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Abstract

We present the first comprehensive study of excess comovement in the Norwegian

stock market, and find that stocks on the OBX index in Norway comove more than

their fundamentals would suggest. The comovement is increasing over time, and of

large economic magnitude after 2009. Between 2009 and 2018, our results indicate

that 14% of the variance of OBX stocks stems from excess comovement. The OBX

bases membership on volume traded, unlike previously researched indexes, which base

membership on market capitalisation. Critics have suggested that index structure is the

cause of previously found excess comovement, but our findings show that excess co-

movement exists even on differently structured indexes. Our findings therefore present

new evidence in support of index membership causing excess comovement.
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1 Research problem and motivation

A large amount of research indicates that the prices of assets comove more than their

fundamentals would suggest. This comovement is seen for equities within several

countries, including the US (Ambrose, Lee, & Peek, 2007; Barberis, Shleifer, & Wur-

gler, 2005; Kallberg & Pasquariello, 2008; Vijh, 1994), the UK (Claessens & Yafeh,

2012; Mase, 2008), and Japan (R. M. Greenwood & Sosner, 2007; Suzuki et al.,

2015). Research also suggests increased comovement between different asset classes

that were previously unrelated, such as equities and commodities (Basak & Pavlova,

2016; Pindyck & Rotemberg, 1988; Tang & Xiong, 2012). Both stocks and com-

modities are in other words claimed to be affected by comovement factors that are

independent of the fundamentals of the underlying asset. This excess comovement is

in violation of the concept that stock prices only reflect the fundamental value of a

given firm (Samuelson et al., 1965; Ross, 1976). The study of excess comovement is

therefore a crucial aspect of asset pricing (Kallberg & Pasquariello, 2008).

Potential consequences of comovement in excess of fundamentals include increased

volatility (Basak & Pavlova, 2013; Tang & Xiong, 2012), increased financial instabil-

ity (Wurgler, 2010) and reduced possibilities of diversification (Rua & Nunes, 2009).

Understanding both the magnitude of comovement effects, and their cause, is therefore

of significance to investors, risk managers, government agencies, and academics.

Excess comovement is commonly defined as covariance between asset returns that

is not explained by fundamentals. One of the most common ways to investigate ex-

cess comovement for stocks is through studying index inclusions. Being included

in an index is generally believed to be an information-free event, meaning that the

stock is fundamentally unchanged from joining the index. If joining the index is truly

information-free, then increased comovement after index inclusion, must be solely due

to the inclusion. The index inclusion thereby works as a natural experiment (Ambrose

et al., 2007).

The majority of the comovement literature has claimed to find excess comovement

in indexes by performing such experiments. In the US, UK and Japan, the economic

magnitudes of the findings are high, with some studies indicating that excess comove-

ment accounts for 20 to 40 percent of the total variation on the S&P 500, FTSE 100,

1

09777770914582GRA 19703



and Nikkei 225 indexes (Barberis et al., 2005; Mase, 2008; R. M. Greenwood & Sos-

ner, 2007). Comovement has not been studied comprehensively in Norway before, and

we therefore raise the question: is there excess comovement in the Norwegian stock

market?

Recently, there has been more doubt about whether the findings of the major co-

movement studies are correct. Chen, Singal, and Whitelaw (2016), von Drathen (2014)

and Kasch and Sarkar (2012) claim that the assumption that index inclusion is an

information-free event is incorrect – inclusions to both the S&P 500 and the FTSE 100

have substantial changes in fundamentals around the inclusion date. They pose that

these changes in fundamentals are what drive the majority of the change in comove-

ment, not the index inclusion. For instance, since the S&P 500 index bases membership

on stock market capitalisation, any stock that joins is likely a momentum stock – one

that has performed well prior to inclusion. Moreover, index comovement is almost

exclusively restricted to indexes which base inclusion on market capitalisation.

We fill a gap in this literature by examining index inclusion events for which market

capitalisation is not a criteria. Specifically, we study index comovement on the OBX

index in Norway, which crucially bases membership on how much the stocks are traded,

consisting of the top 25 most traded stocks on the Oslo Stock Exchange.

To our knowledge, this is the first study to examine comovement on such an in-

dex. As the construction of the index is different from that of previous studies, we can

examine comovement in a new light.

Critics of the excess comovement literature claim that the changes in fundamentals

that apply to all stocks joining the S&P 500 index and FTSE 100 index are due to

the construction of these indexes. OBX, however, is constructed on a different set of

eligibility criteria and thus, the same traits do not apply to stocks joining the OBX

index. Inclusions to the OBX are exposed to a potentially different set of changes in

fundamentals.

We create a model which clearly defines all the assumptions necessary for the stan-

dard comovement test to accurately identify excess comovement. We then run the stan-

dard comovement test as a baseline analysis, and find indications that there is excess

comovement on the OBX index. The excess comovement has risen sharply over time,

2
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and for the 2009-2018 period, it is equal to approximately 22% of the variance of the

OBX. This is a similar magnitude to what Barberis et al. (2005) found in the S&P 500

for 1988 to 2000.

We perform several tests to determine whether stock inclusion into the OBX is an

information-free event. We extend the single-factor model to include the Carhart 4-

factor model, test for non-synchronous trading effects, test for momentum’s relation

with comovement, and examine the effects of industry trends. None of these explain

the excess comovement, but we find that a previously unexamined variable in comove-

ment literature does: volume traded. All inclusions to the OBX have increased vol-

ume traded both before and after inclusion into the OBX, and increased volume traded

causes increased comovement with the OBX. This fact causes the single-factor model

to overestimate the excess comovement.

To control for volume traded, we perform a matched samples approach, where we

match inclusions with sample stocks that see similar changes in volume traded. We

find that approximately a third of the excess comovement suggested by the single-

factor model was due to the increase in volume traded. After controlling for the effects

of volume traded, approximately 14% of the variance of the OBX index is a result of

comovement in excess of what fundamentals would suggest. We verify this result by

employing a regression discontinuity design using an instrumental variable, and find

similar estimates for excess comovement.

We also check the robustness of our findings by examining stocks which were

deleted from the OBX index. We repeat our tests, and find that these stocks display

a similar decrease in comovement as the index inclusions saw an increase.

Our research makes three main contributions. The first is aimed at the Norwegian

stock market, while the second and third are interesting for a broader international

audience. Firstly, as no other paper has thoroughly examined index comovement in

Norway before, our results bring new insight about which factors affect the Norwegian

stock market. Stocks included in the OBX index see increased comovement, and as a

result, also increased volatility. We also find that volume traded is a significant factor

for how much stocks comove in Norway.

Secondly, while previous research has primarily studied and discussed comovement

3
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in large indexes which base inclusion on market capitalisation, we find that there is also

excess comovement in a smaller index with a different inclusion criteria.

Thirdly, we also find that despite the difference in index inclusion criteria, the in-

dex’s specific construction also affects which factors affect stock comovement.

This paper is constructed as follows: Section 2 presents an overview of the major

literature on comovement. Section 3 presents some brief exploratory data on the OBX

index. In Section 4 we create the model for the most used comovement test, and present

the results of that test. Section 5 consists of an analysis of whether the assumptions of

the model truly hold, by various tests for momentum, firm size, industry membership,

proxies for fundamentals and volume traded. In Section 6 we create matched sam-

ples based on the findings of Section 5, and use these matched samples to estimate

excess comovement after controlling for changes in fundamentals. Section 7 consists

of regression discontinuity design using an instrumental variable, to further establish

causality. In Section 8, we perform several robustness tests to ensure the robustness of

our results. Section 9 presents a discussion on our findings and their main implications.

Finally, we conclude in Section 10.

4
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2 Literature review

There are two main perspectives in the comovement literature (Barberis et al., 2005).

The first is that all comovement stems from fundamentals, meaning correlated changes

in the fundamental values of firms. The second perspective claims that comovement is

also driven by non-fundamental sources. The latter entails that some groups of stocks

comove in excess of what their fundamentals would suggest. This is known as excess

comovement. It is necessary to understand both sources of comovement, in order to

be able to prove whether there is excess comovement in the Norwegian Stock market.

This section is organised as follows: we first give a short introduction to the fundamen-

tal theory of comovement. Afterwards, we review the literature of non-fundamental

comovement related to our thesis question. Lastly, we review the findings and litera-

ture of comovement in stock indexes.

2.1 Fundamental comovement

In the fundamental view of comovement, asset prices only comove due to correlated

changes in cash flows or common variation in discount factors (Coakley, Kougoulis,

et al., 2004). This view is based on classical finance models such as the efficient mar-

ket hypothesis, which is one of the most established pieces in financial theory (Fama,

1970; Samuelson et al., 1965). The efficient market hypothesis assumes rational in-

vestors who price assets based on expectancy about future cash flows. If a stock price

changes, the reason is that investors’ expectations of future cash flows have changed.

This fundamental view is also a cornerstone in arbitrage pricing theory, where any de-

viation from a fundamental price will be adjusted by arbitrage investors (Ross, 1976).

2.2 Breaches from fundamental comovement

Fundamental theories explain a large part of price comovement, but there exists a fair

share of empirical evidence in favour of excess comovement for several asset classes.

One early example is Pindyck and Rotemberg (1988). They attempted to explain com-

modity comovement by macroeconomic variables, but the commodities comoved far

more than any set of macroeconomic variables could explain. Either there is some

5
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unknown macroeconomic variable that affects commodity comovement, or actors in

commodity markets react to non-economic factors. Examining the latter would later

turn into a sizeable research field about how investor behaviour affects comovement.

In the middle and late 1990s, Bodurtha Jr, Kim, and Lee (1995) and Froot and Dab-

ora (1999) found that certain groups of stocks comoved more than their fundamentals

would suggest. Bodurtha Jr et al. (1995) studied US closed-end funds that held foreign

assets, and found that the price of those funds did not always match the net asset value

of the fund – the fund would occasionally trade at a premium or a discount compared

to the values of the assets the firm owned. The researchers found that the reason for the

mispricing was that the closed-end funds comoved more with the US stock market, than

with the foreign stocks which the funds owned. This, they posed, meant that the US

closed-end funds, which owned only foreign stocks, were exposed to US-specific risk.

Further, that this US-specific risk stemmed not from fundamentals, but from investor

sentiment.

Froot and Dabora (1999) reach the same conclusion by studying Siamese-twin

stocks – stocks which are traded on several stock exchanges, but have claims to the

exact same cash-flow. By fundamental theory, two stocks with claims to the exact same

cash flow should have the exact same price, but that was not the case for the Siamese-

twin stocks. They displayed excess comovement with stocks in the countries where

they were traded most. Froot and Dabora (1999) posed that a plausible explanation for

these findings was that there are country-specific sentiment shocks.

An interesting takeaway from these papers, is that there are strong signs that as-

sets comove not only due to shocks to the demand of the owners of the assets. Shocks

which are unrelated to the actual fundamentals of the stocks, and change the own-

ers’ demand for the stocks. These demand shocks cause all the stocks affected by the

demand changes to comove in excess of fundamentals. A closely related branch of

literature, is the literature of international contagion in financial markets. The part of

this literature that is relevant for our thesis, is focused on how a negative shock to as-

set prices in one country, can cause negative shocks in other countries which were not

directly hit by the original shock.

One strong example of international contagion was the "Russian virus" of 1998

6
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(Baig & Goldfajn, 2001; Calvo, 2004). In August 1998, Russia defaulted on parts of its

public debt. This caused crises in asset markets in several countries, including South

American countries which had no economic ties to Russia. Baig and Goldfajn (2001)

pose that the Russian crisis caused a panic among international investors which caused a

crisis in Brazil. He presents evidence that the Russian debt default caused international

investors to withdraw their money from Brazil, and that this resulted in a large drop

in asset prices. Calvo (2004) finds that that the contagion was at least partly caused

by leveraged institutional investors on Wall Street. These investors were specialists in

investing in emerging markets, and were therefore invested in both Russia and Brazil.

The losses in Russia forced the investors to sell their other assets in emerging markets

to pay margin calls. This then caused selling pressure on Brazil. This is a clear example

that stocks which have similar investors, may see excess comovement, since shocks that

affect the investors will affect all the stocks that those investors own.

2.3 Comovement with stock indexes

The previous section argues that there exists evidence that comovement is not driven en-

tirely by fundamentals, but also non-fundamental factors. One cause of non-fundamental

comovement may be demand effects caused by shocks to the owners of the stocks. Test-

ing for whether one group of assets comoves more than fundamentals suggest is gen-

erally difficult, since there are a variety of factors that cause assets to comove. One of

the most established ways to test for excess comovement is through examining stocks

which are included in an index. The idea behind examining index inclusions, is that

index inclusion itself should bring no news about the fundamentals about the stock. If

that is correct, then a stock comoving more with an index after joining it, can be con-

sidered as proof of non-fundamental comovement (Cathcart, El-Jahel, Evans, & Shi,

2019).

Vijh (1994) was one of the first to look at excess comovement from index inclu-

sion. He employed a test on the S&P 500 which would become the standard test of

index comovement. He calculated the beta of each inclusion for the 250 days before

index inclusion, and the 250 days after index inclusion, using the market model to cal-

culate the betas. The results were that after inclusion in the index, the betas increased.

7
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Vijh (1994) attributed this to investors using trading strategies which involve buying or

selling the entire index at the same time.

Barberis et al. (2005) build on the work of Vijh (1994), and investigate excess co-

movement in the S&P 500 from 1967 to 2000. They asses beta changes for stock

inclusions to, and deletions from, the S&P 500 index. They find that when a stock

is included in the S&P 500 index, its R2 and beta with respect to the S&P 500 index

increase, while the opposite happens when a stock is excluded. The other major contri-

bution of Barberis et al. (2005) is their two views of what causes excess comovement:

Category-based comovement and habitat based comovement. Category based comove-

ment occurs when investors classify different securities into the same asset class, and

shift resources in and out of this class in a correlated way. Habitat based comovement

occurs when investors as a group limit the transactions to a given set of securities, and

interchange in and out of that set in tandem. These two explanations have in the af-

termath of the study been gathered as demand effects (R. Greenwood, 2008). They

have received support in several papers that have studied comovement (Ambrose et al.,

2007; Green & Hwang, 2009). To further control for fundamental changes, Barberis et

al. (2005) employ a matched sample test. They match firms with regards to size and

industry, and test whether the matched sample displays similar changes in comovement

as the included stocks. They find that this kind of change does not appear, and there-

fore reject the fundamental view of comovement and attribute the excess comovement

mainly to demand effects.

This way of testing comovement has received some criticism. Chen et al. (2016)

challenge the results of Barberis et al. (2005), and claim that the reason betas increase

after index inclusion, is not that they joined the index, but rather that the firms have fun-

damentally changed. Since the S&P 500 consists of the stocks with the highest market

value, stocks that join the S&P 500 have necessarily increased in market value prior to

joining. This means that they are all high momentum stocks. Chen et al. (2016) cre-

ate matching samples which match on both firm size and momentum. These matched

samples exhibit almost as large an increase in the betas as the actual inclusion into the

S&P 500 did, and Chen et al. (2016) therefore conclude that the increase in beta stems

from the inclusions being momentum stocks, rather than from excess comovement.

8
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Kasch and Sarkar (2012) also question whether there truly is a non-fundamental

effect for S&P 500 additions/deletions. Their research indicates that there is no per-

manent non-fundamental comovement effect after controlling for the characteristics of

firms joining the S&P 500. Additions to the index have a systematic increase in earn-

ings per share and market value, and as Chen et al. (2016) showed, positive momentum

prior to joining the index. Kasch and Sarkar (2012) therefore suggest that the increased

betas of the included are due to these effects, and that the increased comovement is

therefore not in excess of fundamentals. Put differently, these studies argue that stock

inclusion is not necessarily an information-free event. This is a core assumption when

proving excess comovement, and we have therefore in our analyses tried to carefully

evaluate this assumption.

Even though Barberis et al. (2005) have received some criticism, the majority of the

comovement literature has found similar results and followed their methodology. Boyer

(2011) for example, finds evidence strongly supporting excess comovement from index

membership from 1981–2004. Boyer (2011) looks at stocks which are moved between

the S&P value and growth indexes. He utilises that every six months, S&P rebalances

the value and growth subindexes, and uses this rebalancing as an instrument. By def-

inition, the two subindices must have equal market caps. If one index outperforms the

other, some stocks must be moved from the winning index to the losing index, to keep

the market caps equal. Boyer (2011) looks particularly at the stocks that were moved

from one index to the other, despite the fundamentals of the moved stocks becoming

more like the index which they left. This means for instance a stock being rebalanced

from value to growth, despite the stock itself having become more of a value stock.

It is rebalanced only because the value index outperformed the growth index, and the

market capitalisation of the value and growth indexes must be equal. Boyer (2011)

finds that this stock would now start to comove less with the value index it left, and

more with the growth index it joined, despite fundamentally becoming more similar to

the value index stocks. This change in comovement occurs in the opposite direction of

what fundamentals would suggest.

R. M. Greenwood and Sosner (2007) also extend the work of Barberis et al. (2005),

when studying the Japanese Nikkei 225 index. In April 2000, there was a broad redefi-

9
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nition of the Nikkei 225 index, and 30 stocks on the index were replaced. R. M. Green-

wood and Sosner (2007) find evidence that upon addition to the index, the stocks be-

come exposed to the shocks from trading experienced by other Nikkei stocks, since they

are now purchased and sold in a basket with other index stocks. A robustness test shows

that the findings are not driven by characteristics of the included and removed stocks,

such as industry or size. The researchers conclude that future risk models should incor-

porate index membership as an extra characteristic for forecasting of risk, and through

this reduce the total variance.

In the UK, Coakley et al. (2004) and Mase (2008) examine the comovement effect

of index member changes at the FTSE 100 index in 1992–2002 and 1990–2005, re-

spectively. Similar to the findings of Barberis et al. (2005), both authors find excess

comovement from index membership on the FTSE 100 index. However, von Drathen

(2014) finds the opposite in his study of the FTSE 100 index when he matches the

included stocks with the closest ranked market cap stocks at FTSE 250 which are not

included on the FTSE 100 index. Since FTSE includes stocks based on market cap,

von Drathen (2014) claims to have controlled for the selection bias that was present in

the index by matching with similar stocks.

The majority of studies of comovement are done in the US, Japan and the UK. A

common feature of these studies is that the evidence is found on large indexes which

base inclusion on market capitalisation. One could question if findings of excess co-

movement only appear on such indexes due to specific traits. Claessens and Yafeh

(2012) on the other hand test comovement for additions to several indexes around the

world. The data consists of 40 developed and emerging markets, from 2001 through

2010. They find that for the majority (32/40) of countries, beta and R2 increase for

additions to indices. These comovement effects are greater if the pre-inclusion beta is

relatively low, which is a new finding in the literature. Even though the paper finds

some variation in the result, the overall conclusion is in support of non-fundamental

comovement. A drawback of the study is that for some of the countries, the time frame

is limited, and the number of inclusions very low. It is therefore very hard to say much

about specific countries based on the research of Claessens and Yafeh (2012).

Norway is one of the countries examined by Claessens and Yafeh (2012). This is to

10
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our knowledge the only paper which has performed comovement tests in the Norwegian

equity market. Their sample in Norway is, however, very small. It consists of just 11

stocks between 2001 and 2006. Upon inquiry, the authors could only confirm which

Norwegian stocks they had observed, not which indexes the stocks were included in. 1

For the 11 stocks they examine, Claessens and Yafeh (2012) find an average change in

beta of -0.01, indicating that there is no comovement in Norway. But, as mentioned,

the sample size is so small that one cannot conclude much based on it. In our study, we

examine 122 stocks, and selecting 11 random ones from that could provide a variety of

extreme results.

Overall, the comovement test first employed by Vijh (1994) provides evidence for

excess comovement on multiple different indexes. There has, however, been directed

criticism about the accuracy of this test. The core of this criticism has been that stock

inclusion truly is not necessarily an information-free event. Several critics have pointed

out that since the indexes base inclusion on market capitalisation, all inclusions are

winner and momentum stocks. This is a large part of our motivation for studying the

OBX index – which does not base inclusion on market capitalisation, and consequently,

inclusions are not necessarily momentum stocks. The weaknesses in employing the

comovement test on the market capitalisation indexes may therefore not apply to the

OBX. If then there is no excess comovement on the OBX, the claims that comovement

is only found due to the index structure of previous studies are strengthened. If, on

the other hand, there is excess comovement on the OBX, then it is likely that index

structure is not the cause. We thereby contribute to the literature by shedding light on

both the validity of previous comovement results, and their criticism, by being, to our

knowledge, the first to study comovement on an index which bases inclusion on volume

traded.

3 Data and OBX statistics

In this section, we first present an elaboration of our data and then some summary

statistics of the OBX, which highlight some facts that are relevant for this thesis.

1We know that they did not study the OBX index, as the stocks they studied never joined the OBX.
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The majority of our data is from Oslo Børs Information (OBI). This data set con-

tains data on the prices, returns, volume traded and shares outstanding of all stocks on

Oslo Børs from 1980 through 2018. It also contains data on the values of the OBX

index, and the Oslo Børs All-Share index (OSEAX), and their price weighted versions.

The standard OBX and OSEAX indexes are total return indexes, meaning that they

assume dividends are reinvested dividends. That is not ideal for comovement testing,

so we run the tests against the version of the OBX that does not include reinvested

dividends.

We received data from Bernt Ødegaard about which stocks were included in and

removed from the OBX index at each rebalancing. He also provided us with several

indexes, such as the Carhart four-factor portfolios and industry portfolios, which he cre-

ated for his paper on which factors affect the Oslo Stock Exchange (Ødegaard, 2017).

Our final set of data is on ownership of the stock indexes. This was collected from the

Thomson Reuters Eikon database.

The OBX index normally consists of 25 stocks, and is rebalanced semi-annually

(Oslo Børs, 2018). The constituents are generally the 25 stocks with the highest kroner

value of volume traded, but Oslo Børs keeps it at their discretion to include stocks by

other criteria. One such criteria is a desire to have the OBX index represent the full

OSEAX index (Oslo Børs, 2018).

The rules for which stocks are included in the OBX have been unchanged since

1995, and so our analyses go from 1995 through 2018. Over this period, 162 stocks

have been added to the OBX index. 40 of these have had to be excluded from our tests

due to either mergers and acquisitions, delisting or lack of data, which leaves our total

sample at 122 inclusions over 48 rebalances.

Oslo Børs is generally very dominated by a few large firms, and these have tended

to be on the OBX index. This means that even though the OBX consists of only 25

stocks out of a total 150-300 stocks at Oslo Børs, the OBX has tended to represent

more than half the market value of Oslo Børs. Figure 1 shows how large the OBX

market value has been as a percentage of the market value of all shares on Oslo Børs.

One key trait that makes the OBX interesting, is that it is a tradable index, meaning

that it is possible to trade the whole index at once through derivatives. This was part
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Figure 1: Market value of OBX in percent of the market value of all stocks on Oslo Børs

Note. This graph shows the market value of the OBX index as a percentage of the market value of all
stocks on Oslo Børs. The large jump in 2002 stems from Statoil joining the OBX index.

of the motivation for creating the index, and it has been possible to trade options on

the OBX since 1990, and futures since 1992 (Oslo Børs, 1997). Oslo Børs notes that

in 2017, OBX futures were the most liquid product at Oslo Børs (Oslo Børs, 2017).

Based on data available at Oslo Børs’ websites, we confirm this to be true. We find that

in 2018, 2 723 448 OBX future contracts were made, each consisting of 100 futures

on the OBX index. The average value of the OBX index was at 795 in 2018, which

puts the market value of the derivatives trades at approximately 216 billion kroner.

This is approximately 20% more than the second-most traded product at Oslo Børs in

2018, which was Equinor shares, with trades worth 181 billion kroner. The OBX future

trade of 216 billion kroner is equal to approximately 16% of the total trade of shares in

Norway.

It is important to note, however, that futures trading on indexes does not entail

any actual trading of stocks. At the expiration date, there is merely a cash settlement.

Nonetheless, futures trading of indexes may affect the underlying stocks, and has been

considered to be a potential source of excess comovement by several comovement au-

thors (Vijh, 1994; R. M. Greenwood & Sosner, 2007).
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A second key trait of the OBX index is its ownership structure. The OBX in-

dex has a higher share of both foreign ownership and domestic government owner-

ship, than domestic private ownership. At the end of 2018, the Norwegian government

owned 50.12% of the OBX index, non-Norwegian investors owned 29.21%, and non-

governmental Norwegians owned 20.68%. The government does not change its owner-

ship levels (except in extraordinary circumstances), and the main interest is therefore in

ownership levels of the free-floating, non-governmental shares. Of those shares, foreign

investors own 58.28%, while private domestic investors own the remaining 41.72%.2

Foreign investors own substantially more of the OBX than private Norwegians do. This

relation is not as clear for the stocks on Oslo Børs that are not on the OBX index. Of the

free-floating non-OBX stocks, foreign ownership is 48.77% while private is 51.23%.

Foreign index funds are particularly clearly owning OBX stocks rather than non-OBX

stocks. Non-Norwegian index funds own approximately 11.7% of the OBX index, but

only 3.21% of the non-OBX stocks. This highlights the fact that different groups of

investors own the OBX and non-OBX stocks.

4 Single factor model

Analysing index inclusion provides an opportunity to study non-fundamental comove-

ment through a natural experiment (R. M. Greenwood & Sosner, 2007). Index inclu-

sion being a natural experiment means that a company’s fundamentals should not be

expected to change as a result of being included in the OBX index. Stock inclusion

into an index can therefore be considered an information-free event, meaning that it

signals no change in underlying fundamentals. Most scholars have generally supported

this view (Chen, Noronha, & Singal, 2006; Elliott, Van Ness, Walker, & Warr, 2006),

but it has recently come under increased criticism by von Drathen (2014), Kasch and

Sarkar (2012) and Chen et al. (2016). The critics claim that index inclusions are not

independent of fundamentals on the S&P 500 index and FTSE 100 index. They there-

fore state that the studies which found excess comovement, did not correctly control

for changes in fundamentals/stock return factors, and that this is what caused them to

2Authors’ calculations based on Thomas Reuters Eikon ownership data.

14

09777770914582GRA 19703



find comovement. They claim that the excess comovement found was only apparent,

and could be explained by changes in fundamentals.

In this section, we first outline the standard comovement test, which we use as our

baseline analysis. We then proceed to create a model which clearly states precisely

which assumptions the test has, in order to evaluate whether those assumptions hold

for OBX inclusions.

4.1 Empirical methodology

The most established test for comovement is a single-factor regression. This comove-

ment test is employed by Barberis et al. (2005), Vijh (1994), Mase (2008) and Boyer

(2011). In order to detect excess comovement we run the following OLS regression

separately before and after the stock is added to the OBX index:

Rit = αi + βiROBX,t + eit (1)

where Rit is the return of stock i at time t, and ROBX,t is the return of the OBX index

at time t. After inclusion, we remove the included stock from the OBX index in the

regression, so that the stock’s new weight in the OBX does not affect the calculated

beta.3 The βi then shows how much the stock’s return moves together with the return

of the other stocks on the index.

We run the regression on daily returns, with the pre-inclusion period as the 180

days before the stock was added to the index, and the post-inclusion period as the 180

days after addition. Under the assumption that stock inclusion is an information-free

event, the only difference between the beta before inclusion and after inclusion should

then be a result of the index inclusion. We define ∆β as the change in beta from before

inclusion to after, and calculate the average of these to find the estimate for overall

change in comovement: ∆β.4 If index inclusion causes increased comovement with

the index, the beta should increase as a result of inclusion.

3The precise nature of why and how we calculate the OBX without the inclusion, is shown in Ap-

pendix A.
4Calculating the change in comovement as the average of ∆βs has the implicit assumption that the

inclusions are independent of each other. We examine this assumption in Section 8.5, and find evidence

that it holds
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Based on the fundamental view of comovement, however, index membership should

not affect stock prices, and the change in beta should therefore be zero. This gives a

formal null hypothesis of H0: ∆β = 0.

4.2 Model

The test above relies on several assumptions, most notably that index inclusion is an

information-free event. From research in the US and the UK, we know that this assump-

tion may be broken on the S&P 500 and the FTSE 100 indexes (Chen et al., 2016; von

Drathen, 2014). We therefore create a model to clearly state all necessary assumptions

in order to interpret the ∆β causally. We also build the model to be able to define what

the economic magnitude of any excess comovement is, and under which assumptions

they hold.

We imagine a simple model where stocks are affected by fundamental factors, and

by belonging to a group such as an index. The return of a stock is then defined by:

Rit = αi +
n∑
j=1

λijfjt + γGroupi ∗ SGroup + eit (2)

where Rit is the return of stock i on day t, fj are common fundamental factors. These

fundamental factors are independent of group belongings. λij is stock i’s exposure to

common fundamental factor j, and n is the total number of fundamental factors. SGroup

consists of idiosyncratic, non-fundamental group-specific shocks that affect members

of the group, but no other stocks. γi,Group represents how sensitive each group mem-

ber i is to idiosyncratic non-fundamental shocks to the group, and eit is the stock’s

idiosyncratic risk.

Our focus in this thesis is on stocks added to the OBX index. Prior to inclusion,

these stocks were not on the OBX index, but only the Oslo Børs All-Share Index (OS-

EAX). We divide the OSEAX into two subgroups: OBX stocks and non-OBX stocks.

We define non-OBX stocks as all stocks on the OSEAX that are not on the OBX index.

The returns of stocks in each of these groups are then as follows:

Rit = αi +
n∑
j=1

λijfjt + γOBXi ∗ SOBX + eit (3)
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Rit = αi +
n∑
j=1

λijfjt + γNONi ∗ SNON + eit (4)

Our model then assumes that all stocks on the OSEAX are subject to the same set of

fundamental factors fjt, but to differing degrees, given by their λij loadings. The OBX-

stocks differ from non-OBX stocks in that the OBX stocks are subject to idiosyncratic

OBX-specific shocks SOBX , while the non-OBX stocks are subject to another set of

idiosyncratic shocks SNON . These two shocks are therefore by definition assumed to

be uncorrelated.

The returns of the indexes are value-weighted averages of the returns of their con-

stituents. They can therefore be formulated as:

ROBX,t = αOBX +
n∑
k=1

λOBX,kfkt + 1 ∗ SOBX + eOBXt (5)

RNON,t = αNON +
n∑
l=1

λNON,lflt + 1 ∗ SNON + eNONt (6)

where αOBX is the value-weighted average of αi, λOBX,k is the value-weighted ex-

posure of each λij , and signals OBX index’ exposure to fundamental factors. Since

shocks SOBX directly affect the return of the OBX index in a 1:1 fashion, the sum of

the value weighted γi equals 1.

This section so far has defined the returns of the different stocks and indexes. The

purpose of that is to find what results running the single-factor model will yield. The

single-factor regression is:

Ri,t = αi + βi ∗ROBX + eit (1)

We run the regression both prior to and after inclusion, and then calculate the ∆β as

βa − βb. Prior to inclusion, the stock is a non-OBX stock, and has the return of a

non-OBX stock. After inclusion, it has the return of an OBX stock.

When the single factor regression is run on a non-OBX stock, the expected esti-

mated beta is equal to:

βbi =
cov(Rb

i , R
b
OBX)

var(Rb
OBX)

(7)
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In this model, that is equal to:

βbi =
cov(αi+

∑n
j=1 λ

b
i∗fjt+γ

b,NON
i SNON+eit,αOBX+

∑n
j=1 λOBX,jfjt+SOBX+eOBXt)

var(αOBX+
∑n

j=1 λOBX,jfjt+SOBX+eOBXt)

(8)

As non-fundamental group shocks and firm specifics risk are idiosyncratic, we assume

that they are uncorrelated with the other factors in the model. This gives:

βbi =

∑n
j=1

∑n
k=1 λ

b
ijλ

b
OBXkcov(fj, fk)

b

σ2,b
OBX

(9)

That is the beta a stock has prior to inclusion. Following inclusion, the stock will be

exposed to the OBX shocks. That is:

βai =
cov(αi+

∑n
j=1 λij

a∗fjt+γa,OBX
i SOBX+eit,αOBX+

∑n
j=1 λ

a
OBX,kfjt+SOBX+eOBXt)

var(αOBX+
∑n

j=1 λOBX,jfjt+SOBX+eOBXt)

(10)

Just as in the before case, but the shock term remains, since both the stock and the

OBX index are subject to the SOBX shocks. The βai term therefore becomes

βai =

∑n
j=1

∑n
k=1 λ

a
ijλ

a
OBXkcov(fj, fk)

a + γa,OBXi ∗ σ2
SOBX

σ2,a
OBX

(11)

When we calculate ∆βi = βai − βbi , our estimate is in other words equal to:

∆βi =

∑n
j=1

∑n
k=1 λ

a
ijλ

a
OBXkcov(fj, fk)

a + γa,OBXi ∗ σ2
SOBX

σ2,a
OBX

−
∑n

j=1

∑n
k=1 λ

b
ijλ

b
OBXkcov(fj, fk)

b

σ2,b
OBX

(12)

This equation can be simplified by the assumption that the variance of the OBX

index is equal in expectancy over time. That is, σ2,a
OBX = σ2,b

OBX . We examine this

assumption and its consequences in Appendix B.

To make the equation easier to read, we define C as the variance-covariance matrix∑n
j=1

∑n
k=1 cov(fj, fk)

a, where Cjk is the covariance between fundamental j and fun-

damental k. The change in beta for a stock included in an index can then be written as:

∆βi =

∑n
j=1

∑n
k=1[λ

a
ijλ

a
OBXkC

a
jk − λbijλbOBXkCb

jk] + γa,OBXi ∗ σ2
SOBX

σ2
OBX

(13)

Three final assumptions must hold in order for ∆β to be a good, unbiased estimator

of excess comovement.
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Assumption 1: Inclusion is an information-free event

Inclusion into the OBX index is an information-free event for the stock joining the

index. This means that joining the OBX index neither signals nor causes changes in

the stock’s fundamentals. That is, the stock’s loadings on fundamental factors are un-

changed: λaij = λbij

Assumption 2: OBX loadings do not systematically change

The OBX index’ loadings on fundamental factors are unchanged from prior to inclusion

until after, that is: λaOBXk = λbOBXk

Assumption 3: The fundamental factors do not systematically change

The variance-covariance matrix C does not change between periods, so that Ca
jk = Cb

jk.

Recall that the variance-covariance matrix signals the variance of shocks to fundamen-

tal return factors, and the covariance between shocks to different fundamental return

factors. This assumption is in other words amounts to assuming that the shocks to the

fundamental return factors are a stochastic variable which draws from the same distri-

bution over time.

These three assumptions will not hold for every stock, but it is feasible to assume

that they hold in expectancy. These assumptions will be challenged in later sections,

but provided that they hold in expectancy, the expected ∆βi is:

∆βi =
γOBXi ∗ σ2

SOBX

σ2
OBX

(14)

∆β =
1

n

n∑
i=1

γOBXi ∗ σ2
SOBX

σ2
OBX

(15)

The expected change in beta coefficient is equal to the stock’s loading toward the

non-fundamental, OBX-specific shocks, multiplied by the variance of those shocks, di-

vided by the variance of the OBX index. Since shocks SOBX affect the OBX index

1:1, the value-weighted average of γOBXi is equal to 1. This means that the ∆βi shows

approximately how large a share of the variation in the OBX index can be explained by

non-fundamental, group-specific shocks. A ∆β of 0.06 would for instance signal that

six percent of the variation in OBX returns are due to comovement in excess of funda-

mentals. A ∆β of approximately 0 would on the other hand support the fundamental

view of comovement.
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4.3 Results

Table 1 reports the results of the single-factor regression. For the full period of 1995-

2018, the average change in the slope coefficient is 0.0720, significant at the 1% level.

This result is primarily driven by the later years, however, as there were little signs

of excess comovement before 2010. Figure 2 illustrates this with the rolling 5-year

average ∆β over time. From 1995 to 2010, the ∆β tends to be low and insignificant,

but after 2010, it started to dramatically increase.

This strong time-trend means that it is worthwhile to analyse the different sub-

periods of our sample. We divide our sample into three sub-periods, with cutoff points

in January 2003 and January 2009. January 2009 is chosen as this is just after the fi-

nancial crisis, and it may be that something changed due to the financial crisis which

spurred a growth in OBX-specific shocks. The selection of January 2003 is more arbi-

trary, and comes of a desire to have approximately equally many stocks in each sample.

In the first two sub-periods of 1995-2002 and 2003-2008, there are no signs of

comovement, as ∆β is low and insignificant. In the final, however, the ∆β is estimated

to be 0.2191. If the model’s assumptions are true, that means 21.91% of the variation

of the OBX index in this period stems from OBX specific shocks. If true, that has

profound implications for diversification and risk management.

The standard errors presented in the table deserve some comment. These stan-

dard errors assume independence between inclusions. We evaluate that assumption in

Section 8.5, where we examine the standard errors more closely. We find that the as-

sumption that standard errors are independent holds in Norway, and therefore use them

for the majority of the paper.
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Figure 2: Five-year average change in slope coefficient of single-factor regression

Note. This graph shows the average change in beta from before inclusion to after inclusion, over the five
years prior to the data point. As an example, the data point in 2008 is the average delta beta between
January 2004 and January 2008.

Table 1: Effects of inclusion into OBX

∆β SE(∆β) tStat ∆R2 nObs

1995–2018 0.0720 0.0244 2.9497 0.0334 122

1995–2002 -0.0011 0.0364 -0.0297 0.0140 54

2003–2008 0.0258 0.0460 0.5611 0.0379 34

2009–2018 0.2191 0.0501 4.3714 0.0597 34

Note. This table reports the summary statistic of the effect of inclusion for the different time periods,
calculated by regressing the stocks return on the OBX-return prior to and after inclusion. ∆β is the
average change in beta, SE are the heteroskedasticity robust standard errors. tStat is the variable test
statistic. nObs is the number of observations and ∆ R2 is the change in variation explained by OBX-
return.

To provide some context for these estimates, we compare the ∆β to the ones pre-

vious researchers have found in other countries. Table 2 shows a comparison to the

seminal studies in the US, UK and Japan. In the US, the magnitude from 1988–2008 is

similar to the one we find in Norway from 2009 through 2018. The magnitudes in the

UK for 1998–2005, as well as Japan in 2000, are far higher than the one observed on
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the OBX. These countries also show a growing trend, with the later periods displaying

much higher ∆β than the earlier ones.

Table 2: Results obtained from major studies

Barberis Barberis Mase Mase Greenwood

(2005) (2005) (2008) (2008) (2013)

Market US US UK UK JP

Index S&P 500 S&P 500 FTSE 100 FTSE 100 Nikkei 225

Period 1976–1987 1988–2008 1990–1998 1998–2005 2000

∆β 0.067 0.214 0.147 0.451 0.45

Note. This table presents the average change in beta from major studies on the S&P 500, FTSE 100 and
Nikkei 225. The study by Greenwood (2013) on the Nikkei 225 was a single event study in April 2000.

There are relatively few comovement studies performed on indexes in countries

other than the US, UK and Japan. The main exception is Claessens and Yafeh (2012)

who study comovement in 40 countries, during the period between 2001 and 2010. In

Figure 3, we compare the results of our test to theirs. Only three countries in their

sample saw a higher estimate for ∆β between 2001 and 2010 than our estimate for

the OBX for 2009–2018. As nobody has performed a study in those countries for the

data after Claessens and Yafeh (2012), we cannot compare with tests for the same time

period. We do not know if those countries have displayed a growth in comovement

similar to the one we have seen in Norway.

One of the countries studied in the paper by Claessens and Yafeh (2012) was Nor-

way. This is, to our knowledge, the only comovement test that has been done in Nor-

way prior to ours, but consists of analysing just 11 stocks from 2001 to 2006. These 11

stocks showed no sign of comovement, with an average ∆β of −0.01. This is a similar

result to what we find for the 2003–2008 period, but in truth, studying 11 stocks is too

little to be able to say anything meaningful about comovement.

In conclusion, we find that excess comovement has risen sharply in Norway, and

that the economic magnitude for the period 2009–2018 is high. If the model’s assump-

tions hold, 21.91% of the variance on the OBX is caused by group-specific shocks to

the OBX index. Compared to previous studies, this is high, but lower than for instance

the UK and Japan.
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Figure 3: Results compared to those of Claessens and Yafeh (2012)

Note. This graph shows the average change in beta for each country studied by Claessens & Yafeh (2012)
compared to our results at the OBX index prior and post the financial crisis. The delta betas are estimated
by employing the standard comovement test.

5 Testing the assumptions of the single factor model

Investigating excess comovement through index inclusion with a single factor model

is the most established method in the comovement literature. However, as we showed

in Section 4.2 the methodology relies on several critical assumptions that need to hold

in order to obtain an unbiased result. In this section we therefore test our results from

Section 4.3, and whether the assumptions hold. We first extend the model to a multi-

factor setting, examining whether adding more priced risk factors to model produces

results that differ from the single-factor model. In the subsequent subsection, we eval-

uate whether momentum affects comovement in Norway, as it has in other countries.

Afterwards, we examine whether industry trends can explain anything about comove-

ment, before we analyse whether nonsynchronous trading amplifies our results. Lastly,

we perform several tests to evaluate whether liquidity and volume traded is a driver of

comovement.
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5.1 Proxies for changes in fundamentals

Consistent with findings of Vijh (1994), Barberis et al. (2005) and Mase (2008), we find

in Section 4.3 significant excess comovement when a stock is added to OBX. However,

none of these analyses control for potential changes in loadings on common factors

for the specific firm, around index inclusion (Kasch & Sarkar, 2012). Barberis et al.

(2005) do however compare their findings with matching firms from the same industry

and with similar growth size and changes. Nevertheless, they do not observe changes

in common factors for the included firms as suggested by Kasch and Sarkar (2012).

Unlike arbitrage pricing theory (APT) that does not limit the number of risk factors

(Ross, 1976), practical use of the capital asset pricing model (CAPM) relies on system-

atic market risk as the only exposure (Lintner, 1965; Sharpe, 1964). Since fundamental

comovement is defined by APT, a single factor model such as the CAPM which is

commonly used by previous studies, will not necessarily detect changes in loadings on

systematic factors upon stock inclusions.

As described in Section 4.2, we need to assume that loadings on fundamental factors

are constant, e.g. λaij = λbij , in order to obtain a clean estimate of potential excess

comovement.

We can, however, not directly observe the loadings of the stocks against all funda-

mentals, as most fundamentals are inherently hard to measure. But we can use certain

proxies for fundamentals, and evaluate whether or not they are changing. There is

extensive empirical evidence that firm-size, book-value and momentum can explain a

significant share of cross-sectional variation in the CAPM beta (Carhart, 1997; Fama &

French, 1993). Some argue that these factors are pricing anomalies, while others argue

that they are proxies for fundamental risks. We consider them as the latter, and run

the following regression on daily returns, with pre-event regression of 180 days before

index addition and a post-event regression of 180 days after the inclusion of the stock.

Rit = αi + βi1ROBX,t + βi2SMBt + βi3HMLt + βi4PR1Y Rt + eit (16)

Where SMB (small minus big) is the premium of the size factor, HML (high mi-

nus low) is the premium of the book-to-market factor, and PR1Y R (prior one year
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return) is the premium of the momentum factor.5 Factor portfolios for SMB, HML

are calculated as by Fama and French (1998), and PR1Y R as by Carhart (1997), using

Norwegian data by Ødegaard (2017).

Our null hypothesis is that inclusion is an information-free event, which means that

the proxies for fundamentals are unchanged, that is: H0 : ∆β2 = 0,∆β3 = 0, β4 = 0.

The alternative hypothesis is that inclusion is not an information-free event, and that the

loadings on the proxies for fundamentals change after inclusion: H1 : ∆β2 6= 0,∆β3 6=

0, β4 6= 0. The results are presented in Table 3.

Table 3: Multifactor regression with OBX as variable

∆βOBX ∆βSMB ∆βHML ∆βPR1Y R

1995–2018 0.09717** 0.01824 -0.01236 0.014653

1995–2002 -0.0250 -0.1040* 0.0876** 0.0128

2003–2008 0.0556 0.0931 -0.2112*** 0.0494

2009–2018 0.3054*** 0.0983 0.0548 -0.0181

Note: This table shows the average change for ∆βOBX , ∆βSMB , ∆βHML and ∆βPR1Y R, calculated
by a multifactor model for the included stocks prior to and after inclusion. βOBX is the loading on OBX,
βSMB is loading on small-cap companies, βHML is loading on high book value to market value ratio
companies and βPR1Y R is the loading on the PR1YR momentum factor. *** p < 0.01, ** p < 0.05, *
p < 0.1

None of the control variables have significant changes in their loadings for the full

period. The change in HML has a significant loading in two of the sub-periods, but

with changes in opposite directions. ∆SMB also has different signs in the different

periods. There is in other words no clear trend in how the loadings for how either of

the three control factors change.

Our primary interest is in whether adding SMB, HML and PR1Y R affects the

change in comovement. The ∆βOBX is actually substantially higher in this regression

than in the single-factor. For the full period, it is 0.09717, compared to 0.07203 in the

single-factor, an increase of 0.02514. In the final period, ∆βOBX is 0.3054 here, up

from 0.2191 in the single-factor. It is therefore clear that the reason for the increased

comovement is not that the inclusions see increased loadings on these risk factors.

5By using the UMD factor of Fama and French (1998) we obtain similar results as when we use the

PR1Y R factor from Carhart (1997).
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It is important to note, however, that the results in this subsection do not necessarily

signal a higher economic magnitude of the comovement effect than the single-factor

model did. The ∆βOBX here shows how much the loading on ∆β increases after con-

trolling for SMB, HML and PR1Y R. That is a different meaning from the one in

the single-factor model, which we could interpret as showing how large a share of the

variation in OBX was explained by non-fundamental OBX-specific shocks.

5.2 Momentum

Recent critics as Kasch and Sarkar (2012) and Chen et al. (2016) have made claims

that the vast majority of the excess comovement found by Vijh (1994) and Barberis et

al. (2005) on the S&P 500 index, was in fact a result of momentum. Chen et al. (2016)

showed that the majority of the stocks included in the S&P had experienced a high

return over the year before inclusion. This is due to the S&P 500 basing membership

on market capitalisation. It’s impossible to go from being outside the top 500 largest

firms to being one of the top 500 largest firms, unless the value of the firm has increased.

Chen et al. (2016) claim that the increase in beta after index inclusion comes as a result

of the momentum prior to inclusion. They perform a matched sample test, where they

see what happens with stocks that had a similar momentum growth, but didn’t join the

S&P 500 index, and find that these stocks also saw a large increase in comovement.

The authors conclude that it was momentum that caused the increased comovement,

and not index inclusion.

We examine the extent to which stocks that join the OBX index are momentum

stocks. On average, additions to the OBX index have outperformed 63% of stocks on

the OSEAX over the six months prior to the stock’s inclusion on the OBX index. This

means that the average addition is a momentum stock. Since inclusion is not linked

to market capitalisation, however, not all additions are momentum stocks. This fact is

shown in Figure 4.
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Figure 4: Distribution of additions by their momentum percentile prior to joining

Note. This histogram shows to which extent OBX additions are momentum stocks. The x-axis shows
how many percent of stocks the addition outperformed over the six months prior to inclusion. The Y-
axis shows how many percent of additions belong in each bucket. Had inclusion been independent of
momentum, this distribution should have been uniform, and the graph flat.

While there is a tendency towards additions being momentum stocks, many addi-

tions were among the worst performers on the OSEAX over the six months prior to

inclusion. This variation in our data allows us to perform tests that cannot be per-

formed on the market capitalisation based indexes – they do not observe the counter-

factual “loser additions” that performed poorly prior to inclusion. They therefore have

to resort to a matched sample test. But on the OBX index, we observe both winner

and loser additions, and therefore perform tests to directly examine the extent to which

momentum affects comovement.

We do this through running a second-stage regression where we explain the ∆β

found from the univariate regression as a result of which momentum percentile the

stock was in, prior to inclusion:

∆βi = η0 + η1 ∗MomentumPercentilei + ei (17)

Our null hypothesis is that inclusion is an information-free event, i.e. that ∆βi is not

affected by the momentum prior to inclusion. This gives H0 : η1 = 0. The alternative

hypothesis is that the findings of Kasch and Sarkar (2012) and Chen et al. (2016) apply

in Norway too. Winners become more like other winners, and therefore the stocks that
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were previously winners, should now become more like the stocks on the OBX index.

The results of the regression are shown in Table 4.

Table 4: Momentum second stage regression

Estimate SE tStat

η0 0.087857 0.072424 1.2131

η1 0.014416 0.0993 0.14517

Regression R2 0.000185

Adjusted R2 -0.00859

Note. This table reports the summary statistic of the second stage regression, calculated as the average
change in beta regressed on momentum percentile. η1 is the loading on the momentum percentile, SE is
the heteroskedasticity robust standard error, and tStat is the variable test statistic.

The most striking finding in Table 4 is the negative adjusted R-squared. This means

that the momentum prior to inclusion has no predictive power on the increase in co-

movement after. The η1 result is also low, and far from significant. These results are a

clear indication that momentum is not what affects comovement.

To sanity check and illustrate these results, we perform a second test, illustrated in

Figure 5. We divide the additions into three groups based on prior momentum: Losers,

middle, and winners. The losers category consists of stocks that are in the bottom

third performers in the six months before joining (the first three bars in Figure 4). The

middle consists of stocks that are the middle third, and the winners are in the top third

performers. We then calculate the average change in beta for each of these groups, by

running the univariate regression on each subgroup. That results are shown in Figure 5.

These results show the opposite trend of our hypothesis. We have no theoretical

reason to assume that the low-momentum loser stocks should see a larger increase in

comovement than the others, and the groups are not statistically significantly different

from each other. Nonetheless, it is a very clear indication that momentum is not a driver

of comovement on the OBX index.

The question then is, why do we find different results from Chen et al. (2016). There

are two possible reasons for this. Either, momentum matters less for comovement than

Chen et al. suggest, or momentum simply matters less in Norway. Research by Næs,

Skjeltorp, and Ødegaard (2009) suggest that the latter may be the reason. They replicate
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Figure 5: Change in beta for stocks in momentum buckets

Note. The histogram shows the average ∆β of three categories. Losers, which were in the bottom third
performers on OSEAX over the six months prior to inclusion on the OBX index. Middle, which were in
the middle third, and winners, which were in the top third performers.

a study by Jegadeesh and Titman (1993), which consists of buying the top decile best

performing stocks, and selling the bottom decile worst performing stock. This has been

shown to create excess returns in the US (Jegadeesh & Titman, 1993), and in 35 other

countries (Rouwenhorst, 1998). However, the strategy does not provide excess returns

when employed in Norway (Næs et al., 2009). From 1990–1999, it does in fact provide

statistically significant negative results.

In conclusion, there are no signs that the increased comovement from inclusion on

the OBX index can be explained by momentum. This may be a sign that the existing

comovement literature overestimates the significance of momentum, but we consider

it more likely that this is simply a quirk of the Norwegian stock market. Regardless

of which is the case, our findings show that momentum cannot explain the excess co-

movement found in Norway.

5.3 Industry

The OBX index is dominated by a few large sectors. In the 1990s, the dominant sector

was the material sector, and after 2002, the energy sector has generally made up around
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Figure 6: Energy and material sectors as a percentage of OBX index over time

Note. This figure shows the energy and material sectors as a percentage of OBX index from 1992-2018.
It is calculated by taking the combined market value of all stocks in each of the sectors, and dividing that
by the market value of the full OBX index.

40% of the index. The share of these two sectors over time is shown in Figure 6.6

As OBX is a value-weighted index, OBX’s return will to a large extent be influenced

by the return to the largest sectors at a given time. This can potentially affect the results

in Section 4.3. If, for example, oil-related stocks are systematically included in the

OBX together, or just when there is a price increase in the oil industry, the oil sector

will make up a larger part of OBX after inclusion than before. Hence, the OBX index’

loadings on fundamental factors may in fact change prior to and after inclusion. This

would violate our second assumption, i.e. λaOBXk 6= λbOBXk. As discussed in Section

4.2, we need this assumption to hold in order to estimate an unbiased estimate for

excess comovement.

In order to test if industry-specific factors may violate our second assumption, we

run the following test for the 180 days prior to, and 180 days after, inclusion:

Rit = Ω0i + Ω1iROBX + Ω2iRIndustry,t + eit (18)

where Rindustry is the return of the value-weighted industry portfolio that the stock

belongs to (Næs et al., 2009). The industry is defined from the Global Industry Classi-

fication Standard (GICS).
6The dramatic increase in 2002 is due to Statoil joining the OBX index.
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Our null hypothesis is that the fundamental loadings on industry are unchanged

from index membership. This also means that the change in loading on the OBX market

should be unchanged in this regression from the univariate. Formally expressed as

H0 : ∆Ω1 = ∆β.The alternative hypothesis is that the additions have changed loadings

after inclusion. This would lead to the ∆β yielding an incorrect result, and being

different from the ∆Ω1 observed in this test: H1 :∆Ω1i 6= ∆β. The results are shown

in Table 5.

Table 5: Results of regression controlling for factor loadings and shocks to industry

OBX Industry

Ωb 0.4216 0.5931

∆Ω 0.0736 0.0360

SE(∆Ω) 0.0394 0.0323

Note. This table shows the estimated coefficients of stock return regressed on OBX and industry, cal-
culated prior to and after inclusion. Ωb is the average loading on OBX and the associated GICS sector
for each stock before inclusion. ∆Ω is the average change in loading on OBX (∆Ω1) and the associated
GICS sector for each inclusion (∆Ω2). SE is the heteroskedasticity robust standard error.

These results give support to the null hypothesis. ∆Ω1 in this regression is virtu-

ally identical to ∆β in the original single-factor regression. ∆Ω2 is positive, but not

statistically significant.

We also examine whether the OBX index becomes more like the industry of addi-

tions after the additions join. That is not the case. Concretely, we run the regression

ROBX,t = η0 + η1RIndustry,t + et for each industry every time a stock of that industry

is included. As usual, we run it for the 180 days before and after inclusion separately.

The ∆η1 is estimated to be −0.0082. This means that the comovement is not driven by

the OBX index becoming similar to the industries of the additions.

5.4 Non-trading effects

Microstructure research shows that findings of daily returns may suffer spurious upward

bias due to non-trading effects (Dimson, 1979; Scholes & Williams, 1977). As OBX

represent the most tradable shares in the Norwegian stock market, there is reason to
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believe that our results in Section 4.3 may be explained by the liquidity construction of

OBX. This can be explained by the following example.

Stocks on OBX are by definition trading more often in one day than non-OBX

shares. Any potential market wide news at the end of a trading day will more likely be

captured on the OBX return. Stocks that are not traded so often (non-obx stocks) are

less likely to be traded between the market wide news hits and the end of the trading

day. The return for that day will thus be less likely to reflect the new information.

The non-trading hypothesis thus predicts that companies that are traded more often

(companies included in the OBX) will receive an increase in beta due to the fact that

stock-prices observe new information faster relative to OBX return.

To control for nonsynchronous trading effects we adapt Dimson (1979) adjustments

when calculating our beta values. This method is suggested by Vijh (1994) and Dimson

(1979)) when estimates are potential suffering from non-synchronous trading effects.

We run the following regression with OLS on daily return, with pre-event regression

of 180 days before index addition and a post-event regression of 180 days after the

inclusion of the stock:

Rit = αi +
n∑

k=−n

βki OBXj,t+k + eit (19)

To estimate the true regression coefficient we include leads and lags from OBX and sum

the coefficient in our regression. Then we estimate the overall beta as the sum of all the

leads and lags. By increasing the number of non-synchronous terms, the potential bias

will be reduced. However, increasing the number of coefficients comes with a cost as

the lagged and leading coefficients suffer from estimation error (Dimson, 1979).

The results are presented in Table 6 and indicate that adding leads and lags to the

regression has little effect on the average ∆β of the stocks. The conclusion is there-

fore that non-synchronous trading does not appear to affect the comovement for stocks

included on the OBX.

5.5 Volume traded and liquidity

On market capitalisation based stock exchanges such as the S&P 500 index, stocks that

see an increase in market capitalisation, i.e. momentum stocks, see an increased beta
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Table 6: Dimson delta betas

1995–2018 1995–2002 2003–2008 2009–2018

No leads or lags 0.0720 -0.0011 0.0258 0.2191

1 lag 0.0687 0.0037 0.0101 0.2137

2 lags 0.0690 0.0132 0.0144 0.2256

1 lead & 1 lag 0.0713 0.0096 0.0077 0.2248

Note. This table shows the average change in beta with three different numbers of leads and lags, divided
into different time-periods.

towards the index (Chen et al., 2016). In other words, an increase in the metric that

decides inclusion into the index, increases comovement with the index regardless of

inclusion.

We have in this paper shown that momentum does not increase comovement with

the OBX index. Momentum is not the metric that decides inclusion into the OBX

index, instead the Norwegian krone value of volume traded is. We examine whether

increased volume traded causes increased comovement in Norway. Therefore, we run

a second-stage regression on the betas:

∆βi = ζ0 + ζ1 ∗ log
V a
i

V b
i

+ ei (20)

where V b
i and V a

i are the cash value of volume traded prior to and following inclusion

respectively. If volume traded affects comovement, then ζi should be positive, while

it should be zero otherwise. We therefore test the null hypothesis: H0 : ζ1 = 0. The

results are shown in Table 7.

Total volume traded affects the comovement of stocks. The effect is particularly

clear in the last period, but also present in the earlier ones. H0 is clearly rejected for

the last period.

The explanatory power of the relation between volume traded and comovement is

fairly strong. The median OBX inclusion sees an increase in cash volume traded of

23.87% from the 180 days before to inclusion, to the 180 days after (this median is

approximately the same for each period).

The effect can also be shown through the fact that stocks which see a decrease in

volume traded, do not see an increase in comovement. Stocks with a decrease in volume
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Table 7: Regression of change in volume traded on comovement

ζ0 ζ1 R2

1995–2018 0.047 0.13311** 0.0431

1995–2002 -0.009145 0.053509 0.0122

2003–2008 0.0083463 0.15868* 0.0878

2009–2018 0.19001** 0.34691** 0.127

Note. This table presents the effect of the loading on change in traded volume on change in beta for each
specific stock, divided into different time periods. ζ0 is the intercept and ζ1 is the slope coefficient. R2

signals the variation explained by the model. *** p < 0.01, ** p < 0.05, * p < 0.1

traded following index inclusion see an average ∆β of −0.056 on average, compared

to an average of 0.1876 for those that see increased volume traded following inclusion.

Volume traded has a strong impact on comovement, and the single-factor model may

incorrectly be picking up part of that as excess.

The effect of volume traded on beta is not limited to stock inclusions. We run the

regression βi = η0 + η1 ∗ log(Vi) + et for the top 100 most liquid non-OBX stocks, for

each OBX rebalancing period, and find that η1 is significant at the 1% level for 47 out

of 48 periods (and at the 5% level for the last), with a coefficient around 0.12. This is

illustrated in Figure 7.

To the best of our knowledge, no other study has looked at precisely the relation be-

tween the cash value of volume traded and comovement, but some studies have looked

at a similar measure – the Amihud illiquidity statistic (Amihud, 2002). This measure is

useful, as we seek to determine whether the reason we find that volume traded increases

comovement, is that increased volume traded works as a proxy for the liquidity of the

stock, and that increased liquidity causes the comovement. The Amihud illiquidity

measure is defined as

ILLIQi =
1

n

T∑
t=1

abs(Rit)

Vit
(21)

where Vit is the cash value of volume traded of stock i on day t, abs(Rit) the absolute

value of its return, and T the total number of days the measure is calculated for. Amihud

considers this as "the daily price response associated with one dollar of trading volume,

thus serving as a rough measure of price impact".
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Figure 7: Average effect of volume traded against OBX.

Note. This graph shows the extent to which the volume traded of a stock, affects that stock’s comovement
with the OBX index. The y-axis is the average η1 of the regression βi = η0 + η1 ∗ log(Vi) + et for the
100 most liquid non-OBX stocks.

We calculate the ILLIQ measure for the 180 days prior to inclusion and the 180

following inclusion, and then run the second-stage regression with the change in the

ILLIQ measure as the explanatory variable. ∆βi = ζ0 +ζ1 ∗ log ILLIQ
a
i

ILLIQb
i

+ei. If liquidity

causes increased comovement with the OBX index, then ζ1 should be positive. The

results are shown in Table 8. Note that since ILLIQ is an illiquidity measure, a decrease

in loading signals an increase in liquidity.

The change in the Amihud illiquidity measure explains much less of the comove-

ment than the change in volume traded did. The ζ1 is not significant even at the 10%

level for any sub-period, and the R2 is low. While we rejected H0 when volume traded

was the explanatory variable, we cannot reject it using ILLIQ as the explanatory vari-

able. This may appear surprising at first, as volume traded and ILLIQ are almost inverse

of each other, but recall that we are looking at excess comovement, and what its eco-

nomic significance is per our model:

∆β =
1

n

n∑
i=1

γOBXi ∗ σ2
SOBX

σ2
OBX

(22)

The excess comovement shown in ∆β is an increase in the variance of the stock. If
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Table 8: Regression of change in the Amihud ILLIQ measure on comovement

ζ0 ζ1 R2

1995–2018 0.056094* -0.056371* 0.0258

1995–2002 0.0081552 -0.058621 0.0436

2003–2008 0.01225 -0.048639 0.0206

2009–2018 0.18901** -0.10376 0.0242

Note. This table shows the summary statistics for the second stage regressions of change in Amihud
ILLIQ measure on comovement, measured as change in market beta for each stock. The change in
ILLIQ is calculated as the log change in ILLIQ 180 days prior to and after inclusion. ζ0 is the intercept,
and ζ1 is the slope coefficient on change in ILLIQ on comovement. *** p < 0.01, ** p < 0.05, *
p < 0.1

there is excess comovement from index inclusion, then the volatility of the stock rises

as a result of the stock inclusion. In the final period, ∆β is estimated at 0.2191, which

results in an increased variance, the abs(Rit) in the ILLIQ calculation. This growth is

in almost equal proportion to the growth in volume traded, and so the median change

in the ILLIQ measure for the third period is just -3.65%.

There are two possible interpretations of this. Either the ILLIQ measure is correct,

and the additions have in fact not become more liquid, or the Amihud ILLIQ measure is

misspecified to analyse excess comovement, since any increase in excess comovement

will be picked up as more illiquidity.

As we can not rule out the second possibility, we therefore perform two more tests

to evaluate whether liquidity can explain excess comovement. In the first, we calculate

the relative bid-ask spread for additions both prior to and following inclusion, and then

examine whether the change in bid-ask spreads can explain changes in comovement.

We calculate the relative bid-ask spread as Ask−Bid
Midpoint

, and find that the average relative

bid-ask spread drops 15.5% following inclusion. This is a sign that the stocks joining

the OBX index are in fact becoming more liquid. But we run the same second-stage

regression as before, and find absolutely no signs that this liquidity affects the comove-

ment – every ζ1 is indistinguishable from zero. The results are shown in Appendix

C.

In the second test, we use insights from Næs et al. (2009), who found that liquidity is
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a priced risk factor on the Oslo Stock Exchange. Næs et al. (2009) construct a liquidity

risk factor (LIQ) that is calculated as the returns of the most illiquid decile minus the

returns of the most liquid decile on the OSEAX. This is a similar construction to the

Fama and French (1993) SMB and HML factors. We use the LIQ factor to examine

whether the stocks that joined the index, have increased their loading on the LIQ factor.

We run the regression:

Rit = η0i + η1iROBX,t + η2iLIQ+ eit (23)

If the comovement can be explained by the inclusions changing their exposure to

illiquidity risk, then η2 should be different from zero. The null hypothesis is that the

first assumption of our model holds – that inclusion is an information-free event, and

that the effect of liquidity on comovement is therefore zero. Formally: H0 : η2 = 0.

The results are shown in Table 9.

Table 9: Changes in loadings on OBX exposure and Liquidity exposure.

η1pre ∆η1 η2pre ∆η2

1995–2018 0.94911*** 0.08344** 0.13898** 0.0013178

1995–2002 1.0025*** 0.0259 -0.0276 0.0197

2003–2008 0.9164*** 0.0042 0.2816*** 0.0568

2009–2018 0.919*** 0.2304*** 0.1923** -0.0759

Note. This table shows the changes in loading on OBX and liquidity exposure from before to after
inclusion. η1pre is the average loading of OBX prior to joining. ∆η1 is the average change in loading on
OBX from before to after inclusion. η2pre is the average exposure of liquidity prior to inclusion. ∆η2 is
the average change in exposure to liquidity. *** p < 0.01, ** p < 0.05, * p < 0.1

The change in exposure to the LIQ factor is not significant for any period, and is

almost perfectly zero for the full sample. The estimate for ∆η1 is virtually identical

to the estimate for ∆β from the single-factor model, for every time period. This test

supports the null hypothesis that the inclusions have not changed their exposure to the

liquidity risk factor.

We have in other words found that the cash value of volume traded strongly impacts

the comovement of additions, but that this is likely not due to volume traded working

as a proxy for liquidity. That is, however, hard to say definitively. Liquidity has several
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dimensions: the costliness of trading, how swiftly one may trade, and how much one

may trade at one time. This is part of the reason there are many liquidity measures –

no single one can pick up all of these dimensions (Næs et al., 2009). It is therefore still

possible that volume traded picks up a dimension of liquidity that affects comovement,

while the other three measures we have used, do not.

Regardless of what is the cause of volume traded affecting comovement, we must

control for the change in volume traded that additions see. We have found strong indi-

cations that the single-factor model over-estimates the excess comovement, since part

of the found excess comovement is in fact a result of increased volume traded.

6 Matched sample approach

Another way to test for whether the assumptions of comovement tests are broken, is to

employ a matched sample approach. This is done by Barberis et al. (2005) and Chen

et al. (2016) in the US, R. M. Greenwood and Sosner (2007) in Japan and Coakley et

al.(2004) in the UK. The idea behind the test is to match inclusions with other stocks

that saw a similar change in fundamentals, and then evaluate whether the inclusions

saw different results than the sample. If the inclusions have a larger increase in funda-

mentals than the sample, one may conclude that there is excess comovement.

The importance of employing a matched sample approach was also recently high-

lighted by Grieser, William, Hoon, and Morad (2019), who found that comovement

tests tend to overestimate excess comovement. Their findings indicate that there are la-

tent factors in all stocks that result in any group of randomly selected stocks displaying

excess comovement when employing the standard comovement tests. Any group can-

not in reality see excess comovement, so this is a sign of miss-specified comovement

tests. A solution is to consider the null hypothesis to be that the comovement should be

equal to that of a randomly selected group, rather than zero. We therefore also create

random samples and test comovement against those. In this section, we start to out-

line the empirical methodology for the matching tests, and then secondly present the

results. We then proceed by analysing the result, and lastly perform a new test where

we control for findings in the matching test.
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6.1 Methodology

Creating a matching sample to interpret findings causally is challenging, and too little

effort is often put into designing them (Stuart, 2010). The matching methodology must

fit the data that is being examined. The number of stocks to potentially match with

is substantially smaller in Norway than in countries where comovement researchers

have previously used a matched sample approach. The majority of these researchers

examined the US or UK. The US has over 4000 listed stocks, and the UK over 2000.

In Norway, our sample has an average of 222 stocks per period. This puts significant

restrictions on our ability to find good matches, and means that we have to put even

more care into the construction of our matched samples than researchers in the US and

UK do.

Ideally, the matched sample group should be as similar as possible as the treatment

group along all dimensions – there should be no unobserved differences between the

treatment and control group (Stuart, 2010). This is feasible in the US and UK where

it is possible to match along several dimensions, such as firm size, momentum and

industry, and still find good matches, but it is not feasible in Norway, where that would

lead to either a very small matched sample, or one that is poorly matched along each

dimension. We are therefore limited to testing only against a few dimensions at a time,

and assume that unincluded control variables do not bias the result. To evaluate whether

that assumption holds, we make samples for several different proxies for fundamentals

that could feasibly affect comovement.

Variable selection based on estimated effects is a problem in matched samples, and

researchers should therefore strive to select variables before observing the outcomes,

basing the choice of variables on previous research as well as scientific understanding

(Stuart, 2010). We therefore predefine 8 sets of metrics that we create 8 samples from,

based on our findings in Section 5, and previous comovement tests. Five are based on

our findings in volume traded and liquidity:

1. Total Volume traded before and total volume traded after

2. Change in volume traded before and after

3. Change in volume traded before and after, as well as total volume traded before

4. Change in Amihud before and after
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5. Change in relative spread before and after

Three are based on Chen et al. (2016) and Barberis et al. (2005)

6. Firm size

7. Momentum before and after

8. Momentum and firm size

Since our group to select sample stocks from is small, we consider it unlikely that

most stocks have several good matches, and select only one match for each inclusion.

We therefore employ a method similar to nearest neighbour matching (Stuart, 2010).

To find which stock is the closest match, we combine the matching methodology of

Barberis et al. (2005) with the loss function from macroeconomic policy.

Concretely, the process for choosing the nearest match is as follows: We calculate

each metric for every stock on Oslo Børs that has sufficient data, and is not on the

OBX index either prior to or following rebalancing. We then sort all those stocks

in ascending order, and calculate how many percent of them each inclusion is larger

than. This provides us with a percentile for each metric for each inclusion. We then

pick the closest match as the one that has the lowest sum of the squared differences in

percentiles. That is, the one that minimises the following loss function:

Losss =
N∑
m=1

(Percentilemi − Percentilems)2 (24)

where Percentilemi is the percentile of inclusion i for metric m, and Percentilems is

the percentile of potential sample stock s for metric m. N represents the total amount

of metrics used. The closest match is in other words the one that minimises the squared

sum of deviance in percentiles.

For each of the 8 samples, we evaluate whether the sample provides meaningful

information about the inclusions that they match, by running a two-stage regression. In

the first stage, we repeat the single-factor model with the sample return as the response

variable: RSample,t = β0 + βSample ∗ROBX,t + et. We then calculate ∆βSample and use

this in a second-stage regression in the shape of:

∆βInclusions = α0 + α1∆βSample + e (25)

where α1 then shows the extent to which the change in comovement for the sample
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stock has explanatory power for the change in comovement on the actual inclusion that

it is matched with. If the metrics we are matching along cause comovement, then we

would expect α1 to be positive. If the metrics do not cause comovement, however, then

α1 should then be zero. Formally, the null hypothesis is: H0 : α1 = 0

Per the criticism of Grieser et al. (2019), we also create three samples consisting of

randomly selected stocks.

6.2 Results

Table 10 shows the results of the second-stage regression for each of the 11 samples.

Table 10: Second-stage regression

Metrics used to matched along α0 α1 Adjusted R2

Volume traded pre and post 0.06833** 0.088 -0.0011

∆ Volume Traded pre and post 0.077507** 0.32774*** 0.125

∆ V. traded pre/post and tot V. Pre 0.08909** 0.3744*** 0.1317

∆ Amihud ILLIQ 0.070501** 0.086 -0.0002

∆ Bid-Ask Spread 0.068662** -0.105 0.0009

Firm Size 0.067928** 0.14714 0.00741

Momentum Pre and Momentum Post 0.070866** 0.026332 -0.00632

Firm size and Momentum Pre + Post 0.067026** 0.20308** 0.0324

Random sample 1 0.06216* 0.10214 0.00247

Random sample 2 0.071385** -0.012455 -0.00813

Random sample 3 0.076149** 0.0033795 -0.00794

Note. This table shows the results of each second stage regression run on the eight samples presented in
Section 6.1. α1 shows the slope in a regression with the ∆β of the sample as the explanatory variable,
and the ∆β of the OBX inclusions as the response variable. It shows the extent to which the change
in comovement for the matched sample has explanatory power on the change in comovement of the
comovement of OBX inclusions. *** p < 0.01, ** p < 0.05, * p < 0.1

The null hypothesis is rejected for three of the samples: The two involving the

change in volume traded, and the one based on firm-size and momentum. These results

are mostly in line with our findings in Section 5: Change in volume traded and change

in ∆β are related. The difference from our findings in 5 is that firm size and momentum

is indicated to have an effect, while we found the opposite previously.
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The Adjusted R2 here tells us about the economic magnitude of the metrics. It

shows how large a share of the change in the ∆β of the OBX inclusions can be ex-

plained by the change in their matched stocks. The only way we have reason to believe

the ∆β of the inclusion and matched sample are systematically related, is through sim-

ilarity in the metrics matched along. A high R2 thus signals that the metric matters for

comovement. The found adjusted R2 of 12.5% and 13.17% for the two samples with

change in volume traded is high, and of an entirely different magnitude than all other

samples.

Figures 8, 9 and 10 show how the three samples’ (samples 2, 3 and 8) delta betas

move over time.

Figure 8: Sample matched on total volume

and change in volume (sample 3)

Figure 9: Sample matched on change in

volume (sample 2)

Figure 10: Sample matched on firm size

and momentum (sample 8)

The two volume-traded samples display movements in ∆β that are quite close to

the stocks they match. The momentum based sample displays some similarities, but not
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as strong ones. This is a very similar result to that found in Section 5 – the only variable

that we find strongly affects the comovement of OBX inclusions is volume traded.

6.3 Analysing the effect of volume on comovement

We have established through several tests that volume traded affects stock comove-

ment. This breaks assumption 1 in Section 4.2 of the single-factor model, that stock

inclusion is an information-free event, and therefore independent of changes in funda-

mentals. The results of the single-factor model are therefore likely biased, since the

∆β appears to pick up two separate effects: the excess comovement effect, and the

increased comovement from increased volume traded. We need to devise a test to sep-

arate the two effects, and to do that, we need to understand more about how volume

traded affects comovement, and how that effect differs from excess comovement due to

index inclusion.

To examine this, we run the single-factor model with the non-OBX index as the

explanatory variable. Our hypothesis is that volume traded affects comovement with

the non-OBX index differently than being included on the OBX index does. We run

the following regression:

Rit = αi + ηiRNon,t + εit (26)

where Rnon,t is the return of the non-OBX index on day t. We defined the non-OBX

index as the value-weighted return of all OSEAX stocks that are not on the OBX index.

We run this regression for both the actual OBX inclusions, and for the three matched

samples from the previous section. We then compare the coefficient ∆ηi with the ∆βi

found from running the regression with OBX as the explanatory variable (Rit = α +

βiROBX,t + εit).

Per our model, the OBX inclusions see increased ∆β after joining due to being

exposed to OBX-specific shocks SOBX , and no longer being exposed to SNon (provided

shocks to non-OBX stocks exist). That is not the case with the matched sample stocks

– their exposure to SOBX and SNon is unchanged.

Our hypothesis is therefore that for OBX inclusions, ∆β > ∆η, due to increased

exposure to SOBX . For the matched samples, we by the same reason expect that ∆β =
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∆η. We present the results for ∆β and ∆η in Table 11.

Table 11: Effect of volume on comovement

Results for the full period

∆β ∆η

OBX Inclusions 0.0720*** 0.0108

Sample 2 0.0437* 0.0703**

Sample 3 0.0536* 0.0654*

Sample 8 0.0279 0.0403

Results after 2009

∆β ∆η

OBX Inclusions 0.2191*** 0.1296**

Sample 2 0.1410** 0.1712**

Sample 3 0.1199* 0.0987*

Sample 8 0.0267 0.0189

Note. This table shows the slope coefficient of the four sets of stocks against the OBX index and non-
OBX index. The regressions are run independently, and ∆β is the slope against the OBX index, while
∆η is the slope against the non-OBX index. Sample 2 is created by finding the best match with regards
to the change in volume traded prior to and following inclusion. Sample 3 matches along those two
dimensions, as well as total volume traded. Sample 8 matches on firm size as well as momentum before
and after inclusion. Standard errors for ∆β and ∆η are heteroskedasticity robust. *** p < 0.01, **
p < 0.05, * p < 0.1

The OBX inclusions see a substantially larger increase in comovement with the

OBX index than it does with the non-OBX index. For the three samples, however, ∆β

is either smaller than or approximately the same size as ∆β. These results indicate that

the comovement of inclusions is different from that of the sample stocks. While the

samples see a general increase in comovement with both the OBX and the non-OBX,

the OBX inclusions experience a far higher increase in comovement with the OBX

index than the non-OBX index. This indicates that there is excess comovement from

OBX membership. To verify whether this is the case, we employ tests to establish a

causal effect in Section 6.4.

Before we proceed to test that relation, we comment on the ∆η for OBX inclusions.

After 2009, the ∆η is positive and large for the OBX inclusions. Our model cannot

explain this increase being a result of excess comovement from index membership,
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so it must stem from another source. The ∆η is similar in magnitude to that of the

two samples matched based on volume traded. Recall our findings in Section 5.5 that

volume traded causes comovement with the OBX to increase for all stocks. This test

has a similar implication: increased volume traded increases comovement with both the

OBX and non-OBX indexes. Excess comovement from index membership, however,

should according to our model only increase comovement only with the OBX index.

6.4 Test for excess comovement after controlling for volume traded

We now have three samples which have similar changes in volume traded, but in which

only one was included on the OBX index. In this section, we employ a test suggested

by Stuart (2010) for using matched samples to estimate causal effects. This type of

test entails using index inclusion as a treatment effect, and the matched samples as the

counter-factual stocks that did not receive treatment. Formally, we run the regression:

∆βi = α0 + α1Ii + α2 ∗∆V olumei,P re + α3 ∗∆V olumei,Post + ei (27)

where ∆β comes from the single-factor model, ∆V olumePre is the log change in vol-

ume over the period prior to inclusion, and I is a dummy that takes the value of one if

the stock is an OBX inclusion, and zero if it is a sample stock. α1 tells us how much

higher the increase in comovement is for the inclusion than the sample stocks, after

controlling for changes in volume traded.

Our null hypothesis is that fundamentals explain everything, and that α1 is there-

fore zero. Our alternative hypothesis is that there is excess comovement from index

membership. Formally: H0 : α1 = 0 vs. H1 : α1 6= 0. The results of the regression are

shown in Table 12.

After 2009, the α1 is estimated to 0.144. This is an estimate for the amount of

comovement left after controlling for increased volume traded. This is a reduction

from 0.2191 that we found in the single-factor model, which did not control for vol-

ume traded. The remaining 0.0751 are attributable to the increase in volume traded.

The conclusion from this matched samples approach, is therefore that there is excess

comovement in the Norwegian stock market after controlling changes in volume traded.

It is worth commenting on the limitations of this result. It relies on the matched
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Table 12: Excess comovement after controlling for volume traded

α0 α1 α2 α3

1995–2018 -0.029489 0.085111** 0.068638*** 0.1050***

1995–2002 -0.06428* 0.091016* 0.006976 0.099145**

2003–2008 -0.026053 0.052688 0.020797 0.13254**

2009–2018 -0.006068 0.14384** 0.12821** 0.17978**

Note. This table presents the results from testing excess comovement after controlling for volume traded
divided into different sub-periods.The variable of interest, α1 signals how much higher the increase in
comovement is for the inclusion than the sample stocks, after controlling for changes in volume traded.
*** p < 0.01, ** p < 0.05, * p < 0.1

samples being sufficiently good matches for the inclusions. We have attempted to be

as thorough as possible in the matching process, but the Norwegian stock market is

small, and the matches are therefore not perfect. That is a potential limitation of these

results. We therefore employ an alternative model in Section 7, to verify these results,

and further establish causality.

7 Alternative model

7.1 Regression discontinuity model

In the thesis so far, we have covered that volume traded has a strong effect on the β

towards the OBX index, and that this biases the original single-factor model. We have

employed a test to control for this volume effect, by using matched samples, and found

results indicating that there is excess comovement after controlling for volume traded.

That test hinges on the assumption that the samples are representative matches of the

inclusions, however. If there is a systematic difference between the samples and the

OBX inclusions, apart from index inclusion, then we may have biased results. We

therefore create another test which does not rely on matched samples, to verify the

results previously found.

This test is a regression discontinuity design, using an instrumental variable ap-

proach. This is a variation of a test employed by Boyer (2011), modified to fit studying

the OBX.
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In an ideal regression discontinuity design, subjects are separated into two groups:

one that receives a treatment, and one that does not. There is a clearly defined cutoff

point. Above that point, treatment will be given. The cutoff point on volume traded to

join the OBX index is not as perfectly defined – the constituents of the OBX are not

always the top 25 stocks we have calculated as most traded in the calculation period.

Oslo Børs uses some discretion in choosing the constituents, caring not only about

volume traded, but also about OBX to some extent representing the full OSEAX (Oslo

Børs, 2018).

To overcome this problem, we use entering the top 25 most traded stocks as an in-

strument, and calculate the probability of being included in the OBX by passing this

cutoff. We run the following OLS regressions in a two-stage least square (2SLS) set-

ting:

Ti = η0 + η1 ∗ log(Vi) + η2 ∗ log(MVi) + η3 ∗Di + ei (28)

where Ti is equal to one if the stock was included in the OBX index after rebalancing,

and zero if the stock was not. Vi is the cash value of volume traded for the stock over

the six months prior to rebalancing. MVi is the market value of firm i on the day before

rebalancing. Since the market values and volume traded differ between periods, we

standardise these to have the same average in every period. Di is a dummy variable that

takes the value of one if the stock is in the top 25 most traded stocks on the index, and

zero otherwise, and η3 then shows the expected increase in the probability of treatment.

For each rebalancing, the test is run for the 50 most traded stocks on the OSEAX index

that were not on the OBX index in the period before rebalancing.

The results are presented in Panel A of Table 13. Increased volume traded and in-

creased firm size lead to a larger probability of inclusion, but the largest effect comes

from being in the top 25, which increases the probability by approximately 59%. This

is illustrated in Figure 11. An increase of 59% is enough variation caused by some-

thing that is quasi-random to run a second-stage OLS regression discontinuity design

regression. The increase being only just 59% will mean that the hit-rate of prediction is

far from perfect. This will not bias the regression results, but may lead to high standard

errors (Boyer, 2011).

In the second stage regression, we try to determine how much receiving treatment
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Figure 11: Estimated probability of treatment (being included in the OBX) based on distance

to cutoff

Note. This graph shows the probability of inclusion based on distance from the cutoff. The X-axis
represents stocks listed by total value traded, where stock Cutoff is the stock with the highest value
traded that would not get in if index inclusion were only determined by value traded. Stock cutoff + 1 is
the stock with the lowest turnover of those that would get in.

affects the comovement with the OBX index. The measure for comovement is the β1

in a standard OLS regression in the shape of Ri = β0 + β1 ∗ ROBX + ei. The second

stage regression is formally:

β1i = θ0 + θ1 ∗ log(Vi) + θ2 ∗ log(MVi) + θ3 ∗ Ti + ei (29)

where θ3 is the estimate of how much an increase in the expected probability of treat-

ment affects the comovement of stock i. This regression discontinuity model works as

a quasi-randomised experiment. The difference in volume traded is picked up through

θ1.

The null hypothesis of the test is that fundamentals alone explain the βi, and in other

words that θ2 is equal to zero. Formally: H0 : θ2 = 0. The alternative hypothesis is that

there is excess comovement from index membership, even after this model controlling

for the level of volume traded. The results of the regression are shown in Panel B of

Table 13.

These results add support for the alternative hypothesis – that there is excess co-

movement after controlling for volume traded – after 2009. This result is similar to that
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Table 13: Results of regression discontinuity design

Panel A: First stage regression

η1 η2 η3

Full period 0.004773*** 0.0015921*** 0.58932***

Panel B: Second stage regression

θ1 θ2 θ3

1995–2018 0.2263*** -0.14125*** 0.16623**

1995–2002 0.22151*** -0,1768*** 0.0099

2003–2008 0.28183*** -0.11676*** 0.11053

2009–2018 0.24065*** -0.12952*** 0.26557**

Note. The first stage regression is an estimate of how much the probability of inclusion to the OBX is
affected by the log of cash value of volume traded (η1), log of market capitalisation (η2), and being in
the top 25 most traded stocks (η3). The second stage regression shows how much the estimated change
in comovement due to log of cash value of volume traded (θ1), log of market capitalisation (θ2), and
estimated probability of inclusion to the OBX, as calculated by the first-stage regression (θ3).

found with the single-factor and two-factor models.

There is an indication of comovement in the 2003-2008 period, as well, with a θ3

of 0.11053, but it is not statistically significant. In the 1995-2002 period, θ3 is virtually

zero. The θ3 is in other words growing over time, similar to what we saw the ∆β do in

the main tests.

It is worth noting the high θ1 and the highly negative θ2. Market value and total

volume traded are highly correlated, so it is important to keep in mind that these coef-

ficients are the effect of changing one and holding the other constant. If total turnover

is not included in the model, the effect of market value becomes positive. The effect

is simply dominated by the total turnover effect. This is a similar effect as we saw in

the model using the Carhart four-factor model, where loading on SMB increased for

additions when OBX was included, but fell if the regression was run without OBX.

We consider this another piece of information supporting the idea that volume traded

matters more than firm size and momentum for comovement on Oslo Børs.

As a robustness test, we also run this test with the Carhart four-factor model as

the response variable in the second-stage regression. We do this to ensure that the θ3
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Figure 12: Estimates and uncertainty of RDD and Single factor model

Note. This plot shows the estimates from the Regression Discontinuity Design and the single-factor
regression, along with their 95% confidence interval. Both are controlling for changes in volume traded.

found in this test doesn’t pick up changes in other fundamentals. Formally, the response

variable is the β1 fromRit = β0+β1ROBX+β2SMB+β3HML+β4PR1Y R+eit. The

results of the second-stage regression is, in terms of statistical significance, identical

with respect to θ3: Significant for the full period and the last, not for the other two.

This reinforces our belief that the assumptions underlying this regression discontinuity

design hold.

The betas found in the regression discontinuity design are comparable to those in

the main single-factor model. We illustrate the results of the regression in the following

graph, where we compare it to the original univariate regression.

We have now compared three different tests which control for changes in volume

traded, and find excess comovement after controlling for those.

8 Robustness testing

To ensure the results in this thesis are reliable, we perform several robustness tests.

This section is organised as follows: First, we test how index deletion affects comove-

ment. Secondly, we employ another commonly used comovement test: a two-factor

regression including non-OBX as an explanatory variable.Then, we test whether stock
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inclusions see increased variance, as our model predicts. Fourthly, we use the high

share of energy stocks as an instrument, and test for whether inclusions see increased

comovement with the energy sector. Finally, we present an analysis of whether the

assumption of independence among inclusions holds.

8.1 Index removals

In the main part of this thesis, we studied exclusively the stocks that were included on

the OBX index. For every stock that was included, however, there is another which

was removed from the index. The stocks that were removed from the index should by

our model see the opposite effect of what inclusions do. Prior to removal, the stock

is an OBX stock, and exposed to OBX shocks. Following removal, it is a non-OBX

stock, and exposed to non-OBX shocks instead. This is the precise mirror of the OBX

inclusions. If we run the single-factor regression,7 RRemoval,t = β0 +βRemovalROBX,t+

et on the index removals, our model then predicts that the ∆β of the deleted stocks

will be equal to the exact opposite of the ∆β from the regression run for the index

inclusions:

∆βRemoval = −
γOBXRemoval ∗ σ2

SOBX

σ2
OBX

(30)

The results of that regression for the 104 removals with sufficient data, are shown

in Table 14, and plotted over time in Figure 13. The results for the full period are

similar to that of the inclusions, but with a slightly larger magnitude. The time-trend

is different, however, with the ∆β having the magnitude in the last 2003–2008 period

and the 2009–2019 period.

As with the inclusions, this test assumes that index removal is an information-free

event, which is not necessarily the case. We therefore repeat our tests for breaches

of fundamentals. In the interest of brevity, we do not report every result, but instead

present the takeaways.

Removals have a slight tendency to be non-momentum stocks prior to deletion,

having a median reduction in market value of 7% over the six months prior to deletion.

7Since the deletion is a member of the OBX prior to removal, and therefore a part of the X-variable,

we exclude the stock from the OBX prior to inclusion. This is the same procedure as we outline in

Appendix A for inclusions.
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Table 14: Effects of removal from OBX

∆β SE(∆β) tStat

1995–2018 -0.0948 0.0279 -3.3978

1995–2002 -0.0556 0.0400 -1.3907

2003–2008 -0.1129 0.0522 -2.1643

2009–2018 -0.1159 0.0645 -1.797

Note. This table reports the summary statistic of the effect of index deletion for the different time periods.
It is calculated by regressing the stocks’ return on the OBX-return prior to and following index deletion.
∆β is the average change in beta, SE is the heteroskedasticity robust standard error, tStat is the variable
test statistic, and ∆ R2 is the change in variation explained by OBX-return. The sample size n =104.

Following deletion, they show no trend, with a median growth of 1%.

Volume traded falls both prior to deletion and after, with a drop of 19.55% prior

to deletion, and a drop of 15.96% after. Liquidity is found to be adversely affected by

using the Amihud and bid-ask spread. The bid-ask spread increases by 5% in the period

before removal, and by 35.28% after. The Amihud measure rises by 46% before, and

35% after for the median deletion.

Running the tests from Section 5, momentum is not shown to have any effect for

removals. Neither is proxies for fundamentals, industry, the bid-ask spread, the Amihud

ILLIQ measure, nor non-synchronous trading.

Volume traded, however, matters for removals. As with the inclusions, we run the

regression:

∆βRemoval = ζ0 + ζ1 ∗ log
V a
i

V b
i

+ ei (31)

where the ∆βRemoval stems from the single-factor regression, and log(
V a
i

V b
i

) is the change

in volume traded from prior to deletion to after.

The results of the regression are reported in Table 15. They show a very similar

trend as volume traded did for inclusions, with the exception that ζ1 and R2 are lower

in the final period than the middle one.

Overall, we see that removals from the OBX index tend to see decreased volume

traded, and that decreased volume traded will lower the betas. We therefore control for

changes in volume traded.

We perform the matched sample test again, finding matches on volume traded for

the deletions in the same procedure as we did with the inclusions. We create samples
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Figure 13: Five-year average delta beta over time for deletions

Note. This graph shows the 5-year running average change in beta from before deletions to after dele-
tions, over the five years prior to the data point. As an example, the data point in 2008 is the average
delta beta between January 2004 and January 2008.

by matching along the two sets of metrics that mattered for inclusions. That is, one

sample matching on the change in volume traded prior to and post rebalancing, and one

sample matching on both of those as well as the total volume traded.

We then perform the regression of Section 6.4, with the index deletions and their

matched samples. That is, we first calculate the ∆β of both the deletions and their

matched samples, and then run the following second-stage regression:

∆βi = α0 + α1Ii + α2 ∗∆V olumei,P re + α3 ∗∆V olumei,Post + ei (32)

The results of the second-stage regression are shown in Table 16. The α1 coefficient

shows the estimate for the change in comovement after controlling for changes in vol-

ume traded. For the full period, the α1 is -0.0690, and significant at the 10% level. This

is remarkably similar to having the opposite sign of the α1 found for inclusions, which

was +0.07203. In the final period, the α1 is +0.14384 for the additions, and -0.1293 for

the removals. This signals the same economic magnitude, but the results for the dele-

tions are not significant at the 5% level for any period. Figure 14 presents a graphical

comparison of the results of the deletions and the inclusions. The general similarity

provides strong support for the findings in the main part of this thesis. Joining the OBX
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Table 15: Regression of change in volume traded on comovement for OBX deletions

ζ0 ζ1 R2

1995–2018 -0.071882** 0.1109** 0.0397

1995–2002 -0.090964* 0.059194 0.0265

2003–2008 -0.0042856 0.2374* 0.112

2009–2018 -0.092143 0.17369 0.0507

Note. This table presents the effect of the loading on change in traded volume on change in beta for
each specific index deletion, divided into different time periods. ζ0 is the intercept and ζ1 is the slope
coefficient. R2 signals the variation explained by the model. *** p < 0.01, ** p < 0.05, * p < 0.1

index causes the stock to be exposed to group-specific shocks, and therefore display

excess comovement. Leaving the index causes the stock to lose those same shocks, and

therefore causes a similarly sized drop in comovement.

Figure 14: Comparison of estimates of excess comovement found in tests of inclusions and

deletions

Note. This figure shows the estimates for comovement from OBX membership, found by examining
index inclusions and index deletions. For both, the results are the excess comovement found after em-
ploying a matched sample approach to control for changes in volume traded. The change in beta of
the index deletions is multiplied by -1 to make them show the same economic magnitude as the index
inclusions do.
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Table 16: Change in comovement for removals from index after controlling for

volume traded

α0 α1 α2 α3

1995–2019 0.0154 -0.069037* 0.055827* 0.089929**

1995–2002 -0.02351 -0.01855 0.07773** 0.13215***

2003–2008 0.02041 -0.04182 0.082651 0.22785**

2009–2019 0.071538 -0.12932* 0.1081* 0.027656

Note. This table presents the results from testing excess comovement for removals after controlling for
volume traded. The variable of interest, α1 signals how much lower the decrease in comovement is for
the removal than the matched sample stocks. *** p < 0.01, ** p < 0.05, * p < 0.1

8.2 Two-factor model accounting for changes in fundamentals

A second commonly used model in the comovement literature is a bivariate regression.

Stocks added to an index are regressed not only on the index it joins, but also on the

index it leaves. Barberis et al. (2005) was the first to employ it in a comovement setting,

and ran the regression Rit = α+β1i ∗RS&P,it+β2i ∗Rnon−S&P,it+eit, where non-S&P

500 is the value-weighted return of all stocks that could join the S&P 500 index. He

found a β1 in this regression of a far higher magnitude than in the single-factor model.

The test has since been used by several other authors, and been used as proof of

comovement. For instance, Coakley et al. (2004) ran the regression Rit = αi + β1i ∗

RFTSE,it+β2 ∗Rnon−FTSE,it+eit, where non-FTSE is all stocks on the FTSE all-share

index that are not in the FTSE 100 index. He considered that he controlled for non-

FTSE return by running this bivariate regression, and found a considerably higher ∆β1

estimate in the bivariate than univariate regression.

Chen et al. (2016) provide strong criticism of the previous use of the bivariate re-

gression. He proves that while the β1 is higher in the bivariate regression, it does

not actually provide any meaningful information about the economic magnitude of co-

movement. For this reason, we derive how to interpret the coefficients in the bivariate

regression in our model in Appendix D.

We run the following regression:

Rit = αi + β1iROBX,t + β2iRNon,t + εit (33)
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whereRNon is the return of the non-OBX index, andROBX is the return of the OBX

index, excluding stock i from the index after inclusion.

Under the same assumptions as in our initial model, the expected value of ∆β1 and

∆β2 for inclusions to the OBX are derived to be:

∆β1i =
γa,OBXi ∗ σ2

SOBX
∗ σ2

NON + γb,NONi σ2
SNON

∗ cov(OBX,NON)

σ2
OBX ∗ σ2

NON − cov(OBX,NON)2
(34)

∆β2i =
−(γa,OBXi ∗ σ2

SOBX
∗ cov(OBX,NON) + γb,Noni σ2

SNON
∗ σ2

OBX)

σ2
OBX ∗ σ2

NON − cov(OBX,NON)2
(35)

where γa,OBXi is the loading of stock i on shocks SOBX after inclusion, σ2
SOBX

is the

variance of those shocks, σ2
SOBX

the variance of the OBX index, and cov(OBX, NON)

is the covariance between the OBX and non-OBX indexes.

The two ∆βs are caused by the shocks to OBX and non-OBX – in the absence

of shocks, both ∆β1 and ∆β2 would be theorised to be zero. The null hypothesis is

therefore that ∆β1 and ∆β2 are each zero, while the alternative hypothesis is group-

specific shocks cause ∆β1 to be positive, and ∆β2 to be negative.

The results of the first-round regression for the full period and for the period after

2009 are shown in Table 17. Included are the results of the bivariate regression for the

two volume-traded based matched samples.

Table 17: Result from the two-factor model

Full period After 2009

∆β1 ∆β2 ∆β1 ∆β2

OBX Inclusions 0.1773*** -0.1445** 0.2571*** -0.0805

Sample 2 (∆ Volume Traded pre and post) 0.0099 0.0832* 0.0562 0.18733*

Sample 3 (∆ V. traded pre/post and tot V. Pre) 0.0245 0.0314 0.08466* 0.00265

Note. This table shows the results of the bivariate regression for the OBX inclusions, and the two volume-
traded based matched samples. ∆β1 is the loading on the OBX index, and ∆β2 is the loading on the
non-OBX index. *** p < 0.01, ** p < 0.05, * p < 0.1

∆β1 and ∆β2 of the sample stocks have the same sign, and similar magnitude. For

the OBX inclusions ∆β1 is strongly positive, and ∆β2 strongly negative for the full
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period. This is what our model predicts, since the exogenous shocks SOBX and SNON

push β1 upward, and β2 downward. In the after 2009 period, however, ∆β2 is not

significantly negative. We know from the earlier tests in Section 6.3 that volume traded

affects the comovement of the inclusions in the final period, pushing the comovement

with both the OBX and non-OBX indexes up. We therefore perform a second-stage

regression to control for the changes in volume traded, by comparing the changes in

comovement with that of our matched sample.

We repeat the bivariate regression for the two volume based matched samples, and

use these to calculate the effect of treatment. That is, we run:

∆βi = α0 + α1Ii + α2 ∗∆V olumei,P re + α3 ∗∆V olumei,Post + ei (36)

where Ii is one if stock i is one of the inclusions, and 0 if it is a sample stock. α1 is

therefore a measure of the ∆β after controlling for changes in volume traded.

We run the second-stage regression separately with ∆β1 and ∆β2 as response vari-

ables. With ∆β1 as the response variable, our model predicts that α1 is positive and

significant, and with ∆β2 that α1 is negative.

The results of the regression are reported in Table 18. α1 is highly positive with

∆β1Inc as the response variable, and highly negative with ∆β2Inc as the response vari-

able The two α1s are of similar magnitude, but opposite signs, which is precisely what

the alternative hypothesis suggested. This therefore strongly supports our main findings

that there are exogenous shocks to the OBX and non-OBX indexes.

But as Chen et al. (2016) suggest, these variables do not carry much economic

meaning. They are most definitively not directly comparable to the ∆β of the single-

factor regression, which has economic meaning, and we therefore consider the results

of this subsection to simply add support to our main findings.

8.3 Excess comovement and variance

Grieser et al. (2019) point out that normal tests of comovement overestimate the extent

to which there is comovement. They pose that a better way to examine the existence of

excess comovement is through variance ratios. The idea is that if one group has excess

comovement, then that group should also have higher variance than a group with no
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Table 18: Second stage regression to estimate the effect of index inclusion on delta

beta 1 and delta beta 2

Delta beta 1 as response variable

α0 α1 α2 α3

Full period 0.01551 0.13978*** 0.0335** 0.0092296

After 2009 0.03895 0.28735*** 0.04297 0.068709

Delta beta 2 as response variable

α0 α1 α2 α3

Full period 0.02454 -0.15102*** 0.00471 0.0429

After 2009 0.08323 -0.32141*** 0.0189 0.0248

Note. This table presents the results of a second-stage regression to estimate the change in ∆β1 and ∆β2

of the two-factor regression, after controlling for volume traded. The variable of interest, α1 signals how
large the response variable is after controlling for volume traded. *** p < 0.01, ** p < 0.05, * p < 0.1

excess comovement.

This notion also makes sense for our single-factor model: We derived our measure

for excess comovement as the percent of variance on the OBX resulting from group-

specific shocks: ∆βi =
γOBX
i ∗σ2

SOBX

σ2
OBX

. If there truly are group-specific shocks, then the

variance of stocks exposed to the shocks should increase.

We test this by examining whether the variance of OBX inclusions increase after

inclusion: σai /σ
b
i .

We cannot merely test for whether this ratio increases, however. The variance of

stocks on the OBX varies strongly over time – there are low-volatility periods and high-

volatility periods.8 Stocks added to the OBX in June 2008 saw a dramatic increase in

their variance, but that was not due to OBX inclusion, it was due to the financial crisis.

We therefore see how much more the OBX inclusions variance has increased compared

to the variance of the OSEAX index. We calculate:

∆V arianceinc = log

(
σ2,a
inc

σ2,b
inc

)
− log

(
σ2,a
OSEAX

σ2,b
OSEAX

)
(37)

where σ2,a
inc is the variance of inclusion inc in the period after inclusion. ∆V arianceinc

8See Figure B1 in Appendix B for a breakdown of how OBX variance has changed over time.
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Figure 15: Five-year average change in variance over time

Note. This graph shows the five-year average change in variance over time. As an example, the data
point in 2008 is the average change in variance between January 2004 and January 2008.

signals how much more the inclusion varies after inclusion, than it would have had the

stock not been included, assuming its trend would have been the same as that of the

OSEAX index. This is shown in Figure 15.

This provides a similar viewpoint as the single-factor model gave, but a slightly

weaker result. The results by period are shown in Table 19.

Table 19: Increase in variance from OBX inclusion

∆V ariance

1995–2018 0.0364

1995–2002 0.0174

2003–2008 -0.0189

2009–2018 0.0882

Note. This table shows the results of a regression to determine whether index inclusions see a larger
increase in variance than other stocks do. (∆V ariance) is calculated as the change in the variance of
the inclusion, subtracting the change in the variance of the OSEAX.

We see that the variance increase presents a similar trend to the ∆βs: around zero

in the first two periods, and higher and positive in the final.

What we are primarily interested in, is seeing whether excess comovement results

in increased variance. We therefore use our estimate for ∆V ariance and run a second-
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stage regression in the shape of:

∆V ariancei = α0 + α1 ∗∆βi + ei (38)

where ∆β is the coefficient from the single-factor model. Our model theorises that ∆β

shows the percent of variance that is in excess of fundamentals. If excess comovement

results in increased variance, α1 should be positive. The results are presented in Table

20.

Table 20: Second stage regression of increased variance on excess comovement

α0 α1 R2

1995–2018 -0.063807 0.51505*** 0.0842

1995–2002 0.023131 0.27972 0.0247

2003–2008 -0.12761 0.57061* 0.0958

2009–2018 -0.1788 0.78087** 0.195

Note. This table presents the results of a second-stage regression to determine whether excess comove-
ment results in increased variance. α0 is the intercept. α1 shows how much excess variance a 1%
increase in excess comovement causes, for OBX inclusions. *** p < 0.01, ** p < 0.05, * p < 0.1

The results are rather clear: a higher estimate for excess comovement results in a

higher estimate for variance. This is a strong indication that the ∆β actually does pick

up increase variance due to group-specific shocks.

The negative intercepts are somewhat puzzling, although none of them are any-

where near significant.

It is noteworthy that this test also shows an effect that increases over time, with

both α1 and the R2 of the model increasing over time. The R2 in the 2009–2018 period

signalises that approximately 19.5% of the variation in inclusion stock’s variance can

be explained by the change in excess comovement. This is a high number considering

the volatile nature of stocks, as well as their time varying volatility.

This finding that index inclusion leads to increased variance in excess of funda-

mentals may have profound implications for investments in Norway. It indicates that

there is excess variance from being a member of the OBX index. This is an additional

risk factor for OBX stocks, which is likely to be unpriced. This means that the ex-

cess comovement may cause OBX stocks to have a lower risk-adjusted return than they

otherwise would have had.
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8.4 Regression using the energy sector as an instrument for OBX

shocks

The energy sector is the dominant sector in the OBX index. After 2003, the energy

sector has been on average 45.11% of the OBX index. Figure 6 shows the precise

breakdown over time.

This high share provides us with an opportunity to perform a robustness test, by

examining whether the stocks joining the OBX comove more with the energy sector

after inclusion. We run the regression:

Rit = β0 + β1 ∗Renergy,t + eit (39)

where Renergy,t is the return of the Oslo Børs energy sector at time t.

The null hypothesis is that a stock becomes no more similar to energy stocks due to

joining the OBX index. The alternative hypothesis is that there is excess comovement

from joining the OBX index, and that since the energy sector dominates the OBX, this

causes the stock to comove more with the energy sector.

We find that in the final period, ∆β1 is estimated to be 0.1284, significant at the

1% level (SE 0.0409). This means that in the final period, inclusions comove more

with the energy sector after joining the OBX index. We consider the possibility that

these results could be due to all stocks becoming more similar to the energy sector, and

therefore also run the regression on the 11 samples from the matched samples section.

None of them show a ∆β of either statistical nor economic significance.

The only explanation we can conceive as to why stocks added to the OBX index

comove more with the energy index, is through excess comovement. This therefore

strengthens the conclusion of our main test.

8.5 Evaluating the assumption of independence

In the main part of this thesis, we made a common assumption in comovement litera-

ture: that inclusions are independent of each other. This assumption does not necessar-

ily hold, and in this section, we examine its validity.

There are many factors that affect all stocks on the index. Several stocks are added

to the OBX index during each rebalancing – typically 2-5 – and for these, the regression
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has the same x-variable: ROBX . Since exogenous shocks may affect all these inclusions

in a similar manner, these stocks may see cross-sectional correlation, which would

break the assumption of independence. Another danger to independence is that since

the test is performed on every period, the post-period of one inclusion is the pre-period

of another. This means that the shocks may also propagate between time periods, not

just within one.

The most common way of controlling for cross-sectional dependence has been to

follow the lead of the seminal paper within the field. Barberis et al. (2005) attempted

to do so by estimating the standard errors through simulation. This has the implicit

assumption that the net effect of the shocks on the delta beta is zero. That is not neces-

sarily the case. We find this to be too simple a solution to the problem of independence,

and we therefore create a model which allows us to analyse the extent to which the

betas are independent. This also helps us analyse whether the other assumptions of our

model may be broken.

We employ a multivariate maximum likelihood model which calculates the betas

codependently. The log-likelihood iterates by attempting to find which parameters

would be the most likely to create the observed distribution. We run the following

regression

Ri = ROBX ∗ βi + Ei (40)

This is the same equation as in the single-factor model, but the calculation differs in

a key way. The regression is now run as a multivariate general linear model, and allows

for the βi values to be cross-correlated. This means that we depart from the traditional

finance definition of beta as the stock’s covariance against the market over the variance

of the stock, which we used in our model earlier. Instead, the beta is calculated as

β =
R′OBX ∗ Σ−1E ∗Ri

(R′OBX ∗ Σ−1E ∗ROBX)
(41)

This is the standard setup for a multivariate general linear model (MathWorks, 2017).

It fits very nicely with what we are trying to estimate. A few words on precisely what

the model predicts.

The ΣE is the inverted variance-covariance matrix of the errors terms E. The inverse

of a variance-covariance matrix has the property that its elements represent the partial
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correlation between the variables (Barua, 2017; Trevor, Robert, & JH, 2009). The

ΣE therefore represents the extent to which the error terms of the different stocks are

correlated, after controlling for all other variables.

Under the assumption that every stock is independent, Σ−1E becomes an identity

matrix, since every stock is perfectly correlated with itself, and independent of every

other. The equation then becomes β =
R′

OBX∗I∗Ri

(R′
OBX∗I∗ROBX)

. This equation is in expectancy

equal to covariance over variance - the standard definition of beta in finance, under

the assumption that the return of the stock and OBX are zero mean stocks. That is

since Cov(Ri, ROBX) = E(Ri ∗ ROBX) + E(Ri) ∗ E(ROBX), which if E(Ri) or

E(ROBX) = 0, becomes simply cov(Ri, ROBX) = E(Ri ∗ ROBX), and the same for

variance.

So if stocks are truly independent, this model will calculate the traditional finance

betas. But if they are not, the model will attempt to find the parameters that maximise

the maximum likelihood function

logL(β,∆E|Ri, ROBX) =
1

2
nd ∗ log(2π) +

1

2
log(det(ΣE))

+
1

2

n∑
i=1

(Ri −ROBXβ)′ ∗ Σ−1E ∗ (Ri −ROBXβ)
(42)

The driving force of this equation is the last term, which can be interpreted as the

squared errors of the model controlling for partial correlations with the other errors. The

optimal beta is then the beta that minimises the squared errors controlling for partial

correlations with other errors. If the additions to the OBX are independent, this should

precisely equal the betas found in the univariate regression of Section 4.1. If, however,

the additions are cross-correlated, the betas from this multivariate test will not equal the

betas of the univariate regression. Our null hypothesis is therefore that the univariate

and multivariate betas are equal, while the alterative hypothesis is that they are not.

H0: ∆βUnivariate = ∆βMultivariate

H1: ∆βUnivariate 6= ∆βMultivariate

The results at the aggregate level are presented in Table 21. The results for 1995-

2002 and 2009-2018 are for all intents and purposes equal in the univariate and the

multivariate tests. But in the 2003-2008 period, they differ quite a bit. An examination
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Table 21: Comparison of multivariate and single factor regressions

∆βM SE(∆βM) tStatM ∆βU SE(∆βU) tStatU

1995–2018 0.05776 0.021768 2.6537 0.07203 0.024419 2.9497

1995–2002 0.014887 0.30376 0.4897 -0.011 0.03640 -0.0297

2003–2008 -0.00380 0.042265 -0.0898 0.02580 0.0460 0.5611

2009–2018 0.22164 0.044084 5.209 0.2191 0.0501 4.3714

Note. This table reports the summary statistic of the comparison of the multivariate and the single factor
regressions for the different time periods. ∆β is the average change in beta, SE is the standard error, and
tStat is the variable test statistic. The subscriptsM and U denotes the multivariate and univariate version
of the single factor regression respectively.

Figure 16: Beta correlations over 0.2 per rebalancing

Note. This figure shows how many pairs of stocks have ∆β that have a correlation between them of over
0.2, per period.

shows that this is because there is far more cross-correlation between the stocks in this

period.

To evaluate the amount of cross-correlation, we use the coefficient variance-covariance

matrix to look at the covariance between the ∆β estimates. We turn the variance-

covariance matrix into the regression coefficient correlation matrix, and use cov(∆βi,∆βj)

as our estimate for the amount of cross-correlation between additions i and j. Figure

16 is a plot of every case where the correlation between two ∆β is larger than 0.2.

There are 18 pairs of additions which have a correlation of more than + 0.2. Of

those, 12 are in the 2003-2009 period. There are a couple of interesting facts about
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these additions. Every pair of stocks which has high cross-correlation, comes from

the same industry. With one exception, they all come from shipping, fishing or oil.

These are all industries that primarily export, and which are subject to international

prices. Changes in expectations about future prices are therefore likely to affect them

all similarly. Exogenous shocks to international prices will in other words cause cross-

correlation between stocks in all of these industries. It highlights the need to investigate

whether there may be a systematic trend in which industries join, and whether this

trend explains OBX returns. This was a large part of our motivation for controlling for

industry in Section 5.

A second interesting fact is that the high-correlation pairs are all of similar size

in terms of market capitalisation. Of the 18 pairs, 10 have a market cap ratio where

the largest firm is less than twice the size of the smallest, and 15 have a ratio where

the largest is within 3 times the size. This trend remains clear for the entire dataset –

similarly sized firms have more cross-correlation, as Figure 17 shows.

Figure 17: Relation between difference in market capitalisation and cross-correlation in delta

betas

Note. This figure shows the average cross-correlation of inclusions, dividing the inclusions into three
buckets based on different in market capitalisation. For pairs in low, the largest firm is less than twice as
large as the smallest. Pairs in mid have the largest between double and quadruple the size of the smallest.
High has pairs where the largest is more than four times as large as the smallest.

We verify the relation between market value and cross-correlation with a regression,
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in the shape of Corr(∆βij) = η0 + η1log(
MVLargest

MVSmallest
) + e. The regression yields a

significant negative η1.

It is clear that both industry membership and difference in market size affect the size

of cross-correlation that additions experience – they are not independent of each other.

But the effect of the cross-correlation is rather small in our dataset, and does not lead to

large problems on the aggregate level. This is partly because the OBX index sees few

additions per period (typically 2-5). For larger indexes that see far more additions at

the same time, such as the S&P 500 index or the FTSE 100 index, cross-correlation is

likely to be much higher. Our results indicate that it would be wise to perform a more

thorough examination of cross-correlation than what has been done in those indexes.

9 Discussion

Before we conclude this thesis, we present a discussion on two of our most striking

findings. Firstly, we address our finding that volume traded affects comovement in

Norway, and consider why this may be the case. Secondly, we briefly discuss the

growth in excess comovement.

9.1 Volume traded and liquidity

Our results indicate that there is a relation between increased volume traded and in-

creased comovement with the indexes in Norway. In the analyses of this thesis, we

considered changes in volume traded to be a variable that needed to be controlled for,

in order to accurately estimate excess comovement. We did not focus much on why

volume traded increases comovement with the Norwegian stock indexes, as that is not

the main topic of this thesis. It is, however, an interesting phenomenon that is worth

discussing.

One possibility is that volume traded works as a proxy for liquidity. We tested three

other proxies for liquidity in Section 5.5 – the ILLIQ measure from Amihud (2002)

measure, the relative bid-ask spread, and the liquidity measure of Næs et al. (2009).

None of those had explanatory power on comovement for OBX inclusions. In the case

of the Amihud ILLIQ measure, our findings in Section 8.3 indicate that the reason may
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be an endogeneity problem, and that the measure is misspecified for studying excess

comovement.

Recall that the Amihud ILLIQ measure is calculated as:

ILLIQi =
1

n

T∑
t=1

abs(Rit)

Vit
(21)

As returns are approximately mean zero, the numerator is approximately the stan-

dard deviation of the stock. We have shown that index inclusion affects both the nu-

merator and the denominator for inclusions. The measure therefore considers that the

OBX inclusions have become no more liquid, in the period after inclusion than they

were before. Other metrics indicate that the inclusions become more liquid: the stock

is traded more, and has a smaller bid-ask spread. Næs et al. (2009) note that liquidity

has three main dimensions: how much it costs to trade, how fast the stock can be traded,

and how many shares it is possible to trade. By each of these, the stock is more liquid

after inclusion, but the Amihud measure does not consider that to be the case, because

it is affected by the increased variance.

For stocks that are not added to the OBX index, the change in the Amihud ILLIQ

measure is a perfectly fine measure, as they are not subject to an exogenous shock

which increases both volume traded and the volatility. This means that an inclusion

and a non-inclusion with the same change in the Amihud measure, likely saw different

increases in true liquidity. We therefore pose that it may be a misfit tool for measuring

excess comovement.

Volume traded by itself, on the other hand, is not biased by the increased volatility

from excess comovement, and is therefore unbiased as a comparison tool. It may there-

fore be a better estimate than the ILLIQ measure is for estimating liquidity in an excess

comovement setting.

If volume traded works as a proxy for liquidity, why does liquidity affect comove-

ment? A plausible explanation is the clientele effect from liquidity literature (Amihud,

Mendelson, Pedersen, et al., 2006). Investors require compensation for trading costs.

Short term investors depreciate their trading costs over a short period of time, and are

therefore limited to buying assets with a low trading cost. Long term investors depreci-
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ate trading costs over a longer period of time, and therefore specialise in the assets that

provide them with the highest return – assets with higher trading costs. The result is

that stocks with low liquidity see a different clientele of investors than stocks with high

liquidity.

If the investors of highly liquid stocks and illiquid stocks are different, then it ap-

pears likely that the investors of these groups experience different forms of shocks. As

a stock increases in liquidity, its investors become more and more similar to the in-

vestors who own the most liquid stocks. In Norway, the OBX index which we measure

against, is the most liquid stocks, and thus a stock seeing increasing liquidity should

see more comovement with the index, due to having more correlating shocks.

This explanation for the relation between comovement and liquidity does in other

words stem from the same source as the demand based view of comovement. Just as

index membership causes a change in investor clientele, so does increased liquidity,

and both of these cause increased comovement.

We have one finding which supports the idea that increased liquidity causes a

change in clientele which causes increased comovement, and one finding which con-

tradicts it.

The supporting finding is: liquidity causes increased comovement against the OBX,

while momentum does not, but the opposite is the case on market capitalisation based

indexes. On a market capitalisation based index, the investors owning the index are

those with the largest preference for large stocks. Momentum stocks increase in size,

and the investors therefore become more and more similar to those owning the index.

Therefore, momentum causes increased comovement with market capitalisation based

indexes. On a liquidity based index such as the OBX, the investors are those with a

preference for highly liquid stocks, and so a stock increasing in price, but not liquidity,

would not see increased comovement with the index. This is precisely what we observe,

and is strong support for the clientele view.

The contradicting finding is that for the sample stocks, liquidity causes increased

comovement also with the non-OBX index. The non-OBX index does not have in-

vestors with a preference for highly liquid stocks – if anything, its investors have a

preference for illiquid stocks, as that is what the index consists of. The clientele view
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would therefore suggest that the stocks increasing in liquidity should see increased co-

movement with the OBX and reduced comovement with the non-OBX, but that is not

what we observe. We observe similar increases in comovement with the OBX and

non-OBX indexes. That is not possible to explain with the clientele view.

We do therefore not conclude on why increased volume traded causes increased

comovement. There is no answer in existing comovement literature, as it has not ex-

amined volume traded. It is important for both Norwegian practitioners and academics

to understand which factors drive the Norwegian stock market. We have in this thesis

highlighted that excess comovement needs to be accounted for, but we were unable to

conclude on the effects of volume traded. We leave that for future researchers, and

believe it is a highly interesting topic for further study.

9.2 The time trend of excess comovement

Our findings indicate that there is excess comovement after controlling for changes in

fundamentals. We have examined the potential effects of several fundamentals, but our

tests are far from exhaustive: stock prices are affected by several factors. We have

shown that index inclusion is not an information-free event, and that by controlling

for volume traded, approximately a third of the initially found excess comovement

vanishes. It is possible that there are other systematic traits for index inclusions to the

OBX index, that we have not been able to detect. This is a limitation in our thesis.

One of the strongest arguments that there is excess comovement, is the time-trend.

OBX inclusion rules have been unchanged since 1996. If there is something systematic

about how stocks are added to the OBX index, and this is what causes the comovement,

why did stocks joining the index only start comoving strongly after 2009?

This is hard to reconcile with the fundamental theories of comovement. There are

many potential causes within the demand perspectives of comovement. One of these

is strategies which involve buying or selling the whole index at once, cause excess

comovement (Vijh, 1994; Barberis et al., 2005; Claessens & Yafeh, 2012). The OBX

has recently seen an increase in the trade of index-linked investments, such as Exchange

Traded Funds (ETFs) and futures, and this is therefore a plausible cause of the excess

comovement. Identifying this is outside the scope of this thesis. We present some
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statistics on the growth of OBX futures and ETFs in Appendix E, but leave it to future

researchers to examine this thoroughly.

10 Conclusion

The topic of this thesis is one of the most fundamental aspects of asset pricing: the

comovement of stock prices. Our primary focus has been on establishing the degree to

which there is comovement in the Norwegian stock market that cannot be explained by

fundamental factors.

We have presented several tests to determine whether there is excess comovement

in the Norwegian stock market. The first of these is the standard test for comovement, a

market-model regression using index inclusion as a natural experiment. This regression

finds substantial comovement, particularly from 2009 to 2018. The comovement is of

similar magnitude to that which has previously been found by studying comovement in

countries which base index inclusion on market capitalisation.

Critics have claimed that the comovement in indexes which base inclusion on mar-

ket capitalisation, is due to index inclusion not being an information-free event. We

create a model which clearly defines all the assumptions necessary for the standard

comovement test to accurately identify excess comovement. We have tested whether

each of these assumptions hold. We test both variables which previous critics have

suggested break the assumptions, and several new factors. None of the previously

identified factors can explain the excess comovement in Norway. However, we reveal

that a previously unidentified variable does cause comovement in Norway: the volume

traded. Volume traded causes all stocks in Norway to see increased comovement with

the OBX index, and since inclusions tend to see increased volume traded, the standard

comovement test over-estimates the comovement effect of index inclusion.

To identify how large the excess comovement from index membership is after con-

trolling for volume traded, we perform two tests. A matched sample approach, and

a regression discontinuity design. Both yield the same result: there is excess comove-

ment in the Norwegian stock market. This is a discovery that has not been made before,

and that has profound implications for investments in Norway. In the period of 2009-
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2018, we estimate that excess comovement is equal to 14% of the variance of the OBX

index.

The findings in this thesis highlight the need for careful use of the standard comove-

ment test. Previous literature has highlighted that momentum causes comovement on

indexes which base inclusion on market capitalisation. We find that the assumptions

of the model are broken also on an index which bases inclusion on volume traded, but

that it is not broken by the same variables. Which metric the index bases inclusion

on, appears to determine how the assumptions are broken. Researchers must strive to

identify and control for variables which may break the assumptions necessary for the

model to provide accurate results.
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Appendices

A Excluding the inclusion from the OBX index

There is a mechanical challenge in running inclusion-based comovement tests, such as

for instance the single-factor model.

Rit = αi + βiROBX,t + εit (A1)

After inclusion, the stock is part of the OBX index. The left hand variable is therefore

part of the right-hand variable. As the inclusion comoves perfectly with itself, this may

cause us to overestimate the beta. This is not a problem on indexes such as the S&P

500, where the 500th largest stock makes up a extremely small part of the whole index.

But it may be a problem on the OBX index, where there are just 25 stocks. The median

weight in the OBX index of the inclusions we use in our regressions is 0.76% (the

median is 1.51%, driven up by for instance Statoil having a weight of 27.3% when it

joined), so it would not cause a large over-estimation, but it would cause a small one.

When we regress stock i on the OBX index, we therefore subtract stock i from the

OBX index. We then scale this OBX-minus-stock-i index up by dividing by 1−Wit, so

that the OBX without stock i has the same total weight as the actual OBX index. Our

calculation is formally as follows:

ROBX,it =
ROBX,t −Wit ∗Rit

1−Wit

(A2)

where ROBX,it is the OBX excluding stock i. ROBX,t is the actual OBX index at time t

(including stock i), Wit is the weight of stock i in the OBX index, and Rit is the return

of stock i at time t. ROBX,it is then the X-variable we use whenever we regress on stock

i.

Since OBX inclusions tend to be small (with a median weight of 0.76%), this does

not majorly impact our findings, but we would have overestimated slightly had we not

performed this correction. For instance, in the single-factor model, we estimate that

the overall beta is 0.07203. Had we instead run the regression without excluding the

inclusion from the OBX, we would have found an estimate of 0.084676
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B The assumption of unchanged OBX variance

In the single-factor model, we made the assumption that the variance of the OBX is

the same in expectancy over time. Put differently, that OBX variance can be consid-

ered a stochastic variable which is drawn from the same distribution every time. The

whole idea behind studying index inclusion is that index inclusion is supposed to be an

information-free event. The change in beta then picks up the increase is comovement.

The beta itself is calculated as the inclusion’s covariance with the market, divided by

the market variance. If the market variance changes in a systematic fashion, this may

then bias the results. In this section, we evaluate whether changes in OBX variance

may be a problem for the validity of the test.

Figure B1 shows the development of OBX volatility over time. There is no time-

trend for the full period, which is a sign that the assumption that variance is drawn

from the same distribution holds. There are, however, trends within each sub-period.

Variance rose consistently within the first sub-period of 1995 through 2002. The second

period of 2003 through 2008 saw the spike of the financial crisis. The final period from

2009 to 2018 saw a general trend of decreasing variance from the high levels in 2009,

especially in the first part. Changes in volatility could therefore potentially be a problem

for the test.

It is important to note that changes in variance are only a problem if there is not

an equal and corresponding increase in the covariance of the stock. This is intuitively

likely, as the variance of the index is the value-weighted sum of all the variances of its

constituents.

We run a second-stage regression to determine whether changes in OBX variance

affect the estimates of change in comovement. This second-stage regression is ∆βi =

α0 + α1 ∗∆σOBX + et, where ∆β is the change in beta of the inclusions from before

to after inclusion, and ∆σOBX is the change in OBX variance in the same period. This

regression yields a non-significant return (p-value of 0.56) and a negative adjusted R2.

This signals that changes in OBX variance do not bias the estimates of ∆β.
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Figure B1: Volatility of the OBX index for each rebalancing period

Note. This graph shows the standard deviation of returns within each rebalancing period of the OBX.
Each rebalancing period is approximately 6 months.

C Bid-ask spread as an estimator of comovement

The following table displays the regression output of the second-stage regression be-

tween the bid-ask spread and excess comovement. ζ1 is not significant for any period,

and the R2 is low, so we conclude that the bid-ask spread does not explain much about

excess comovement on the OBX.

∆βi = ζ0 + ζ1 ∗∆BidAskSpreadi + et (C1)

Table C1: Regression of change in the LIQ measure on comovement

ζ0 ζ1 R2

1995–2018 0.077606** 0.045 0.00318

1995–2002 0.018254 0.016001 0.000428

2003–2008 0.05638 0.11304 0.0152

2009–2018 0.21581** 0.020627 0.00122

Note. This table shows the coefficients of the change in bid-ask spread on the change in beta. ***
p < 0.01, ** p < 0.05, * p < 0.1
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D Derivation of the two-factor model

In this section, we derive a model that performs a similar test as our main model, but

tests for the combined effects of OBX shocks and non-OBX shocks. This model allows

changes in fundamentals. We do this by running a two-factor regression, where we

regress the return of the stock on both the return on the OBX index, and the non-OBX

index. The two-factor regression we run is the following:

Rit = αi + β1iROBX,t + β2iRNon,t + eit (D1)

where β1 is the loading against the OBX index, while β2 is the loading against the

non-OBX index.

D.1 Beta-one

In expectancy, the β1 coefficient is equal to:

β1i =
cov(Rit, ROBX,t) ∗ var(RNon,t)− cov(Rit, RNon,t) ∗ cov(ROBX,t, RNon,t)

var(ROBX,t) ∗ var(RNon,t)− cov(ROBX,t, RNon,t)2

(D2)

For the same reasons as in the original model in Section 4.2, we assume that the

expected variance of the OBX index and non-OBX index are unchanged over time, and

that the same is the case for the covariance between the OBX index and the non-OBX

index. For easier reading, we redefine the variance of the indexes as VX for the OBX

and VN for the non-OBX index, and VXN for the covariance between OBX and Non.

The equation is then

β1i =
cov(Rit, ROBX,t) ∗ V N − cov(Rit, RNon,t) ∗ V XN

VX ∗ V N − V XN2
(D3)

Recall that in our model in Section 4.2, we derived that the covariance between

stock i and the OBX index prior to inclusion is

cov(Rb
i , R

b
OBX) =

n∑
j=1

n∑
k=1

λbijλ
b
OBXkC

b
jk (D4)

where λij is stock i’s loading on fundamental j, λOBX,k is the OBX index’ loading on

fundamental k, and C is the variance-covariance matrix of fundamentals.
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After rebalancing, OBX inclusions become victim to the exogenous shocks to the

OBX index, and their covariance becomes

cov(Ra
i , R

a
OBX) =

n∑
j=1

n∑
k=1

λaijλ
a
OBXkC

a
jk + γa,OBXi ∗ σ2

SOBX
(D5)

where σ2
SOBX

is the variance of the exogenous shocks to the OBX index, and γOBXi is

stock i’s exposure to those shocks.

Moving on to the covariance with the non-OBX index. Before inclusion, the stock

is exposed to the shocks to the non-OBX index.

cov(Rb
i , R

b
NON) =

n∑
j=1

n∑
k=1

λbijλ
b
Non,kCjk + γb,NONi ∗ σ2

SNON
(D6)

If we insert these into the estimate of β1i, then that becomes the following prior to

inclusion:

βb1i =
∑n

j=1

∑n
k=1 λ

b
ijλ

b
OBXkC

b
jk∗V N−(

∑n
j=1

∑n
k=1 λ

b
ijλ

b
Non,kC

b
jk+γ

b,NON
i ∗σ2

SNON
)∗V XN

VX∗V N−V XN2

(D7)

We can simplify this to

βb1i =
∑n

j=1

∑n
k=1 λ

b
ijC

b
jk∗(λ

b
OBXk∗V N−λ

b
Non,k∗V XN)−γb,NON

i ∗σ2
SNON

∗V XN
V X∗V N−V XN2

(D8)

The stocks that are included on the OBX index become victim to the exogenous shocks

affecting OBX shocks, but are no longer affected by exogenous shocks to non-OBX

stocks. Their beta after inclusion is then

βa1iInc =
∑n

j=1

∑n
k=1(λ

a
ijλ

a
OBXkC

a
jk+γ

a,OBX
i ∗σ2

SOBX
)∗V N−(

∑n
j=1

∑n
k=1 λ

a
ijλ

a
Non,kC

a
jk)∗V XN

VX∗V N−V XN2

(D9)

This simplifies to

βa1iInc =
∑n

j=1

∑n
k=1 λ

a
ijC

a
jk∗(λ

a
OBXk∗V N−λ

a
Non,k∗V XN)+γa,OBX

i ∗σ2
SOBX

∗V N
V X∗V N−V XN2

(D10)

Under the same assumptions as in the original model (fundamentals are unchanged,

loading on fundamentals unchanged), the ∆β1iInc is then

∆β1iInc =
γa,OBXi ∗ σ2

SOBX
∗ V N + γb,NONi σ2

SNON
∗ V XN

VX ∗ V N − V XN2
(D11)

This ∆β1iInc is then a measure of the total covariance due to both seeing increased

exposure to SOBX and decreased exposure to SNON .
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D.2 Beta-two

We calculate ∆β2iInc in a similar way as ∆β1iInc. Just as ∆β1iInc, this expression is a

measure of the combined effects of OBX and Non-OBX shocks. While those shocks

will both drive ∆β1iInc in a positive direction, they push ∆β2iInc in a negative direction.

The calculations can be shown as following:

In expectancy, the β2 coefficient is equal to

β2i =
cov(Rit, RNon,t) ∗ var(ROBX,t)− cov(Rit, ROBX,t) ∗ cov(RNon,t, ROBX,t)

var(RNon,t) ∗ var(ROBX,t)− cov(RNon,t, ROBX,t)2

(D12)

As for β1i in Appendix D, we here assume that the expected variance of the OBX

index and non-OBX index, and that the covariance between the OBX index and the

non-OBX index are unchanged over time. We do also here redefine the variance of

the indexes as VX for the OBX and VN for the non-OBX index, and VXN for the

covariance between OBX and Non. This gives:

β2i =
cov(Rit, RNon,t) ∗ V X − cov(Rit, ROBX,t) ∗ V XN

V N ∗ V X − V XN2
(D13)

We use from Section 4.2, were we derived that the covariance between stock i and

the Non-OBX index is prior to inclusion be equal to:

cov(Rb
i , R

b
NON) =

n∑
j=1

n∑
k=1

λbijλ
b
Non,kCjk + γb,NONi ∗ σ2

SNON
(D14)

Meaning that before inclusion, the stock is exposed to the shocks to the non-OBX

index.

After rebalancing, OBX inclusions become victim to the exogenous shocks to the

OBX index, and their covariance becomes:

cov(Ra
i , R

a
OBX) =

n∑
j=1

n∑
k=1

λaijλ
a
OBXkC

a
jk + γa,OBXi ∗ σ2

SOBX
(D15)

We then obtain our estimates for β2i prior to and following inclusion. By inserting

81

09777770914582GRA 19703



the covariance terms we get:

βb2i =
(
∑n

j=1

∑n
k=1 λ

b
ijλ

b
NonkC

b
jk+γ

b,Non
i ∗σ2

SNon
)∗V X−(

∑n
j=1

∑n
k=1 λ

b
ijλ

b
OBXkC

b
jk)∗V XN

VX∗V N−V XN2

(D16)

βa2i =
(
∑n

j=1

∑n
k=1 λ

a
ijλ

a
NonkC

a
jk)∗V X−(

∑n
j=1

∑n
k=1 λ

a
ijλ

a
OBXkC

a
jk+γ

a,OBX
i ∗σ2

SOBX
)∗V XN

VX∗V N−V XN2

(D17)

Which equals:

βb2i =
∑n

j=1

∑n
k=1 λ

b
ijC

b
jk∗(λ

b
Nonk∗V X−λ

b
OBX,k∗V XN)+γb,NON

i ∗σ2
SNON

∗V X
V X∗V N−V XN2

(D18)

βa2i =
∑n

j=1

∑n
k=1 λ

b
ijC

b
jk∗(λ

a
Non,k∗V X−λ

a
OBX,k∗V XN)−γa,OBX

i ∗σ2
SOBX

∗V XN
VX∗V N−V XN2

(D19)

Under the same assumptions as in the original model (fundamentals are unchanged

and loading on fundamentals unchanged), the ∆β2iInc is then:

∆β2iInc =
−(γa,OBXi ∗ σ2

SOBX
∗ V XN + γb,Noni σ2

SNON
∗ V X)

V X ∗ V N − V XN2
(D20)
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E Index construction and investment strategies

A topic we briefly touch in this thesis, but which is outside its main scope, is how index

construction may affect which investment strategies are profitable in a country. We

present some interesting pieces of information, that we believe are worthwhile to study,

but leave it to future researchers to perform a thorough analysis.

In this thesis, we documented that momentum does not substantially impact co-

movement in Norway, even though it has been found to do so in other countries. It

has previously been found that momentum has relatively weak explanatory power of

returns in Norway. One such finding is from Næs et al. (2009), who find that the invest-

ment strategy of buying the stocks with the highest momentum in Norway, and selling

those with the lowest momentum, does not create excess returns in Norway between

1980 and 2006. Rouwenhorst (1998) had previously found that this investment strat-

egy created excess returns in 11 of 12 different European markets up to 1995.E1 The

only country in which the momentum investment strategy did not work, was Sweden.

Like Norway, Sweden’s OMX 30 index bases inclusion on the volume traded (Nasdaq,

2019). This means that while momentum investment strategies have been found to

work in most countries, they do not provide excess returns in Norway and Sweden,

where the OBX and OMX30 base membership on volume traded. This is an indication

that how the indexes in a country base inclusion, affects which investment strategies

work in that country. We consider this to be a topic that may be interesting topic for

further study.

F Preliminary statistics on effects of index-linked in-

vestments

Estimating the effects of index-linked investments on comovement in Norway is a

highly interesting topic for further research. This appendix presents a simple overview

of the developments in futures trading and ETFs on the OBX index.

E1Rouwenhorst (1998) found excess returns using a momentum strategy in Norway for 1980 to 1995,

but Næs et al. (2009) do not find excess returns for the full period of 1980 to 2006
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Strategies that involve buying or selling the whole index at once are an important

part of the demand-based view of comovement (Vijh, 1994; Barberis et al., 2005). The

OBX is a tradable index, and there is a large amount of derivatives trade on the index.

This includes futures, options, ETFs, and ETNs, that are linked to the OBX index.

As mentioned in Section 3, OBX futures were in 2018 the most traded product on

Oslo Børs, with a market value of volume traded of 216 billion kroner. That is equal to

approximately 16% of the market value of all equity trade on Oslo Børs. The trade of

OBX futures has risen over time. In 2006, OBX futures trade was equal to only 3.96%

of the total trade of equities on Oslo Børs, but this grew to 20.75% in 2012.

This figure displays the development of OBX futures trade a percentage of the total

trade of shares on the OBX index. It illustrates that there is a growing trend in futures

trading with the OBX as the underlying.F1

Figure F1: OBX future trade as percent of the total trade of shares

Note. This graph shows how large the value of trades of OBX futures is as compared to the total trade of
equities on Oslo Børs. It is calculated as the market value of OBX futures trade, divided by the sum of
all trades of equities on the Oslo Børs.

ETFs with the OBX index as the underlying were introduced in 2005 (Gjerde &

Sættem, 2014), and have grown strongly in popularity. In 2018, data from Oslo Børs

F1Authors’ calculations based on data from Oslo Børs.
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shows that the value of trades of ETFs with the OBX as the underlying, was approxi-

mately 20.9 billion kroner in 2018.

There are therefore signs that the growth in both derivatives trade and ETFs hap-

pened slightly before the growth in excess comovement presented in this thesis. We

have not identified a causal relation between these, as that is outside the scope of this

thesis. Investigating that connection is a potentially interesting topic for further re-

search.
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