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Abstract

The main aim of our research is to investigate how higher order moments of
distribution such as systematic skewness and systematic kurtosis influence the
investors’ behaviour and their expected returns. In our study, we followed Fama
Macbeth two-step procedure for US stock market over the period 1963 to 2019.
Firstly, we proved that CAPM should be expanded by the measures of conditional
co-skewness and co-kurtosis and found that investors require a higher return for
bearing higher systematic variance, negative systematic skewness, and higher
systematic kurtosis. Secondly, considering the effect between systematic skewness
and systematic kurtosis simultaneously in addition to the main risk factors provides
more accurate results. Thirdly, we identified empirical evidence that investors’
behaviour changed significantly after the financial crisis of 2008, which signalizes

about the necessity of improving current asset pricing theory.
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1. Introduction

Nowadays the topic of investor’s expected return and defining factors that
affect this return is popular and relevant for economists, researchers, and investors.
The significant part of research in finance is related to the question of how investors
value risky cash flows. It is generally accepted that investors demand a higher
premium for investment with higher risk. Moreover, the risk-return relationship is
one of the most important factors which influence investors’ decisions. Since
investors try to create a portfolio with a maximum expected return, they should care
about different risk factors that are likely to affect their profit. However, there are
still many issues on how investors evaluate risk and premium for this risk, which is
still a crucial question in capital markets in terms of both theory and practice.

The main model which explains the return is the single factor capital asset
pricing model (CAPM) of Sharpe (1964) and Lintner (1965), which is used by most
financial managers for assessing the risk of the cash flow from a project and for
arriving at the appropriate discount rate to use in valuing the project. According to
the CAPM, the risk of a project is measured by the beta of the cash flow with respect
to the return on the market portfolio of all assets in the economy, and the relation
between required expected return and beta is linear (Jagannathan, 1996). Although
the CAPM is very popular, it is only a static model which is unable to explain the
cross-sectional variation in average returns among portfolios sometimes
(Jagannathan, 1996). Moreover, this theory has serious difficulties to explain the
past superior performance of stocks and it is obvious that expected returns cannot
be explained by the market beta alone. The whole mean-variance theory has become
more and more questioned. Furthermore, CAPM considers the normal distribution
of expected returns. Nevertheless, the normality of asset returns has been widely
rejected in most empirical tests. As a result, in this research, we will analyse
additional risk factors that are likely to influence the expected return of investors.
So, we will expand CAPM adding the factors of skewness and kurtosis as higher
moments in order to define whether these risks carry statistically significant risk
premiums. By adding new variables to standard CAPM, we want to investigate how

skewness and kurtosis influence the investors’ behaviour and expected returns.
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Since it is likely that investors have become more concerned about crash
risk after the financial crisis of 2008, we will investigate whether investors’
behaviour changed after the financial crisis.

In our study, we followed Harvey&Siddique’s (2000) and Fang&Lai’s
(1997) methodological approach by using Fama Macbeth two-step procedure
(1973). However, we experimented with different types of data and time-horizons
to define the best specification of the model. Moreover, we incorporated the
interaction term between skewness and kurtosis to find whether this factor
influences the expected return by investors.

The rest of the paper is structured as follows. The second part summarizes
academic literature dedicated to our topic. Section three presents the relevant
theoretical background and the methodology to proceed with our research. In
addition, section four contains a description of the data used and preliminary
analysis. In part five the main results and findings of our research are presented.
Finally, section six concludes this investigation and contains some suggestions for

future studies.

2. Literature review

2.1 Non-normality of asset returns

Initially, investors have been constrained in their ability to incorporate non-
normality of asset returns. Nevertheless, it’s generally accepted now that stock
market returns have negative skewness and severe excess kurtosis (this occurs when
extreme negative returns are observed, with a magnitude and frequency greater than
implied by the normal distribution.). This stylized fact has been supported by a huge
collection of empirical studies. Campbell and Hentschel (1992) developed a formal
model of the volatility feedback effect (an increase in stock market volatility raises
required stock returns, and thus lowers stock prices). Their model is asymmetric
and helps to explain the negative skewness and excess kurtosis of US monthly and
daily stock returns over the period 1926-1988. So, their model of volatility feedback
creates negative skewness and excess kurtosis in returns. Also, Salomons and
Grootveld (2003) found that the distribution of equity risk premium in an emerging
market is neither normally nor symmetrically distributed, which suggests that
investors should focus more on downside risk (or negative skewness) instead of

standard deviations. Moreover, Lettau, Maggiori, and Weber (2014) found that the
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unconditional CAPM (without considering downside risk) cannot explain the cross-
section of currency returns because the spread in currency betas is not sufficiently
large to match the cross-sectional variation in expected returns. In addition, they
said that the downside risk CAPM (DR-CAPM) explains currency returns because
the difference in beta between high- and low-yield currencies is higher conditional
on bad market returns when the market price of risk is also high than it is
unconditionally. The DR-CAPM can also jointly explain the cross-section of
currencies, equity, equity index options, commodities, and sovereign bond returns.

Sheikh and Qiao (2010) stated that researchers worldwide empirically
observe non-normality with much greater frequency than current mean-variance
frameworks allow them. Moreover, ignoring non-normality in equity return
distributions significantly understates downside portfolio risk - in the worst of the
worst-cases, potentially posing a solvency risk for the investor. Researchers
believed that investors need to allow for downside risk in a more robust fashion
than standard deviation measures have traditionally assumed.

Kim and White (2004) did the research on S&P data and demonstrated that
in robust normalizes data skewness and excess kurtosis are closed to normal.
Moreover, they have found that looking beyond the standard skewness and kurtosis
measures can provide deeper and more accurate insight into market returns
behaviour. Chung et al. (2006) rejected normality of returns for daily, weekly,
monthly, quarterly, and semi-annual intervals. So, in the absence of normality,
investors should be very concerned with the shape of the tails of the distribution of
portfolio returns, which can be measured with a set of higher-order moments.

Karoglou (2010) investigated the reasons for the existence of non-normality
observed in daily stock-market returns. The findings suggest that a substantial
element of the observed deviations from normality might indeed be due to the co-
existence of breaks and GARCH effects. Also, there is still some remaining excess
kurtosis that is unlikely to be linked to the specification of the conditional volatility
or the presence of breaks.

Neuberger and Payne (2018) showed that short-horizon (i.e. daily) returns
can be used to make more much precise estimates of long-horizon (e.g. annual)
moments without making strong assumptions about the data generating process.
Skewness comprises two components: the skewness of short-horizon returns, and a
leverage effect, which is the covariance between contemporaneous variance and

lagged returns. Applying the technology to US stock index returns, authors showed
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that skew is large and negative and does not significantly attenuate with the horizon
as one goes from monthly to multi-year horizons.

It could be summarized that since the distribution of returns is not normal,
higher-order moments matter to risk-averse investors, concerned about extreme

outcomes, and require further investigation.

2.2 Skewness as the third moment of distribution and its influence on excess

return

There are many different researchers that investigated the effects of
skewness and kurtosis on excess return. A lot of researchers in the empirical, as
well as theoretical articles, have argued that the higher moments of the rates of
return distributions, such as skewness, cannot be neglected unless there is a reason
to believe that the rates of return have a normal (symmetrical) probability
distribution and/or quadratic utility function. This is equivalent to the assertion that
the higher (more than two) moments are irrelevant to the investors’ decision under
uncertainty. Arditti (1967) for the first time expanded expected utility function in a
Taylor series with the higher moments of a probability distribution, namely
skewness. Attention had been concentrated on the second (variance) and third
moments (skewness) of r's distribution. This had been done because previously the
higher moments of r add little if any information about the distribution's physical
features. The researcher concluded that the second and third moments of the
probability distribution are reasonable risk measures while the market correlation
coefficient of returns is not. Arditti argued that the first three moments contain all
the income information, while the omitted variables must then relate to some non-
income information. Jean (1971) attempted to extend the analysis to three and many
dimensions by deriving risk premiums as functions of higher order moment and
summarized that one of the reasons for ignoring skewness at least has to do with
the form of distribution of cash flows. If the cash returns have a symmetric
distribution, then the third moment will be zero and the corresponding term in the
expansion, therefore, will be zero. Nevertheless, Jean showed that leveraged capital
structures will most likely result in nonsymmetric, skewed payments to security
holders. Ingersoll (1975) derived a normative, individual pricing model for risky
securities analogous to the capital market line within the framework of a perfect
market. Ingersoll proofed that positive skewness is desired and we must expect to

forego expected return in order to increase skewness. These findings are the reverse
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of the situation in the mean-variance model where high covariance is compensated
for by higher expected return.

Kraus and Litzenberger (1976) started to work with CAPM and extended
the Sharpe-Lintner capital asset pricing model to incorporate the effect of skewness
on valuation. Their evidence suggested that prior empirical findings that are
interpreted as inconsistent with the traditional theory can be attributed to
misspecification of the capital asset pricing model by the omission of systematic
skewness. Also, researchers showed that when the capital asset pricing model is
extended to include systematic skewness, the prediction of a significant price of
systematic skewness is confirmed (and the price has the predicted sign) and the
prediction of a zero intercept for the security market line in excess return space is
not rejected. Sears (1985) examined the importance of skewness in the pricing of
risky assets, finding the results of such tests to be influenced by the market risk
premium. The researcher explored a not so obvious theoretical relationship within
such models that are intrinsically nonlinear in the market risk premium. Failure to
account for this interaction may lead to erroneous conclusions regarding the
empirical results of the models. Singleton and Wingender (1986) stated that the
frequency of positive skewness in their study is found to be relatively stable over
varying time periods from 1961 to 1980. However, the skewness of individual
stocks and portfolios of stocks do not persist across different time periods.
Positively-skewed equity portfolios in one period are not likely to be positively-
skewed in the next time period. Past positively-skewed returns do not predict future
positively-skewed returns.

The researches mentioned above provided mixed results of the effect of
skewness on the equilibrium asset pricing. Nevertheless, in all these studies kurtosis

and its effect on asset returns received relatively little attention.

2.3 Skewness and kurtosis as the third and fourth moments of the distribution

Further, researchers started to extend their models with the fourth moment
of distribution and investigate its effects on excess returns. Scott and Horvath
(1980) formulated and proofed two theorems, the second of which was related to
the fourth moment of distribution (kurtosis). The first theorem says that investors
exhibiting positive marginal utility of wealth for all wealth levels, consistent risk
aversion at all wealth levels, and strict consistency of moment preference will have

a positive preference for positive skewness (negative preference for negative
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skewness). While the second theorem states that consistent risk aversion, strict
consistency of moment preference and positive preference for positive skewness
imply a negative preference for the kurtosis. Gibbons, Ross, and Shanken (1989)
documented that skewness and kurtosis cannot be diversified by increasing the size
of the portfolio. Thus, the non-diversified skewness and kurtosis became important
considerations in the security valuation. Hwang and Satchell (1999) suggested that
emerging markets are better explained with higher-moments CAPMs based on
some test statistics such as the adjusted R? and the LM statistics reported in their
study.

Fang and Lai (1997) derived a four moment CAPM where, as well as
variance, skewness, and kurtosis contribute to the risk premium of an asset. They
showed that in the presence of skewness and excess kurtosis in asset distribution,
the expected excess rate of return is related to systematic variance as well as
skewness and systematic kurtosis. They concluded that investors have a preference
for positive skewness in their portfolios and thus require a higher expected return
for assets when the market portfolio is negatively-skewed and vice versa. Also,
investors are compensated with a higher expected return for bearing the systematic
variance and the systematic kurtosis risk. So, in general, investors require a higher
expected return for assets with systematic variance, assets which are negatively
skewed and have systematic kurtosis.

Harvey and Siddique (2000) proved that conditional skewness helps explain
the cross-sectional variation of expected returns across assets and is significant even
when factors based on size and book-to-market are included. Therefore, systematic
skewness is economically important and commands a risk premium, on average, of
3.60 percent per year. So, the low expected return momentum portfolios have higher
skewness than high expected return portfolios. While Hung, Shackleton, and Xu
(2003) investigated UK data and showed limited evidence for the existence of
higher order pricing factors (gamma and delta) associated with market co-skewness
and co-kurtosis respectively.

Prakash, Chang, and Pactwa (2003) suggested that the incorporation of
skewness into an investor’s portfolio decision causes a major change in the final
optimal portfolio. The empirical evidence, based on the optimal portfolio from
Latin American, US and European capital markets, indicates that investors trade

expected return of the portfolio for skewness, especially those in Latin America.
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Adrian and Rosenberg (2008) explore the cross-sectional pricing of
volatility risk by decomposing equity market volatility into short- and long-run
components. For short-run volatility, they used skewness of market returns as an
indicator of the tightness of financial constraints since returns skewness arises
endogenously in pricing theories with financial constraints. Intuitively, shocks to
market skewness are particularly costly when financial constraints of investors are
binding. The long-run component relates to business cycle risk. They found that the
risk premium of the short-run component is highly correlated with the risk premium
of market skewness, while the risk premium of the long-run component has a high
level of correlation with the risk premium of industrial production growth. On one
hand, market skewness is a significant pricing factor in the cross-section of size-
and book-to-market—sorted portfolio. On the other hand, including the short-run
volatility component as an additional factor makes skewness insignificant.

Chang, Christoffersen, and Jacobs (2009) argued that the market skewness
risk premium is statistically and economically significant and cannot be explained
by other common risk factors such as the market excess return or the size, book-to-
market, momentum, and market volatility factors, or by firm characteristics. They
also found that stocks with high exposure to innovations in implied market
skewness exhibit low returns on average, whereas stocks with high exposure to
innovations in implied market kurtosis exhibit somewhat higher returns on average.

Conrad, Dittmar, and Ghysels (2013) used option prices to estimate ex-ante
higher moments of the underlying individual securities’ risk-neutral returns
distribution. Researchers found that individual securities’ risk-neutral volatility,
skewness, and kurtosis are strongly related to future returns. They also found a
strong negative relation between skewness and subsequent returns and positive
relation between kurtosis and returns. These relations are robust to controls for
differences in firm characteristics, such as firm size, book-to-market ratios, and
betas, as well as liquidity and momentum. However, when authors control for
interactions between volatility, skewness, and kurtosis, they found that the evidence
for an independent relation between kurtosis and returns is relatively weak.

Amaya et al. (2015) used intraday data to compute weekly realized moments
for equity returns and studied their time-series and cross-sectional properties. Their
findings suggested that buying stocks in the lowest realized skewness decile and
selling stocks in the highest realized skewness decile generates an average return of

19 basis points the following week with a t-statistic of 3.70.
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Treating returns as a function of their mean, variance, skewness, and
kurtosis enabled Chen (2016) to ascribe behavioural significance to the odd and
even moments of the distribution of returns. The researcher showed that investors
like mean return and positive skewness and dislike variance and kurtosis. The odd
moments, mean and skewness, advance returns, while the even moments “produce
a drag on expected compound return”. The presence of a positive third derivative
in the most commonly employed models, therefore, predicted that investors are
more willing to indulge their taste for positively skewed outcomes as their wealth
grows. The alternating treatment of odd- and even-numbered mathematical
moments represented a logical extension of an essential non-linear feature of
observed investor behaviour already captured by the treatment of semi variance:
most investors perceive infrequent large losses or shortfalls to be far more risky
than more frequent smaller losses or shortfalls. Chen concluded that positive
skewness indicates the presence of outsized gains; it suggests the tantalizing
possibility that certain holdings in the portfolio will offer disproportionately large
pay-outs, as though they were winning lottery tickets. By contrast, even moments
measure dispersion, and therefore volatility, something undesirable that increases
the uncertainty of returns.

To sum up, the investors are significantly concerned about negative
skewness, kurtosis and downside risk that increase the uncertainty of their expected
returns. In addition, the popularity of lotteries, sweepstakes, out-of-the-money
options implies that investors also care about the right tail of the distribution. Based
on the literature review, we can conclude that the topic of the third and fourth
moments is important for the investors and it is necessary to investigate it more

deeply with new data, factors, and interpretations.

3. Theory and methodology

3.1 The Capital Asset Pricing Model

The main model which is basic in our research is CAPM. This model represents
the relationship between the risk of the assets and expected returns. It is based on
simplifying assumptions about investor behaviour and the presence of a single

common risk factor:
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e Firstly, investors care only about expected returns and risk (volatility).
Furthermore, investors are rational, so they will always choose the
maximum point of expected return for any given level of expected volatility.

e Secondly, all investors in the market have homogeneous beliefs about the
risk (volatility) and expected return trade-offs.

e Thirdly, there is only one risk factor which is common to a market portfolio.
It is the systematic market risk which drives non-diversifiable volatility.
Since the market does not reward investors for the bearing of diversifiable
risk, it is assumed that investors hold only diversified portfolios.

e Fourthly, it is assumed that asset returns are distributed by the normal
distribution (Womack, 2003).

Consequently, according to CAPM if investors know the beta of security (the
risk of security), they can calculate the corresponding expected return. The equation
of the CAPM model is presented in such a way:

E(ry) = 15+ Ba(E(r) —17) (1),
where E () is expected return of an asset, 17 is the risk-free rate, (E (1) — 17) is
the expected excess return of the market portfolio beyond the risk-free rate, often
called the equity risk premium, f, is a systematic risk which is measured as the
degree to which its returns vary relative to those of the overall market and is
calculated as:

cov(ry, Tin)
A= T 5

@),
where 7, is the return of the asset, 7, is the return of the market, o3 is the variance
of the return of the market, cov(ry,7;,) is covariance between the return of the
market and the return of the asset (Womack, 2003).

Important to note that now the world market portfolio, which consists of all
assets in the world, is not observable, so it is necessary to use a proxy (Bartholdy,
2015). Usually, the Standard & Poor’s 500 Index is used as a proxy for the market
return in models, as it is a stock market index that includes the stocks of 500 US
companies based on weights of their market capitalization. It represents the stock
market's performance by reporting the risks and returns of the biggest companies
(www.thebalance.com).

Also, CAPM is used for evaluation of fund managers. Since this model

helps to predict the expected return based on a given risk, we can evaluate whether

fund managers outperform or not. If a realized return is higher than expected return,
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it means that fund manager outperforms and there is “adding value”. In other case,
there is “just collecting fees” and no added value.

On the one hand, the fund managers often take a higher risk (beta or
volatility) in order to get a higher return. On the other hand, it is possible to create
real value when a fund manager can achieve higher returns at the same or reduced
level of risk. The difference between realized return and expected return based on
CAPM is the excess return or a (see Figure 1). Positive @ means that portfolio is
located beyond the security market line (SML) and the manager has good

performance.

Figure 1: Security Market Line

Figure 1 presents the relationship between risk and expected return, SML, or graph
representation of the CAPM formula. The intercept is the risk-free rate and the slope
represents the market premium. Individual securities’ expected return and risk are
plotted on the SML graph. For one security, if it is plotted above the SML, it is
undervalued as the investors are expecting a greater return for the same amount of
risk (beta). If it is plotted below the SML, it is overvalued as the investors would
accept a lower return for the same amount of risk (beta).

Expected
Return Managed
Portfolio SML
E(Rn T

Market
Portfolio

0 beta 1.0

Source: Womack, 2003

Nevertheless, the CAPM has a lot of limitations which cause the problem in
the model. First of all, the model is based on non-realistic assumptions. For
example, it is assumed that the investment returns are normally distributed,
although it is not true in real life. Also, this model includes risk-free rate, although
even government bonds contain risk as well. In addition, the assumption, that all
investors have homogeneous expectations and are rational, is also quite unrealistic
(Sheftrin, 2008).

Secondly, the CAPM is based on forward-looking data such as the expected

rate of return and the expected beta that are calculated on historical data. It means
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that these numbers can’t be exactly précised, as time is changing. Moreover, there
is no reason to believe that realized rates of return over the past holding periods are
necessarily equal to the expected rates of return (Brigham & Gapenski, 1994).

Thirdly, the model includes the return of market portfolio which should
consist of all types of assets, although in real economy it is not possible to calculate
the return of such a market portfolio. That’s why we always take the proxy for
market return such as S&P 500 Index, which may cause deformation of the CAPM.
Fourthly, CAPM is a single period model, so investors care only about the year
return. Nevertheless, investors care about their return during the whole period
(www.businesswritingservices.org).

Finally, according to the model the expected return depends on only one
factor - the stock market beta. Nonetheless, it is obvious that other macroeconomic
factors may influence a security's return also (www.businesswritingservices.org).

To sum up, the CAPM has some limitations, some of which we are going to

solve in our research.

3.2 Skewness and Kurtosis

Skewness is a measure of the asymmetry of the distribution of a variable. A
positive skew value indicates that the tail on the right side of the distribution is
longer than the left side and the bulk of the values lie to the left of the mean. In
contrast, a negative skew value indicates that the tail on the left side of the
distribution is longer than the right side and the bulk of the values lie to the right of
the mean (Figure 2). Kurtosis is a measure of the peakedness of distribution, while
excess kurtosis obtained by subtracting 3 from the kurtosis measure. Distributions
with positive excess kurtosis are called leptokurtic distribution meaning high peak,
and distributions with negative excess kurtosis are called platykurtic distribution
meaning flat-topped curve (Figure 3) (Kim, 2013).

Systematic skewness or kurtosis are defined as components of an asset’s
skewness (kurtosis) that is related to the market portfolio’s skewness (kurtosis). In
such context, the systematic skewness (kurtosis) is considered as a non-diversifiable
measure of skewness (kurtosis) and therefore it is consistent with the assumption of
portfolio theory that only systematic risk is relevant to the investor’s decision

(Doan, 2011).
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Figure 2: Negative and positive skewness of the distribution

Figure 2 presents two types of asymmetry of the distribution of a variable.

A A

Y
Y

Negative Skew Positive Skew

Source: (www.statisticshowto.datasciencecentral.com)

Figure 3: Kurtosis of the distribution
Figure 3 presents two types of peakedness of a distribution.

f(x) f(x) f(x)

Zero kurtosis Positive kurtosis Negative kurtosis
Gaussian distribution

Source: (www.statisticshowto.datasciencecentral.com)

Also, a lot of researchers consider co-skewness and co-kurtosis. First, co-
skewness was used by Krauss and Litzenberger in 1976, and then by Harvey and
Siddique in 2000. It was defined as a measure of securities’ risk in relation to market
risk and is similar to covariance which measures systematic risk in CAPM.
Investors like positive co-skewness more since it provides a higher probability of
positive returns by two assets in excess of market returns. In other words, the assets
with higher co-skewness increase the systematic skewness of an investor's portfolio
(Adesi et al., 2004). Co-kurtosis is also used to measure a security’s risk in relation
to the market risk based on historical price data and market data, but it considers
extreme events. The risk-averse investors like low co-kurtosis, as it means no
significant difference between securities’ returns and market returns, while risk-
lovers prefer high co-kurtosis in order to win in the case of extreme positive returns
(Fang & Lai, 1997).

To calculate skewness and kurtosis, such formulas are used:
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skew, = E w (3)
Var(A)z
—E 4
kurt, = E l%} (4),

where skew, is skewness of asset A, kurt, is kurtosis of asset A, Var(A4) is the
variance of asset A (Jondeau, 2003).

Also, it is important to define the excess kurtosis, which is equal to
(ra—E(ra))* -3 (5)

Var(A)2
In the CAPM, investors care only about two moments - mean and variance

excesskurt, = E [

- for portfolio returns and one co-moment - covariance - for security returns. In
general, investors may care about higher moments such as skewness, kurtosis, and
higher co-moments such as co-skewness, co-kurtosis (Chung, 2006). On the one
hand, the way to extend traditional CAPM is to add Fama - French factors such as
the excess return of the companies with small capitalization over the companies
with large capitalization (SMB), the excess return of the companies with high Book-
to-Market ratio over the companies with low ratio (HML), or the difference between
the returns on diversified portfolios of stocks with robust and weak profitability
(RMW), the difference between the returns on diversified portfolios of the stocks
of low and high investment firms (CMA) (Fama & French, 2015). On the other
hand, as normality of returns is the crucial assumption for CAPM, but in reality, it
does not work, it is very important to add higher moments of distribution such as
skewness and kurtosis in the CAPM. In our study, we will extend classical CAPM
with these higher moments of the distribution.

In the next part, we will explain our hypothesis and the main methodology

which we use for the model.

3.3 The hypothesis to be formally tested

In order to investigate the effects of skewness and kurtosis on excess return
based on CAPM, we will test such hypothesis:
e Expected excess rate of return is explained by systematic skewness and
systematic kurtosis as well as systematic variance:
=> investors are compensated with a higher expected return for bearing
the systematic kurtosis risk;
-> investors forego the expected excess return for taking the benefit of

increasing the systematic skewness.
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o Whether and how after the financial crisis of 2008, the relations between the
expected excess rate of return and systematic skewness and kurtosis have

changed.

3.4 The importance of conducting the test for normality

Since we decided to test the hypothesis described above, we need to start by
checking the data for normality. The higher moments such as skewness and kurtosis
signalize whether data is normal or not. If the skewness is equal to 0 and excess
kurtosis is also 0, the data will be normally distributed. As we will expand the
CAPM with these higher moments, we need to be sure that the data is really
abnormal, which also will be the confirmation one of the CAPM’s limitations. In
the case of normal data, our model does not have any sense. In order to check the
data for normality, we will use Jarque-Bera test. This method is used for testing the
residuals for normality by testing whether the coefficient of skewness and the
coefficient of excess kurtosis are jointly zero (Jarque & Bera, 1987). We have
already written the formulas for excess kurtosis and skewness, but it can be shown

with residuals estimated in OLS regression also:

b1 = skew, =~ (6
Var(A)z
b2 = kurt, = %(7).

The null-hypothesis H, in this test: the coefficients of skewness and excess
kurtosis are jointly zero. In order to check this hypothesis, we need to calculate the

Jarque-Bera test statistics:
2 2
W =N l%l o2 — 37 2; 3) l (8),
where N is the number of observations.
If the test-statistics exceeds a critical value, the null hypothesis will be
rejected.
So, it is important to conduct the test on normality in our model, and after

the confirmation of the abnormal data, we can move to the main method of our

research.
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3.5 Fama Macbeth two-step procedure as a method for a model

Skewness and kurtosis effects cannot be neglected unless there is a reason
to believe that the rates of return have a normal probability distribution. Only if the
excess returns of companies have a symmetric distribution, then the third and the
fourth moments, i.c. skewness and excess kurtosis, will be zero and the
corresponding term in the expansion, therefore, will be zero. In order to test the
effects of skewness and kurtosis on excess return, we will use Fama Macbeth two-
step procedure. Fama Macbeth regressions perform in two steps, as it seems from
the name of the procedure. Firstly, the estimated betas for different risk factors of
each stock could be found by using time-series regressions. Before step two can be
carried out, it is assumed that the estimated betas from the first step agree with the
actual unknown betas. Secondly, it will be run the cross-sectional regression in
order to find the estimates of the risk premium for different risk factors using
estimated betas from the previous step.

Moreover, Fama and Macbeth test the CAPM with a two-pass procedure
that first sorts stocks into portfolios on the basis of historical beta estimates and then
estimates the mean cross-sectional relationship between the portfolio returns and
portfolio betas for each period. By sorting on beta they are able to maximize the
cross-sectional variation in the variable of interest. However, Sylvain (2013) noted
that portfolios can contain one or more securities (Fama & Macbeth, 1973;
Bartholdy, 2005; Chung, 2006; Sylvain, 2013). In order to run Fama Macbeth
regressions, portfolio data or stock data could be used. The discussion about using
stock versus portfolio data is provided in Section Data.

On the first stage, we will run traditional CAPM with Fama Macbeth two-
step procedure. In such a way we are going to find a risk premium for holding a
systematic risk and look whether a systematic risk is the only factor that explains
the average excess return of companies. Firstly, a time-series OLS regression,
equation (9), is run on each asset to generate an intercept, an estimate of the asset’s
beta and residuals (Grauer et al., 2010; Bartholdy et al., 2005).

Rit = Rpe = ; + Bi(Rme — Rpe) + £:(9),
where R;; — Ry is excess return of asset i, Ry, — Ry, is a market excess return, f5;

and a; are parameters estimates.
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By using f3;s (systematic risk) we can move toward to the second step where
risk premium for holding systematic risk will be generated by running cross-
sectional regression, equation (10):

i =Yot V1ﬁ1 + & (10),
where 7; is the average excess return of company i, f3, is systematic risk generated
from equation (9), ¥, and y; are parameters estimates (Fama & Macbeth, 1973;
Bartholdy, 2005).

If the CAPM holds, only the second-order systematic co-moment (beta)
should be priced (Chung, 2006). Moreover, y; should be positive and significant.
This is a direct measure of the ability of the beta estimate to explain differences in
returns on individual stocks in the period following estimation (Bartholdy, 2005).
If y, is significantly different from zero, it will mean that systematic risk is not an
only factor that explains the average excess return of companies.

On the second stage, we will extend traditional CAPM with additional
factors. The extension will make sense only in case if traditional CAPM faced
omitted variables problem. We will run the cubic market model consistent with

four-moment CAPM derived by Fang and Lai (1997) (equation 11):
Rit — Ryr = a; + B1i(Rye — Rye)
- ﬁzt(Rmt - th)z + ,B3i(Rmt - th)3 + & (11),
where (Rmt — th)z are (Rmt - th)3 are stochastic discount factors in the market

return, [;;, B2;, B3; are market prices of the systematic variance, systematic
skewness, and systematic kurtosis, respectively.

The motivation for the model is that investors may care about skewness and
kurtosis in addition to mean and variance. If so, then investors who hold the market
portfolio would evaluate a marginal change in the holding of an asset in terms of its
effect on variance, skewness, and kurtosis, and these marginal effects are captured
by covariance, co-skewness, and co-kurtosis (Back, 2004). The quadratic form for
the marginal rate of substitution implies an asset pricing model where the expected
excess return on an asset is determined by its conditional covariance with both the
market return and the square of the market return (conditional co-skewness)
(Harvey et al., 2000). A cubic pricing kernel is consistent with investors’
preferences for higher order moments, specially kurtosis (Christoffersen et al.,
2017). The signs of the coefficients in equation (11) are based on the assumption

that investors dislike variance, prefer positive skewness to negative skewness, and
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dislike kurtosis. Thus, high covariance/ negative co-skewness/ high co-kurtosis
assets are undesirable and consequently sell at low prices, producing high expected
returns (Back, 2004).

So, B4, B2, B3 are obtained by running time-series regression for each stock
and depict systematic variance, systematic skewness, and systematic kurtosis,
respectively. We will use these estimated coefficients for running cross-sectional
regression to find risk premiums that investors should demand for holding stocks
with different numbers for variance, skewness and kurtosis, equation (12):

T = Yo + ViB1 — V2B + ¥aBa + & (12),
where ¥4, ¥, Y3 are systematic market risk premia for an increase in systematic
variance, a decrease in systematic skewness, and an increase in systematic kurtosis,
respectively (Fama & Macbeth, 1973; Bartholdy, 2005). y, should be zero, which
means that we added all factors that define the excess return of the company.

One important concern with our empirical approach is that the Fama
MacBeth two-step method may be biased since the right-hand-side variables in the
equation (12) are the estimates from the first-step time-series equation (11). We
understand that the error-in-variables problem results in an underestimation of the
price of beta risk and an overestimation of the other cross-sectional regression
coefficients associated with variables observed without error (Kim, 1995). Chung
(2006) suggested recalculating all standard errors using the Shanken adjustment in
order to test for the errors-in-variables bias. Shanken (1992) modifies the traditional
two-pass procedure and derives an asymptotic distribution of the cross-sectional
regression estimator within a multifactor framework in which asset returns are
generated by portfolio returns and prespecified factors. Chung (2006) stated that
because of the way higher-order right-hand-side variables are created, the Shanken
adjustment appears to be inappropriate for specifications that include such
variables. Therefore, Chung concluded that although his estimates from Fama
Macbeth two-step procedure are likely to have an errors-in-variables bias, the
researcher did not believe that the bias is large enough to negate his overall
conclusions.

Instead of employing the two-pass procedure, Gibbons (1982) used the
maximum likelihood estimation approach to eliminate the error-in-variables
problem by simultaneously estimating betas and beta risk prices. Kim (1995) stated
that Gibbons' estimator is thus still subject to an error-in-variables bias. Moreover,

researcher performed the correction for the error-in-variables problem by
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incorporating the extracted information about the relationship between the
measurement error variance and the idiosyncratic error variance into the maximum
likelihood estimation under either homoscedasticity or heteroscedasticity of the
disturbance term of the market model. Kim (1995) concluded about the importance
of implementation of correction when firm size is included as an additional
explanatory variable. Moreover, the multivariate normality assumption imposed in
Gibbons model is improper in cases when the stock returns are characterized by
significant departures from normality as revealed by the high skewness and kurtosis
of returns (Fang & Lai, 1997). A generalized method of moments used by Lim
(1989) avoids the measure error problem and distributional assumption and it is
subject to the sample size and computer time limitations (Fang & Lai, 1997).

Barthodly (2005) mentioned that one possibility is the use of more
sophisticated estimation techniques to deal with problems such as errors in variables
which arise when a simple technique, namely Fama Macbeth two-step procedure,
is used. However, the researcher stated that such techniques are probably cost
prohibitive for individual firms, in particular, in relation to the amount of data
required. This suggests that individual firms should use professional beta providers
for obtaining their beta estimates instead of estimating them themselves and that
professional beta providers should use more complex techniques than Fama
Macbeth two-step procedure.

Important to mention that OLS estimators could be not efficient. This is due
to the fact that with the presence of high kurtosis in stock return distribution, the
OLS estimators are fairly sensitive to outliers as pointed out by Lee and Wu (1985).
An instrumental variable estimation can help to avoid the error-in-variables
problem. An instrumental variable estimator is known to yield consistent estimators
if a matrix of instrumental variables can be found which is uncorrelated with the
disturbance term in the model (Fang & Lai, 1997). An instrumental variable
estimator is used in cases when the second assumption about disturbances does not
hold (Greene, 1997). So, it is used as an instrumental variable z, which is
uncorrelated with the error term. If the second assumption about the unobservable
error term does not hold, we will use slightly different adjustment which will be
discussed in the section Model diagnostic tests.

Conrad, Dittma, and Ghysels (2013) examined the importance of higher
moments using a dramatically different approach as an alternative to adjusted or

original Fama Macbeth two-step procedure. They exploited the fact that, if option
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and stock prices reflect the same information, then it is possible to use options
market data to extract estimates of the higher moments of the securities’ probability
density function. Firstly, the advantages of that method could be that option prices
are a market-based estimate of investors’ expectations. So, option market prices can
capture the information of market participants. Secondly, the use of option prices
eliminates the need for a long time series of returns to estimate the moments of the
return distribution. Thirdly, options reflect a true ex-ante measure of expectations,
they do not give us, as Battalio and Schultz (2006) note, the “unfair advantage of
hindsight.”

Based on all previous findings, we will run traditional Fama Macbeth two-
step procedure and will not proceed with the correction for the error-in-variables
problem due to lack of argumentation that this correction will implement significant
changes to our models. However, we will check for holding all assumptions
underlying the classical linear regression model. If one of it does not hold, we will
perform corresponding adjustments. In such a way we are going to eliminate the
error-in-variables problem. A comparison between the different specification of

models or using option prices is a topic for future research.

3.6 Specification of the model

As it was previously mentioned, we will expand the CAPM with higher
moments such as skewness and kurtosis. Higher-order moments have been
criticized for being unreliable and lacking intuition. Nevertheless, Chung et al.
(2006) believe that both criticisms can be answered by looking at several co-
moments. Each co-moment may individually be unreliable, but the set of co-
moments should be relevant. That is why we will not test the effects of skewness
and kurtosis separately, only both factors together.

Also, it is important to consider the interaction term in our model.
Interaction term shows how the effect of one variable changes due to another
variable change (Buis, 2010). On the one hand, if two independent variables affect
the outcome of the dependent variable in a non-additive way, an interaction term
needs to be included in the model to capture this effect (Field, 2009). Moreover, in
the case of statistically significant interaction terms, we need to interpret the main
effects with considering the interactions. Also, sometimes the interaction term is
used to liquidate the problem of multicollinearity between independent variables.

In such a way, the researches take the interaction term of these variables instead of
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them. On the other hand, Morris, Sherman, and Mansfield (1986) had noted a
persistent failure of psychologists to detect interaction effects between continuous
variables in multiple regression analysis. They mentioned that multicollinearity
between interaction term and its components may exist and be the source of the
problem in the model. In order to solve this problem, Cronbach (1987) suggested
performing an additive transformation for a given predictor. However, based on
Cronbach’s article, multicollinearity will only be a problem when it leads to
computational errors within current computer algorithms. To sum up, it is unlikely
that most empirical researches have such a high degree of multicollinearity, so there
may be other factors that make it difficult to correctly detect moderated
relationships (Jaccard et al, 1990).

Based on mentioned above, we decided to proceed with the interaction term
between skewness and kurtosis and try it in our model. It will be added in such a
way:

Rit —Rrr = a; + Bri(Rme — Ryt)
— Boi(Rine — th)z + Bai(Rine — th)3
+ B4i(Rmt - th)Z(Rmt - th)3 + & (13),
where (Rmt - th)Z(Rmt — th)3 is the interaction term between stochastic
discount factors in the market return, B;;, B2, B3i> Pai are market prices of the
systematic variance, systematic skewness, systematic kurtosis and combination of

systematic skewness and systematic kurtosis respectively.

3.7 Model diagnostic tests

The validity of a model can only be trusted when the few required
assumptions are true. As it is a classical linear regression model, which is based on
the OLS method, we need to check the next five assumptions about the
unobservable error term. We need to be sure that we have BLUE (Best Linear
Unbiased Estimators) what is desirable properties for estimated slopes and
intercept.

For all diagnostic tests, we cannot observe the disturbances and so perform
the tests of the residuals (Brooks, 2019). The next assumptions will be checked:

1. E(w)=0
The mean of the residuals is zero. Generally, the mean of the residuals will always
be zero provided that there is a constant term in the regression (Brooks, 2019).

2. Var(uy)) =o? < o
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It is assumed that the variance of the residuals is constant and equal to o2, which is
called as homoscedasticity. If the errors do not have a constant variance, we say
that they are heteroscedastic, which is the violation of the second assumption. In
order to check it, we apply White's test for heteroscedasticity, which is a very good
method as it makes few assumptions about the form of the heteroscedasticity.

The null-hypothesis H, in White’s test for heteroscedasticity: the
disturbances (we consider residuals) are homoscedastic (Brooks, 2019).

Firstly, we run our regression, estimate the model and obtain the residuals.
Secondly, we need to run the auxiliary regression using the residuals:

52 2 2
Ur = ay + ay Xy + Azxzp + QX3 + AsXS + e Xpp X3 + U (14),
where 1, is the obtained residuals from the previous regression, x,; — the

independent variables from the previous regression.
Thirdly, the null-hypothesis will be rejected or not rejected after calculation
of chi-square test statistic:

TR*~x*(m) (15),
where T is the number of observations, R? is taken from the auxiliary regression;

m is the number of regressors in the auxiliary regression excluding the constant
term.

If chi-square test statistic is greater than the corresponding value from the
statistical table, H, about homoscedasticity will be rejected (Brooks, 2019).

The heteroscedasticity is the problem in the model, as our estimators are still
unbiased, but they are no longer BLUE. Moreover, the standard errors can be
wrong, which causes the irrelevant interpretation of the estimators.

In order to solve the problem, White’s heteroscedasticity consistent standard
error estimates can be used. Due to this method, we receive new standard errors for
the slope coefficients, and we would need more evidence against the null hypothesis
before we would reject it (White, 1980).

3. Cov(ui,uj) =0fori+j

This assumption means that there is no pattern between disturbances (residuals),
in other case the residuals are autocorrelated. In order to check it, the Breusch-
Godfrey test can be used. It is the test for 7" order autocorrelation, where such a
regression will be run:

U = prUs—1 + PoU + p3Usz + -+ prupr + v (16),
where p, — autocorrelation between residuals, v,~N (0, o;2).
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The null-hypothesis Hj in this test: there is zero autocorrelation between error
terms or p; = 0 and p, = 0 and p; = 0 and ...and p,, = 0 (Brooks, 2019).

After running the linear regression using OLS and obtaining the residuals, we
should put these residuals in the equation above. Then we obtain R? and calculate
the test statistics:

(T-r)R*~x}? (17),
where T is the number of observations, r is the number of lags, R? is taken from

the regression of residuals.

If the test statistic is larger than the critical value from the statistical tables,
we need to reject the null hypothesis of no autocorrelation, which means the
violation of the third assumption of the classical linear regression model (Brooks,
2019). In this case, we can receive inappropriate standard errors and wrong
conclusion, as the estimators are unbiased, but not BLUE. To deal with it, it is
possible to move to the model in first differences.

4. The x; are not stochastic.

This assumption means that there is no correlation between the residuals and
the independent variables, as in other way the OLS estimators will not be even
consistent. In order to check this assumption, we need to calculate the correlation
between the residuals and each independent variable.

5. The disturbances are normally distributed.

As we have already described in the section about testing on normality, the
Jarque-Bera test is used to check the residuals on normality. In addition, it is very
good to see on the histogram and time series plot of the estimated residuals. The
fifth assumption is very important to make relevant conclusions about the model.

Also, we need to check the model on multicollinearity between explanatory
variables, as high multicollinearity may become the problem in the model. In order
to check it, we need just to calculate the correlation between independent variables.
If the problem is ignored, there can be such results:

1. High R? but the coefficients can have large standard errors;

2. 1If there are small changes in the specification, the regression can be very
sensitive to this;

3. The confidence intervals become very wide, so testing can give wrong

conclusions (Brooks, 2019).

To sum up, it is important to make all diagnostics tests in order to check the

estimators. We will conduct these tests for our model in the next sections.

Page22



GRA 19703

4. Data and Preliminary Analysis

4.1 Data

In this section, we will describe the data we used, sources, the way of
collection and explain the variables.

Generally, there are different opinions about data which we need to take for
investigation of return-risk relationship: portfolios’ returns or stocks returns. The
first approach is to aggregate stocks into portfolios for testing. The motivation for
creating portfolios is originally stated by Blume (1970) that betas are estimated with
error and this estimation error is diversified away by aggregating stocks into
portfolios. Numerous authors, Black, Jensen, and Scholes (1972), Fama and
MacBeth (1973), and Fama and French (1993) have used this motivation to use
portfolios as base assets in factor model tests. The second approach is to use the
whole stock universe and run cross-sectional tests directly on all individual stocks.
In creating portfolios, estimates of beta become more precise, but the dispersion of
beta shrinks. It causes potentially larger efficiency losses in using portfolios versus
individual stocks. In addition, using individual stocks permit more powerful tests
of whether factors are priced (Ang et al., 2008). As a result, we decided to proceed
with individual stocks.

In order to find the data, we used The Center for Research in Security Prices
(CRSP) from Wharton Research Data Services (WRDS). This database provides us
with returns of individual securities traded on the NYSE, the AMEX, or The Nasdaq
markets. This database includes more than 10000 stocks that were listed in different
time periods. We analysed 3000 stocks and chose only 100 US securities that have
information from January of 1986 to December of 2018, which gave us 396 periods.
Other securities don’t have information exactly for all periods from January of 1986
to December of 2018, so companies with missed data for one of the periods were
excluded. On the one hand, it is enough to take 100 random stocks from the
perspective of econometric science, as we have maximum four independent
variables. On the other hand, it is better to analyse all stocks and choose stocks that
have data for 1986-2018 years or take the portfolios’ returns which can also
perfectly present the whole market, as 100 securities can be not enough to represent

the market. We will proceed with both chosen 100 stocks and portfolios data in
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order to capture the whole market and to define which is a better data approach in
our model.

This empirical research is based on monthly Holding Period Returns
including dividends. The HPR for each company’s stock is calculated by using the
next formula:

Dy + Py

1
—1(18),
> (18)

where D, is the dividends paid out, P, and P;,; are the prices of stock for 2

HPRy¢yq =

periods.

The CAPM includes risk-free rate and market portfolio which should
consist of all companies (assets) in the world. Since it is impossible to consider all
companies, the market proxy is always used. As it has already been described in the
theory section, the common market proxy is value-weighted S&P Composite Index
(Goémez, 2003). Nevertheless, we used Kenneth French’s data library to extract
market proxy and the risk-free rate. In this case, market proxy is value-weight return
of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or
NASDAQ that have a CRSP share code of 10 or 11 at the beginning of month t,
good shares and price data at the beginning of t, and good return data for t.
Generally, Fama and MacBeth (1973) used the equal-weighted NYSE portfolio as
a proxy for the market portfolio, although in theory, the market portfolio should be
the value-weighted portfolio of total investors wealth which includes human capital
and other assets not tradeable or readily measurable (Sylvain, 2013). That’s why
we decided to proceed with the return of the value-weighted market portfolio.
Moreover, Bartholdy (2005) proved that for the estimation of beta, it is irrelevant
whether or not dividend adjusted indexes are used. So, we will use a value-weighted
market portfolio including dividends. Risk-free is the one-month Treasury bill rate.
All returns are presented in percentage.

As it was discussed early in this section, we will use securities that have
information from January of 1986 to December of 2018, which gave us 396 periods.
On the one hand, on the first stage of our model, we will run time-series regressions
in order to generate estimated betas for selected securities. In general, for
estimation, the more observations, the better. This suggests using as long time
period as possible. Bai and Zhou (2015) demonstrated analytically and using Fama
Macbeth two-step risk premia estimates that the standard OLS estimators can

contain large bias when the time series sample size is small. On the other hand, with
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a long estimation period for the beta, however, it is likely that the value of the true
beta changes over the period. The resulting estimate for the beta will, therefore, be
biased (Bartholdy, 2005). That fact motivated us to short the period. One way of
obtaining more observations, over a shorter time period, is to increase the sampling
frequency. However, moving from monthly to daily returns, for example, results in
an increase in the amount of noise in the data, which reduces the efficiency of the
estimates. Bartholdy (2005) suggested that using 5 years of monthly data appears
to be appropriate. His findings were based on a comparison of R-square for models
with different time horizons and frequency of data.

That’s why we will run Fama Macbeth two-step procedure for the whole
sample (396 periods) and for 5 year-horizons separately. We will use adjusted R-
square to rank different model specification and this criterion will be crucial for
choosing the best model specification. Adjusted R-square is better than original R-
square because it takes into account not only goodness of fit statistics, but also the
loss of degrees of freedom associated with adding extra variables (Brooks, 2019).
The significance of S4;, B2i, P3i> Pai and correct signs will also be noted as this
provides a necessary condition for the model to be of any use.

In order to obtain portfolio data, we used Kenneth French’s data library.
This database provides us with value weighted monthly returns of 32 Portfolios
Formed on Size, Operating Profitability, and Investment. We used monthly returns
from July 1963 to January 2019 (667 periods), since it was proven previously in
our research that the more observations, the better. That’s why it suggests using as
long time period as possible.

The portfolios, which are constructed at the end of each June, are allocated
to two Size groups (Small and Big) using NYSE median market cap breakpoint.
Stocks in each Size group are allocated independently to four operating profit
groups (Low OP to High OP for fiscal year t-1) and four Investment groups (Low
Inv to High Inv for fiscal year t-1) using NYSE quartile breakpoints specific to the
Size group. Operating profit for June of year t is annual revenues minus cost of
goods sold, interest expense, and selling, general, and administrative expenses
divided by book equity for the last fiscal year end in t-1. Investment for June of year
t is the change in total assets from the fiscal year ending in year t-2 to the fiscal year
ending in t-1, divided by t-2 total assets. The portfolios for July of year t to June of
t+1 include all NYSE, AMEX, and NASDAQ stocks for which we have market
equity data for June of t, (positive) book equity data for t-1, total assets data for t-2
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and t-1, non-missing revenues data for t-1, and non-missing data for at least one of
the following: cost of goods sold, selling, general and administrative expenses, or
interest expense for t-1 (Kenneth R. French, 2019).

The column titled “SMALL LoOP LoINV” contains the return in year t on
a value-weighted portfolio that consists of the US stocks with small size (bottom
50%), low profitability (bottom 25%), and low investment (bottom 25%) in year
t- 1 (the low investment means low growth rate of total assets from year t-2 to year
t-1). The next column is the return on a value-weighted portfolio with small size
(bottom 50%), low profitability (bottom 25%) and the second lowest investment
group (firms with investment in the 25-50 percentile) in year t-1, the following
column is of firms with small size, low profitability and thirds lowest investment
(firms with investment in the 50-75 percentile), the next one is small size, low
profitability and firms in the top 25% percentile of investment), the next one is small
firms, profitability in the 25-50 percentile, bottom 25% investment, etc (Computer

assignment from course GRA 6534 Investments).

4.2 Descriptive statistics

The data for our research includes 100 US companies from different
industries such as banking, investment, oil and gas, furniture and others. All
descriptive statistics for stocks are presented in the Appendix. The average risk-free
rate for 1986-2018 years is 0.26% with variation from 0.00% to 0.79% (see Figure
4). Market return varied from -22.64% to 12.89% with mean value of 0.91% (see
Figure 5). The average return of all companies for this period is equal to 1.28%,
although there is a large variance between the maximum value of 60.17% and
minimum value -37.01%. The average standard deviation of all companies is
10.49%. The highest volatility of returns (31.82%) is presented in Immunomedics
International company from Biotech and Pharma industry when Adam Express Co
from Investment industry has the lowest standard deviation (4.47%). Also, the
returns of these companies for 1986-2018 have average skewness of 0.57 and
average kurtosis 9.20, which may signalize about non-normality of data, but we will

check it in the next sections (see Figure 6 and 7).
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Figure 4: Dynamic of monthly risk-free rate during 1986-2018 years

Figure 4 presents the monthly measured average risk-free rate for 1986-2018 years
in the US. Risk-free is the one-month Treasury bill rate. All returns are presented
in percentage.
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Figure 5: Dynamic of monthly market return during 1986-2018 years

Figure 5 presents the monthly market return during 1986-2018 years. The market
return is the value-weight return of all CRSP firms incorporated in the US and listed
on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the
beginning of month t, good shares, and price data at the beginning of t, and good
return data for t.
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Figure 6: Histogram of returns’ skewness during 1986-2018 years

Figure 6 presents the calculated skewness for 100 individual stocks based on

historical data 1986-2018 years.
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Figure 7: Histogram of returns’ kurtosis during 1986-2018 years

Figure 7 presents the calculated kurtosis for 100 individual stocks based on

historical data 1986-2018 years.
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Table with descriptive statistics for 32 value-weighted portfolios is

presented in the Appendix.
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4.3 Preliminary analysis

As described in the section about methodology, we will run the model based

on the Fama MacBeth procedure. In order to do it, first, excess returns are calculated

in Excel by the following formulas: R;; — Ry~ the difference between the stock

return of each company and risk-free rate; R,,; — Ry~ the difference between the

return of the market portfolio and the risk-free rate.

In the model, we will use the second equation above to calculate stochastic

discount factors for skewness and kurtosis. To sum up, the main goal of this

research is to check whether the higher moments influence the expected return by

the investor. We defined four steps and potential results of them:

1.
2.

We will run time-series models for each company in order to generate betas.
We will put these generated betas in cross-section CAPM to receive risk-
premium for systematic volatility. We expect to get a significant and positive
risk-premium estimate and significant intercept to show that the volatility is not
only one factor that explains expected return.

If the second step holds, we will repeat the first step adding stochastic discount
factors for systematic skewness and systematic kurtosis.

In the last step, we will put the betas from previous models to generate risk-
premiums for different risk factors. We expect to receive insignificant intercept,
which means that we included all factors that explain expected return. Also, the
risk-premium for systematic skewness should have a negative sign, but the risk-
premium for systematic kurtosis should have a positive sign.

All these steps will be done for different time-periods and we will also consider
the interaction term between systematic skewness and systematic kurtosis in
order to find the best model. Moreover, we will use stock data and portfolios
data separately. All steps will be done in order to choose the best model

specification.

5. Results and analysis

As it was described in the previous sections, the main goal of our research

is to define the relationships between the expected return and higher-order

moments. In this section, we will describe the main results of our models. Firstly,

we will check our data on normality. Secondly, we will run the CAPM with only
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skewness and kurtosis, and after we will expand this model with the interaction

term. Also, we will consider different time-periods in the models.

5.1 Test for normality

As we have already explained in the section about the value of the normality
test, we need to do it to be sure that the data is abnormal. It is the main point of our
model. In order to check that point, we used Jargue-Bera test and conducted the test
in both Matlab and Excel. Firstly, we calculated skewness and kurtosis for each
stock in Excel. Secondly, we used them to define Jargue-Bera t-statistics based on
the formula from the previous section. Thirdly, we found critical value for 90%,
95%., and 99% confidence intervals and rejected the null hypothesis about normality
when Jargue-Bera t-statistics were higher than critical values. These results are
presented in the Appendix. We can see that it was rejected the null hypothesis about
normality for 99 stocks out of 100 based on 99%-confidence interval and for one
stock we rejected the null hypothesis based on 90%-confidence interval. In addition,
we repeated the same in Matlab and proved that data is abnormal for 99% of stocks.

As a result, due to the non-normality of data, we can move to the model.

5.2 CAPM with skewness and kurtosis

This section presents and discusses the results of our research based on the
CAPM and the expansion of this model with skewness and kurtosis in order to
check whether these stochastic factors influence expected stock returns. It is done
based on the methodology described above. It is used the returns of 100 stocks for
396 time periods for regressions.

Firstly, we run the time-series regression for each stock where excess
returns of stock depend on excess market returns. The results of 100 regressions are

presented in the Appendix and summary is shown in Table 1 below.

Table 1: Summary of generated market prices for a systematic variance for
100 stocks

This table reports a summary of the estimated market prices (f;) for a systematic
variance under the two-moment CAPM based on time-series regressions for each
of 100 stocks during 1986-2018. It includes mean, maximum value, minimum value
and standard deviation for all betas.
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Mean Min Max Std.Dev

Two-Moment CAPM: Ry, — Ryy = @; + Bi(Rme — Rype) + €

B; 1.022 0.296 2.355 0.404

Notes: R;: — Ry denotes excess return of asset i; R, — Ry, 1s a market excess return;

B; and a; are parameters estimates.

We can see that all betas are significantly different from zero on 99 % -
confidence interval (see the Appendix). We will use these betas for the next step in

order to generate a risk premium for holding systematic variance (see Table 2).

Table 2: Output from running traditional CAPM for generating risk premium
for holding systematic variance

This table reports the estimated risk premium for holding systematic variance under
the two-moment CAPM based on cross-section regression and betas generated in
the previous step of time-series regressions for 1986-2018. It includes estimated
coefficients, their standard errors, test-statistics, and p-values.

Two-Moment CAPM: 1; = yo + 74 ﬁl + &t

Estimated Coefficients:

Estimate Std.error t-stat p-value
Intercept (yo) 0.00341 0.00109 3.12080 0.00237
Y1 0.00665 0.00665 6.68790 0.00000

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 0.004

R-squared: 0.313, Adjusted R-Squared: 0.306

F-statistic vs. constant model: 44.7, p-value = 1.4 * e ~%?

Notes: 7; denotes average excess return of company i; f3, is systematic risk generated
from equation (9); y, and y,are parameters estimates. All rates in the table are
measured in percent per month.

From Table 2, we see that systematic risk explains the excess return of
chosen companies (p-values is approximately equal to zero). Moreover, systematic
risk has a positive impact on the excess return of companies, which is compliant

with economic theory. Furthermore, the systematic variance is not the only factor
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that explains the average excess return of companies, since we have significantly
different from zero intercept on 99 % - confidence level (p-value is 0.002). So, we
have found empirical evidence that the traditional CAPM should be extended with
additional factors due to omitted variables problem. The R-squared is equal to
31.3%, which could seem too high, but according to the analysis of traditional
CAPM models based on CRSP securities for 1929-2004 years, the R-squared varied
from approximately 0.1% to 40% (Sanchez, 2015). As a result, we can conclude
that this value of R-squared is relevant.

Secondly, we run a cubic market model consistent with four-moment
CAPM derived by Fang and Lai (1997) for each stock separately to extend the
model with systematic skewness and systematic kurtosis. Market prices of the
systematic variance, systematic skewness and systematic kurtosis obtained by
running time-series regressions for each stock are presented in the Appendix and

summary is shown in Table 3 below.

Table 3: Summary of generated market prices for systematic variance,
systematic skewness and systematic kurtosis for 100 stocks

This table reports a summary of the estimated market prices for systematic variance
(B1;), systematic skewness (f3,;) and systematic kurtosis (f3;) under the four-
moment CAPM based on time-series regressions for each of 100 stocks during
1986-2018. It includes mean, maximum value, minimum value and standard
deviation for all betas.

Mean Min Max Std.Dev

Four-Moment CAPM:
2 3
Rit — Rpe = & + Bri(Rme — Ree) — Bai(Rine — Rye)” + Bai(Rme — Rpe) ™ + €t

Pui 0.967 0.275 2.473 0.450
Bai 0.739 -9.074 9.892 2.571
Bsi 7.254 -33.109 64.333 14.019

Notes: R;s — Ry denotes excess return of asset i; R, — Ry 1s @ market excess return;

(Rt — th)z are (R — th)3 are stochastic discount factors in the market return.

The betas from Appendix will be used for running cross-sectional regression
in order to find risk premiums that investors will require for holding stocks
considering variance, skewness, and kurtosis. The results of this regression are

shown in the Table 4.
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Table 4: Output from running expanded CAPM for generating risk premiums
for holding systematic variance, systematic skewness and systematic kurtosis

This table reports the estimated risk premium for holding systematic variance,
systematic skewness and systematic kurtosis under the four-moment CAPM based
on cross-section regression and betas generated in the previous step of time-series
regressions for 1986-2018. It includes estimated coefficients, their standard errors,
test-statistics, and p-values.

Four-Moment CAPM: 1; =y, + )/1[?1\1 — )/2,[?2\1 + )/3,[?3: + &it

Estimated Coefficients:

Estimate Std.error t-stat p-value

Intercept (y,) 0.00237 0.00133 1.77850 0.07849
Y1 0.00745 0.00119 6.25090 0.00000

Y2 -0.00050 0.00027 -1.83110 0.07019

Y3 0.00014 0.00005 2.80130 0.00616

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 0.00399
R-squared: 0.328, Adjusted R-Squared: 0.307

F-statistic vs. constant model: 15.6, p-value = 2.43 * ¢ =98

Notes: r; denotes average excess return of company i;3,, B, Bs, depict systematic
variance, systematic skewness, and systematic kurtosis, respectively; y;, y,, y3 are
systematic market risk premia for an increase in systematic variance, a decrease in
systematic skewness, and an increase in systematic kurtosis, respectively. All rates
in the table are measured in percent per month.

In order to interpret the results of this model, we need to check the next five
assumptions about the unobservable error term which were described in the section
about model diagnostics tests.

Firstly, the mean of the residuals is equal to zero, as there is an interaction
term in the model. In addition, we conducted the test and found out that we can’t
reject the null hypothesis about a zero mean of the residuals. So, the first assumption
is not violated. Secondly, we need to reject the null hypothesis about
homoscedasticity of the residuals’ variance, as we received p-value of 0.00002 in

White’s test. So, the model has a heteroscedasticity problem. In order to solve the
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problem, we will apply White’s heteroscedasticity consistent standard error
estimates. The new results are presented in Table 5. Due to fixing the
heteroscedasticity problem, we received changes in the interpretation of the
estimators. Systematic skewness became insignificant although it was significantly

different from zero on 90%-confidence interval.

Table S: Output from running expanded CAPM for generating risk premium
for holding systematic variance, systematic skewness, and systematic kurtosis
respectively with White’s heteroscedasticity consistent standard error
estimates

This table reports new values of standard errors, test-statistics and p-values due to
conducting White’s heteroscedasticity consistent standard error estimates in order
to eliminate the heteroscedasticity problem in the model. The estimators are the
same as in the previous table.

White’s heteroscedasticity consistent standard error estimates

Estimated Coefficients:

Estimate Std.error t-stat p-value

Intercept () 0.00237 0.00141 1.67700 0.09674
Y1 0.00745 0.00133 5.59620 0.00000

Y2 -0.00050 0.00035 -1.43300 0.15504

V3 0.00014 0.00008 1.76590 0.08052

Thirdly, we can conclude that there is no pattern between disturbances
(residuals) as the p-value is equal to 0.7250, so we cannot reject the null-hypothesis
about zero autocorrelation in Breusch-Godfrey test. In addition, there is no
correlation between residuals and independent variables, so the independent

variables are not stochastic (see Table 6).

Table 6: Correlation matrix between the residuals and the independent
variables

This table reports the values of correlation between the residuals and the
independent variables such as systematic variance, systematic skewness, and
systematic kurtosis in order to check the third assumption about the residuals in the
model.
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Correlation matrix

Systematic variance Systematic skewness Systematic kurtosis

Residuals -0.1187*¢’"* 0.2356*¢" 0.4067*e"

Nevertheless, the results of Jarque-Bera test showed that the disturbances
are not normally distributed as p-value is equal to 0.00013 and we should reject the
null hypothesis about the normal distribution of the residuals. Also, the histogram
and time series plot of the estimated residuals are presented in Figures 8 and 9 that

proves non-normality of the residuals (positive-skewed disturbances).

Figure 8: Time series plot of the estimated residuals in the model
The figure presents the estimated residuals of the model for different US-listed
stocks.

Time series plot of the estimated residuals
T

T T T T T T

0.015 T

0.005

T
1

Estimated residuals
o

-0.005

-0.01 1

-0.015 Il L 1 1 Il 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Period

Finally, we need to check the independent variables on multicollinearity
with the correlation matrix. Based on the results presented in Table 7, we can
conclude that there is no problem of multicollinearity between the explanatory
variables. The correlation between systematic skewness and systematic kurtosis

achieves 67%, but it is not too high number for model
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Figure 9: Histogram of the estimated residuals in the model

The figure presents the frequency of different estimated residuals for US-listed
stocks in the model.
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Table 7: Correlation matrix of independent variables

This table reports the values of correlation between the independent variables such
as systematic variance, systematic skewness, and systematic kurtosis in order to
check the problem of multicollinearity in the model.

Correlation matrix

Systematic variance Systematic skewness Systematic kurtosis

Systematic variance 1.0000 0.2759 -0.2626
Systematic skewness 0.2759 1.0000 0.6706
Systematic kurtosis -0.2626 0.6706 1.0000

After conducting all diagnostics tests, we can sum up that this model has
some problems such as heteroscedasticity of the residuals which was fixed and
abnormal distribution of the residuals. Nonetheless, all other assumptions such as
zero residuals’ mean, zero autocorrelation between residuals, zero correlation
between the independent variables and residuals are not violated. Moreover,

independent variables do not have a high level of correlation too.
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After conducting White’s heteroscedasticity consistent standard error
estimates in order to solve the problem of heteroscedasticity, we can interpret the
results of this model in a such way: the systematic market risk premia for an
increase in systematic variance is significantly different from zero on 99%-
confidence interval and positively correlated with expected return by investors; the
systematic market risk premia for a decrease in systematic skewness is not
significantly different from zero; and the systematic market risk premia for an
increase in systematic kurtosis is significantly different from zero on 90%-
confidence interval and positively correlated with expected return, which means
that investors will require a higher premium for stock with excess kurtosis.
Moreover, the intercept in the model is not significantly different from zero on 95%-
confidence interval as p-value is equal to 0.097, which means that there are no other
factors that also define expected excess return of the company. Nevertheless, if we
take 90%-confidence interval, we will conclude that the intercept is not zero. In
addition, these factors explain the average excess return of companies on 31 % (look
at adjusted R-square).

To sum up, as this model has the problem in diagnostics test and not all
factors are significant on a 95%-confidence interval, we need to try other
specification of the model, which is likely to give a better result. One of such
specifications is CAPM with skewness, kurtosis, and an interaction term between

them, which is presented in the next section.

5.3 CAPM with skewness, kurtosis, and an interaction term between them
(1986-2018)

This section presents and contains a discussion of the results of our research
based on the expanded CAPM with skewness, kurtosis and interaction term
between them. It is used the excess monthly return of 100 US companies for 1986-
2018 (396 periods) in regressions.

Firstly, on the previous stage of our research, we have found empirical
evidence that systematic risk is not the only factor that explains the excess return of
companies.

Secondly, we will extend traditional CAPM with systematic skewness,
systematic kurtosis and an interaction term between these risk factors. In order to
do that, we will run 100 cubic market models consistent with four-moment CAPM

derived by Fang and Lai (1997) for each stock separately. Market prices of the
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systematic variance, systematic skewness, systematic kurtosis, and interaction term
between systematic skewness and kurtosis, respectively for each stock are presented
in the Appendix. The summary for each type of betas is shown in Table 8. These
betas are obtained by running time-series regressions and only depict different risk

factors since stochastic discount factors in the market return were used.

Table 8: Summary of generated market prices for systematic variance,
systematic skewness, systematic kurtosis and an interaction term for 100
stocks

This table reports a summary of the estimated market prices for systematic variance
(B1;), systematic skewness (f,;), systematic kurtosis (f3;) and the interaction term
between systematic skewness and systematic kurtosis (f,;) based on time-series
regressions for each of 100 stocks during 1986-2018. It includes mean, maximum
value, minimum value and standard deviation for all betas.

Mean Min Max Std.Dev

Four-Moment CAPM with interaction term:
Rit — Rpe = o + Pri(Rme — Rye)
— Boi(Rme — th)z + B3i(Rme — th)3
+ ﬁ4i(Rmt - th)Z(Rmt - th)3 + &t

B 0.967 0.298 2.710 0.456
Bai 0.739 -9.023 9.526 2.553
B 7.339 -112.256 114.057 35.191
Bai -1.661 -1484.060 1824.518 585.182

Notes: R;s — Ry denotes excess return of asset i; R, — Ry 1s @ market excess return;

(Rt — th)z are (R — th)3 are stochastic discount factors in the market return.

We will use these estimated coefficients for running cross-sectional
regression to find risk premiums that investors should demand for holding stocks
with variance, skewness, kurtosis, and interaction term between skewness and
kurtosis (see Table 9).

Before we can interpret the results of the model, we should check for holding
of all assumptions underlying the classical linear regression model. So, we will

check the validity and adequacy of the model.
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Table 9: Output from running expanded CAPM for generating risk premium
for holding systematic variance, systematic skewness, systematic kurtosis, and
an interaction term between systematic skewness and kurtosis respectively

This table reports the estimated risk premium for holding systematic variance,
systematic skewness, systematic kurtosis, and systematic skewness and systematic
kurtosis at once under the four-moment CAPM with interaction term based on
cross-section regression and betas generated in the previous step of time-series
regressions for 1986-2018. It includes estimated coefficients, their standard errors,
test-statistics, and p-values.

Four-Moment CAPM with interaction term:
T, = Yo + V1Pu — YaPz + V3B + VaPar + €t

Estimated Coefficients:

Estimate Std.error t-stat p-value

Intercept (¥,,) 0.00135 0.00127 1.06830 0.28808
Y1 0.00829 0.00113 7.33330 0.00000

Y, -0.00059 0.00025 -2.32520 0.02219

Y3 0.00018 0.00005 3.74680 0.00031

Va4 0.00001 0.00000 3.91450 0.00017

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 0.00372
R-squared: 0.423, Adjusted R-Squared: 0.398

F-statistic vs. constant model: 17.4, p-value = 9.88 x ¢~11

Notes: r; denotes average excess return of company i; B, Bz, B3, Ba depict

systematic variance, systematic skewness, systematic kurtosis, and an interaction
term between systematic skewness and kurtosis respectively; yi,y2, V3, Va4 are
systematic market risk premia for an increase in systematic variance, a decrease in
systematic skewness, and an increase in systematic kurtosis, and an increase in
interaction between systematic skewness and systematic kurtosis, respectively. All
rates in the table are measured in percent per month.

The mean of the residuals is equal to zero because there is a constant term
in the regression. Also, we rejected the assumption that the variance of the residuals
is constant on 99 % - confidence interval (p-values is equal to 0.0025). That means
that our model faces with heteroscedasticity problem. We will fix this problem by

applying White’s heteroscedasticity consistent standard error estimates (see Table
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10). Moreover, there is no pattern between disturbances (residuals) (p-value is equal
to 0.7027 and we cannot reject the null-hypothesis in Breusch-Godfrey test that
there is zero autocorrelation between error terms). Furthermore, there is no
correlation between the residuals and the independent variables (see Table 11). So,
the fourth assumption is not violated. Finally, the disturbances are normally
distributed (p-value is equal to 0.1957 and we cannot reject the null in Jarque-Bera
test) and the histogram and time series plot of the estimated residuals are presented
in Figures 10 and 11. These two figures graphically prove that the disturbances are

normally distributed.

Table 10: Output from running expanded CAPM for generating risk premium
for holding systematic variance, systematic skewness, systematic kurtosis, and
an interaction term between systematic skewness and kurtosis respectively
with White’s heteroscedasticity consistent standard error estimates

This table reports new values of standard errors, test-statistics and p-values due to
conducting White’s heteroscedasticity consistent standard error estimates in order
to eliminate the heteroscedasticity problem in the model. The estimators are the
same as in the previous table.

White’s heteroscedasticity consistent standard error estimates

Estimated Coefficients:

Estimate Std.error t-stat p-value

Intercept (¥o) 0.00135 0.00146 0.92323 0.35815
£ 0.00829 0.00139 5.97970 0.00000

1€ -0.00059 0.00030 -1.97310 0.05130

V3 0.00018 0.00007 2.54570 0.01247

Va4 0.00001 0.00000 2.72430 0.00763

Table 11. Correlation matrix between the residuals and the independent
variables

This table reports the values of correlation between the residuals and the
independent variables such as systematic variance, systematic skewness, systematic
kurtosis and an interaction term between systematic skewness and systematic
kurtosis in order to check the third assumption about the residuals in the model.
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Correlation matrix

Interaction
' ' ) term between
Systematic Systematic Systematic systematic
variance skewness kurtosis skewness and
kurtosis
Residuals 0.0116%¢™  0.0116%¢™  0.1058*e™  -0.1156%¢™

Figure 10: Time series plot of the estimated residuals in the model

The figure presents the estimated residuals of the model for different US-listed
stocks.
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Also, we checked the model on multicollinearity between explanatory
variables (see Table 12). We can observe high correlation only between systematic
kurtosis and interaction term between systematic skewness and kurtosis.
Nevertheless, in our case high correlation between these two risk factors can be

ignored because interaction term directly consists of systematic kurtosis.
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Figure 11: Histogram of the estimated residuals in the model

The figure presents the frequency of different estimated residuals for US-listed
stocks in the model.
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Table 12: Correlation matrix of independent variables

This table reports the values of correlation between the independent variables such
as systematic variance, systematic skewness, systematic kurtosis and an interaction
term between the systematic skewness and systematic kurtosis in order to check the
problem of multicollinearity in the model.

The interaction

Systematic Systematic Systematic tegrr; tzfntzcifn
variance skewness kurtosis M
skewness and
kurtosis
Systematic
variance 1.0000 0.2429 -0.2870 0.1912
Systematic
skewness 0.2429 1.0000 0.3331 -0.0806
Systematic
kurtosis -0.2870 0.3331 1.0000 -0.9199
Interaction term
between
systematic
skewness and
kurtosis 0.1912 -0.0806 -0.9199 1.0000
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To sum up, we made all the diagnostics tests in order to check the estimators.
Only the second assumption about the constant variance of the residuals is violated,
but we calculated White’s heteroscedasticity consistent standard error estimates in
order to solve this problem. We will interpret the model after the implementation
of White’s heteroscedasticity consistent standard error estimates, because we
received new increased standard errors for the coefficients, and we would need
more evidence against the null hypothesis before we would reject it. White’s
heteroscedasticity consistent standard error estimates only change standard errors
for coefficients. Firstly, the intercept is equal to zero (p-value is higher than 0.1),
which means that we added all factors that define excess return charged by
investors. Moreover, our factors explain the average excess return of companies on
40 % (look at adjusted R-square). Secondly, all factors are significantly different
from zero on 95 % - confidence interval (p-value for systematic skewness is
approximately equal to 0.05). The signs of different risk factors are consistent with
theory (systematic variance and systematic kurtosis have positive signs, while
systematic skewness has a negative sign).

Based on that we can conclude that CAPM with skewness, kurtosis, and an
interaction term between them is a better specification of the model in comparing
to the previous one. Firstly, the model with interaction term has higher adjusted R-
square, which means a better explanation of the average excess return of companies.
Secondly, we have to take into consideration that after calculation of White’s
heteroscedasticity consistent standard error estimates in the model without
interaction term, systematic skewness and systematic kurtosis are equal to zero on
95 % - confidence interval. So, these two factors do not explain the average excess
return of companies. Nevertheless, in this model, the systematic skewness becomes
significant after adding the interaction term. It is caused by considering both
systematic skewness and systematic kurtosis together. In other words, this
interaction term helps to find how the required return by the investors will be
changed when the stock has the problems of skewness and excess kurtosis together.
Based on Appendix, we can say that most of the stocks have skewness and excess
kurtosis simultaneously. That’s why considering the interaction term between
systematic skewness and systematic kurtosis improved our model and made the
factor of systematic skewness significant.

Moreover, the results of the investigation show that investors expect a lower

return when the distribution of stock returns demonstrates positive co-skewness.
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The economic interpretation of this phenomena is very important. Our model
specifications can also be viewed as competing approximations for the discount
factor or the intertemporal marginal rate of substitution. A beta coefficient near co-
skewness can be considered as relative risk aversion. A negative beta implies that
with an increase in the next period's market return, the marginal rate of substitution
declines. This decline in the marginal rate of substitution is consistent with
decreasing marginal utility. According to Arrow (1964), nonincreasing absolute
risk aversion is one of the essential properties for a risk-averse individual.
Nonincreasing absolute risk aversion for a risk-averse utility-maximizing agent can
also be linked to prudence as defined by Kimball (1990). Prudence relates to the
desire to avoid disappointment and is usually linked to the precautionary savings
motive. Nonincreasing absolute risk aversion implies that in a portfolio an increase
in total skewness is preferred. Since adding an asset with negative co-skewness to
a portfolio makes the resultant portfolio more negatively skewed (i.e., reduces the
total skewness of the portfolio), assets with negative co-skewness must have higher
expected returns than assets with identical risk-characteristics but zero-co-
skewness. Thus, in a cross section of assets, the slope of the excess expected return
on conditional co-skewness with the market portfolio should be negative. Thus, the
premium for skewness risk over the risk-free asset's return (assuming that the risk-
free asset possesses zero betas with respect to all the factors being examined to
explain the cross-section of returns) should also be negative (Harvey &Siddique,
2000).

To sum up, the second model with the interaction term is better and has a
practical implication in investors’ relationship. That’s why in the next section we

will use this model to explore different time-horizons.

5.4 CAPM with skewness, kurtosis, and an interaction term between them for

5 year-horizons

In this section, we will repeat exactly the same procedure as in the previous
section. The only difference is that we will use 5 year-horizons in order to find the
best specification of the model. Based on the theory, there is an assumption that the
model can give better results if it is based on 5 year-horizons. So, we will check it
and repeat all steps from the previous section 5 times (1993-1997, 1998-2002,
2003-2007, 2008-2012, 2013-2017 year). Each model will have 60 observations.
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The common feature for different time horizons: percentage of abnormal
data (vary from 34 percent to 53 percent) and percentage of significant betas on the
first stage is relatively low (if to compare with full data sample where we have 100
% of significant betas). The first phenomenon looks strange, as theoretically the
more sample size, the more probably sample distributions will follow a normal
distribution. We observed a reversed trend. 99 % of monthly stock returns are non-
normally distributed when we increase the sample size to 396 periods. Now we will
consider 5 different periods separately.

1993-1997. We can see that systematic risk explains the excess return of
chosen companies (p-values is approximately equal to zero) (see Table 13).
Furthermore, the systematic variance is not the only factor that explains the average
excess return of companies, since we have significantly different from zero
intercept on 95 % - confidence level (p-value is 0.02). After expanding traditional
CAPM with systematic skewness, systematic kurtosis and an interaction term
between these risk factors, we can observe that systematic skewness is equal to zero

(p-value is equal to 0.5) and has a wrong positive sign (see Table 14).

Table 13: Output from running traditional CAPM for generating a risk
premium for holding systematic variance (1993-1997)

This table reports the estimated risk premium for holding systematic variance under
the two-moment CAPM based on cross-section regression and betas generated in
the previous step of time-series regressions for 1993-1997. It includes estimated
coefficients, their standard errors, test-statistics, and p-values.

Two-Moment CAPM: 1; = yo + 74 ﬁl + &t

Estimated Coefficients:

Estimate Std.error t-stat p-value
Intercept (¥,,) 0.00504 0.00213 2.36540 0.01998
12 0.01051 0.00198 531110 0.00000

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 0.0115
R-squared: 0.224, Adjusted R-Squared: 0.216

F-statistic vs. constant model: 28.2, p-value = 6.81 * e 97

Notes: 7; denotes average excess return of company i; f3, is systematic risk generated
from equation (9); y, and y,are parameters estimates. All rates in the table are
measured in percent per month.
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Table 14: Output from running expanded CAPM for generating risk
premiums for holding systematic variance, systematic skewness, systematic
kurtosis and an interaction term between systematic skewness and kurtosis
(1993-1997)

This table reports the estimated risk premium for holding systematic variance,
systematic skewness, systematic kurtosis and an interaction term between
systematic skewness and systematic kurtosis at once under the four-moment CAPM
with interaction term based on cross-section regression and betas generated in the
previous step of time-series regressions for 1993-1997. It includes estimated
coefficients, their standard errors, test-statistics, and p-values.

Four-Moment CAPM with interaction term:
T, = Yo + ¥1Pu — YoPz + V3B + VaPar + €t

Estimated Coefficients:

Estimate Std.error t-stat p-value

Intercept (¥,,) 0.00485 0.00219 2.20840 0.02962
Y1 0.01071 0.00207 5.17880 0.00000

Y, 0.00007 0.00010 0.67536 0.50109

Y3 0.00003 0.00001 4.39010 0.00003

Va4 0.00000 0.00000 3.14470 0.00222

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 0.0116
R-squared: 0.232, Adjusted R-Squared: 0.199

F-statistic vs. constant model: 7.16, p-value = 4.41 * e =%

Notes: r; denotes average excess return of company i; B, B, s, Ba depict

systematic variance, systematic skewness, systematic kurtosis, and an interaction
term between systematic skewness and kurtosis respectively; yi,y2, V3, Va4 are
systematic market risk premia for an increase in systematic variance, a decrease in
systematic skewness, and an increase in systematic kurtosis, and an increase in
interaction between systematic skewness and systematic kurtosis, respectively. All
rates in the table are measured in percent per month.

1998-2002. We can see exactly the same results for traditional CAPM as in
1993-1997 (see Table 15). In expanded CAPM we observe that all additional risk

factors are not significantly different from zero (see Table 16). That means that

systematic risk is not the only factor that explains the average excess return of
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companies, but expanded CAPM with systematic skewness, systematic kurtosis and
an interaction term between them looks like a wrong model specification for that
time period (all additional factors do not contain any significantly different from

zero information).

Table 15: Output from running traditional CAPM for generating a risk
premium for holding systematic variance (1998-2002)

This table reports the estimated risk premium for holding systematic variance under
the two-moment CAPM based on cross-section regression and betas generated in
the previous step for 1998-2002. It includes estimated coefficients, their standard
errors, test-statistics, and p-values.

Two-Moment CAPM: 1; = yo + 74 ﬁl + &t

Estimated Coefficients:

Estimate Std.error t-stat p-value
Intercept (y,) -0.00285 0.00149 -1.91850 0.05795
Y1 0.01196 0.00143 8.37690 0.00000

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 0.0107
R-squared: 0.417, Adjusted R-Squared: 0.411

F-statistic vs. constant model: 70.2, p-value = 6.81 * e %7

Notes: 7; denotes average excess return of company i; f3, is systematic risk generated
from equation (9); y, and y,are parameters estimates. All rates in the table are
measured in percent per month.

Table 16: Output from running expanded CAPM for generating risk
premiums for holding systematic variance, systematic skewness, systematic
kurtosis and an interaction term between systematic skewness and kurtosis
(1998-2002)

This table reports the estimated risk premium for holding systematic variance,
systematic skewness, systematic kurtosis and an interaction term between
systematic skewness and systematic kurtosis at once under the four-moment CAPM
with interaction term based on cross-section regression and betas generated in the
previous step for 1998-2002. It includes estimated coefficients, their standard
errors, test-statistics, and p-values.
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Four-Moment CAPM with interaction term:
T, = Yo + ¥1Pu — YaPz + V3B + VaPar + €t

Estimated Coefficients:

Estimate Std.error t-stat p-value

Intercept (yo) -0.00117 0.00171 -0.68806 0.49309
Y1 0.00934 0.00168 5.57580 0.00000

Y2 0.00027 0.00030 0.91347 0.36331

Y3 0.00005 0.00004 1.29580 0.19817

Va4 0.00000 0.00000 0.46761 0.64114

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 0.01
R-squared: 0.502, Adjusted R-Squared: 0.481

F-statistic vs. constant model: 24, p-value = 1.01e-13 1.01 x ™13

Notes: r; denotes average excess return of company i; B, B, s, Ba depict
systematic variance, systematic skewness, systematic kurtosis, and an interaction
term between systematic skewness and kurtosis respectively; yi,y2, V3, Va4 are
systematic market risk premia for an increase in systematic variance, a decrease in
systematic skewness, and an increase in systematic kurtosis, and an increase in
interaction between systematic skewness and systematic kurtosis, respectively. All
rates in the table are measured in percent per month.

2003-2007. While we have evidence for extending traditional CAPM with
additional risk-factors (see Table 17), adding systematic skewness, systematic
kurtosis and an interaction term between them does not bring any significantly

different from zero information (see Table 18).

Table 17: Output from running traditional CAPM for generating a risk
premium for holding systematic variance (2003-2007)

This table reports the estimated risk premium for holding systematic variance under
the two-moment CAPM based on cross-section regression and betas generated in
the previous step for 2003-2007. It includes estimated coefficients, their standard
errors, test-statistics, and p-values.
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Two-Moment CAPM: 1; = yo + 74 ﬁl + &t

Estimated Coefficients:

Estimate Std.error t-stat p-value
Intercept (y,) -0.00285 0.00149 -1.91850 0.05795
Y1 0.01196 0.00143 8.37690 0.00000

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 0.0147
R-squared: 0.075, Adjusted R-Squared: 0.0655

F-statistic vs. constant model: 7.94, p-value = 0.00584

Notes: 7; denotes average excess return of company i; f3, is systematic risk generated
from equation (9); y, and y,are parameters estimates. All rates in the table are
measured in percent per month.

Table 18: Output from running expanded CAPM for generating risk
premiums for holding systematic variance, systematic skewness, systematic
kurtosis and an interaction term between systematic skewness and kurtosis
(2003-2007)

This table reports the estimated risk premium for holding systematic variance,
systematic skewness, systematic kurtosis and an interaction term between
systematic skewness and systematic kurtosis at once under the four-moment CAPM
with interaction term based on cross-section regression and betas generated in the
previous step of time-series regressions for 2003-2007. It includes estimated
coefficients, their standard errors, test-statistics,

and p-values.

Four-Moment CAPM with interaction term:
T, = Yo + V1Pu — YoPz + V3B + VaPai + €t

Estimated Coefficients:

Estimate Std.error t-stat p-value
Intercept (yo) 0.00693 0.00298 2.32410 0.02225
V1 0.00444 0.00210 2.10970 0.03752
Y2 -0.00002 0.00012 -0.19344 0.84703
Y3 0.00000 0.00001 -0.03059 0.97566
Va 0.00000 0.00000 -1.22620 0.22314
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Table 18 (continued)

Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 0.0143
R-squared: 0.154, Adjusted R-Squared: 0.118

F-statistic vs. constant model: 4.31, p-value = 0.003

Notes: r; denotes average excess return of company i; B, B, s, Ba depict
systematic variance, systematic skewness, systematic kurtosis, and an interaction
term between systematic skewness and kurtosis respectively; yi,y2, V3, Va4 are
systematic market risk premia for an