
337 #. . . combine dates and r a t e s to c r e a t e he lpe r ob j e c t
338 depoHelper = [ q l . DepositRateHelper ( q l . QuoteHandle ( q l .

SimpleQuote ( ra t e /100 .0 ) ) ,
339 l ength , se t t l eDays , ca l , conv , True ,

dayCount )
340 f o r rate , l ength in z ip ( depoRates ,

depoDates ) ]
341 #. . . s e t up term s t ru c tu r e : swap ra t e he lpe r ob j e c t
342 swapRatesTenor = [ q l . Per iod (6 , q l . Months ) , q l . Per iod (9 , q l .

Months ) , q l . Per iod (1 , q l . Years ) ,
343 q l . Per iod (18 , q l . Months ) , q l . Per iod (2 , q l

. Years ) , q l . Per iod (3 , q l . Years ) ,
344 q l . Per iod (4 , q l . Years ) , q l . Per iod (5 , q l .

Years ) , q l . Per iod (6 , q l . Years ) ,
345 q l . Per iod (7 , q l . Years ) , q l . Per iod (8 , q l .

Years ) , q l . Per iod (9 , q l . Years ) ,
346 q l . Per iod (10 , q l . Years ) ]
347 swapRates = swapMktRates . l o c [ dt , : ]
348 #. . . c r e a t e a boolean array that i s t rue i f data i s

a v a i l a b l e and f a l s e o therwi se
349 swapBool = (~ swapRates . i sna ( ) ) . t o l i s t ( )
350 #. . . now f i l t e r the t enor s and r a t e s based on t h i s boolean

array
351 swapRatesTenor = l i s t ( compress ( swapRatesTenor , swapBool ) )
352 swapRates = l i s t ( compress ( swapRates , swapBool ) )
353 swapRatesHelper = [ q l . SwapRateHelper ( q l . QuoteHandle ( q l .

SimpleQuote ( ra t e /100) ) ,
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354 tenor , ca l , fixLegTenorTS , conv ,
fixLegDayCount ,

355 ibor Index ) f o r rate , tenor in z ip (
swapRates , swapRatesTenor ) ]

356 #. . . combine he lpe r ob j e c t s
357 te rmStructureHe lpers = depoHelper + swapRatesHelper
358 #. . . s e t up y i e l d curve us ing log l i n e a r d i s count ing on

d i scount f a c t o r s
359 termStructure = q l . PiecewiseLogLinearDiscount ( tradeDate ,

termStructureHelpers , dayCount )
360 termStructure . enab l eExt rapo la t i on ( )
361 #. . . s e t up term s t ru c tu r e
362 termStructure = q l . YieldTermStructureHandle ( termStructure

)
363 index = q l . USDLibor ( q l . Per iod (3 , q l . Months ) , termStructure

)
364

365 # SET UP HULL WHITE CALIBRATION
366 #. . the swaption vo l s we w i l l use f o r c a l i b r a t i o n
367 mktVols = namedtuple ( ’mktVols ’ , ’ s t a r t , tenor , vo l ’ )
368 s tar tYr = np . arange (1 , 10 , 1 )
369 tenorYr = np . arange ( 9 , 0 , 1 )
370 ca l i b ra t i onData = [ mktVols (np . i n t ( s tar tYr [ idx ] ) , np . i n t (

tenorYr [ idx ] ) ,
371 vo l / div ) f o r idx , vo l in

enumerate ( row ) i f ~np . i snan ( vo l ) ]
372 t ry :
373 #. . . s e t up Hull White Model
374 model = q l . HullWhite ( termStructure , meanRevLevel , 0 . 0 1 )

;
375 eng ine = q l . JamshidianSwaptionEngine (model )
376 #. . . c r e a t e swaption he l p e r s that we w i l l use f o r the

opt imiza t i on
377 #. . . ( note that t h i s works f o r normal vo l s , and not

Black vo l s )
378 swapt ionHelpers = [ ]
379 f o r swaption in ca l i b ra t i onData :
380 volHandle = q l . QuoteHandle ( q l . SimpleQuote (

swaption . vo l ) )
381 swaptionHelper = q l . SwaptionHelper ( q l . Per iod (

swaption . s t a r t , q l . Years ) ,
382 q l . Per iod (

swaption . tenor , q l . Years ) ,
383 volHandle ,

index , fixLegTenorSH , fixLegDayCount ,
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384 fltLegDayCount
, termStructure ,

385 q l .
B lackCa l ib ra t i onHe lper . Re la t ivePr i c eEr ro r ,

386 q l . nul lDouble
( ) , 1 . 0 , volType , 0 . )

387 swaptionHelper . s e tPr i c ingEng ine ( eng ine )
388 swapt ionHelpers . append ( swaptionHelper )
389 #. . . f i t theta and compute alpha and sigma that bes t

matches market swaption vo l s
390 optMethod = q l . LevenbergMarquardt ( 1 . 0 e 8 , 1 . 0 e 8 , 1 . 0 e

8 )
391 endCrit = q l . EndCri ter ia (10000 , 100 , 1e 6 , 1e 8 , 1e

8 )
392 model . c a l i b r a t e ( swaptionHelpers , optMethod , endCrit ,

q l . NoConstraint ( ) , [ ] , [ True , Fa l se ] )
393 #. . . e x t r a c t mean r ev e r s i o n and v o l a t i l i t y from the

c a l i b r a t e d model
394 a , sigma = model . params ( )
395 except :
396 a = np . nan
397 sigma = np . nan
398 e l s e :
399 a = np . nan
400 sigma = np . nan
401 #. . . add parameters to l i s t s
402 meanReversionMeanFixed . append ( a )
403 vo la t i l i tyMeanFixed . append ( sigma )
404

405 dfMeanFixed = pd . DataFrame ( [ meanReversionMeanFixed ,
vo la t i l i tyMeanFixed ] ,

406 index=[ ’ a ’ , ’ sigma ’ ] , columns=
swap t i o nVo l a t i l i t i e s . index ) . t ranspose ( )

407 re turn dfMeanFixed ;
408

409 de f convex i tyBias ( a , sigma , f u tPr i c e s , yrFracDi f f , y rFracSe t t l e ) :
410 ’ ’ ’
411 Formulas are c on s i s t e n t with the ones repor ted in :
412 http ://www 2 . rotman . utoronto . ca/~ hu l l /Technica lNotes /

TechnicalNote1 . pdf
413 And double checked with numerica l r e s u l t s from the Ametrano &

Bianche t t i paper .
414 Inputs :
415 a : c a l i b r a t e d mean r ev e r s i o n parameter
416 sigma : c a l i b r a t e d sigma parameter
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417 f u tP r i c e s : f u t u r e s p r i c e s
418 yrFracDi f f : d i f f e r e n c e in year f r a c t i o n s between end and value

dates
419 y rFracSe t t l e : year f r a c t i o n s betweeen s e t t l e date and fu tu r e s

va lue date
420 Outputs :
421 rFutCvx : f u tu r e s r a t e s ad justed f o r convex i ty
422 cvxBias : the convex i ty b i a s used
423 ’ ’ ’
424 # FORMAT VARIABLES
425 #. . . f i nd common i nd i c e s between a l l v a r i a b l e s and f i l t e r based on

those
426 commonIdx = reduce (np . i n t e r s e c t 1d , ( a . index , sigma . index ,

y rFracDi f f . index , y rFracSe t t l e . index , f u tP r i c e s . index ) )
427 a = a . l o c [ commonIdx ]
428 sigma = sigma . l o c [ commonIdx ]
429 f u tP r i c e s = f u tP r i c e s . l o c [ commonIdx ]
430 yrFracDi f f = yrFracDi f f . l o c [ commonIdx ]
431 y rFracSe t t l e = yrFracSe t t l e . l o c [ commonIdx ]
432

433 # COMPUTE THE CONVEXITY
434 #. . . s e t up two va r i a b l e s
435 B0T1 = (1 y rFracSe t t l e . mul ( a , ax i s=0) . applymap (np . exp ) ) . div ( a ,

ax i s=0)
436 BT1T2 = (1 yrFracDi f f . mul ( a , ax i s=0) . applymap (np . exp ) ) . d iv ( a ,

ax i s=0)
437 #. . . compute the convex i ty b i a s
438 cvxBias = BT1T2 . div ( y rFracDi f f ) . mul (B0T1 . pow(2) . mul ( a , ax i s=0) . mul

(2 ) . add ( ( 1 y rFracSe t t l e . mul ( a , ax i s=0) . mul ( 2 ) . applymap (np . exp ) ) .
mul (BT1T2) ) ) . mul ( sigma . pow(2) . div ( a . mul (4 ) ) , ax i s=0)

439 #. . . convert f u tu r e s r a t e s to cont inuous ly compounded
440 rFut = ( 1 0 0 f u tP r i c e s ) /100
441 rFutCont = rFut . div (4 ) . add (1 ) . applymap (np . l og ) . mul (4 )
442 #. . . compute convexity adjusted f u tu r e s ra t e
443 rFutContCvx = rFutCont cvxBias
444 #. . . convert ra t e to qua r t e r l y compounding
445 rFutCvx = rFutContCvx . div (4 ) . applymap (np . exp ) . sub (1 ) . mul (4 )
446 re turn rFutCvx , cvxBias ;
447

448

449 # #### Hull White One Factor Model
450

451 # In [ ] :
452

453
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454 i f currency == ’USD ’ :
455 #. . . d e f i n e number o f days a f t e r t rade that dea l s e t t l e s
456 s e t t l eDays = np . i n t (2 )
457 #. . . s p e c i f y ca l endar f o r market
458 c a l = q l . UnitedStates ( )
459 #. . . s p e c i f y day count convent ion
460 dayCount = q l . Actual360 ( )
461 #. . . d e f i n e f requency o f f l o a t i n g payments and other date r u l e s
462 conv = q l . Modi f i edFol lowing
463 #. . .
464 ibor Index = q l . USDLibor ( q l . Per iod (3 , q l . Months ) )
465 #. . .
466 f ixLegTenorTS = ql . Semiannual
467 fixLegTenorSH = ql . Period (6 , q l . Months )
468 fixLegDayCount = q l . Thirty360 ( )
469 f ltLegDayCount = q l . Actual360 ( )
470

471 i f currency == ’EUR’ :
472 #. . . d e f i n e number o f days a f t e r t rade that dea l s e t t l e s
473 s e t t l eDays = np . i n t (2 )
474 #. . . s p e c i f y ca l endar f o r market
475 c a l = q l .TARGET()
476 #. . . s p e c i f y day count convent ion
477 dayCount = q l . Actual360 ( )
478 #. . . d e f i n e f requency o f f l o a t i n g payments and other date r u l e s
479 conv = q l . Modi f i edFol lowing
480 #. . .
481 ibor Index = q l . Euribor6M ( )
482 #. . .
483 f ixLegTenorTS = ql . Annual
484 fixLegTenorSH = ql . Period (6 , q l . Months )
485 fixLegDayCount = q l . Thirty360 ( q l . Thirty360 . BondBasis )
486 f ltLegDayCount = q l . Actual360 ( )
487

488 i f ( ( currency==’USD ’ ) | ( currency==’EUR’ ) ) & ( adjustCvx==True ) :
489 #. . . Hull White c a l i b r a t e d parameters f o r normal swaption

v o l a t i l i t i e s
490 hwNormCalParams = calibrateHW2Swaptions ( swaption_norm ,

l i bo r_ra te s , swap_rates_HW , q l . Normal , 0 . 0 5 )
491 i f currency == ’USD ’ :
492 #. . . c a l i b r a t e f o r lognormal v o l a t i l i e s i f currency i s USD
493 hwBlackCalParams = calibrateHW2Swaptions ( swaption_black ,

l i bo r_ra t e s , swap_rates_HW , q l . ShiftedLognormal , 0 . 0 5 )
494 e l s e :
495 hwBlackCalParams = pd . DataFrame ( )
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496 #. . . merge data in to one dataframe and f i l l NaN ’ s by l i n e a r
i n t e r p o l a t i o n

497 hwCalParams = hwNormCalParams . combine_f i r s t ( hwBlackCalParams )
498 hwCalParams = hwCalParams . i n t e r p o l a t e (method=’ l i n e a r ’ , ax i s=0) .

b f i l l ( )
499 #. . . compute the convex i ty b i a s us ing the c a l i b r a t e d parameters
500 cvxFutRates , cvxBias = convex i tyBias ( hwCalParams [ ’ a ’ ] ,

hwCalParams [ ’ sigma ’ ] ,
501 fu t_pr i ce s , yfFuturesEnd . sub ( yfFuturesVal ) ,

y fFuturesVal )
502 #. . . compute convexity adjusted f u tu r e s p r i c e s
503 cvxAdjFutPrices = 100 cvxFutRates ∗100
504

505

506 # ### Impl ied Swap Rates from Futures
507

508 # In [ ] :
509

510

511 # DEFINE USER DEFINED FUNCTIONS
512 de f LogXInterpo lat ion ( yearFract ions , d i scountFactors ,

i n t e rpo la t edYearFrac t i ons , method ) :
513 ’ ’ ’
514 Inputs :
515 yearFrac t i ons : known year f r a c t i o n s (x va lue s ) , input as pandas

S e r i e s
516 d i s countFactor s : known di scount f a c t o r s (y va lue s ) , input as

pandas S e r i e s
517 i n t e rpo l a t edYearFrac t i on s : year f r a c t i o n s we want to f i nd

d i scount f a c t o r s for , input as l i s t
518 Output :
519 i n t e rpo l a t edDi s countFac to r s : l i s t o f i n t e r p o l a t e d d i scount

f a c t o r s at i n t e rpo l a t edYearFrac t i on s
520 ’ ’ ’
521 #. . . account f o r NaN ’ s in inputs
522 yearFrac t i ons . dropna ( i np l a c e=True )
523 d i s countFactor s . dropna ( i np l a c e=True )
524 #. . . check i f l ength o f v a r i a b l e s i s equal
525 yearFrac t i ons = yearFrac t i ons [ : l en ( d i s countFactor s ) ]
526 #lenBool = ( l en ( yearFrac t i ons ) == len ( d i s countFactor s ) )
527 #. . . check l ength o f va r i ab l e s , i f zero , we re turn NaN ’ s
528 i f np . i snan ( in t e rpo l a t edYearFrac t i on s ) . sum( ) == 0 :
529 #. . . remove f i r s t STIR fu tu r e s cont rac t i f i t ove r l ap s with

depo s i t 3M
530 i f y ea rFrac t i ons [0]== yearFrac t i ons [ 1 ] :
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531 yearFrac t i ons . drop ( [ f u t_pr i c e s . columns [ 0 ] ] , a x i s =0, i np l a c e
=True )

532 d i s countFactor s . drop ( [ f u t_pr i c e s . columns [ 0 ] ] , a x i s =0,
i np l a c e=True )

533 #. . . do log t rans fo rmat ion on d i scount f a c t o r s
534 l ogDiscountFactor s = np . l og ( d i s countFactor s . astype (np . f l o a t 6 4

) )
535 #. . . use s c ipy func t i on s to s e t up l i n e a r i n t e r p o l a t i o n
536 i n te rpo la tedCurve = interp1d ( yearFract ions ,

logDiscountFactors , kind=method , f i l l _ v a l u e=’ ex t r apo l a t e ’ )
537 #. . . e x t r a c t i n t e r po l a t ed d i scount f a c t o r s
538 i n t e rpo l a t edDi s countFac to r s = [ np . exp ( inte rpo la tedCurve ( dt ) )

f o r dt in in t e rpo l a t edYearFrac t i on s ]
539 e l s e :
540 i n t e rpo l a t edDi s countFac to r s = l i s t (np . ones ( l en (

in t e rpo l a t edYearFrac t i on s ) ) ∗np . nan )
541 #. . . r e turn the i n t e r po l a t e d va lue s
542 re turn in te rpo la t edYearFrac t i ons , i n t e rpo l a t edDi s countFac to r s ;
543

544 de f LogXInterpolationDataFrame (yfSum , dfAct , swpPmt , method ) :
545 ’ ’ ’
546 Inputs :
547 yfSum : Dataframe conta in ing known year f r a c t i o n s
548 dfAct : Dataframe conta in ing known di scount f a c t o r s
549 swpPmt : Dataframe conta in ing year f r a c t i o n s we want to

i n t e r p o l a t e f o r
550 Outputs :
551 y f Intp : Dataframe conta in ing i n t e r po l a t ed year f r a c t i o n s .
552 df Intp : Dataframe conta in ing i n t e r po l a t e d d i scount f a c t o r s .
553 ’ ’ ’
554 #. . . c r e a t e an empty l i s t to s t o r e
555 y f I n tpL i s t = [ ]
556 d f I n tpL i s t = [ ]
557 #. . . make sure the three inputs have the same i n d i c e s
558 commonIdx = reduce (np . i n t e r s e c t 1d , ( yfSum . index , dfAct . index ,

swpPmt . index ) )
559 yfSum = yfSum . l o c [ commonIdx ]
560 dfAct = dfAct . l o c [ commonIdx ]
561 swpPmt = swpPmt . l o c [ commonIdx ]
562 #. . . i n t e r p o l a t e f o r the d i s count f a c t o r s
563 f o r dt , row in yfSum . i t e r r ows ( ) :
564 #. . . known year f r a c t i o n s
565 yfActua l = row . dropna ( )
566 #. . . known di scount f a c t o r s
567 dfActual = dfAct . l o c [ dt , : ] . dropna ( )
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568 #. . . year f r a c t i o n s we want to f i nd through i n t e r p o l a t i o n
569 y f Intp = l i s t (swpPmt . l o c [ dt , : ] . dropna ( ) )
570 i f ( l en ( y f In tp ) > 0) & ( l en ( dfActual ) > 0) :
571 #. . . run the func t i on doing the log l i n e a r i n t e r p o l a t i o n

on the d i scount f a c t o r s
572 yfIntp , d f Intp = LogXInterpo lat ion ( yfActual , dfActual ,

y f Intp , method )
573 #. . . append i n t e r p o l a t e d r e s u l t s to l i s t s
574 y f I n tpL i s t . append ( y f In tp )
575 d f I n tpL i s t . append ( d f Intp )
576 e l s e :
577 y f I n tpL i s t . append ( l i s t (np . ones ( l en (swpPmt . l o c [ dt , : ] ) ) ∗np .

nan ) )
578 d f I n tpL i s t . append ( l i s t (np . ones ( l en (swpPmt . l o c [ dt , : ] ) ) ∗np .

nan ) )
579 #. . . cons t ruc t dataframes based on l i s t s
580 y f Intp = pd . DataFrame ( y f In tpL i s t , index=yfSum . index ,
581 columns=[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’M

’ f o r n in range (swpPmt . shape [ 1 ] ) ] )
582 df Intp = pd . DataFrame ( d f In tpL i s t , index=yfSum . index ,
583 columns=[ s t r (np . i n t (12∗ ( n+1)/ f r e qF l t ) ) + ’M

’ f o r n in range (swpPmt . shape [ 1 ] ) ] )
584 re turn yfIntp , d f Intp ;
585

586 de f pvFloat ingLeg ( dfsForward , d f sDiscount ) :
587 ’ ’ ’
588 Computes pre sent value o f f l o a t i n g l e g
589 in v a n i l l a IRS given inputs :
590 ∗ dfsForward : d i s count f a c t o r s from forward curve .
591 ∗ dfsDiscount : d i s count f a c t o r s from d i s count ing curve .
592 ’ ’ ’
593 pvFlt = pd . concat ( [ 1 / dfsForward . i l o c [ : , 0 ] , dfsForward . s h i f t (1 , ax i s

=1) . div ( dfsForward ) . dropna ( ax i s =1,how=’ a l l ’ ) ] ,
594 ax i s=1) . sub (1 ) . mul ( d f sDiscount ) . sum( ax i s =1, sk ipna=False )
595 re turn pvFlt ;
596

597 de f pvFixedLeg ( dfsFix , yearFracFix , f r e qF l t=f r eqF l t , f r eqF ixed=
freqF ixed ) :

598 ’ ’ ’
599 Computes pre sent value o f f i x e d l e g
600 in v a n i l l a IRS given inputs :
601 ∗ f r e qF l t : f r equency o f f l o a t i n g payments
602 ∗ f r eqF ixed : f requency o f f i x ed payments
603 ∗ yearFracFix : year f r a c t i o n s between dates in IRS date schedu le
604 that accounts f o r day count convent ion in f i x ed l e g .
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605 ∗ df sF ix : d i s count f a c t o r s from d i s count ing curve
606 ’ ’ ’
607 #. . . two numbers that he lp ex t r a c t the f i x ed schedu le l a t e r
608 f i x S t a r t = np . i n t ( ( f r e qF l t / f r eqF ixed ) 1 )
609 f i x I n t e r v a l = np . i n t ( f r e qF l t / f r eqF ixed )
610 #. . . compute year f r a c t i o n s on f ixed l e g f requency
611 yfFixFrac = pd . concat ( [ yearFracFix . i l o c [ : , f i x S t a r t ] ,
612 yearFracFix . i l o c [ : , f i x S t a r t : : f i x I n t e r v a l ] .

d i f f ( ax i s=1) . dropna ( ax i s =1,how=’ a l l ’ ) ] , a x i s=1)
613 #. . . compute the pre sent va lue o f the f i x ed l e g
614 pvFix = df sF ix . i l o c [ : , f i x S t a r t : : f i x I n t e r v a l ] . mul ( yfFixFrac ) . sum(

ax i s=1)
615 re turn pvFix ;
616

617

618 # ##### Discount Factors
619

620 # In [ ] :
621

622

623 # COMPUTE OIS DISCOUNT FACTORS
624

625 # Source f o r t h i s s yn th e t i c OIS ra t e methodology :
626 # OIS Discount ing and Dual Curve St r ipp ing Methodology , Quant i ta t ive

Analyt ics , Bloomberg , Dec 2017
627 # I f we are doing USD, we need to compute syn the t i c OIS r a t e s f o r 7

and 1 0 year t enor s
628 i f currency == ’USD ’ :
629 #. . . e x t r a c t ibo r swap r a t e s
630 iborSR = o i s_ra t e s . l o c [ : , [ ’USSWAP7 Curncy ’ , ’USSWAP10 Curncy ’ ] ] .

d iv (100)
631 #. . . e x t r a c t o i s b a s i s spreads
632 o i sBa s i s = o i s_ra t e s . l o c [ : , [ ’USBG7 Curncy ’ , ’USBG10 Curncy ’ ] ] . d iv

(10000)
633 #. . . compute r_q
634 rq = iborSR . mul (360/365) . div (2 ) . add (1) . pow(2/4) . sub (1 ) . mul (4 )
635 #. . . compute approximated OIS ra t e
636 approxOIS = (1+(( rq . values o i sBa s i s . va lue s ) /4) ) ∗∗4 1
637 approxOIS = ((1+approxOIS /360) ∗∗90 1) ∗4
638 o i s_ra t e s . i l o c [ : , [ 9 , 1 0 ] ] = approxOIS∗100
639 o i s_ra t e s . drop ( [ ’USSWAP10 Curncy ’ , ’USBG10 Curncy ’ ] , a x i s =1, i np l a c e

=True )
640

641 #. . . change names o f columns
642 o i s_ra t e s = o i s_ra t e s . div (100)
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643 colNames = [ ’OIS3M ’ , ’OIS6M ’ , ’OIS9M ’ , ’OIS1Y ’ , ’OIS18M ’ , ’OIS2Y ’ ,
644 ’OIS3Y ’ , ’OIS4Y ’ , ’OIS5Y ’ , ’OIS7Y ’ , ’OIS10Y ’ ]
645 colNames = [ colNames [ idx ] f o r idx in range ( o i s_ra t e s . shape [ 1 ] ) ]
646 o i s_ra t e s . columns = colNames
647

648 #. . . compute year f r a c t i o n s
649 o i sYearFrac t i ons = [ ]
650 f o r dt , row in o i s_ra t e s . i t e r r ows ( ) :
651 #. . . convert date to QuantLib format
652 tradeDate = q l . Date ( dt . day , dt . month , dt . year )
653 #. . . s e t s e t t l e date at T+2 days
654 s e t t l eDa t e = ca l . advance ( tradeDate , np . i n t ( s e t t l eDays ) , q l . Days ,

conv )
655 #. . . compute maturity dates
656 t eno r s = [3 , 6 , 9 , 12 , 18 , 24 , 36 , 48 , 60 , 84 , 120 ]
657 t eno r s = [ t enor s [ idx ] f o r idx in range ( o i s_ra t e s . shape [ 1 ] ) ]
658 maturityDates = [ c a l . advance ( s e t t l eDate , np . i n t ( tenor ) , q l . Months

, conv ) f o r tenor in t enor s ]
659 yearFrac t i ons = [ dayCount . yearFract ion ( s e t t l eDate , dt ) f o r dt in

maturityDates ]
660 #. . . add r e s u l t s to l i s t s
661 o i sYearFrac t i ons . append ( yearFrac t i ons )
662

663 colNames = [ ’OIS3M ’ , ’OIS6M ’ , ’OIS9M ’ , ’OIS1Y ’ , ’OIS18M ’ , ’OIS2Y ’ ,
664 ’OIS3Y ’ , ’OIS4Y ’ , ’OIS5Y ’ , ’OIS7Y ’ , ’OIS10Y ’ ]
665 colNames = [ colNames [ idx ] f o r idx in range ( o i s_ra t e s . shape [ 1 ] ) ]
666 oisYrFrac = pd . DataFrame ( o i sYearFract ions , index=o i s_ra t e s . index ,

columns=colNames )
667 o i sYrFracDi f f = pd . concat ( [ o isYrFrac . i l o c [ : , 0 ] , o isYrFrac . d i f f ( ax i s=1)

. dropna (how=’ a l l ’ , a x i s=1) ] , ax i s=1)
668

669 #. . . compute d i scount f a c t o r s up to and in c l ud ing one year
670 o i sD f s = 1 / o i s_ra t e s . i l o c [ : , : 4 ] . mul ( o isYrFrac . i l o c [ : , : 4 ] ) . add (1 )
671 #. . . compute d i scount f a c t o r s over one year
672 f o r i in range ( o i s_ra t e s . i l o c [ : , 4 : ] . shape [ 1 ] ) :
673 i += 4
674 up = 1 o i sYrFracDi f f . i l o c [ : , : i ] . mul ( o i sD f s ) . sum( ax i s=1) . mul (

o i s_ra t e s . i l o c [ : , i ] , a x i s=0)
675 down = 1 + o i s_ra t e s . i l o c [ : , i ] . mul ( o i sYrFracDi f f . i l o c [ : , i ] , a x i s

=0)
676 oisDfsAdd = up/down
677 o i sD f s = pd . concat ( [ o i sDfs , oisDfsAdd ] , ax i s=1)
678 o i sD f s . columns = oisYrFrac . columns
679

680
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681 # In [ ] :
682

683

684 # COMPUTE IBOR DISCOUNT FACTORS
685 #. . . combine depo s i t year f r a c t i o n s and fu tu r e s year f r a c t i o n s
686 yrFrac = pd . concat ( [ y fDepos it , pd . concat ( [ y fDepos it , yfFuturesEnd ] ,
687 ax i s=1) . d i f f ( ax i s=1) . dropna (

ax i s =1,how=’ a l l ’ ) ] , a x i s=1)
688 #. . . combine depo s i t r a t e s and fu tu r e s r a t e s
689 r a t e s = pd . concat ( [ l i b o r_ra t e s . i l o c [ : , 1 ] , ( 1 0 0 fu t_pr i c e s ) ] , a x i s=1) .

div (100)
690 #. . . compute d i scount f a c t o r s
691 fu tDf s = (1 / r a t e s . mul ( yrFrac ) . add (1) ) . cumprod ( ax i s=1)
692 #. . . we want to make e n t i r e row NaN i f we do not have va lue s f o r 3M

depos i t
693 fu tDf s . l o c [ fu tDf s . i l o c [ : , 0 ] . i sna ( ) , : ] = np . nan
694 #. . .
695 yrFracSum = yrFrac . cumsum( ax i s=1)
696

697 i f ( ( currency==’USD ’ ) | ( currency==’EUR’ ) ) & ( adjustCvx==True ) :
698 # COMPUTE CONVEXITY ADJUSTED IBOR DISCOUNT FACTORS
699 #. . . combine depo s i t r a t e s and fu tu r e s r a t e s
700 ratesCvx = pd . concat ( [ l i b o r_ra t e s . i l o c [ : , 1 ] , ( 1 0 0 cvxAdjFutPrices

) ] , a x i s=1) . div (100)
701 #. . . compute d i s count f a c t o r s
702 futDfsCvx = (1 / ratesCvx . mul ( yrFrac ) . add (1) ) . cumprod ( ax i s=1)
703 #. . . we want to make e n t i r e row NaN i f we do not have va lue s f o r 3

M depos i t
704 futDfsCvx . l o c [ futDfsCvx . i l o c [ : , 0 ] . i sna ( ) , : ] = np . nan
705 #. . . drop rows where we don ’ t have s u f f i c i e n t data
706 futDfsCvx = futDfsCvx . l o c [ ( ~ futDfsCvx . i sna ( ) ) . sum( ax i s=1)>9]
707

708

709 # ##### In t e r p o l a t i o n
710

711 # In [ ] :
712

713

714 # LOG CUBIC INTERPOLATION ON OIS DISCOUNT FACTORS
715 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 2 year swap
716 yfFltOIS2 , dfFltOIS2 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,

yfSwapFlt2 , ’ cub ic ’ )
717 yfFixOIS2 , dfFixOIS2 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,

yfSwapFix2 , ’ cub ic ’ )
718 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 3 year swap
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719 yfFltOIS3 , dfFltOIS3 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,
yfSwapFlt3 , ’ cub ic ’ )

720 yfFixOIS3 , dfFixOIS3 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,
yfSwapFix3 , ’ cub ic ’ )

721 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 5 year swap
722 yfFltOIS5 , dfFltOIS5 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,

yfSwapFlt5 , ’ cub ic ’ )
723 yfFixOIS5 , dfFixOIS5 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,

yfSwapFix5 , ’ cub ic ’ )
724 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 7 year swap
725 yfFltOIS7 , dfFltOIS7 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,

yfSwapFlt7 , ’ cub ic ’ )
726 yfFixOIS7 , dfFixOIS7 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs ,

yfSwapFix7 , ’ cub ic ’ )
727 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 1 0 year swap
728 yfFltOIS10 , dfFltOIS10 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs

, yfSwapFlt10 , ’ cub ic ’ )
729 yfFixOIS10 , dfFixOIS10 = LogXInterpolationDataFrame ( oisYrFrac , o i sDfs

, yfSwapFix10 , ’ cub ic ’ )
730

731

732 # In [ ] :
733

734

735 # LOG LINEAR INTERPOLATION ON IBOR DISCOUNT FACTORS
736 ##################################################
737 # IBOR DISCOUNT FACTORS UNADJUSTED FOR CONVEXITY #
738 ##################################################
739 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 2 year swap
740 yfFlt2 , d fF l t2 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFlt2 , ’ l i n e a r ’ )
741 yfFix2 , dfFix2 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFix2 , ’ l i n e a r ’ )
742 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 3 year swap
743 yfFlt3 , d fF l t3 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFlt3 , ’ l i n e a r ’ )
744 yfFix3 , dfFix3 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFix3 , ’ l i n e a r ’ )
745 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 5 year swap
746 yfFlt5 , d fF l t5 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFlt5 , ’ l i n e a r ’ )
747 yfFix5 , dfFix5 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFix5 , ’ l i n e a r ’ )
748 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 7 year swap
749 yfFlt7 , d fF l t7 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,
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yfSwapFlt7 , ’ l i n e a r ’ )
750 yfFix7 , dfFix7 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFix7 , ’ l i n e a r ’ )
751 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 1 0 year swap
752 yfFlt10 , d fF l t10 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFlt10 , ’ l i n e a r ’ )
753 yfFix10 , dfFix10 = LogXInterpolationDataFrame ( yrFracSum , futDfs ,

yfSwapFix10 , ’ l i n e a r ’ )
754

755 i f ( ( currency==’USD ’ ) | ( currency==’EUR’ ) ) & ( adjustCvx==True ) :
756 ################################################
757 # IBOR DISCOUNT FACTORS ADJUSTED FOR CONVEXITY #
758 ################################################
759 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 2 year swap
760 yfFltCvx2 , dfFltCvx2 = LogXInterpolationDataFrame ( yrFracSum . l o c [

futDfsCvx . index ] ,
761 futDfsCvx ,

yfSwapFlt2 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
762 yfFixCvx2 , dfFixCvx2 = LogXInterpolationDataFrame ( yrFracSum . l o c [

futDfsCvx . index ] ,
763 futDfsCvx ,

yfSwapFix2 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
764 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 3 year swap
765 yfFltCvx3 , dfFltCvx3 = LogXInterpolationDataFrame ( yrFracSum . l o c [

futDfsCvx . index ] ,
766 futDfsCvx ,

yfSwapFlt3 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
767 yfFixCvx3 , dfFixCvx3 = LogXInterpolationDataFrame ( yrFracSum . l o c [

futDfsCvx . index ] ,
768 futDfsCvx ,

yfSwapFix3 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
769 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 5 year swap
770 yfFltCvx5 , dfFltCvx5 = LogXInterpolationDataFrame ( yrFracSum . l o c [

futDfsCvx . index ] ,
771 futDfsCvx ,

yfSwapFlt5 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
772 yfFixCvx5 , dfFixCvx5 = LogXInterpolationDataFrame ( yrFracSum . l o c [

futDfsCvx . index ] ,
773 futDfsCvx ,

yfSwapFix5 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
774 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 7 year swap
775 yfFltCvx7 , dfFltCvx7 = LogXInterpolationDataFrame ( yrFracSum . l o c [

futDfsCvx . index ] ,
776 futDfsCvx ,

yfSwapFlt7 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
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777 yfFixCvx7 , dfFixCvx7 = LogXInterpolationDataFrame ( yrFracSum . l o c [
futDfsCvx . index ] ,

778 futDfsCvx ,
yfSwapFix7 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )

779 #. . . compute i n t e r p o l a t ed d i scount f a c t o r s f o r the 1 0 year swap
780 yfFltCvx10 , dfFltCvx10 = LogXInterpolationDataFrame ( yrFracSum . l o c

[ futDfsCvx . index ] ,
781 futDfsCvx ,

yfSwapFlt10 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
782 yfFixCvx10 , dfFixCvx10 = LogXInterpolationDataFrame ( yrFracSum . l o c

[ futDfsCvx . index ] ,
783 futDfsCvx ,

yfSwapFix10 . l o c [ futDfsCvx . index ] , ’ l i n e a r ’ )
784

785

786 # ##### Futures Impl ied Swap Rates
787

788 # In [ ] :
789

790

791 #
#############################################################################

792 # FUTURES IMPLIED SWAP RATES UNADJUSTED FOR CONVEXITY USING IBOR
DISCOUNTING #

793 #
#############################################################################

794 #. . . p re sent va lue s o f f l o a t i n g l e g s
795 pvFlt2 = pvFloatingLeg ( dfFlt2 , d fF l t2 )
796 pvFlt3 = pvFloatingLeg ( dfFlt3 , d fF l t3 )
797 pvFlt5 = pvFloatingLeg ( dfFlt5 , d fF l t5 )
798 pvFlt7 = pvFloatingLeg ( dfFlt7 , d fF l t7 )
799 pvFlt10 = pvFloatingLeg ( dfFlt10 , d fF l t10 )
800 #. . . p re sent va lue s o f f i x ed l e g s
801 pvFix2 = pvFixedLeg ( dfFix2 , y fFix2 )
802 pvFix3 = pvFixedLeg ( dfFix3 , y fFix3 )
803 pvFix5 = pvFixedLeg ( dfFix5 , y fFix5 )
804 pvFix7 = pvFixedLeg ( dfFix7 , y fFix7 )
805 pvFix10 = pvFixedLeg ( dfFix10 , yfFix10 )
806 #. . . impl i ed 2 year swap ra t e
807 futSwp2 = pvFlt2 /pvFix2
808 #. . . impl i ed 3 year swap ra t e
809 futSwp3 = pvFlt3 /pvFix3
810 #. . . impl i ed 5 year swap ra t e
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811 futSwp5 = pvFlt5 /pvFix5
812 #. . . impl i ed 7 year swap ra t e
813 futSwp7 = pvFlt7 /pvFix7
814 #. . . impl i ed 1 0 year swap ra t e
815 futSwp10 = pvFlt10 /pvFix10
816 #. . . s t o r e r e s u l t s in a dataframe
817 futSwp = pd . concat ( [ futSwp2 , futSwp3 , futSwp5 , futSwp7 , futSwp10 ] , ax i s=1)
818 futSwp . columns = [ ’ 2Yr ’ , ’ 3Yr ’ , ’ 5Yr ’ , ’ 7Yr ’ , ’ 10Yr ’ ]
819

820 #
###########################################################################

821 # FUTURES IMPLIED SWAP RATES ADJUSTED FOR CONVEXITY USING IBOR
DISCOUNTING #

822 #
###########################################################################

823 i f ( ( currency==’USD ’ ) | ( currency==’EUR’ ) ) & ( adjustCvx==True ) :
824 #. . . p re sent va lue s o f f l o a t i n g l e g s
825 pvFltCvx2 = pvFloatingLeg ( dfFltCvx2 , dfFltCvx2 )
826 pvFltCvx3 = pvFloatingLeg ( dfFltCvx3 , dfFltCvx3 )
827 pvFltCvx5 = pvFloatingLeg ( dfFltCvx5 , dfFltCvx5 )
828 pvFltCvx7 = pvFloatingLeg ( dfFltCvx7 , dfFltCvx7 )
829 pvFltCvx10 = pvFloatingLeg ( dfFltCvx10 , dfFltCvx10 )
830 #. . . p re sent va lue s o f f i x ed l e g s
831 pvFixCvx2 = pvFixedLeg ( dfFixCvx2 , yfFix2 )
832 pvFixCvx3 = pvFixedLeg ( dfFixCvx3 , yfFix3 )
833 pvFixCvx5 = pvFixedLeg ( dfFixCvx5 , yfFix5 )
834 pvFixCvx7 = pvFixedLeg ( dfFixCvx7 , yfFix7 )
835 pvFixCvx10 = pvFixedLeg ( dfFixCvx10 , yfFix10 )
836 #. . . impl i ed 2 year swap ra t e
837 futSwpCvx2 = pvFltCvx2/pvFixCvx2
838 #. . . impl i ed 3 year swap ra t e
839 futSwpCvx3 = pvFltCvx3/pvFixCvx3
840 #. . . impl i ed 5 year swap ra t e
841 futSwpCvx5 = pvFltCvx5/pvFixCvx5
842 #. . . impl i ed 7 year swap ra t e
843 futSwpCvx7 = pvFltCvx7/pvFixCvx7
844 #. . . impl i ed 1 0 year swap ra t e
845 futSwpCvx10 = pvFltCvx10/pvFixCvx10
846 #. . . s t o r e r e s u l t s in a dataframe
847 futSwpCvx = pd . concat ( [ futSwpCvx2 , futSwpCvx3 , futSwpCvx5 ,

futSwpCvx7 , futSwpCvx10 ] , ax i s=1)
848 futSwpCvx . columns = [ ’ 2Yr ’ , ’ 3Yr ’ , ’ 5Yr ’ , ’ 7Yr ’ , ’ 10Yr ’ ]
849

80

09808260944383GRA 19703

A1710105
Stamp



850 #
############################################################################

851 # FUTURES IMPLIED SWAP RATES UNADJUSTED FOR CONVEXITY USING OIS
DISCOUNTING #

852 #
############################################################################

853 #. . . p re sent va lue s o f f l o a t i n g l e g s
854 pvFltOIS2 = pvFloatingLeg ( dfFlt2 , dfFltOIS2 )
855 pvFltOIS3 = pvFloatingLeg ( dfFlt3 , dfFltOIS3 )
856 pvFltOIS5 = pvFloatingLeg ( dfFlt5 , dfFltOIS5 )
857 pvFltOIS7 = pvFloatingLeg ( dfFlt7 , dfFltOIS7 )
858 pvFltOIS10 = pvFloatingLeg ( dfFlt10 , dfFltOIS10 )
859 #. . . p re sent va lue s o f f i x ed l e g s
860 pvFixOIS2 = pvFixedLeg ( dfFixOIS2 , yfFixOIS2 )
861 pvFixOIS3 = pvFixedLeg ( dfFixOIS3 , yfFixOIS3 )
862 pvFixOIS5 = pvFixedLeg ( dfFixOIS5 , yfFixOIS5 )
863 pvFixOIS7 = pvFixedLeg ( dfFixOIS7 , yfFixOIS7 )
864 pvFixOIS10 = pvFixedLeg ( dfFixOIS10 , yfFixOIS10 )
865 #. . . impl i ed 2 year swap ra t e
866 futSwpOIS2 = pvFltOIS2/pvFixOIS2
867 #. . . impl i ed 3 year swap ra t e
868 futSwpOIS3 = pvFltOIS3/pvFixOIS3
869 #. . . impl i ed 5 year swap ra t e
870 futSwpOIS5 = pvFltOIS5/pvFixOIS5
871 #. . . impl i ed 7 year swap ra t e
872 futSwpOIS7 = pvFltOIS7/pvFixOIS7
873 #. . . impl i ed 1 0 year swap ra t e
874 futSwpOIS10 = pvFltOIS10/pvFixOIS10
875 #. . . s t o r e r e s u l t s in a dataframe
876 futSwpOIS = pd . concat ( [ futSwpOIS2 , futSwpOIS3 , futSwpOIS5 , futSwpOIS7 ,

futSwpOIS10 ] , ax i s=1)
877 futSwpOIS . columns = [ ’ 2Yr ’ , ’ 3Yr ’ , ’ 5Yr ’ , ’ 7Yr ’ , ’ 10Yr ’ ]
878

879 #
##########################################################################

880 # FUTURES IMPLIED SWAP RATES ADJUSTED FOR CONVEXITY USING OIS
DISCOUNTING #

881 #
##########################################################################

882 i f ( ( currency==’USD ’ ) | ( currency==’EUR’ ) ) & ( adjustCvx==True ) :
883 #. . . p re sent va lue s o f f l o a t i n g l e g s
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884 pvFltOISCvx2 = pvFloatingLeg ( dfFltCvx2 , dfFltOIS2 )
885 pvFltOISCvx3 = pvFloatingLeg ( dfFltCvx3 , dfFltOIS3 )
886 pvFltOISCvx5 = pvFloatingLeg ( dfFltCvx5 , dfFltOIS5 )
887 pvFltOISCvx7 = pvFloatingLeg ( dfFltCvx7 , dfFltOIS7 )
888 pvFltOISCvx10 = pvFloatingLeg ( dfFltCvx10 , dfFltOIS10 )
889 #. . . p re sent va lue s o f f i x ed l e g s w i l l be same as be f o r e
890 #. . . impl i ed 2 year swap ra t e
891 futSwpOISCvx2 = pvFltOISCvx2/pvFixOIS2
892 #. . . impl i ed 3 year swap ra t e
893 futSwpOISCvx3 = pvFltOISCvx3/pvFixOIS3
894 #. . . impl i ed 5 year swap ra t e
895 futSwpOISCvx5 = pvFltOISCvx5/pvFixOIS5
896 #. . . impl i ed 7 year swap ra t e
897 futSwpOISCvx7 = pvFltOISCvx7/pvFixOIS7
898 #. . . impl i ed 1 0 year swap ra t e
899 futSwpOISCvx10 = pvFltOISCvx10/pvFixOIS10
900 #. . . s t o r e r e s u l t s in a dataframe
901 futSwpOISCvx = pd . concat ( [ futSwpOISCvx2 , futSwpOISCvx3 ,

futSwpOISCvx5 , futSwpOISCvx7 , futSwpOISCvx10 ] , ax i s=1)
902 futSwpOISCvx . columns = [ ’ 2Yr ’ , ’ 3Yr ’ , ’ 5Yr ’ , ’ 7Yr ’ , ’ 10Yr ’ ]
903

904

905 # ### Export Resu l t s to Excel
906

907 # In [ ] :
908

909

910 # FORMAT THE MARKET SWAP RATES
911 mktSwp = swap_rates . div (100)
912 mktSwp . columns = [ ’ 2Yr ’ , ’ 3Yr ’ , ’ 5Yr ’ , ’ 7Yr ’ , ’ 10Yr ’ ]
913

914 # CREATE DATAFRAME WITH IMM DATES
915 #. . . f i nd th i rd Wednesday in each month
916 s tar tDate = fu t_pr i c e s . index [ 0 ]
917 endDate = fu t_pr i c e s . index [ 1 ]
918 thirdWednesday = q l . Schedule ( q l . Date ( s tar tDate . day , s tar tDate . month ,

s tar tDate . year ) ,
919 q l . Date ( endDate . day , endDate .

month , endDate . year ) ,
920 q l . Per iod ( q l . Monthly ) , ca l , conv ,

conv , q l . DateGeneration . ThirdWednesday , Fa l se )
921 thirdWednesday = [ datet ime ( dt . year ( ) , dt . month ( ) , dt . dayOfMonth ( ) )

f o r dt in l i s t ( thirdWednesday ) ]
922 #. . . s t o r e dates in dataframe (monthly and qua r t e r l y )
923 immDts = l i s t ( fu t_pr i c e s . index [ [ q l .IMM. isIMMdate ( q l . Date ( dt . day , dt .
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month , dt . year ) ) f o r dt in fu t_pr i c e s . index ] ] )
924 immDts = pd . DataFrame ( [ immDts , thirdWednesday ] ) . t ranspose ( )
925

926 ###########################
927 # EXPORT RESULTS TO EXCEL #
928 ###########################
929 wr i t e r = pd . ExcelWriter ( exce lFi lename , eng ine=’ x l s xw r i t e r ’ )
930 mktSwp . to_exce l ( wr i te r , sheet_name=’mktSwp ’ )
931 futSwp . to_exce l ( wr i te r , sheet_name=’ futSwp ’ )
932 futSwpOIS . to_exce l ( wr i te r , sheet_name=’ futSwpOIS ’ )
933 i f ( ( currency==’USD ’ ) | ( currency==’EUR’ ) ) & ( adjustCvx==True ) :
934 futSwpCvx . to_exce l ( wr i te r , sheet_name=’ futSwpCvx ’ )
935 futSwpOISCvx . to_exce l ( wr i te r , sheet_name=’ futSwpOISCvx ’ )
936 immDts . to_exce l ( wr i te r , sheet_name=’ immDts ’ )
937 wr i t e r . save ( )
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