
BI Norwegian Business School - campus Oslo

GRA 19703
Master Thesis

Thesis Master of Science

Can a trading strategy based on predictions from a nonlinear 
Support Vector Machine

outperform a passive investor holding the S&P500 index? 

Navn: Kristian Opsahl, Marius Skyrud Harsjøen

Start: 15.01.2019 09.00

Finish: 01.07.2019 12.00



 
 

Can a trading strategy based on predictions from a nonlinear Support Vector Machine 

outperform a passive investor holding the S&P500 index? 

 

Master Thesis 

 

By 

Marius Harsjøen and Kristian Opsahl 

MSc in Finance 

ABSTRACT 

In this empirical research, we compare the forecasting performance of a supervised 

Support Vector Machine technique to a passive buy-and-hold strategy on the S&P500 

index. By introducing two investment strategies, we find evidence that the application of 

a nonlinear Support Vector Machine can be superior to linear regression models, as well 

as to a passive buy-and-hold strategy. The Support Vector Machine model generates both 

excess returns and reduced volatility for the period between 2013 to 2019. However, 

when comparing the prediction results of a Support Vector Machine model to that of a 

linear regression model during the Great Recession, the results are ambiguous, although 

both models have proven to explicitly outperform the passive buy-and-hold approach. 

 

Supervisor: 

Tatyana Marchuk 

 

This thesis is a part of the MSc programme at BI Norwegian Business School. The school takes no responsibility for the methods 

used, results found, or conclusions drawn. 

09575730913622GRA 19703



I 
 

List of Figures 

FIGURE 1 - THE DECISION FUNCTION OF A SUPPORT VECTOR MACHINE 11 

FIGURE 2 – INCCURED PENALTIES FROM MISCLASSIFICATION OF DATA POINTS 13 

FIGURE 3 - HIGHER DIMENSIONAL DATA SPACE FOR REGRESSION SVM 15 

FIGURE 4 - AUTOCORRELATION OF THE LOG RETURNS FOR S&P500                                          

AT VARIOUS LAGS 25 

FIGURE 5 - DAILY CUMULATIVE RETURN ESTIMATES OF THE S&P 500                        

BETWEEN 07/05/2013 – 05/03/2019 30 

FIGURE 6 - PERCENTAGE VARIANCE OF LOG RETURNS FOR S&P500                         

EXPLAINED BY THE ORTHOGONAL COMPONENTS 32 

FIGURE 7 - BUY-AND-HOLD VS MODEL STRATEGIES: 07/05/2013 – 05/03/2019 41 

FIGURE 8 - MODEL PREDICTION FOR LONG/SHORT STRATEGIES WITH         

TRANSACTION COSTS 45 

FIGURE 9 - PREDICTED CUMULATIVE RETURNS OF THE S&P500 BETWEEN       

07/05/2013 – 05/03/2019 47 

FIGURE 10 - LONG/SHORT STRATEGY WITH TRANSACTION COSTS BETWEEN 

23/10/2006 – 31/12/2010 51 

FIGURE 11 - CUMULATIVE RETURNS OF THE S&P500 BETWEEN                         

07/05/2013 – 05/03/2019 69 

 

 

 

09575730913622GRA 19703



II 
 

LIST OF TABLES  

 

TABLE 1 - DESCRIPTIVE STATISTICS OF DAILY LOG RETURNS BETWEEN                      

02/01/1900 – 05/03/2019 20 

TABLE 2 - LINEAR REGRESSION OF DAILY S&P500 LOG RETURNS FOR                                 

DATA BETWEEN 22/01/1990 – 06/05/2013 28 

TABLE 3 - LINEAR REGRESSION OF THE DAILY S&P500 LOG RETURNS                        

USING PCA FROM 22/01/1990 TO 06/05/2013 33 

TABLE 4 - RESULTS OF PREDICTION ACCURACY FOR THE S&P500 USING                             

SVM REGRESSION MODEL WITH DIFFERENT HYPERPARAMETER VALUES 37 

TABLE 5 - PREDICTION COMPARISON OF THE BEST PERFORMING SVM MODEL                    

TO THE LINEAR REGRESSIONS 39 

TABLE 6 - INVESTMENT RESULTS FOR THE LONG/SHORT STRATEGIES 43 

TABLE 7 - PREDICTION COMPARISON OF THE TWO TEST DATA SETS FOR                                  

THE LOG RETURN ESTIMATES OF THE S&P500 49 

TABLE 8 - INVESTMENT RESULTS FOR THE LONG/SHORT STRATEGIES                                          

OVER THE INVESTMENT PERIOD 23/10/2006 - 31/12/2010 50 

TABLE 9 - INPUT VARIABLES USED FOR FORECASTING 54 

TABLE 10 - CORRELATION OF DAILY RETURNS OVER THE PERIOD                                       

BETWEEN 02/01/1990 TO 05/03/2019 68 

 

 

 

09575730913622GRA 19703



III 
 

Table of Contents 

1. INTRODUCTION, MOTIVATION AND THEORY 1 

2. HYPOTHESIS 3 

3. RELATED LITERATURE 4 

4. RESEARCH METHODOLOGY 7 

4.1 SUPERVISED MACHINE LEARNING 7 

4.1.2 Main Challenges of Machine Learning 8 

4.2 DATA 9 

4.3 SUPPORT VECTOR MACHINE 10 

4.3.1 Hyperparameters 15 

4.4 PERFORMANCE MEASURES 16 

5.  DATA PREPROCESSING AND DESCRIPTIVE STATISTICS 18 

5.1 CORRELATION 23 

6. DATA ANALYSIS 24 

6.1 LINEAR REGRESSION MODEL 24 

6.2 PRINCIPAL COMPONENT ANALYSIS 31 

6.3 DRAWBACKS OF LINEAR REGRESSION 34 

7. SUPPORT VECTOR MACHINE 35 

7.1 TUNING OF THE SVM REGRESSION FOR OPTIMAL PREDICTIONS 36 

8. RESULTS 39 

8.1 LONG-ONLY PORTFOLIOS WITHOUT TRANSACTION COSTS 40 

8.2 LONG-SHORT PORTFOLIOS WITH TRANSACTION COSTS 42 

8.3 ROBUSTNESS OF THE PREDICTION MODELS AND VALIDITY OF THE RESULTS 46 

8.4 TESTING THE INVESTMENT STRATEGIES DURING THE FINANCIAL CRISIS 48 

9. CONCLUSION AND FURTHER ANALYSIS 52 

APPENDIX 54 

REFERENCES 70 

 

09575730913622GRA 19703



1 
 

1. Introduction, Motivation and Theory 

The idea of machine learning is neither a new nor modern term. Arthur Samuel 

(2000), a pioneer of artificial intelligence research at IBM, coined the term “Machine 

Learning” back in 1959. However, the extreme advances seen within computational 

power and speed, have increased the possibilities and use of machine learning within 

most industries. 

The contemporary financial market has been experiencing disruptive changes related 

to the development of technological progress. The increased implementation of 

robotic trading, machine learning algorithms, and Big Data processes are some of the 

factors that are currently shaping and transforming the financial industry. It is a broad 

consensus among the most significant financial players that the costs of not 

continuously participating in the development of technology, are severe for their 

respective investment performance. Human rationality is not particularly good at 

making fact-based decisions, especially when those decisions involve conflicts of 

interest. Additionally, we are slow learners, which puts us at a disadvantage in a fast-

changing, fast-paced world like finance. It is easier to improve an algorithmic 

investment process than one relying entirely on human behavior (Agrawal, Gans & 

Goldfarb, 2018). As technology has amplified financial innovations, nonlinear 

forecasting tools have increased in popularity by producing profitable trading 

strategies that are outperforming standard econometric techniques. 

We have two primary motivations for researching a topic revolving around machine 

learning. Firstly, we set the requirement that our thesis will provide us with 

knowledge and tools that contribute to our technical expertise, which can be 

beneficial for a future career in finance. Since machine learning and artificial 

intelligence most likely will be a prominent part of the financial industry, it is critical 

to master the complexity of the technical aspects. Secondly, compared to most other 

financial topics, there is a scarcity of academic papers in finance that implements 

machine learning techniques for forecasting, beyond measuring accuracy.  

 

Stock market forecasts have an extensive literature where previous research on 

prediction, such as Fama (1998) and Loughran & Ritter (2000), claims that financial 
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markets are efficient and stock prices have a unit root1, making it impossible to 

determine the development of the underlying stock price. Consequently, the 

distribution of returns presumes that an investor must assess the expected 

performance relative to risk in order to predict stock price changes. Through this 

paper, we will challenge the evidence found by previous researchers on the topic of 

stock market predictions. We will critically evaluate the technique of a supervised 

Support Vector Machine2 (SVM) model and discuss if the method can be 

implemented as a trading strategy, without having access to unlimited computational 

power. It will be examined and assessed if the strategy can accurately forecast the 

development of a stock market. Additionally, we will analyze if the predictions can 

be transformed into a profitable trading strategy that can consistently outperform a 

passive buy-and-hold strategy.  

  

Our empirical contribution builds on the foundation of implementing a machine 

learning technique to predict movements in the underlying S&P500 price index. 

We intend to incorporate an SVM technique by utilizing readily available data. The 

data set will comprise of 12 variables, in addition to the S&P500 price index, mainly 

consisting of other stock market indices, supplemented with interest rates, oil- and 

gold prices. We implement daily data where it is available, starting from 02/01/1990 

until 05/03/2019. Our data period includes several significant events such as the IT-

bubble of 2000, the Great Recession, the US election of 2016, and the continued low-

interest-rate environment in the aftermath of the Great Recession. As most academic 

articles on SVM predictions target an audience of professionals within computer 

science, model specifications and technicalities for machine learning purposes have 

certain barriers for the financial reader. We aim to fully describe the statistical 

methods with a clear and concise structure by also considering the financial aspects 

behind the models. 

                                                           
1 A unit root means integrated of order 1, which implies that both the mean and variance of stock prices depends 

on the previous price for the last period. 
2 Support Vector Machine (SVM), introduced by Boser, Guyon, and Vapnik in the Fifth Annual ACM Conference 

on Computational Learning Theory in 1992. V.Vapnik has since continued the research on this method and if the 

reader wants a thorough description, we suggest reading his book: “The nature of statistical learning theory”. 
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2. Hypothesis 

With this paper, we will, through an empirical research, evaluate the prediction 

accuracy of a supervised Support Vector Machine technique. We will apply an active 

investment strategy based on the estimated predictions and measure the results 

against a passive buy-and-hold strategy. Both strategies will be implemented by 

trading the underlying S&P500 index. Based on this, we have formed the following 

null hypothesis:  

H0A: A buy-and-hold investment strategy of the S&P500 is superior to an active 

investment strategy that applies a Support Vector Machine technique  

Against the alternative hypothesis: 

H1A: The prediction results of the Support Vector Machine model can be applied to 

outperform a buy-and-hold strategy of the S&P500 

Secondly, we want to determine if a nonlinear SVM model can be a better forecasting 

tool than a linear regression model when accounting for the prediction accuracy, as 

well as for the magnitude of the movements for the S&P500. The null hypothesis is: 

H0A: The prediction results of applying a nonlinear SVM technique to forecast the 

returns of the S&P500, will be insignificantly different from the predictions of a 

linear regression model. 

Against the alternative hypothesis:  

H1A: The prediction accuracy of a nonlinear Support Vector Machine is superior of 

forecasting the returns of the S&P500 compared to linear regression models. 
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3. Related Literature 

Stock market predictions are regarded as a challenging task for financial time series 

data since the stock market is inherently dynamic, nonlinear, complicated, 

nonparametric, and chaotic in nature (Abu-Mostafa & Atiya, 1996). Besides, a stock 

market is affected by numerous macroeconomic- and other factors such as political 

agendas, general economic conditions, policies of firms, environmental factors, 

expectations of investors, psychology and movement of other stock- and commodity 

markets. This evidence is supported by research conducted in the financial literature 

where stock-level predictors such as short-term reversal, momentum change, stock 

momentum, long-term reversal, recent maximum return, as well as industry 

momentum are shown to have significant forecasting abilities (See Fama and French, 

2016). The interconnectivity of the global financial market has risen as technology 

has prospered. It provides opportunities to apply nonlinear models that can more 

accurately capture the interactions between numerous predictors. 

Various models have been developed to predict stock market behavior, for example, 

one- or multi-step ahead price prediction, price change direction, returns and risks, 

portfolio assets allocation, and trading strategy decisions. Brock, Lakonishok and 

LeBaron (1992), find nonlinearities in market prices and show that the use of 

technical analysis indicators, under certain assumptions, may generate efficient 

trading rules. Hence, the adequacy of financial prediction using nonlinear models has 

spurred innovations within the industry. Earlier research claims that excess stock 

return predictability can be explained by a few robust factors using linear regression 

models (See Basu, 1977; Fama and French, 1988a, 1988b). However, the more 

generalized econometric model assumptions in the financial literature propose the 

opportunity of optimizing such models by configuring them to account for 

nonlinearities.  

Kim (2003), introduces Support Vector Machine to predict the future direction of a 

stock price index. The study compares SVM with Back-propagation (BP)3 and Case-

                                                           
3 For more information on BP Neural Network see: “The improvements of BP neural network learning algorithms, 

by Jin, Li, Wei and Zhen, 2000. 
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based reasoning (CBR)4.  The main objective of his research is to forecast the 

direction of daily price changes on the Korean composite stock price index. 12 

technical indicators make up the initial attributes and a total sample size of 2928 

trading days from January 1989 to December 1998. 20% of the data is used for hold-

out and 80% for training. A standard three-layer BP networks and CBR is used for 

benchmark. Overall, Kim concludes that SVM outperforms the other two techniques, 

however, not significantly.  

Tay and Cao (2001) examine the feasibility of SVM in financial time series 

forecasting by comparing it with a multi-layer BP neural network. Additionally, they 

investigate the functional characteristics of SVMs for financial data. They collect data 

from five real futures listed at the Chicago Mercantile Market and transform the 

original closing price into a five-day relative difference in the percentage of the price 

(RDP). The most prominent advantage is that the distribution of the transformed data 

becomes more symmetrical and follows more closely a normal distribution5. The 

prediction performance is evaluated using the root mean squared error, mean absolute 

error, directional symmetry, and weighted directional symmetry. For the SVM model, 

they apply the Gaussian kernel as the kernel function together with the polynomial 

kernel. A standard three-layer BP network is the benchmark. 

Their experiment shows that SVM provides a promising alternative to BP neural 

network for financial time series forecasting. The predicted results of the SVMs 

forecast was significantly better than the BP network in four of the five futures.  

Karathanasopoulos et al. (2013) introduce a novel hybrid Rolling Genetic- Support 

Vector Regression model (RG-SVR) to predict the directional movement of financial 

assets on the ASE20 Greek Stock index. The proposed hybrid consists of a 

combination of genetic algorithms with SVM modified to uncover effective short-

term trading models and overcome the limitations of existing methods. Four 

                                                           
 
4 For more information on Case-Based Reasoning neural network see: “A neural network with a case based 

dynamic window for stock trading predictions, by Chang, Lie, Lin, Fan and Ng, 2009. 

 
5 The input variables were determined from four lagged RDP values based on 5-day periods (RDP -5, RDP -10, 

RDP -15, RDP -20) and one transformed closing price which was obtained by subtracting a 15-day exponential 

moving average from the closing price (EMA15). 
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traditional strategies6 and a multi-layer perceptron neural network model is their 

benchmark for comparison. Their hybrid SVM model produces a higher trading 

performance in terms of annualized return and information ratio than all the 

benchmarks, even during the Great Recession.  

Patel, Shah, Thakkar & Kotecha (2015) conduct a study comparing the prediction 

performance of SVM, Artificial Neural Network (ANN), random forest and Naïve-

Bayes algorithms for the task of predicting stock and stock price index movements. 

Their dataset includes ten years of data from two stock price indices and two 

individual stocks7. First, they test the models with continuous-valued data. The results 

show an achieved accuracy ranging from 73.3% (naïve-Bayes model) up to 83.56% 

with a random forest model. However, when each model is trained using trend 

deterministic data, all of them improve their accuracy significantly. ANN is slightly 

less accurate in terms of prediction accuracy compared to the other three models 

which perform almost identically. The SVM achieved an accuracy of 89.33%, 

concluding that the model contains significant predictability potential.  

The positive performance obtained from implementation of an SVM can be a result of 

robust model specifications, as well as appropriate input variables used for 

predictions. In their famous paper published in 2001, Microsoft researchers Michele 

Banko and Eric Brill suggest through their findings that it might be better to 

emphasize the analysis of data collection rather than the development of algorithms. 

Their study proclaims that when given enough data, very different Machine Learning 

algorithms, including relatively simple ones, perform almost identically well on a 

complex problem (M. Banko, E. Brill, 2001). 

Most of the research conducted with an SVM technique shows promising forecasting 

results. However, we do want to highlight that from the studies we have examined, 

few goes beyond measuring the accuracy. The findings imply that a minority of the 

researchers have actually considered investment strategies from their prediction 

results. Secondly, from an investor standpoint we find it interesting that it is possible 

                                                           
6 A naïve strategy, a buy and hold strategy, a moving average convergence/divergence an autoregressive moving 

average model 
7 The indices concern CNX Nifty and S&P BSE, while the stocks are Reliance Industries and Infosys Ltd 

09575730913622GRA 19703



7 
 

to achieve prediction accuracy well above 70 %. We consider it as an improbable 

possibility to obtain such high predictive power for daily financial data on a 

consistent basis. As a result, we will challenge these findings and discuss our results 

in comparison to other research on the topic of SVM forecasting.  

This paper will highlight the forecasting results of a supervised SVM model for both 

classification and regression. We aim to highlight the strengths of such a model by 

discussing the importance of the configuration for its hyperparameters. Moreover, we 

will further address the limitations of an SVM model compared to a more ordinary 

technique like Ordinary Least Square. We will examine the prediction accuracy for 

both regression and classification and highlight the results by applying a long-only 

and a long-short trading strategy based on the forecasted results. By doing this, we 

can justify if the prediction accuracy can be applied, in order to obtain a profitable 

trading strategy.  

 

4. Research Methodology  

Within the field of machine learning, there are various types of approaches: 

Supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning. In this paper, we will apply a supervised learning technique, 

and our description will emphasize this.  

4.1 Supervised Machine Learning 

In the context of artificial intelligence and machine learning, supervised learning is a 

type of machine learning algorithm that uses a known dataset, named the training 

dataset, to make predictions. The training data fed to the algorithm includes the 

desired solutions, named labels. Both input and output data are labeled for 

classification or regression to provide a learning basis for future data processing. 

Supervised machine learning systems provide the learning algorithms with known 

quantities through its training data, to support future judgments and are mostly 

associated with retrieval-based artificial intelligence. However, they may also be 

capable of using a generative learning model (Rouse, 2016). 
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The choice of what specific learning algorithm to use is a critical step. Once the 

preliminary testing is judged to be satisfactory, the classifier which are mapping from 

unlabeled instances to classes, is available for testing. The evaluation of the classifier 

is most often based on prediction accuracy, which we will measure through either 

correct predictions or estimated regression results. The most important supervised 

learning algorithms are k-Nearest Neighbors, Linear Regression, Logistic Regression, 

SVMs, Neural Networks, Decision Trees and Random Forest. We will for the 

purpose of this paper only focus on SVM and Linear Regression.  

Generally, when it comes to utilizing Support Vector Machines for machine learning, 

the technique tends to perform significantly better when dealing with dimensions and 

continuous predictors, like stock price returns. Secondly, For SVM, a large sample 

size is required to achieve its maximum prediction accuracy, and it executes well 

when multicollinearity is present and nonlinear relationship exists between the input 

and output predictors (Kotsiantis, 2007). This is often apparent for financial time 

series data, which can be beneficial for our research. 

The key question when dealing with any machine learning classification is not 

whether a learning algorithm is superior to others, but under what conditions a 

particular method can significantly outperform others on a given application problem 

(Kalousis, Gama and Hilario, 2004). After a better understanding of the strengths and 

limitations of each method, investigating the possibility of integrating two or more 

algorithms to solve a problem, should be a priority. The object is to utilize the 

advantages of one approach to complement the weakness of another (Wall, 

Cunningham, Walsh and Byrne, 2003).  

4.1.2 Main Challenges of Machine Learning 

Two main elements can cause the Machine Learning process to be unsuccessful. This 

can either be the algorithm or the data. With insufficient quality of training data or 

test data with have nonrepresentative observations, our models will not perform well 

regardless of how good the algorithm is. If the sample size has insufficient 

observations, we can potentially suffer from sampling noise8. On the other hand, 

                                                           
8 i.e nonrepresentative data as a result of chance 
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sampling bias can occur when extensive sample sets are nonrepresentative due to a 

flawed sampling method. Naturally, if our training data is full of errors, outliers and 

noise, it will make it nearly impossible for the system to detect underlying patterns. 

The best way of improving the performance is to clean up the training data as much 

as possible before its implemented (Géron, 2019). We must be sure not to include 

irrelevant data points as this would corrupt the training of our models. Lastly, we 

must be aware of overfitting9 and underfitting10 the training data. This will be further 

discussed when setting the parameters of the SVM model.  

4.2 Data  

To conduct this empirical research, we use daily adjusted closing prices starting from 

02/01/1990, until 05/03/2019.  We have selected 12 variables including the S&P500, 

where 8 of these are other stock indices, the VIX index which measures the volatility 

of the S&P500, a Treasury yield variable and two commodities11. We provide a 

complete list of the variables, ticker names, and data descriptions in Appendix 1. We 

create two fixed subperiods of trading; the first 80% of the observations are our 

training set. The training data starts 02/01/1990 and ends on 06/06/2013. The last 

20%, beginning 07/06/2013 and ends 05/03/2019 is our out-of-sample test data and 

will be our measurement for prediction accuracy based on the information collected 

in the training data. Since we are using daily data, we have chosen to start our data 

collection from the beginning of 1990. In this way, we obtain more consistent daily 

data from all the variables as some of the predictors have missing data points and 

inconsistent prices. The complete data set contains 7.350 daily observations. For a 

full description of the data collection and the processing of the explanatory variables, 

see Appendix 2.  

To test our hypotheses, we examine two linear regression models, Ordinary Least 

Square (OLS) regression, and a regression model that implements a dimension 

                                                           
9 When the data does well on the training data but perform poorly in out-of-sample data 
10 When the model is too simple to learn the underlying structure of the data 
11 Dow Jones Industrial Average (US), Nasdaq (US), Russel 2000 (US), Euro Stoxx 50 (EU), Euronext 100 (EU), 

FTSE100 (EU), Hang Seng (HK), SSE Composite (CH), 10-year Treasury yield, Gold price and WTI Crude Oil 

price 
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reduction technique through Principal Component Analysis (PCA)12. We will discuss 

the advantages of PCA when we make predictions with highly correlated variables. 

The nonlinear model will be the supervised machine learning technique SVM. 

Moreover, the SVM techniques will impose both classification predictions, as well as 

regression predictions.  

4.3 Support Vector Machine 

A Support Vector Machine is a specific type of a supervised learning algorithm that 

classifies data from its characteristics. It is a statistical procedure where we transform 

complex data sets to help us produce better forecasting results. By estimating a 

function that is minimizing an upper bound of the out-of-sample error, SVM is 

proved to achieve a high generalization performance which is resistant to the 

overfitting problem (Huang, Nakamori and Wang, 2005). More generally, this 

implies that SVM is a better forecasting model than other statistical techniques who 

are optimizing prediction accuracy only on the training data.  

By defining a hyperplane, the model will separate the data points on either side of the 

hyperplane in its data space (See Figure 1). For classification, it will imply that the 

optimal hyperplane will effectively try to determine the difference between an up- or 

a downward movement for the S&P500. The data set used as input for training the 

forecasting model will be as follows: 𝐷 = {((𝑥𝑖), (𝑦𝑖))}𝑖=1
𝑁  where  𝑥𝑖 ∈ 𝑹𝒏  are all 𝑁 

explanatory variables at observation 𝑖 used for prediction through their respective log 

return estimates. For regression results, the corresponding 𝑦𝑖 ∈ 𝑹𝒏 represent the log 

return estimates of the stock price for S&P500 at observation 𝑖 and corresponds to the 

response variable. For classification, 𝑦𝑖 ∈ {−1; +1} implies that an increase in the 

daily log returns will be classified by +1, while a decrease in the daily return will be 

classified as −1. The reason why we impose two estimates of 𝑦 is because we aim to 

use SVM for the objective of comparing the results of both classification and 

regression. The data set used will be identical to what we will employ for the linear 

regression models. 

                                                           
12 For an excellent description of PCA for financial analysis, see for example Kritzman, Li, Page and Rigobon 

(2011, p.112-126). 
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Figure 1 - The Decision Function of a Support Vector Machine 

 

 

Fig 1. The separating hyperplane has a margin with an equal distance on each side of the hyperplane. The support 

vectors form the decision boundary and decides on the class which each data point will be assigned to. Illustration 

retrieved from MathWorks (2019). 

The smallest distance between the data points and the hyperplane is named the 

margin of separation. The points that are the closest to the hyperplane will be 

assigned as support vectors and form the decision boundary of the hyperplane. The 

objective is to find the optimal separating point where the margin is maximized. 

When the margin width increases, the model becomes more efficient at accurately 

separating the positive data points from the negative ones. For our objective, we aim 

to predict the daily log returns of the S&P500 by accounting for the data points on 

either side of the hyperplane. The model will determine the classification based on 

which side of the hyperplane the data points will be assigned. The utilized model 

function will form a margin 𝑔 that have an equal distance to the decision boundary on 

each side of the hyperplane. If 𝑔 is the margin of the optimal hyperplane, we can find 

the support vectors by locating the points which are distance 𝑔 away from the optimal 

separating hyperplane. Consequently, the support vectors will lie exactly on the 

margin 𝑔 on each side of the hyperplane. To extract the decision boundary for the 

hyperplane, the following decision function is proposed for a linear SVM classifier: 
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𝑦𝑖 = 𝑤𝑇𝜃(𝑥𝑖) + 𝑏                                                (1) 

Where 𝑤𝑇 is the transpose of the feature13 weights vector, while 𝑏 represents the 

intercept of the model and it is similar to the intercept of a linear regression model. 

𝜃: 𝑹𝒏 → 𝑹𝒎 indicates that all the explanatory variable observations are transformed 

into a nonlinear and high dimensional data space where 𝒏 < 𝒎. Hence, the mapping 

of the variables is a nonlinear function that can be depicted in an infinite high 

dimensional data space. However, this will never be explicitly calculated due to the 

kernel trick. For a complete description of the kernel functions and the applied kernel 

trick, see Appendix 3. 

The decision function will predict the return of S&P500 for observation 𝑖. The 

prediction is denoted 𝑦̂𝑖. This can be represented as a classification problem where:  

𝑦̂ = {
0  𝑖𝑓 𝑤𝑇𝜃(𝑥) + 𝑏 < 0,

1  𝑖𝑓 𝑤𝑇𝜃(𝑥) + 𝑏 ≥ 0
                     (2) 

The forecasting of 𝑦̂𝑖 will predict an up-movement of the S&P500 at observation 𝑖  if 

the decision function is greater than or equal to zero, and a down-movement 

otherwise. The decision boundaries are the intersection of two hyperplanes, where the 

decision function is equal to zero. 

Training the SVM to optimize the prediction accuracy implies finding the value of 𝑏 

and 𝑤 that maximizes the margin 𝑔, while still avoiding margin violations related to 

overfitting- or underfitting the model. Margin violations will occur whenever a 

positive data point falls on the negative side of the hyperplane, or vice versa. The 

weight vector decides on the slope of the decision function. This can be compared to 

the beta estimate in a linear regression model, which determines the slope of the 

regression. As 𝑤 gets smaller, the larger will the margin be. Hence, the objective is to 

minimize ‖𝑤‖ with the constraint that the decision function must be greater than 1 

when the training instances are positive, while it must subsequently be smaller than -1 

when the training instances are negative. We can define 𝑡𝑖 = 1 for all positive 

                                                           
13 A feature represents certain characteristics that helps to describe the data. For our objective, we consider the 

characteristics of our explanatory variables to describe the movements of the S&P500 index.  
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instances if 𝑦𝑖=1, and 𝑡𝑖 = -1 when 𝑦𝑖=0. This leads to the constraint 𝑡𝑖( 𝑤𝑇𝜃(𝑥𝑖) +

𝑏) ≥ 1 for all 𝑖 observations. Furthermore, because the data set is inseparable, 

meaning that we cannot correctly predict all the data points, we introduce a slack 

variable 𝜉𝑖 ≥ 0 for all 𝑖 observations which measure the violations of the margin. The 

term imposes a penalty for all points that are assigned to the wrong side of its margin 

boundary. This proposes a secondary constraint where the objective is to minimize 

the errors 𝜉, to reduce the total number of margin violations: 

Figure 2 – Incurred Penalties from Misclassification of Data Points 

 

Fig 2. The data points that are classified incorrectly will incur a penalty equal to ξ, for violating the margin. The 

further away it is from its margin boundary, the larger the penalty that will be assigned to that specific 

observation. Illustration retrieved from Misra (2019).  

This implies that the objective will be to maximize the distance between the positive 

and the negative data points used for predicting the S&P500 to avoid prediction 

errors. Furthermore, to make the predictors linearly separable, we will utilize a kernel 

function to account for the nonlinear characteristics of financial variables. As already 

described, financial data is nonlinear in nature and the introduction of a kernel 

function makes the process significantly more computational efficient to apply. The 

full derivations of the model specification for the SVM classifications are organized 

to Appendix 4. The mathematical derivations are shown for the interested reader to 

understand the constrained optimization problem in full.  
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Since we will apply a regression SVM, we have one additional specification that must 

be included. We must introduce an epsilon parameter 𝜖, which is denoted the 

tolerance hyperparameter. The reason for this is that regression methods, like OLS, 

will try to predict the exact return estimates for the S&P500. The deviation between 

the predicted value and the actual observation is the residual value of the regression. 

In an SVM model, the objective is to find a function where all the predicted values 

deviate from the corresponding actual observation by no value greater than the 

epsilon parameter, 𝜖. Hence:  

                    | 𝑦𝑖 − (𝑤𝑇𝜃(𝑥𝑖) + 𝑏)| ≤ 𝜖  ∀𝑖                             (3) 

Where 𝑦𝑖 is the actual observation of the log return for the S&P500 at observation 𝑖. 

This implies that the residuals from the decision function must have an absolute value 

less than 𝜖 for all observations. The decision function of the SVM is identical to the 

classification SVM. The difference between a classification- and a regression SVM 

model is that the regression technique will now decide on the total margin width. In 

an SVM regression model, the width of the margin from the optimal separating 

hyperplane is controlled by the epsilon parameter. As epsilon is increased, the margin 

for the hyperplane boundary is widened, causing more of the data points to be within 

the hyperplane boundaries. Simultaneously, the objective to limit margin violations 

where data points are outside the boundary, must be counter-balanced by not setting 

the parameter excessively low. The prediction for SVM regression will also include 

the implementation of a kernel function for mapping the variables into a higher 

dimensional data space. The full derivations of the SVM regression model can be 

seen from Appendix 5. 
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Figure 3 - Higher Dimensional Data Space for Regression SVM 

 

Fig.3. The illustration shows how the kernel function transforms the input variables into a higher dimensional data 

space, making the decision function linear. ε sets the upper limit for the residual value of the predictions. 

Misclassifications incur a penalty, ξ, that is equal to the distance between the ε and the margin violation. 

Illustration retrieved from Sayad (2017).  

4.3.1 Hyperparameters 

The SVM models do require tuning of certain hyperparameters to optimize the 

prediction accuracy. In addition to the epsilon hyperparameter 𝜖, there are two 

additional parameters which can be tuned and iteratively changed to optimize the 

model. See for instance Cherkassky and Ma (2004) for a thoroughly discussion on 

setting these three parameters. These parameters will iteratively be changed to 

determine their appropriate value. This involves adjusting them to obtain optimized 

predictions, while simultaneously avoid the issues of either overfitting- or 

underfitting the data.  

Firstly, the box constraint, 𝐶, is introduced in the constrained optimization problem 

shown in Appendix 4, equation 3. It helps with the regularization of the model by 

defining the trade-off between the objective of minimizing the slope ‖𝑤‖, and the 

errors 𝜉, simultaneously. The value of 𝐶 decides on the regularization of the data and 

controls the total number of misclassifications for the prediction. As the parameter is 

set lower, regularization is increased. When the value of 𝐶 is close to zero, the model 
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will not be penalized by errors. It implies that even substantial misclassification will 

be acceptable since the decision boundary will be completely linear. On the opposite, 

an infinite large value of 𝐶 will cause a highly penalized model. The classifier can no 

longer afford to misclassify the data points, and hence overfitting will most likely be 

introduced. Even though the model will be extremely accurate at predicting the 

training data, it will most likely fail to forecast adequately when the model is tested 

on a new data set.  

Secondly, the kernel function allows us to pick a value for gamma, 𝛾. Gamma 

represents the distribution of the input variables and acts as a regularization 

hyperparameter. For instance, a Gaussian kernel has a gamma parameter that forms 

the bell-shaped distribution of the variables. For a larger gamma value, the variance 

of the Gaussian is small, and hence, the bell-shaped curve will get narrower, causing 

the decision boundary to become more irregular. Each support vectors will have a 

smaller influence on the prediction of the movements in the S&P500. This can 

potentially propose the issue of overfitting the model. On the contrary, a low gamma 

value will cause the decision boundary to end up smoother, and support vectors will 

have a broader range of influence. This reduces the possibility of overfitting the 

model but comes at the expense of potentially not extracting the decision boundary 

which is the best suited to capture the complexity of the movements in the S&P500.  

4.4 Performance Measures 

Our objective is to predict the log returns of the S&P500 by incorporating a wide 

range of signals from the tests we implement. As described in 4.1 we create two fixed 

subperiods of trading, the first 80% of the observations are our training set, and the 

last 20% are our out-of-sample test where we measure the prediction accuracy based 

on the information collected in the training data.  

Out-of-sample tests are applied for validation purposes and to conclude how robust 

each model is. We will highlight certain statistical performance measure from 

forecasting with various error estimations. Both classification of log returns, as well 

as the absolute log return estimates, will be highlighted. This implies that we will 

both consider the regression results, as well as its classification of an up- or down 
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movement in the return estimates. Generally, three types of error measures have been 

proposed in the financial literature for prediction of stocks when implementing 

regression results: 

MSE = 
1

𝑁
. ∑ 𝑒𝑡

2𝑁
𝑡=1                     (18) 

RMSE = √
∑ 𝑒𝑡

2𝑁
𝑡=1

𝑁
                   (19) 

MAE =  
1

𝑁
. ∑ |𝑒𝑡|𝑁

𝑡=1                   (20) 

These error measures are the mean squared error (MSE), root mean squared error 

(RMSE), and mean absolute error (MAE), respectively. 𝑁 is the total number of 

observations in the entire sample. 𝑒𝑡 denotes the prediction error for the forecasted 

stock return at time t, where: 

𝑒𝑡 =  𝑦𝑡̂ − 𝑦𝑡                    (21) 

𝑦𝑡̂ is the predicted value of the forecasted stock return at time t, while 𝑦𝑡 denotes the 

actual log returns of the S&P500. RMSE is simply the square root of MSE, and it is 

better known as the standard deviation of the residuals. We also consider the MAE, 

which accounts for the absolute values of the residual obtained.   

Additionally, Atsalakis & Valavanis (2009a) and Leung, Daouk and Chen (2000), are 

arguing that the most valid performance measure is the accuracy of predicting the 

success rate of the stock forecasts. The hit rate of stock prediction is calculated as:   

Hit rate = 
ℎ

𝑁
                   (22) 

where ℎ  denotes the number of correct predictions of the stock trend and 𝑁 denotes 

the number of tests conducted for predicting the outcome of the stock. This can be 

described as a classification technique where we assign a value of 1 for predicting the 

index to move in the same direction as the actual observation, or a value of 0 when it 

moves in the opposite direction. However, the hit rate is not able to assess the 

magnitude of the movements for the index. As a result, the outcome of the hit rate 
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and the error measurement may deviate and propose substantial different results. We 

will report all the presented performance measures for comparison. We can then 

make more adequate conclusions on the advantages and limitations of an SVM model 

when accounting for both classifications of stock returns, as well as regression 

results.  

 

5.  Data Preprocessing and Descriptive Statistics 

The collection of predictive variables can be cumbersome due to the aggregate 

universe of forecasting predictors proposed in the financial literature. The number of 

variables and factors affecting the S&P500 are too numerous to list, and we will, 

therefore, address the importance of normalizing the input data to account for 

efficient use and reduced computational costs. Atsalakis and Valavanis (2009b) 

propose a list of various studies with a substantial number of input variables for each 

of the research papers. Additionally, Gu, Kelly and Xiu (2018) include 94 firm-

specific predictors, eight time series variables, and 74 industry sector dummy 

variables, with more than 900 baseline signals. 

To assess and determine the adequacy of the predictive ability of each variable, we 

can preprocess the data. Highly correlated variables or variables with insignificant 

power must be left out of the algorithm to reduce the computational costs. We 

highlight this through a dimension reduction technique. Data normalization will be 

conducted using Principal Component Analysis. PCA helps to overcome the issue of 

overfitting the model by using an orthogonal14 transformation to create a new set of 

linearly uncorrelated variables. Each succeeding variable will account for as much 

variation in the data as possible. This technique avoids suboptimal forecasts and helps 

to reduce noise by isolating the signals from the predictors.  

Since stock price returns have properties that are convenient for time series analysis, 

we have transformed the prices of each respective variable into daily log returns to 

                                                           
14 For this example, orthogonal variables can be described as a set of variables that are all completely uncorrelated 

to each other. 
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overcome the issue of nonstationary stock prices. Prices are assumed to have a log-

normal distribution, and by taking the first logarithmic differences of the prices, we 

are extracting log return estimates.  

𝑟𝑖,𝑡 = 𝑙𝑛 (
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
)                                (23) 

Where 𝑟𝑖,𝑡 is the daily log return of variable 𝑖 at time 𝑡. 𝑃𝑖,𝑡 is the daily closing price 

of variable 𝑖 at day 𝑡, while 𝑃𝑖,𝑡−1 is the daily closing price of variable 𝑖 at day 𝑡 − 1. 

All variables have been calculated in log returns.  
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Table 1 - Descriptive Statistics of Daily Log Returns Between 02/01/1900 – 

05/03/2019 

t=1,…,T=7350 daily adjusted closing data observation   

 

Descriptive statistics of the daily log returns for the S&P500 index over the period 02/01/1990-05/03/2019. The 

mean and the standard deviations are denoted in percentage, while the skewness, kurtosis, Augmented DF, and the 

JB test are presented in absolute values.  

 

The summary statistics in Table 1.0 presents the daily log return statistics of the 

provided financial variables for 7350 daily observations from 02/01/1990 to 

05/03/2019. The mean daily log returns are close to zero for all the variables included 

in the data set. The daily volatility measured through the standard deviation of the log 

 
Mean Standard Dev Skewness Kurtosis Augmented-DF Jarque-Bera 

SPX 0,03% 1,11% -0,2582 11,8054 -90,3534** 23824** 

DJIA 0,03% 1,06% -0,1857 11,1697 -89,5667** 20480** 

ESTX50 0,02% 1,34% -0,1234 8,5039 -86,9046** 9295** 

ENX100 0,01% 1,07% -0,0788 12,9785 -86,535** 30497** 

FTSE100 0,01% 1,09% -0,0896 9,0879 -86,671** 11358** 

HSI 0,03% 1,56% -0,1005 13,8833 -86,4653** 36282** 

IXIC 0,04% 1,44% -0,1083 9,4238 -85,9408** 12650** 

RUT 0,03% 1,30% -0,3778 9,4799 -87,3507** 13032** 

SSE 0,01% 2,05% 1,1298 27,208 -84,7844** 181010** 

VIX -0,01% 6,52% 0,8913 9,6485 -92,8838** 14508** 

WTI 0,01% 2,39% -0,7304 17,9172 -87,3253** 68792** 

TNX -0,02% 1,62% -0,0758 8,7224 -85,3875** 10034** 

XAU 0,02% 1,00% -0,0993 11,8104 -86,1875** 23781** 

*Significant at 5% Level **Significant at 1% Level 
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returns are stable around 1-2%, but significantly higher for the CBOE Volatility 

Index (VIX). The VIX index approximates the expected future realized volatility of 

the S&P 500 return over the next 30 days. Bardgett, Gourier, and Leippold (2018) 

concludes that the index has a variance risk premium. Furthermore, they show that 

some of the dynamic properties of the S&P500 returns are better captured by the VIX 

and can be a contributing reason to its daily volatility.  Since the returns of the VIX 

and the S&P500 are inversely correlated, an unexpected drop in the price of the 

S&P500 can cause an amplified increase in the price for the VIX index, leading to a 

more considerable spike in the daily volatility for the VIX.  

To analyze if the log returns follow a normal distribution, we have considered the 

higher moments of the distribution to make more adequate conclusions. The third and 

the fourth moments are characterized as the skewness and the kurtosis15. The daily 

log returns indicate that the excess kurtosis and the skewness are nonzero for all the 

estimated variables. The majority of the variables are negatively skewed, while all of 

them have a leptokurtic distribution with a peak around its mean value, as well as 

fatter tails compared to a normal distribution. For SSE Composite, both skewness and 

kurtosis are significantly larger than for the other variables, even after we adjust for 

the first 606 observations, where the index moves irrationally. The inclusion of these 

observations would inflate the return statistics even more, as well as the Augmented 

Dickey-Fuller test16 and the Jarque-Bera test17 which would be 167,29 and 8 301 504, 

respectively. The SSE Composite is known for its inherent volatility and 

governmental regulations. Recent research conducted by Lin (2018) analyzes the SSE 

Composite Index and concludes that the returns present large leptokurtosis in its 

distribution. Furthermore, this is often the case for emerging stock markets with 

excessive governmental intervention, irrational investment behavior, and 

undeveloped financial infrastructure. Previous studies have captured similar results of 

the SSE Composite index (Darrat and Zhong, 2000, p.107).    

                                                           
15 For a full description of skewness and kurtosis, see Brooks (2019, p.66-67).  
16 The Augmented Dickey Fuller test with a thorough explanation of stationarity in financial times series data are 

described by Pagan (1996, p.18-21). 
17 Jarque-Bera tests for normality in the distribution of returns. See Pagan (1996, p.34-38) for a discussion on the 

elements of normality testing. 
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These results are an unambiguous indication that each of the variables has a 

distribution that cannot be reflected thoroughly by a normal distribution. 

Furthermore, in Appendix 6 we provide the model specifications of the implemented 

Augmented Dickey-Fuller and the Jarque-Bera test. From Table 1, it can be shown 

that the null hypothesis of a unit root is rejected for all the respective variables. 

Hence, it implies that all the time series of returns are stationary, and significant at the 

1% level. We can conclude that all the variables fluctuate around a constant long-run 

mean and has a finite variance which is independent of time, making forecasting of 

the data set feasible to undertake.   

The Jarque-Bera test has been conducted to test for the normality of the distribution 

for each of the variables included in the data set. The test statistics are presented in 

Table 1. The values related to the Jarque-Bera test clearly states that the null 

hypothesis of normality is rejected at the 1% significance level for all the return time 

series. It implies that the error term of the distributions is not normal. However, when 

the sample size is sufficiently large, as what is the case for our model, the normality 

assumption can be neglected due to the Central Limit Theorem18. The random noise 

between the independent variables and the error term can still propose issues related 

to financial time series analysis, which can incur certain drawbacks when using a 

linear statistical model for prediction.  

Altay & Satman (2005) points out that financial data violates the assumption of 

normality. Both skewness and kurtosis can make ordinary least square regressions a 

potential less efficient tool for forecasting. Hence, these results imply that a 

prediction procedure that does not require the assumption of normality can increase 

the accuracy of the model. Based on our descriptive log return statistics, we can form 

a null hypothesis that the prediction results of a linear regression model will be 

insignificantly different compared to a nonlinear SVM model. If this is proven wrong, 

it can be concluded that a nonlinear model can have certain properties which are 

superior to the linear models when predicting the daily log returns of the S&P500.  

                                                           
18 The Central Limit Theorem states that for a sufficiently large sample data set from a population with a finite 

variance, the mean of that data set will approximate the mean of the population.  
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5.1 Correlation  

From Appendix 8 we have extracted the daily correlation for log return estimates 

among the selected variables. The S&P500 index is highly correlated with the US 

indices and has a significantly high correlation with the European indices as well. 

Furthermore, the S&P500 has a low correlation with Hang Seng, SSE Composite, and 

the WTI Crude oil index. As expected, we see the different indices have a higher 

correlation with those indices being geographically connected. Ramchand and Susmel 

(1998) provides interesting findings between volatility and cross-correlation for the 

US market. In a high variance state, the correlation between the US and other world 

markets are on average 2 to 3.5 times higher compared to a low variance regime. The 

findings in monthly postwar US data help to explain the low correlation between 

excess stock and bond returns. Stock and bond returns are primarily driven by news 

regarding future excess returns and inflation, respectively. Real interest rates have 

little impact on returns, although they do affect the short-term nominal interest rate 

and the slope of the term structure (Campbell and Ammer, 1993). Secondly, if we 

look at data from the early 1960s, during the 23 times the 10-year Treasury yield rose, 

the S&P 500 rose more than 80% of the time, indicating a positive correlation even 

though it is low.    

Chang, McAleer, and Tansuchat (2013) study the conditional correlations and 

volatility spillovers based on the daily returns from 1998 to 2009 of the WTI and 

Brent markets together with the FTSE100, NYSE, Dow Jones and the S&P500. Their 

findings indicated a low correlation across markets, which supports our data. 

Moreover, Bauer and McDermott (2010) conducts a descriptive and econometric 

analysis of gold on 30 years of data ranging from 1979 to 2009. Their conclusion is 

that gold indeed was both a hedge and a safe haven, supporting a correlation close to 

zero and even slightly negative with the S&P500. The VIX index represents the 30-

day forward-looking volatility, and as such, it is a natural for it to be negatively 

correlated with the other variables except for gold.  

The daily correlation proposes beneficial opportunities for prediction purposes. 

However, as we aim to forecast returns for one day ahead, the task of forecasting 

becomes substantially more challenging. The last column of the table represents the 
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correlation between the daily return of the S&P500 with the one-day lagged returns of 

the other variables. The correlations are now consequently smaller than what it is for 

daily log returns on the same day. This implies explicitly that the task of correctly 

predicting the movement of the S&P500 index will be more challenging to perform.  

 

6. Data Analysis  

6.1 Linear Regression Model  

To adequately justify the power of an SVM technique, we have implemented the 

method of linear regression to compare the prediction accuracy with that of an SVM 

model. Linear regression is a parametric regression technique where a response 

variable will be predicted from a fixed formula given in terms of predictor variables. 

The fixed coefficients will be estimated to minimize the prediction error. This 

technique is named Ordinary Least Square (OLS). We have looked at the explained 

variation and the prediction accuracy captured by the regression model, to see how 

relevant linear models are at explaining changes in the returns of the S&P500 index. 

Furthermore, the findings will help to understand if the model is dwarfed by the 

nonlinearity of financial variables and how the variables are interconnected.  

In addition to the stated input variables, we will also add lags of the log returns for 

the S&P500. The past level of prices for the S&P500 can further increase prediction 

accuracy by accounting for the correlation of the returns at different lags. 

Consequently, analyzing the autocorrelation19 for time series of log returns for the 

S&P500 has been undertaken. The corresponding autocorrelation value between the 

lags is extracted from a univariate time series by measuring the correlation between 

𝑦𝑡 and 𝑦𝑡+𝑘 where 𝑦𝑡 is the log return of the S&P500 while 𝑘 corresponds to lag 𝑘 =

0, … , 𝐾. Hence, the autocorrelation for lag 𝑘 will be 𝜌𝑘 =
𝑐𝑘

𝑐𝑜
 where 𝑐𝑜 is the sample 

variance of the S&P return series.   

                                                           
19 See Box, Jenkins and Reinsel (2015) for autocorrelation using time series analysis.  
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Below is the illustration of the autocorrelation between the returns of the S&P500 at 

different lags. Notice that we have not included the autocorrelation at lag zero:  

Figure 4 - Autocorrelation of the Log Returns for S&P500 at Various Lags 

 

Fig 4. Autocorrelation between the daily log returns of the S&P500 with its lagged values. The figure shows only 

autocorrelation for lagged values up to the previous twenty days. Notice that the autocorrelation at lag 0 has been 

discarded.   

The upper and the lower autocorrelation confidence bounds show that several of the 

lagged values are significantly correlated with the current log returns of the S&P500 

at time 𝑡. However, the autocorrelation for most lags are small and confirms the 

hypothesis that the prediction of stock prices on past data is a demanding task. 

Consequently, we will only include the most significant lags corresponding to lag 

1,2,5 and 12 when conducting forecasts on the log returns for the S&P500.  
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From the proposed input variables and the lagged log returns of the S&P500, we will 

apply the following linear regression model: 

𝑟𝑆&𝑃500,𝑡 = 𝛼 + 𝛽1𝑟𝑆&𝑃500,𝑡−1 + 𝛽2𝑟𝑆&𝑃500,𝑡−2 + 𝛽3𝑟𝑆&𝑃500,𝑡−5

+ 𝛽4𝑟𝑆&𝑃500,𝑡−12+𝛽5𝑟𝐷𝐽𝐼𝐴,𝑡−1 + 𝛽6𝑟𝐸𝑆𝑇𝑋50,𝑡−1 + 𝛽7𝑟𝐸𝑁𝑋100,𝑡−1

+ 𝛽8𝑟𝐹𝑇𝑆𝐸100,𝑡−1 + 𝛽9𝑟𝐻𝑆𝐼,𝑡 + 𝛽10𝑟𝐼𝑋𝐼𝐶,𝑡−1 + 𝛽11𝑟𝑅𝑈𝑇,𝑡−1

+ 𝐵12𝑟𝑆𝑆𝐸,𝑡 + 𝛽13𝑟𝑉𝐼𝑋,𝑡−1 + 𝛽14𝑟𝑊𝑇𝐼,𝑡−1 + 𝛽15𝑟𝑇𝑁𝑋,𝑡−1

+ 𝛽16𝑟𝑋𝐴𝑈,𝑡−1 + 𝜀𝑡 

Where 𝑟𝑆&𝑃500,𝑡 is the response variable of the regression, and the daily log return 

estimate of the S&P500 at time 𝑡. 𝑟𝑆&𝑃500,𝑡−𝑘 corresponds to the log return of the 

S&P500 at lag 𝑘=1,2,5,12. This concludes a total of 16 explanatory variables when 

excluding the constant term. The input variables are all calculated as first log 

differences of their respective prices and rates, as well as regressed on the response 

variables. Notice that both the SSE and the HSI returns are reported at time 𝑡 due to 

its closing hours which are prior to the opening of the US stock market. The Beta 

coefficient 𝛽, is the constant beta estimate for each of the respective variables, while 

𝜀𝑡 is the error term at time 𝑡. The error term captures the residual value through the 

sum of deviations between the predicted log return of the S&P500 and its actual 

value. The constant 𝛼 estimate represents the intercept of the regression line.  

It is a possibility that some of the indices are not significant in explaining the 

variation of the S&P500 due to their intraday trading range between the stock 

exchanges. For instance, FTSE100 will be affecting the US markets the same day, as 

the majority of its trading hours are completed before the initiation of the trading day 

for the S&P500. Hence, the preceding return from the previous day will potentially 

not explain as much of the variation as the intraday trading returns. Vandewalle, 

Boveroux, and Brisbois (2000) have found evidence that there is a domino effect in 

which changes of one stock market index influences the other ones, based on their 

opening hours. However, we have solely regressed the explanatory variables with its 

previous day closing log returns to stay consistent. Since both the VIX, Treasury 10-

year yield and the WTI Crude Oil have different opening hours and closing hours 

than stock indices, regressing the log returns based on different time horizons could 
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potentially distort the validity of the model. Infeasible statistical results, such as those 

related to look-ahead bias20, can produce prediction results which are ambiguous if 

we utilize log return observations with overlapping time horizons. Still, the Asian 

stock market indices are closed prior to the US stock market, and the current day 

return will be a more accurate predictor to utilize for this objective.  

As described earlier, the total sample is split between training and testing. The first 

period is used as input for training the linear regression model, while the out-of-

sample period is employed for prediction results. The statistics of the training data are 

shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
20 Look-ahead bias is related to the usage of fundamental information that would not have been publicly available 

during the time where the analysis is conducted. 
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Coefficients t-statistics 

α 0,00 1,73 

DJIA 0.02 0,35 

ESTX50 0,05 2,13* 

ENX100 -0,07 -2,67** 

FTSE100 -0,01 -0,22 

HSI 0,16 16,53** 

IXIC 0,03 1,16 

RUT -0,00 -0,00 

SSE -0,01 -1,10 

VIX -0,00 -0,28 

WTI -0,00 -0,65 

XAU -0,03 -2,20* 

TNX -0,00 -0,13 

Lag12 0,04 3,04** 

Lag5 -0,04 -2,72** 

Lag2 -0,05 -3,85** 

Lag1 -0,20 -2,97** 

R-squared: 0,0576 *Significant at 5% level **Significant at 1% level 

RMSE: 0,0113 MSE: 0,00 MAE: 0,0078 

 

The table reports the linear regression statistics for the log returns of the respective input variables. Note that this 

includes only the training dates which ranges from 22/01/1990 to 06/05/2013. 

 

Table 2 - Linear Regression of Daily S&P500 Log Returns for Data Between 

22/01/1990 – 06/05/2013 
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The R-squared estimate of 0,0576 reflects that the log return estimates of the 

respective variables explain almost none of the variation in the log returns of the 

S&P500 index for the next day. This is aligned with the results obtained for the 

analysis of the correlation, where the log returns of the S&P500 are experiencing a 

limited interrelationship with the previous day log returns for the respective 

explanatory variables. Moreover, the challenge of conducting robust predictions on 

the daily log returns of the S&P500 index is clearly evident.  

Interestingly, when regressed for the same day, Hang-Sheng has the most substantial 

affection on the daily log return of the S&P500. When lagging it by one day, it is not 

statistically significant anymore. An increase in the stock prices on the Hong Kong 

index will be an implicit indication of a positive market trend for the US stock market 

on the same day. Still, the SSE composite does not have the same effect. The 

European stock index Euronext 100 is also significant at the 1% level and helps to 

confirm the interconnectivity between the global financial markets. All the lagged log 

return values of the S&P500 are significant at the 1% level, and the estimate for the 

previous day has the most considerable influence on the current log return for 

S&P500. Furthermore, the most recent lags show implicitly that previous positive log 

returns for the index can potentially yield a negative value for the next day. The log 

returns of the gold price are also significant at the 5% level. As gold can potentially 

be a safe haven in challenging times, it is not surprising that it can have an affection 

on the S&P500 index.   

Moreover, we have conducted prediction for the test period to consider the robustness 

of forecasting the log returns of the S&P500. Based on the data used for training the 

regression model, we have implemented predictions for the linear regression model 

for the remaining data observations. The RMSE, MSE, and MAE on the test data 

report errors of 0,0080, 0,0000, and 0,0056, respectively. Below is a chart of the 

cumulative forecasted log return predictions for the S&P500 when using linear 

regression, as well as the actual cumulative log return estimates: 
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Figure 5 - Daily Cumulative Log Return Estimates of the S&P 500 Between 07/05/2013 – 

05/03/2019 

 

Fig 5. Daily prediction of the S&P500 log returns cumulated over the time period 07/05/2013 to 05/03/2019. The 

red line shows the actual cumulated log return estimates for the S&P500 returns.  

As expected, the chart shows the limitations of the linear predictions where the OLS 

model does not adequately capture the substantial momentum in the actual market 

movements. The linear model is dwarfed by the aspects of nonlinear relationships in 

the data and fail to react to short-term spikes and movements in the log return 

estimates.  

Additionally, the linear model is used both for prediction accuracy and through the hit 

rate. The hit rate accounts for the accuracy of predicting an up or a downward 

movement of the S&P500 price. We have classified the regression prediction as 1 for 

a positive log return prediction and subsequently -1 for a negative log return estimate. 

The hit rate of correctly predicted signs of the log returns for the S&P 500 is 57,40%. 

This indicates that predictions of the market movements for the S&P500 are 

somewhat possible to forecast based on the predictor set. Even though the linear 

aspects of the model struggle to capture the magnitude of the movements, it can be 

used to make more accurate classification forecasts.  
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The regression results can be somewhat ambiguous. As both the previous day log 

return of Dow Jones and Nasdaq are not significant at explaining any of variation of 

the current log return of the S&P500, it can be questioned how robust the linear 

regression model is. Furthermore, the lagged log returns of the S&P500 index were 

significant for the regression, and hence, it can potentially be a sign of 

multicollinearity, even though it is not apparent. Multicollinearity is an indication of a 

linear relationship between certain variables which can distort the result of the 

regression. A solution to this problem is to implement PCA to compose the variation 

in the data by reducing the number of variables.  

6.2 Principal Component Analysis 

Implementation of Principle Component Analysis can be advantageous to avoid the 

issues related to highly correlated variables, as already discussed. PCA is a dimension 

reduction technique that combines the input variables of the data. It helps us to reduce 

the total number of components by extracting the variables into a reduced data set, 

where the variables are orthogonal. For a full description of PCA with model 

specification, see Appendix 4. The percentage of variance explained for the log 

return estimates of the S&P500 can be fully extracted through a smaller number of 

components than what was originally used. The result is plotted below:  
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Figure 6 - Percentage Variance of Log Returns for S&P500 Explained by the Orthogonal 

Components 

 

Fig 6. The illustration shows the cumulative percentage variance explained for the S&P500 log returns as the 

number of orthogonal variables are added. The data set included ranges from 22/01/1990 to 06/05/2013 and 

consists of all the explanatory variables including the lagged log returns of the S&P500.  

 

As can be seen, 91,58% of the variance in S&P500 log returns can be adequately 

explained by only seven of the components when we utilize all the predictors. That 

implies a reduction of nine variables to avoid overfitting and occurrence of potential 

multicollinearity. Based on the first seven variables obtained through the PCA 

dimension reduction, we can now regress the new components on the daily log 

returns of the S&P500: 

𝑟𝑆&𝑃500,𝑡 = 𝜕 + 𝐿1𝑝1,𝑡−1 + 𝐿2𝑝2,𝑡−1 + 𝐿3𝑝3,𝑡−1 + 𝐿4𝑝4,𝑡−1 + 𝐿5𝑝5,𝑡−1

+ 𝐿6𝑝6,𝑡−1 + 𝐿7𝑝7,𝑡−1 + 𝑢𝑡 

Where 𝐿 is the new regression coefficient that is extracted from the OLS regression. 

𝑝1𝑡−1 is the new representation of the first orthogonal principle component 

observation, which is extracted from the explanatory variables. 𝑝 is regressed at 𝑡 −

1, while log returns of the S&P500 are estimated at time 𝑡. These factors are 
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extracted in a way that ensures that all of them are uncorrelated to each other. 𝑢𝑡 is 

the error term observed at time 𝑡, and 𝜕 is the intercept of the estimated regression. 

The regression is conducted on the training set for the same number of observations 

as for the original regression. The results of the new regression are presented below: 

 
Coefficients t-statistics 

α 0,000 1,79 

PCA1 0,01 2,50* 

PCA2 -0,02 -2,62** 

PCA3 0,02 3,15** 

PCA4 -0,00 -0,56 

PCA5 0,12 12,61** 

PCA6 -0,03 2,60** 

PCA7 0,12 10,47** 

              R-squared: 0,0485 *Significant at 5% level **Significant at 1% level 

              RMSE: 0.0114  MSE: 0.00 MAE: 0.0078 

 

 The table reports the linear regression statistics from using PCA on the daily log returns of the explanatory 

variables. Note that this includes only the training dates which ranges from 22/01/1990 to 06/05/2013. 

 

The regression results show that the R-squared is slightly reduced compared to the 

original regression. This implies that a dimension reduction technique removes some 

of the explained variations for the log returns of the S&P500. Furthermore, the MAE 

stays constant while the RMSE has increased from 0,0113 to 0,0114. However, it 

helps to keep most of the variation composed in a set of fewer predictors. All the 

independent variables except the 4th component is significant at the 5% level, and 

Table 3 - Linear Regression of the Daily S&P500 Log Returns using PCA from 

22/01/1990 to 06/05/2013 
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five of the components are further significant at the 1% level. Moreover, we can 

conclude that the principal components have removed the potential issue of 

multicollinearity by using an orthogonal transformation and making six of the 

principle components significant at explaining the variation of the log returns for the 

S&P500. However, this comes at the cost of marginally reducing the total explained 

variation of the S&P500 returns, reflected by the R-squared estimate and the increase 

in RMSE.  

When predicting log return estimates for the S&P500 between 07/05/2013 to 

05/03/2019, the RMSE, MSE, and the MAE of the test data are 0,0082, 0,0000, and 

0,0058, respectively. This is an increase in the total error for both RMSE and the 

MAE, compared to the original regression model. The Results also suggest that the 

dimension reduction technique weakens the robustness of regression forecasting for 

our test data. The prediction accuracy measured through the hit rate has also been 

estimated for the same period. Total prediction accuracy is 54,53%, which is a 

significant decrease compared to the original regression model, which returned a hit 

rate of 57,40%. We can therefore conclude that dimension reduction techniques are 

beneficial to compose the variation in the data without losing substantial forecasting 

accuracy for the training set. However, it clearly fails to improve forecasting of the 

test set through the magnitude of the movements for the log return estimates reflected 

by the RMSE and MSE scores. This is also apparent for the prediction accuracy of 

the classification, which has been explicitly reduced. As we have effectively removed 

the potential bias of multicollinearity through dimension reduction, the benefits of 

applying a more simplistic model are not completely apparent. As it does not improve 

the regression results or the prediction accuracy of the test set, there is evidence that 

the original regression is superior in providing robust classification forecasts of future 

log returns for the S&P500.  

6.3 Drawbacks of linear regression 

The drawback of a linear parameter estimation is the bias of relying on a constant 

parameter 𝛽̂ to explain the variation in the predicted value of future S&P500 log 

returns, 𝑦̂. The S&P500 has proven to experience multiple periods with significantly 
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higher volatility than what can be extracted and learned by a linear regression model. 

Such periods are usually tied to unexpected market anomalies or financial distress 

where the magnitude of the change in price is substantially larger than during regular 

periods. Hence, a fixed beta estimate will not adequately capture the amplifying 

effect of unexpected volatility.  

The pairwise interaction between the independent variables used in the regression can 

further explain more of the variation in the S&P500 log returns. For instance, a major 

event causing a drop in the Asian stock market could potentially trigger an increase in 

the global uncertainty indirectly through the VIX index. Even though the US markets 

can be affected by the Asian economy, the indirect effects that can be extracted from 

these events are potentially not fully reflected through a linear regression model. 

Additional variables can be argued to capture these nonlinear movements, but as it 

would produce an immense number of regressors, it could be unfeasible to consider 

this, even with a PCA technique. Extracting these interactions in a linear regression 

model comes at the expense of substantial computational cost. Consequently, the 

introduction of an SVM model where a nonlinear function can be mapped into an 

infinite high dimensional data space can address this issue more efficiently.  

 

7. Support Vector Machine 

Adjusting a formula to create a defined model with a minimum prediction error can 

be cumbersome. Predicting a response variable from unknown observations in an out-

of-sample test can be enhanced by implementing a nonlinear regression model. When 

data is not linearly separable, a solution can be to add a kernel function to transform 

the predictors into a linearly separable dataset. Mullainathan and Spiess (2017) 

highlight the importance of choices made for implementing a supervised learning 

model. It must be considered what function to apply and how to measure the accuracy 

of the respective output. We aim to predict both the direction and the accuracy of the 

movements for the returns of S&P500, and hence, we will account for both aspects in 

the SVM regression model. The predictors used as explanatory variables are the same 

as for the original linear regression model, where the data are all calculated as log 
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returns. The first part will solely evaluate the prediction based on forecasting the sign 

of the movement and it will be a classification problem. Secondly, we will consider 

the regression results for the SVM model and discuss if this is a better forecasting 

model used for predicting the magnitude of the movements compared to a linear 

regression. The predicted regression results will be captured by the RMSE, MAE, and 

the MSE by comparing it to the two linear regression models. The prediction of up- 

and downward movements will be calculated based on the hit rate for the test data. 

7.1 Tuning of the SVM Regression for Optimal Predictions 

According to Cao and Tay (2001), the choice of hyperparameter values depend on the 

box constraint 𝐶, the gamma for the kernel scale 𝛾, and the tolerance hyperparameter 

epsilon, 𝜖. Their research show that the performance of SVM is insensitive to 𝜖, while 

both 𝐶 and 𝛾 play an essential role for the prediction accuracy. Furthermore, the 

values must also be set to avoid the issue of overfitting and underfitting the training 

data. The values of 𝐶, 𝛾, and 𝜖 have been set iteratively for multiple kernel functions. 

The kernel functions evaluated are the linear kernel, the gaussian kernel and the 

polynomial kernel. See Appendix 3 for their model specifications.  

The prediction results for the three kernel functions estimated with different values 

for the hyperparameters are illustrated below. The performance measures of the SVM 

regression are reported as the RMSE and the hit rate, where RMSE demonstrates the 

magnitude of the predicted returns against the actual return of the S&P500, while the 

hit rate accounts for correct predictions of the regression results from up- or down-

movements: 
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Table 4 - Results of Prediction Accuracy for the Daily Log Returns of the S&P500 

Using an SVM Regression Model with Different Hyperparameter Values 

 

 Kernel Function: Linear Gaussian Polynomial 

𝐶 =  10     

𝛾 = 10 RMSE 0.0080 0.0080 0.0080 

∈= 0.01 Hit Rate 0.5794 0.5685 0.5726 

𝐶 =  100 
    

𝛾 = 10 RMSE 0.0080 0.0080 0.0080 

∈= 0.01 Hit Rate 0.5678 0.5671 0.5692 

𝐶 =  100 
    

𝛾 = 10 RMSE 0.0080 0.0080 0.0080 

∈= 0.001 Hit Rate 0.5753 0.5692 0.5706 

𝐶 =  10 
    

𝛾 = 10 RMSE 0.0080 0.0080 0.0080 

∈= 0.001 Hit Rate 0.5849 0.5842 0.5719 

𝐶 =  10 
    

𝛾 = 1 RMSE 0.0080 0.0082 0.0084 

∈= 0.001 Hit Rate 0.5746 0.5603 0.5576 

Prediction results of the SVM regression models for various hyperparameters. The prediction period ranges from 

07/05/2013 to 05/03/2019, and the training data uses log return estimates from the input variables. The best 

performing function results are highlighted with bold font.  

As can be seen, the performance measure of RMSE is relatively stable when the 

parameters are tuned incrementally. This observation is consistent with the results of 
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Cao and Tay (2001), where they suggest that these specific boundaries for the values 

of the hyperparameters help to avoid the issues of overfitting the data. They also 

argue that the Gaussian kernel is the best suited function to apply for financial time 

series data. This is contradicting with our research, where the linear kernel tends to 

outperform both the Gaussian- and the Polynomial kernel for the majority of the 

models.   

Simultaneously, the SVM model applying the linear kernel seems on average to 

consistently outperform the linear regression models when we consider the prediction 

accuracy. Since SVM is well-known for the accuracy of predicting classification 

objectives through the hit rate, it can be superior to both the linear regression models. 

However, the SVM fails to outperform the linear regression model when we account 

for the magnitude of the predictions through the RMSE (See Table 5 below for a 

comparison of forecasting results). Also, both the Polynomial kernel and the 

Gaussian kernel fails to improve the prediction accuracy relative to the linear models. 

It implies that even after transforming the input predictors into a high nonlinear 

dimension space, we are still not able to consistently outperform the simple OLS 

technique by the hit rate. Regardless, SVM can be a more precise forecasting tool 

when evaluating investment returns over a defined time period. Consequently, we 

will adopt a real investment strategy by comparing the absolute investment value 

generated by the output of the predictions for each respective model.  
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The linear kernel has the stated hyperparameters 𝐶 =  10, 𝛾 = 10 and 𝜖 = 0.001. The test period for prediction 

ranges between 07/05/2013 to 05/03/2019 and forecasts the daily log returns of the S&P500 index. 

 

8. Results 

Calculating the total return per unit dollar for each strategy is a better measurement 

than purely focusing on the prediction accuracy. As the hit rate can suffer from bias 

related to predicting a market which only moves upward, it can distort the true 

accuracy when the market is experiencing a positive trend. Moreover, models that 

forecast frequent changes in up- and down movements can be significantly affected 

by the incurred transaction costs from trading securities. Consequently, we account 

for the absolute investment return to analyze the actual impact of predictions for each 

model. 

We have selected two different investment strategies, a long-only- and a long/short 

strategy, to conclude on the viability of implementing the prediction models for 

trading. Secondly, we provide results on the long-only portfolio without transaction 

costs, as well as including the transaction costs for the long/short strategy. We 

evaluate both strategies by comparing it to a passive buy-and-hold investment as a 

benchmark. The overall results will determine if we can reject our null hypotheses 

Table 5 - Prediction Comparison of the Best Performing SVM Model to the Linear 

Regressions 

Test Period 07/05/2013 - 05/03/2019 

  Linear Regression PCA Linear SVM                 

RMSE 0,0080 0,0082 0,0080 

MAE 0,0056 0,0058 0,0056 

MSE 0,0000 0,0000 0,0000 

Hit Rate 57,40% 54,53% 58,49% 
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where a passive buy-and-hold strategy is superior to the predictions of a nonlinear 

SVM model.  

8.1 Long-only portfolios without transaction costs 

The prediction output for the two linear regression models will be equal to what we 

have previously estimated. The implementation of the optimal SVM regression model 

is justified based on the iteration of the different hyperparameter values. We have 

chosen to apply the best performing SVM model which was deemed the linear kernel 

with the parameters 𝐶 =  10, 𝛾 = 10 and 𝜖 = 0.001. We will be conducting 

investment strategies for each of the three estimated models to determine the 

adequacy of the predictions when applied to trading the underlying S&P500 index. 

The predictions will only account for the classification of the log return estimates by 

either forecasting an up- or a downward movement of the underlying index.  

For the first investment comparison, it is assumed that an investor either implements 

a passive buy-and-hold strategy or an active long-only strategy when investing in the 

S&P500. The investment period corresponds to the daily test period between 

07/05/2013 to 05/03/2019. The buy-and-hold strategy is as follows: 

𝐵𝐻𝑇 = 𝐵𝐻0 ∏(1 + 𝑟𝑆&𝑃500,𝑡)

𝑇

𝑡=1

 

Where 𝐵𝐻𝑜 is the absolute value of the total investment for an investor at initiation, 

while 𝑟𝑆&𝑃500,𝑡 is the log return of S&P500 at time 𝑡. At initiation, 𝑡 = 0, the investor 

buys an amount equivalent to $1 of the S&P500 index, and the strategy corresponds 

to holding the index until time 𝑇, which concludes 1467 days. The investment 

strategy for the three models, Linear Regression, PCA and SVM is based on 

classification of the regression prediction for the S&P500 log returns. At time 𝑡, if the 

model predicts a positive log return for the S&P500 then: 

𝑀𝑡+1 = 𝑀𝑡(1 + 𝑟𝑆&𝑃500,𝑡) 

Where 𝑀𝑡 is the absolute value of the total investment for the respective model at 

time 𝑡. If the model predicts a negative log return for the S&P500 index at time 𝑡, the 
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model will sell its long position if it holds the index. The absolute value of the total 

investment will be: 

𝑀𝑡+1 = 𝑀𝑡 

When the investor is not holding any positions in the S&P500 and the model predicts 

a negative return, the investor will keep its cash holdings. For this simplistic model, 

we have assumed that there exist no frictions in the market, and hence, there will not 

be any transaction costs, bid-ask-spreads21, rollover costs22 or inefficiencies when 

buying or selling the positions. We have also assumed that the investor earns no 

interest on its cash holdings. The total absolute investment value over the test period 

is illustrated below: 

Figure 7 - Buy-And-Hold vs Model Strategies: 07/05/2013 – 05/03/2019 

 

                                                           
21 Bid (buy) – Ask (sell) spread is the current price difference between what positions the investors have placed in 

the open market to buy or sell a security. The Ask price is always equal to or higher than the bid price  
22 This is a fee the market maker charges for investors who desire to keep their position in derivatives overnight.  
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Fig 7. The absolute investment value cumulated over the time period between 07/05/2013 – 05/03/2019 for each 

of the respective forecasting strategies when trading the S&P500 index, including the buy-and-hold strategy. No 

transaction costs or market frictions are assumed.  

 

All three models are significantly outperforming the buy-and-hold strategy when 

excluding all costs and frictions in the market. From its prediction accuracy, it can be 

concluded that the prediction models avoid adverse outcomes over the test period, to 

some extent. The total absolute investment value for the buy-and-hold strategy, the 

linear regression model, the PCA model and the SVM are $1,64, $3,45, $2,44 and 

$3,67, respectively at the end of the period. The results are an explicit indication that 

all the prediction models can consistently outperform a passive investor holding the 

S&P500 over the specific time period, when we relax the additional consequences of 

financial trading. The SVM model has also proven to be superior relative to the other 

prediction models by generating excessive returns compared to the linear regression 

models over almost the entire test period.  

However, the absolute investment value will be significantly affected when 

accounting for transaction costs. Over the stated test period of 1467 days, the linear 

regression model, the PCA model and the SVM model undertake a total of 726 

trades, 793 trades and 616 trades, respectively. Cleary, the SVM model performs 

substantially fewer trades than the two other models. This strengthens the hypothesis 

that SVM can be an even more robust forecasting model after deducting for 

transaction costs over the test period.   

8.2 Long-short portfolios with transaction costs 

For the long/short portfolio, we have compared the buy-and-hold strategy to the 

prediction results for the three forecasted models. The investment strategy of each of 

the models is again based on the classification of the prediction for the daily S&P500 

log returns. At time 𝑡, if the model predicts a positive log return for S&P500 then: 

𝑀𝑡+1 = 𝑀𝑡(1 + 𝑟𝑆&𝑃500,𝑡) 
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Where the calculations are identical as for the long-only strategy. Whenever the 

model predicts a negative log return for the S&P500 at time 𝑡, the model will sell its 

long position, if it holds the index, and go short the S&P500. Since we are using daily 

closing prices in our data, we have assumed for all portfolios that the market price 

will be identical when exiting the current position and when entering the new 

position. The absolute value of the total investment after selling the S&P500 index 

will be: 

𝑀𝑡+1 = 𝑀𝑡 (1 + (−𝑟𝑆&𝑃500,𝑡)) 

Consequently, a correct prediction when the index yields a negative log return will 

correspond to an increase in the absolute value of the total investment. This implies 

that we will always be fully invested in the market. The table below shows the mean 

return, the volatility of the returns and the Sharpe Ratio23 of each of the respective 

investment strategies, including the buy-and-hold strategy:  

 

Table 6 - Investment Results for the Long/Short Strategies 

 Buy and Hold Lin Reg PCA Reg SVM Reg 

Mean 0,04% 0,14% 0,09% 0,14% 

Standard Dev 0,82% 0,81% 0,82% 0,81% 

Sharpe Ratio 0,0452 0,1674 0,1081 0,1789 

The mean value represents the average daily log return obtained over the period between 07/05/2013 to 

05/03/2019 by investing in the S&P500 by either staying long or short, depending on the prediction for each 

respective model. The standard deviation is the variation around the mean value, while the Sharpe ratio measures 

the mean value of a variable, divided by its standard deviation. 

The linear SVM model seems to incur the largest Sharpe ratio, closely followed by 

the original linear regression model. All the three prediction models seem to be 

outperforming the buy-and-hold strategy. The findings imply that the forecasting 

information provides the investor with a strategy that is more profitable than purely 

                                                           
23 To stay consistent, we have assumed a risk-free rate of zero. The calculations will then simply be the model 

mean divided by its standard deviation.  
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holding the underlying index. Still, we need to account for transaction costs before 

concluding which strategy that is the most viable to apply. 

We have incorporated a transaction cost of 0,1% for each trade undertaken. The CME 

Group (2016) has conducted research for active individual traders to compare 

Exchange Traded Fund (ETF) costs for S&P500. Assuming we will trade an ETF of 

the underlying S&P500 index, it can be expected to be incurred a total cost of 5bps-

8bps for each long transaction. For short transactions, additional costs related to 

borrowing stocks and possible margin requirements can make the total transaction 

cost to be in the range of 12bps-15bps. Therefore, we will assume an average 

transaction cost per trade of 10bps to be a plausible estimate. This assumption is 

consistent with earlier research on the topic of predicting the S&P500. For instance, 

Gestel, et al., (2001) estimated a 10bps transaction cost. More recent research 

conducted by Fischer and Krauss (2018) imposed a transaction cost of 5bps per half-

turn, but this was merely for long-only investments. Hence, 10bps can implicitly be a 

reasonable estimate when we include both long- and short sales over the period 

between 2013 to 2019. Furthermore, when the model changes its holding from long 

to short- or the other way around, transaction costs will be incurred twice. We assume 

that when liquidating the current position, a new position will be undertaken 

simultaneously. The total absolute investment value cumulated over the out-of-

sample period for each of the respective models are provided below:  
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Figure 8 - Model Prediction for Long/Short Strategies with Transaction Costs 

 

Fig 8. The absolute investment value cumulated over the period between 07/05/2013 – 05/03/2019 for 

each of the respective forecasting strategies for trading the S&P500 ETF, including the buy-and-hold 

strategy. Notice that a transaction cost of 0.1% is included for each trade undertaken.  

 

The performance of each model has been significantly affected by the costs incurred 

from trading. The absolute investment value of the buy-and-hold strategy, the linear 

regression, the PCA and the SVM are $1,64, $1,63, $0,71 and $2,32, respectively. 

The results are an unambiguous identification of the successful prediction accuracy of 

the SVM. SVM avoids excessive trading, which can potentially erode the total 

investment value over time, due to trading costs. Compared to the long-only strategy, 

where all models outperform the buy-and-hold strategy substantially, the successive 

trading signals from the two linear regression models will prevent the gains from 

compounding to the same extent. Therefore, both the linear regression models are 

now inefficient compared to the buy-and-hold strategy. Moreover, the PCA model 
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shows explicit limitations relative to the original linear regression, indicating that the 

dimension reduction technique has led to a sub-optimal investment strategy.  

8.3 Robustness of the prediction models and validity of the results 

As we have already elaborated, the testing period can have clear prediction 

limitations as the cumulative log returns of S&P500 have increased over most of the 

duration between 2013 to 2019. Hence, a model that mainly predicts positive log 

returns, will on average obtain attractive investment results. See Appendix 9 for an 

illustration of the cumulative log return predictions for all the three models. 

Consequently, we will justify the validity of the models by applying the strategies in 

a completely different environment.  

Firstly, we include another SVM model for the purpose of comparison. This model 

implements a Gaussian kernel where each of the observations for the predictors in the 

training data set has been scaled by its variable mean and its standard deviation. 

Preprocessing of the data can enhance the forecasting accuracy by making predictions 

more feasible, without incurring look-ahead bias since we only apply this on the 

training data. The chart below illustrates the cumulative return forecasts of the SVM 

regression for a Gaussian and a linear kernel. Both models have the same 

hyperparameters as the former linear SVM regression that we have applied for 

predictions. These return estimates are compared against the actual cumulative log 

returns for the S&P500: 

 

 

 

 

 

 

 

09575730913622GRA 19703



47 
 

 

Figure 9 - Predicted Cumulative Log Returns of the S&P500 Between 07/05/2013 – 

05/03/2019 

 

Fig 9. Both the Gaussian kernel and the Linear kernel have the stated hyperparameters C =  10, γ = 10 and ϵ =

0.001 with preprocessed log return estimates and raw log return estimates, respectively. The preprocessed data 

has been normalized by configuring all the training observations with their variable mean and standard deviation. 

The benchmark is the cumulative log returns of the actual S&P500 index between 07/05/2013 - 05/03/2019. 

As can be observed, the Gaussian SVM seems to implicitly capture the movements in 

the actual cumulative log returns more adequately. Large volatility spikes in the 

S&P500 index are only predicted by the Gaussian SVM model, however at an 

amplifying rate. The linear SVM model shows limitations by predicting the index to 

move upwards consistently. Moreover, the RMSE of the Gaussian SVM model is 

0,0099 while for the Linear SVM model, the RMSE is only 0,0080. The hit rate of the 

Gaussian model is 53,31%, while the Linear model is significantly higher at 58,49%. 

This evidence concludes that the issues of daily financial data are apparent from the 

substantial noise incurred by market indices. A model that is consistently predicting 

the index to retain positive log returns can on average predict accurately when the 

market is trending upwards. Still, there could potentially be an indication that the 
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Gaussian model can be implemented for markets that experience significant volatility. 

Even though the model fails to imitate the S&P500 log returns accurately, it can 

potentially be a better forecasting tool to predict magnifying changes over a short-

term horizon.  

8.4 Testing the investment strategies during the financial crisis 

To consider the validity and robustness of our SVM model, we have accounted for a 

different time period to justify how viable the investment strategy would be when the 

financial environment is changing. We have implemented the same model 

specifications for the data set only ranging between 02/01/1990 to 31/12/2010, which 

constitute a total of 5281 observations. The training period is composed of 80% of the 

data and ranges from 22/01/1990 to 20/10/2006. It yields 4225 training observations 

and 1056 test observations. The prediction period will be from 23/10/2006 until 

31/12/2010. The period allows us to capture the anomalies experienced through the 

Great Recession to conclude the robustness of the model when unexpected market 

events occur. The table below presents the regression results for the different models 

through RMSE, MAE and MSE. The hit rate denotes the prediction accuracy of the 

models. Notice that we have included the SVM model with the Gaussian kernel to 

inspect if it can be better at capturing unexpected spikes in the S&P500 index: 
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Prediction comparison of the forecasting models for two different periods. The first test period ranges from 

07/05/2013 to 05/03/2019, while the second test period ranges from 23/10/2016 to 31/12/2010. 

It is not surprising that the forecasting results have been aggravated for the test period 

between 2006 to 2010. As the frictions of the financial markets rose, unexpected 

events were not anticipated by the market participants. Even though the predicted log 

returns fail to capture the development in the S&P500, they are still consistent when 

changing between the linear regression model and the linear SVM. For the Gaussian 

SVM, regression predictions are substantially less accurate than for the other three 

models, although the hit rate has increased from the first to the second test period. As 

mentioned, the Gaussian model tends to capture the unexpected spikes in the price of 

Table 7 - Prediction Comparison of the Two Test Data Sets for the Log Return 

Estimates of the S&P500 

 Test Period 07/05/2013 - 05/03/2019 

  Linear Regression PCA SVM SVM Gaussian 

RMSE 0,0080 0,0082 0,0080 0,0099 

MAE 0,0056 0,0058 0,0056 0,0064 

MSE 0,0000 0,0000 0,0000 0,0000 

Hit Rate 57,40% 54,53% 58,49% 53,31% 

Test Period 23/10/2006 - 31/12/2010 

 
Linear Regression PCA SVM Linear SVM Gaussian 

RMSE 0,0163 0,0167 0,0165 0,0257 

MAE 0,0107 0,0108 0,0107 0,0153 

MSE 0,0003 0,0003 0,0003 0,0007 

Hit Rate 56,25% 53,41% 56,16% 54,17% 
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the S&P500, but at an amplifying rate. This is not the case during the prediction 

period of the Great Recession. The Gaussian model fails to predict the magnifying 

changes in the returns, and the regression errors are considerably larger.  

The hit rate of each of the respective models indicates that classification forecasting is 

still possibly a viable investment strategy. Even though all models are marginally less 

consistent than for the first prediction period, we can make forecasting decisions that 

potentially can generate excess returns relative to a buy-and-hold investor. Moreover, 

the hit rate of the linear regression model is now higher than for the linear SVM 

model. The results can be an indication that the SVM model fails to be consistently 

superior to other statistical techniques when changing the data set and the forecasting 

period. Furthermore, we have accounted for the classification of predicting the daily 

log returns of the S&P500 over the test period. The investment results for each of the 

models are depicted in the table below: 

The investment results for daily log returns obtained over the period between 23/10/2006 to 31/12/2010 from 

investing in the S&P500 by either staying long or short, depending on the prediction for each respective model. 

The superiority of the linear SVM model for the first test period has now been 

dwarfed by the excess returns generated from the linear regression model. The linear 

regression model is simultaneously experiencing the least volatility in the obtained 

daily log returns, resulting in the most significant Sharpe ratio. Furthermore, the 

Gaussian SVM is not able to produce better results even though the financial market 

is struck by intensifying volatility. Notice that we will still have to consider the 

transaction costs before we can conclude on the profitability of the strategies.  

Table 8 - Investment Results for the Long/Short Strategies over the Investment 

Period 23/10/2006 - 31/12/2010 

  Buy and Hold Lin Reg PCA Reg Lin SVM Gaus SVM 

Mean -0,01% 0,27% 0,10% 0,24% 0,09% 

Std 1,69% 1,67% 1,69% 1,68% 1,69% 

Sharpe -0,0047 0,1613 0,0614 0,1447 0,0549 
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By implementing the classification results of the models, we can now assess the 

actual profitability for investing in the S&P500 index by accounting for transaction 

costs. Again, we have considered the long/short strategy for each respective model 

over the new prediction period where the initial investment is $1 dollar. The figure 

below illustrates the cumulated absolute investment value over the period from 

23/10/2006 to 31/12/2010 for the various models. Both the Gaussian- and the linear 

SVM models are included for comparison. The linear SVM model has the same 

hyperparameters as estimated for the full test set, while the Gaussian model has the 

same hyperparameters, but with standardized data:  

Figure 10 - Long/Short Strategy with Transaction Costs Between 23/10/2006 – 31/12/2010 

 

Fig 10. The absolute investment value cumulated over the period between 23/10/2006 – 31/12/2010 for each of 

the respective forecasting strategies by trading the S&P500 ETF, including the Gaussian SVM model. Notice that 

a transaction cost of 0.1% is added for each trade undertaken.  

The absolute investment value at the end of the period for the buy-and-hold strategy, 

linear regression model, PCA, linear SVM and Gaussian SVM are $0,79, $4,97, 

$0.81, $3,96 and $0,77, respectively. Clearly, only the original linear regression 

model and the linear SVM outperform the buy-and-hold strategy substantially over 

the period. These two models profit on its predictions by shorting the S&P500 index 
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when the it falls considerably in the period between 2008 to 2009. This evidence 

proves the robustness of the forecasting ability for both strategies. However, the 

choice of implementing the most profitable forecasting model is ambiguous. The 

linear regression model is significantly generating excess returns compared to the 

linear SVM for the second test period. The outperformance of the linear SVM for the 

full data set is now the least viable investment opportunity among the two strategies. 

Furthermore, the application of a Gaussian SVM, which is better at predicting urgent 

spikes and volatility of the index has apparent drawbacks when forecasting during the 

financial crisis. Even though all models can implicitly avoid some of the negative 

periods, the Gaussian SVM and the PCA models have limitations of taking advantage 

of the negative log returns.  

Moreover, the transaction cost per trade of 0.1% can be an unlikely estimate due to 

the illiquidity and the issues of finding a counterparty to trade with, during the 

financial crisis. Additionally, shorting was even more problematic, resulting in 

exceptionally high costs and a lack of available securities in the open market. The 

linear regression, PCA, Linear SVM and Gaussian SVM conducts a total of 546, 580, 

516 and 545 trades, respectively. This reflects a substantial number of trades 

necessary to undertake during the total of 1056 trading days, to profit from the 

strategies. Once again, the strength of the linear SVM is apparent as it consistently 

performs fewer transactions than the other models. Hence, the linear SVM would be 

more beneficial at times when markets are experiencing frictions, and trading will be 

more challenging to undertake.  

 

9. Conclusion and further analysis  

Our results have shown that the implementation of a supervised SVM regression 

model that forecasts log returns of the S&P500 can outperform a passive buy-and-

hold strategy, both by generating excess returns and reduced volatility. SVM has 

proven superior to the linear regression models when we conduct investment 

strategies for the out-of-sample period between 2013 to 2019. However, when 

changing the prediction period to the Great Recession, SVM is outperformed by the 
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linear regression model. Such a result is in line with previous research concluding 

that the choice of input data and the size of the data set, is at least equally important 

as the choice of a model technique. This supports the fact that no algorithm is 

consistently superior to others. Regardless, the buy-and-hold strategy is outperformed 

by both prediction models for our two selected test periods. As such, we have proven 

that implementing a trading strategy based on the predictions of an SVM regression 

model could potentially be a more viable option compared to a passive approach. 

However, conducting additional research for multiple time periods should be 

examined before concluding that implementation of this active trading strategy can 

generate excess returns and reduced volatility, consistently over time. 

While the SVM model is a feasible investment option for our findings, unexpected 

anomalies and other adverse events can distort the investment results for the SVM 

model. Without additional research, our model is not necessarily superior to the 

passive buy-and-hold strategy over multiple time periods but can potentially be a 

supplement for investors that want to include an active strategy to their portfolio. We 

suggest that adding a more diverse selection of variables with predictive abilities can 

help to explain additional variability for the log returns of the S&P500. This can 

further be advantageous for an SVM model and enhance the prediction accuracy by 

extracting nonlinear relationships between variables. Such factors can be associated 

with currency pairs, macroeconomic factors, and individual stocks.  

While both the SVM- and the linear regression model show promising prediction 

results, the ambiguous outcome of deciding on the best-qualified model should be 

further analyzed by accounting for the total number of trades undertaken. We have 

proven that when analyzing the potential of a trading strategy, the frequency of 

trading must be accounted for in addition to prediction accuracy. We leave the 

discussion of accurately measuring transaction costs, market frictions, and correction 

for bid-ask-spreads, to further research. If the costs and issues of trading securities are 

apparent, SVM can then explicitly be the preferred model based on our findings, 

outperforming the linear regression strategy by conducting substantially fewer trades 

on average. This evidence should be further discussed and analyzed by conducting 

predictions for multiple periods to adequately conclude if the SVM is consistently 

performing better than a buy-and-hold strategy, as well as a linear regression model. 
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Appendix  

Appendix 1:  

Table 9 - Input Variables used for forecasting 

 

 

No. Acronym Full Name Factor Frequency Characteristics  

1 SPX S&P 500 Price Daily Stock Index 

2 DJIA Dow Jones Industrial Average Price Daily Stock Index 

3 ESTX50 Euro Stoxx 50  Price Daily Stock Index 

4 ENX100 EuroNext 100 Price Daily Stock Index 

5 FTSE100 Financial Times Stock 

Exchange 100 

Price Daily Stock Index 

6 HSI Hang Seng Index Price Daily Stock Index 

7 IXIC Nasdaq Composite  Price Daily Stock Index 

8 RUT Russell 2000  Price Daily Stock Index 

9 SSE Shanghai Stock Exchange  Price Daily Stock Index 

10 VIX CBOE Volatility Index Price Daily Volatility 

Index 
11 WTI WTI Crude Oil Price Daily Commodity 

Index 
12 XAU Gold Spot Price Daily Commodity 

Index 
13 TNX Treasury Yld Index- 10Yrs 

Note  

Yield Daily Interest Rate 

Index 
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Appendix 2:  

Data Collection  

The data is gathered from multiple open source sites online and is accessible for 

anyone who desires the same or similar data inputs. Most of the stock price data and 

the commodity data are collected from Yahoo finance and Bloomberg. The stock 

price observations for FTSE100 is gathered from the home page of London Stock 

Exchange, while the data regarding the treasury data is all collected from the 

homepage of the US Department of the Treasury.  

Each country has various holidays where the domestic stock indices are closed. 

Darrat and Zhong (2000) express the possible problems of daily financial data which 

can be affected by biases due to bid-ask spreads and holidays when certain markets 

are closed. However, we will assume that the previous day closing price for each of 

the financial observation is used whenever the market is closed due to holidays. This 

is consistent for all the variables. Moreover, both the stock indices of Euronext100 

and the SSE Composite were not present at the beginning of our sample period. We 

therefore assume that the opening price of the stock index at initiation will be 

constant until trading is undertaken. Additionally, we exclude those days where the 

S&P 500 index was closed, as this is the index we aim to forecast.  

Since we have a timeframe of almost 30 years there is a high probability that 

significant changes within the indices have occurred. To keep the consistency 

throughout our dataset we collect the adjusted closing price for all our variables. The 

adjusted closing price takes into account factors such as dividends, stock splits and 

new stock offerings and makes it possible to compare newer data observations 

directly with older observations.   
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For the S&P 500 we have 7.350 observations, and most of the selected variables have 

the same amount of observations. Still, there are two variables that has less 

observations than the other variables. 

 

1. The SSE Composite were traded from the initiation period of 

December 19,1990. However, the index was officially launched on 

February 21, 1992 and we therefore assume a price equal to its trading 

price at the official launch prior to this date. This is backed up by the 

reason that prices are moving irrational between these two periods, 

causing inconsistent data observations. In our dataset we have 7105 

observations, and the observations prior to the official launch have 

been kept constant at the first official price of 1266,49.  

 

2. Euronext 100 was established in 2000 with the merger of three 

European exchanges and as such, we only have 4822 observations 

available. Observations prior to year 2000 will be kept constant at the 

price of 1000, which was the initiation price. 

 

Appendix 3: 

For SVM, a kernel can be referred to as a method of using a linear classifier, even 

though we have a nonlinear data set. Since financial data is nonlinear in nature, kernel 

proposes the opportunity to transform the input variables into a data set that can be 

more easily applied for a statistical technique. Notice that for 𝜃(𝑥𝑖), vector 𝑖 for the 

observations of the explanatory variables are transformed into an unknown high 

dimensional data space. This is possible by applying the kernel trick24.  The dual 

problem has the properties 𝜃(𝑥𝑖)
𝑇𝜃(𝑥𝑗) where a 2nd-degree polynomial 

                                                           
24From the Mercer’s theorem, there exists a function 𝜃 that maps two variables, a and b, into another 

space, such that 𝐾(𝑎, 𝑏) =  𝜃(𝑎)𝑇𝜃(𝑏) Therefore, you can apply a kernel 𝐾 since you know that 𝜃 

exists, even without having knowledge of 𝜃 . See a full description of the Mercer’s theorem from 

Minh, Niyogi and Yao (2006).  
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transformation can replace the dot product of the input vector 𝑖 and 𝑗. Hence, 

avoiding the trouble of transforming the variables are making the algorithm 

significantly more computational efficient from applying the kernel trick. The kernel 

trick will help to express the inner product of the predictors in a higher dimensional 

data space. The chosen kernel computes the dot product of 𝜃(𝑥𝑖)
𝑇𝜃(𝑥𝑗) only based 

on their original vectors.  

We can rephrase the original vectors to be: 

𝐾(𝑎, 𝑏) = 𝜃(𝑥𝑖)
𝑇𝜃(𝑥𝑗) 

The introduction of the dual problem, which is derived in Appendix 4, proposes 

certain benefits which help us to avoid the computation of transforming the data into 

a higher dimensionality space. We have accounted for three kernel functions in this 

paper. The kernel functions 25 evaluated are the following: 

Linear Kernel 𝐾𝐿(𝑎, 𝑏) = (𝑥𝑖)
𝑇𝑥𝑗                   (4) 

Polynomial Kernel  𝐾𝑃(𝑎, 𝑏) = (1 + (𝑥𝑖)𝑇𝑥𝑗)𝑑                (5) 

Gaussian RBF Kernel 𝐾𝐺(𝑎, 𝑏) = 𝑒𝑥𝑝(−‖𝑥𝑖 − 𝑥𝑗‖
2

)                           (6) 

Where 𝐾𝑃 represents a polynomial kernel of order 𝑑, where 3 is set at default. We 

will evaluate each of these functions for comparison to conclude which is the best 

suited to predict financial returns for the S&P500.  

Appendix 4: 

To fully understand the statistical procedure of conducting a linear SVM technique, 

we must implement optimization of certain hyperparameters to obtain better 

forecasting accuracy. By finding the value of 𝑏 and 𝑤 that maximizes the margin 𝑔, 

we can generate prediction estimates that are optimal for the proposed decision 

function (Equation 1). Simultaneously, the slack variable 𝜉 must be minimized to 

reduce the total margin violations of prediction errors. We must introduce another 

                                                           
25 For a discussion on the kernel functions, see Amari and Wu (1999).   
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hyperparameter, 𝐶, which is described as the box constraint. It helps with the 

regularization of the model by defining the trade-off between the objective of 

minimizing ‖𝑤‖ and 𝜉 simultaneously.  

We are now ready to denote the constrained optimization problem in the following 

equation:  

 

𝑚𝑖𝑛 
𝑤,𝑏,𝜉

       
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1         (7) 

s.t 

𝑡𝑖( 𝑤𝑇𝜃(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  and  𝜉𝑖 ≥ 0  ∀𝑖 

 

This is the primal formalization for inseparable variables, such as for financial time 

series data. We are minimizing the feature weight ‖𝑤‖ such that we can maximize 

the margin 𝑔 from each side of the decision boundary. Concurrently, we are 

minimizing the sum of the slack variable 𝜉 to reduce the total amount of 

misclassifications for the estimated model, while still allowing some instances of 

misclassification. The slack variable is crucial to avoid the common issue of 

overfitting or underfitting the data for financial time series analysis. When the model 

classifies the data points correctly, 𝜉 = 0, while data points that are predicted 

incorrectly will have 𝜉 > 0. This implies that we conduct a convex quadratic 

optimization. The objective function is convex quadratic in 𝑤, while the constraints 

are linear in 𝑤 and 𝜉.  

Moving from the primal formalization above to the soft-margin formulation, requires 

the implementation of the Lagrange multipliers to minimize the constraint 

optimization problem. By deriving the primal objective function, we can move to the 

SVM dual problem. This helps us to transform a constrained optimization objective 

into a new unconstrained one. By introducing two Lagrange multipliers, 𝛼 and 𝜇, we 

can find the stationary points of the Lagrangian, such that we will obtain the solution 
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to the constrained optimization problem. Since we include an inequality constraint, 𝛼 

and 𝜇 will be of the form Karush-Kuhn-Tucker (KTT) where 𝛼𝑖, 𝜇𝑖 ≥ 0 ∀𝑖. From 

equation (7), we can restate the minimization problem into the Generalized 

Lagrangian for the soft-margin formulation: 

𝐿(𝑤, 𝑏, 𝛼, 𝜇) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 − ∑ 𝛼𝑖(

𝑁
𝑖=1 𝑡𝑖( 𝑤𝑇𝜃(𝑥𝑖) + 𝑏) −

(1 − 𝜉𝑖)) − ∑ 𝜇𝑖𝜉𝑖
𝑁
𝑖=1                                 (8) 

s.t 

𝛼𝑖 ≥ 0 ∀𝑖 

𝑡𝑖( 𝑤𝑇𝜃(𝑥𝑖) + 𝑏) ≥ 1 ∀𝑖 

We can now compute the partial derivatives of the equation to locate the stationary 

points 𝑤̂, 𝑏̂ and positive 𝜉 for reaching a solution. The complementary slack condition 

implies that either  𝛼𝑖 = 0 or that if 𝛼𝑖 > 0, the 𝑖𝑡ℎ observation is classified as a 

support vector since it lies exactly on the decision boundary.  

The partial derivatives of the equation above are as follows: 

𝜕

𝜕𝑤
𝐿(𝑤, 𝑏, 𝛼, 𝜇) = 𝑤 − ∑ 𝛼𝑖

𝑁

𝑖=1

𝑡𝑖𝜃(𝑥𝑖) 

𝜕

𝜕𝑏
𝐿(𝑤, 𝑏, 𝛼, 𝜇) = − ∑ 𝛼𝑖

𝑁

𝑖=1

𝑡𝑖 

𝜕

𝜕𝜉
𝐿(𝑤, 𝑏, 𝛼, 𝜇) = 𝐶 − ∑ 𝛼𝑖

𝑁

𝑖=1

− ∑ 𝜇𝑖

𝑁

𝑖=1
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From there, we can set both partial derivatives equal to zero. We then obtain the 

properties of the stationary points: 

 

𝑤̂ = ∑ 𝛼̂𝑖
𝑁
𝑖=1 𝑡̂𝑖𝜃(𝑥𝑖)          (9) 

∑ 𝛼𝑖̂
𝑁
𝑖=1 𝑡𝑖̂ = 0                   (10)   

∑ 𝛼̂𝑖
𝑁
𝑖=1 = 𝐶 − ∑ 𝜇̂𝑖

𝑁
𝑖=1                  (11) 

 

By rearranging the Generalized Lagrangian equation and including the above 

definitions for the stationary points, we have the final dual formulation for the SVM: 

 

min
𝛼

1

2
∑ ∑ 𝛼𝑖

𝑁
𝑗=1 𝛼𝑗

𝑁
𝑖=1 𝑡𝑖𝑡𝑗𝜃(𝑥𝑖)

𝑇𝜃(𝑥𝑗) − ∑ 𝛼𝑖
𝑁
𝑖=1                          (12) 

s.t 

 

𝛼𝑖̂ ≥ 0 ∀𝑖 

∑ 𝛼𝑖̂

𝑁

𝑖=1

𝑡𝑖̂ = 0 

0 ≤ 𝛼𝑖̂ ≤ 𝐶 

 

We will have to find the vector for 𝛼̂ that minimizes the function above for all the 

observations. This is named the dual form of the SVM problem. Notice that the final 

set of inequalities, 0 ≤ 𝛼𝑖̂ ≤ 𝐶, define the box constraint 𝐶. It constraints the value of 
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𝛼 in a bounded region. Once the vector has been obtained, we are now able to 

calculate 𝑤̂ from equation (9). Moreover, the support vectors must consequently 

verify that 𝑡̂𝑖( 𝑤̂𝑇𝜃(𝑥𝑖) + 𝑏̂) = 1, such that if the 𝑚𝑡ℎ observation is a support vector 

(𝛼̂𝑚 > 0) , then we can obtain 𝑏̂ = 𝑡̂𝑚 −  𝑤̂𝑇𝜃(𝑥𝑚). We perform an average 

computation over all 𝑖 support vectors to finally obtain an intercept value which is 

stable and more precise. This implies: 

𝑏̂ =
1

𝑁−1
∑ (𝑡̂𝑖 −  𝑤̂𝑇𝜃(𝑥𝑖

𝑁
𝑖=1 ))                 (13)

    

Ultimately, since the estimated 𝑤̂ will have an equal number of dimensions as 𝜃(𝑥), 

it will not be computationally efficient to calculate it. Therefore, we can extract the 

solution of 𝑤̂ from Equation (9) and rearrange it into the decision function (Equation 

1). By using the kernel trick for a new instance 𝑥𝑗, we can make classified 

predictions:  

𝜑̂𝑤̂,𝑏̂ (𝜃(𝑥𝑗)) = 𝑤̂𝑇𝜃(𝑥𝑗) + 𝑏̂ = (∑ 𝛼̂𝑖

𝑁

𝑖=1

𝑡𝑖𝜃(𝑥𝑖))

𝑇

𝜃(𝑥𝑗) + 𝑏̂ 

 

𝜑̂𝑤̂,𝑏̂ (𝜃(𝑥𝑗)) = ∑ 𝛼̂𝑖
𝑁
𝑖=1 𝑡𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏̂               (14) 

s.t 

𝛼̂𝑖 > 0 ∀𝑖  

Note that when 𝛼̂𝑖 > 0, we have a support vector. The predictions will only compute 

the outcome on a new input 𝑥𝑗 if it is a support vector. Concurrently, the support 

vectors will form the decision boundary. Hence, we will avoid the computational cost 

of including all the training instances. The bias term 𝑏̂ can be obtained in a similar 

fashion by combining equation (13) with equation (9).  
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Appendix 5: 

Since the function shown in equation (3) will not be possible to obtain for inseparable 

data sets, we introduce a second slack variable 𝜉∗. Consequently, the minimization 

problem must include another hyperparameter which must be minimized. The new 

primal objective function is then the following: 

𝑚𝑖𝑛 
𝑤,𝑏,𝜉,𝜉∗

       
1

2
𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1                                       (15) 

S.t 

 𝑦𝑖 − (𝑤𝑇𝜃(𝑥𝑖) + 𝑏)) ≤ 𝜖 +  𝜉𝑖 

 (𝑤𝑇𝜃(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
∗   

𝜉𝑖, 𝜉𝑖
∗ ≥ 0   ∀𝑖 

This allows the errors of the regression to maximum be as large as the two slack 

variables while still satisfying the stated conditions. The loss function for 𝜖 is linear 

and ignores the regression errors that are smaller than the epsilon value: 

𝐿𝜖̂ = {
0  𝑖𝑓 |𝑦 −  𝑤𝑇𝜃(𝑥) + 𝑏| ≤ 𝜖 

             |𝑦 −  𝑤𝑇𝜃(𝑥) + 𝑏| − 𝜖    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Hence, the loss measures the total distance between the observed value of 𝑦 and the 𝜖 

boundary. Moving from the primal formulation to the dual formulation is similar to 

what we did for the linear SVM classifier. The SVM regression problem is convex 

and satisfies the constrained optimization objective when moving to the dual 

formulation. As for the linear classification model, the regression model also 

introduces two Lagrange multipliers, 𝛼 and 𝜇. Both are of the form KTT where 

𝛼𝑖, 𝜇𝑖 ≥ 0 ∀𝑖. Moving from the primal formulation to the dual formulation, the 

process is similar to that of the linear SVM specifications. The nonlinear SMV dual 

formula will have to find the coefficients that minimize:  
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min
𝛼,𝜇

𝐿 =
1

2
∑ ∑ (𝛼𝑖

𝑁
𝑗=1 − 𝜇𝑖)(𝛼𝑗 − 𝜇𝑗)𝐾(𝑥𝑖𝑥𝑗)𝑁

𝑖=1 + 𝜀 ∑ (𝛼𝑁
𝑖=1 𝑖

+ 𝜇𝑖) +

∑ 𝑦𝑖(𝛼𝑁
𝑖=1 𝑖

− 𝜇𝑖)                    (16) 

s.t 

𝛼̂𝑖, 𝜇̂𝑖 ≥ 0 ∀𝑖 

∑(

𝑁

𝑖=1

𝛼̂𝑖 − 𝜇̂𝑖) = 0 

0 ≤ 𝛼𝑖̂ ≤ 𝐶 ∀𝑖 

0 ≤ 𝜇𝑖̂ ≤ 𝐶 ∀𝑖 

Whenever the observations lie inside the epsilon boundary, the Lagrange multipliers 

will both be strictly equal to zero. However, when this is not the case, the respective 

observations will be assigned as a support vector. Notice that the box constraint value 

𝐶 will still decide on the boundary region for the Lagrange multipliers. The final 

prediction function will then only depend on the support vectors. The prediction 

function for the SVM regression shown below will apply the kernel function and 

introduce the two Lagrange multipliers.  

𝜑̂∗ (𝜃(𝑥𝑗)) = ∑ (𝛼̂𝑖
𝑁
𝑖=1 − 𝜇̂𝑖)𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏̂                          (17) 

S.t 

𝛼̂𝑖(𝜖 + 𝜉𝑖 − 𝑦𝑖 + 𝜑̂∗) = 0  ∀𝑖 

𝜇̂𝑖(𝜖 + 𝜉𝑖
∗ + 𝑦𝑖 − 𝜑̂∗) = 0  ∀𝑖 

𝜉𝑖(𝐶 − 𝛼̂𝑖) = 0 ∀𝑖 

𝜉𝑖
∗(𝐶 − 𝜇̂𝑖) = 0 ∀𝑖 

This finally implies that both the Lagrange multipliers will be zero whenever the 

observations fall strictly inside the epsilon tube. When the Lagrange multipliers are 
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nonzero, they will be assigned as support vectors used for predictions. This is exactly 

the same as for what we obtained when we derived the classification model for the 

SVM. Forming the decision boundary of the model will simply be determined by the 

support vectors.   

 

Appendix 6: 

The Augmented Dickey Fuller test and the Jarque-Bera test has been conducted to 

test our data set for stationarity and normality, respectively. By conducting an 

Augmented Dickey-Fuller test, we test for a unit root in the return series. The test 

statistics are defined as:  

𝑇𝑆 =  
𝛾̂

𝑆𝐸(𝛾̂)
                        (24) 

  

where 𝛾 is estimated through the following regression ∆𝑦𝑡 = 𝛾𝑦𝑡−1 + 𝑢𝑡 and ∆𝑦𝑡 is 

the change in 𝑦 between observation 𝑡 − 1 and observation 𝑡. 𝑦 is here denoted as the 

log first differences of the price estimate for the respective input variables.  

For the Jarque-Bera test, we test for the normality. By applying both skewness and 

kurtosis, we consider the third and fourth moments of the distribution. We can test 

whether the coefficient of skewness and excess kurtosis are jointly equal to zero. The 

test statistics of Jarque-Bera is the following: 

𝐽𝐵 = 𝑇 [
𝑆𝑘𝑒𝑤2

6
+

(𝐾𝑢𝑟𝑡−3)2

24
]                             (25) 
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Where 𝑆𝑘𝑒𝑤 and 𝐾𝑢𝑟𝑡 represents the skewness and the kurtosis presented below, 

while T is the total number of observations 

 

 

𝑆𝑘𝑒𝑤 =  
1

𝑁−1
∑ (𝑦𝑡−𝑦̅)3𝑇

𝑡=1

(𝜎2)3/2
                 (26) 

𝐾𝑢𝑟𝑡 =
1

𝑁−1
∑ (𝑦𝑡−𝑦̅)4𝑇

𝑡=1

(𝜎2)2                  (27)

      

𝑦̅ is the mean value of the log first difference for the respective variable and 𝜎 is the 

corresponding standard deviation for the variables. 
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Appendix 7: 

Principle Component Analysis: 

PCA is a dimension reduction technique utilized in situations where multiple 

variables are highly correlated. By decomposing the structure of the variables into a 

set of factors, the new transformed variables will be uncorrelated to each other. More 

specifically, we have 𝑘 explanatory variables which will be transformed into 𝑘 

uncorrelated variables.  

We can construct principal components that are independent linear combinations of 

the raw data: 

𝑝1 =  𝜏11𝑥1 + 𝜏12𝑥2 + ⋯ +  𝜏1𝑘𝑥𝑘 

⋮            ⋮            ⋮  

𝑝𝑘 =  𝜏𝑘1𝑥1 + 𝜏𝑘2𝑥2 + ⋯ +  𝜏𝑘𝑘𝑥𝑘 

 

s.t 

 𝜏2
11 + 𝜏2

12 + ⋯ +  𝜏2
1𝑘 = 1 

⋮            ⋮            ⋮  

𝜏2
𝑘1 + 𝜏2

𝑘2 + ⋯ +  𝜏2
𝑘𝑘 = 1 

𝑝𝑘 is the 𝑘th principle component estimated through independent linear combinations 

of the original data and 𝑥𝑘 is the 𝑘th explanatory variable used in the regression. 𝜏𝑖𝑗 

denotes the coefficient on the 𝑗th explanatory variable which is estimated for the 𝑖th 

principal component. The estimated coefficients must meet the criterion that the sum 

of the squares of all coefficients for each respective component must sum to one. 

After obtaining the principal components, a new regression can be estimated with the 

principal components of the first 𝑔 principal components which are sufficiently 
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capturing the variation of the data in the response variable. The remaining 𝑘 − 𝑔 

principal components will be discarded. The proportion of the total variation in the 

original data set can be estimated as: 

𝜇𝑖 =  
𝜑𝑖

∑ 𝜑𝑖
𝑘
𝑖=1

 

 

𝜑𝑖 denotes the eigenvalue of principle component 𝑖, and reflect how much of the total 

variation in the original data each principal component explains through 𝜇𝑖. The new 

obtained principal components will now be orthogonal, and we have effectively 

removed the statistical issues related to multi-collinearity.  
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Appendix 8: 

               

 
Table 10 - Correlation of Daily Log Returns Over the Period Between 02/01/1990 to 05/03/2019 

 
SP500 Dow ESTX Euronext FTSE HangSeng Nasdaq Russel SSE VIX WTI Treas10y Gold SP500t1* 

SP500 1,00 0,96 0,53 0,51 0,51 0,18 0,88 0,86 0,02 -0,71 0,11 0,27 -0,05 -0,05 

Dow 0,96 1,00 0,52 0,49 0,50 0,18 0,79 0,80 0,02 -0,68 0,09 0,26 -0,06 -0,05 

ESTX 0,53 0,52 1,00 0,85 0,82 0,36 0,48 0,51 0,06 -0,41 0,12 0,28 -0,04 -0,04 

Euronext 0,51 0,49 0,85 1,00 0,78 0,31 0,45 0,48 0,07 -0,39 0,18 0,32 -0,02 -0,06 

FTSE 0,51 0,50 0,82 0,78 1,00 0,36 0,44 0,47 0,06 -0,39 0,16 0,24 0,00 -0,04 

HangSeng 0,18 0,18 0,36 0,31 0,36 1,00 0,18 0,19 0,19 -0,13 0,07 0,10 0,02 -0,03 

Nasdaq 0,88 0,79 0,48 0,45 0,44 0,18 1,00 0,87 0,02 -0,64 0,08 0,25 -0,05 -0,03 

Russel 0,86 0,80 0,51 0,48 0,47 0,19 0,87 1,00 0,02 -0,65 0,13 0,29 -0,01 -0,04 

SSE 0,02 0,02 0,06 0,07 0,06 0,19 0,02 0,02 1,00 -0,03 0,02 0,03 0,02 -0,01 

VIX -0,71 -0,68 -0,41 -0,39 -0,39 -0,13 -0,64 -0,65 -0,03 1,00 -0,08 -0,21 0,03 0,02 

WTI 0,11 0,09 0,12 0,18 0,16 0,07 0,08 0,13 0,02 -0,08 1,00 0,17 0,22 -0,03 

Treas10y 0,27 0,26 0,28 0,32 0,24 0,10 0,25 0,29 0,03 -0,21 0,17 1,00 -0,11 -0,03 

Gold -0,05 -0,06 -0,04 -0,02 0,00 0,02 -0,05 -0,01 0,02 0,03 0,22 -0,11 1,00 -0,02 

SP500t1* -0,05 -0,05 -0,04 -0,06 -0,04 -0,03 -0,03 -0,04 -0,01 0,02 -0,03 -0,03 -0,02 1,00 

*Note that SP500t1 is the correlation between the one-day lagged log returns of the respective variables and the daily log returns of the S&P500 
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Appendix 9:  

Figure 11 – Cumulative Log Returns of the S&P500 Between 07/05/2013 – 05/03/2019 

 

Fig 11. Predicted cumulative log returns of the S&P500 for daily data between 07/05/2013 to 05/03/2019. The red 

line illustrates the actual cumulative log returns of the index, while the other three lines illustrate the predicted 

cumulative log returns for the linear regression model, the PCA model and the Linear SVM model.  
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