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Abstract

In this paper we find that in the Swedish market principal protected notes (PPN) or
an alternative replicating strategy of such kind, can be an adequate investment
vehicle for retail investors with different sources of liquidity in periods of stable
volatility and low interest rates. We assessed the fair value of such notes and
compared the offered participation rates by the issuing financial institutions and
found tendencies of overpricing for the index PPN at issuance. Our results illustrate
how in addition of the capital protection, this type of structured products can be as
profitable or more than other alternative investing choices.
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1 Introduction

Structured products have existed in Europe since the 1970s and were developed in
response to investors demand for achieving risk-return objectives and for issuers
risk distribution needs (Beder & Marshall, 2011). More recently these types of
securities have become increasingly popular in the United States and Asia. In the
4" 2018 Nordic conference for structured products and derivatives, the data
presented evidence of a global tendency to an increasing market for structured

products.

Structured products are investment vehicles where you pre-package two or more
financial asset classes together to be comprised as a single pay-out structure. The
market of structured products has undergone much criticism especially in the
aftermath of the financial crisis in 2008, where major investors and financial
institutions were affected by a special kind of structured products backed by credit
and mortgage obligations such as CDO and MBS, which derived in stricter
regulation for all types of structured products. In countries like Norway new
regulations were introduced after the crisis which in practice constrained issuers to
commercialise structured products to retail investors. In Sweden structured product
issuers need to comply with regulations such as MiFIDIl and PRIIP. While MiFIDI|
covers the general trading amongst financial products, PRIIP is mostly directed

against the marketing of structured products to retail investors.

There are several different types of structured products in the market, among them
are the equity index linked notes. Equity index linked notes are divided into two
different type of notes: Principal protected and yield enhancement notes. Principal
protected note (PPN) is an instrument with fixed income security where the interest
coupon or principal is linked to movements in equity market indexes. This type of
instrument is popular among retail investors since it can enable them to create a
differentiated exposure to an entire index with relatively low capital investment at

a small transaction cost.

The investment motives for this type of products arise from an environment of low-
interest rates and the demand from retail investors to generate higher returns.
Another important motive is a “rule buster”, which takes views on markets where

the asset class is not available to the interested party, either for regulatory or market
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motives. The third reason for buying this type of product is simply because the

investor wants to limit the risk exposure of their equity investment.

Our main objective is to determine if equity linked products in the Swedish market
are convenient investment instruments, and if they are priced fairly at primary
issuance. We look at the Swedish market of structured products since among the
Nordic countries, Sweden has the largest market. Principal protected notes are the
most common structured product investment in Sweden, we therefore investigate if
those products, offer an adequate risk adjusted return to retail investors. We
determined the return of expired PPN and investigate if they were fairly priced at
issuance. This was done by setting up a Monte Carlo pricing model, following a
geometric Brownian motion. The volatility parameter in the model was generated
from an EGARCH (1,1). Furthermore, we calculated the compounded annualized
returns and compare it to different benchmarks, and thus, determine if PPNs in the

Swedish market are an efficient investment vehicle for retail investors.

From our research we find that investing in PPN has been as profitable or more than
investing in similar alternative investment strategies, in periods of stable volatility
and low interest rates. Retail investors with certain characteristics such as low
liquidity needs and limited access to derivative products, could benefit from
investing in PPNs. Should their market views and investment characteristics be
appropriate, investors with the possibility to invest in these products should

consider the opportunity.

The analysis of our research question is further divided into five more sections.
Section 2 contains the literature review covering the topic of our research question.
Section 3 shows the relevant data used for this purpose. Section 4 contains a detailed
description of the methodology and theory used in our thesis. Section 5 shows the
empirical evidence and the analysis of our results. Ultimately, section 6 contains

the conclusion of our research and recommendations about further research.

2 Literature Review
Previous research from different countries on structured products pricing suggest,

that these kinds of instruments are generally overpriced in the market. Most of the
research on the matter was performed before the financial crisis in 2008 and has
been mostly stalled ever since. In parallel, the structured products market size

stagnated due to exacerbated fears and prejudices about the use of these

2
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instruments. Recently, the market has started to show some revitalized interest in
these sophisticated asset classes, which makes it a compelling moment to resume
its study.

Jaorgensen, Ngrholm, & Skovmand (2011) look at the price efficiency and cost
structure for the Danish retail market of principal protected notes (PPNs). They find
that on average the PPNs are 6% overpriced and that only half of that overpricing
is disclosed by the sellers at the time of issuance (hidden costs). The writers of the
paper also find that the degree of overpricing has declined over time but not the
hidden costs. To come to this conclusion, they sum the present value of the bond
element and use an extension of Black and Scholes to determine the price of the

option element in the structure of the principal protected note.

We can see further that structured products overpricing is not exclusive to the
Nordic market. Benet, Giannetti & Pissaris (2006) conclude in their paper that
reverse exchangeable securities are generally overpriced, and that there is a marked
bias in the pricing of these products, in favour of the issuing financial institution in
the United States. Additionally Chen & Wu (2007) were testing the pricing of
bullish underlying linked securities (equity linked notes, with a similar structure to
principal protected notes) in the US market, and concluded that BULS issued in
2001 were overpriced during seasonal periods (the day after issuance and four

months forward) but fairly priced afterwards.

We find similar patterns in other major European countries such as Germany and
Switzerland, where extensive research on this matter has been done due to the large
market for structured products in that region. Stoimenov & Wilkens (2005) look at
the German market for equity linked structured products and find that in the primary
market on average instruments of this sort are overpriced at issuance, a clear
detriment for investors who choose to hold their position until maturity. Their
explanation for this is that the degree of overpricing is related to the hedging costs
from the issuers. The same pattern of overpricing can be detected in the Swiss and
Dutch market for structured products in research by Wohlwend, Burth & Kraus
(2001), Wohlwend & Grinbichler (2003), and Szymanowska, Horst, & Veld
(2009).

To assess the efficiency and profitability of an investment instrument, we cannot

limit in pricing considerations at issuance, but we need to analyse the return

3
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achieved by the instrument. In an article by Henderson & Pearson (2011) they
provide analysis on structured equity product SPARQS and its initial pricing and
return behaviour. They provided evidence that the expected return of these asset is
lower than the risk-free return. Their explanation is that this is due to a large
overpricing of the SPARQS (8%) and that the call option is of short-term. Edwards
& Swidler (2005), provide evidence that equity linked certificates of deposit in a
sample period ranging from December 1981-2004 almost generates the same
average return as the American treasury bill, even when these are much riskier. The

standard deviation is almost 65% higher than the treasury bill.

After the examination of earlier research, we expect that the structured products in
the Swedish market will be overpriced at issuance. Furthermore, we expect that the
structured notes will generate a similar or lower return as other less risky asset
classes. By investigating and testing the research question that structured products
in the Swedish market are correctly priced at issuance and if they generate a fair
return. We will also be able to determine if the Swedish market for structured
products shares the same characteristics as other larger markets. Individual research
has been performed on either pricing or performance of structured products. Only
Henderson & Pearson (2011), are incorporating both pricing and performance in
their research. To our knowledge there has not been an exhaustive examination of
pricing and performance of structured products in the Swedish market, which will

differentiate our thesis report from earlier research in the area.

3 Data
In this section of the thesis we describe the data collected and used to perform the

research. A principal protected note is a so-called capital protected investment with
the underlying of a fixed income bond where the coupon or return is forgone and
utilized to buy a call option usually written on an index. The calculation of the
option is the most complex part in our pricing model and parameters such as

volatility, risk-free rate and dividend can be hard to determine.

3.1 Principal protected notes
The Swedish market has two main types of principal protected notes. The first is a

safe product, where the whole investment is capital protected and the investor can
expect to get the nominal amount back at time to maturity. And the other is a riskier
product, since it is sold at a premium and only the nominal is capital protected. The
riskier feature will accelerate the participation rate since the structure of the product

4
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allows to incorporate, or buy, more options on the underlying index. Hence, it
increases the end value of the PPN if the index experiences a positive development
from the start value.

The return on the investment will depend on the underlying index the call option is
written on. It will also depend on the participation rate of the investment. If the
index’s development is negative, the investor will only retain the full nominal
amount. Hence there will be no return on the investment. If the development of the
index is positive the investor will retain the full nominal amount and a percentage
of the positive development of the index, which is determined by the participation

rate.

Most of the Swedish principal protected notes market experience a feature where
the call option is European with an Asian tail. That means that the end value of the
index is calculated as the arithmetic average over specified dates. Usually the
measure time is one year before maturity with prespecified dates each month. The

general form for this type of feature on the principal protected notes is:

1vM

ﬁzi:15ti_so

—,0
So

PPN(T) =N+ N * ¢ * max< (3.1)

Where N is the nominal amount, ¢ is the participation rate, M is the number of

prespecified dates, t is time and S, is the start value of the index.

The characteristics of each of the PPNs is obtained from the website for structured
products from each of the four main banks in Sweden. We collected information
from 40 different expired PPN issued in the Swedish market between 2011 and
2015, 19 are safe and 21 are risky. For each of the safe notes, there is usually an
equivalent risky note with the same embedded option. A large part of the sample
65% involves PPNs with an underlying that is denominated in a different currency
than the domestic currency SEK, and thereby have returns that are also dependent
on the currency fluctuations. More than half of the sample 55 % where issued in the
year 2014.

3.2 Volatility Modelling

The determination of the volatility estimate is the most complex parameter to add
to the model. The greatest available approximation for the volatility measure is the
implied volatility. But this type of measure is not available to us, since there are no

call options written on the indices with maturities matching the PPNs. Instead it is

5
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possible to use the historical volatility or more sophisticated time-series model.
According to (Brooks, 2014) the usage of a more sophisticated time-series model
to determine the volatility usually gives a more accurate option value. Hence, we
chose GARCH (1,1), EGARCH (1,1) and GJR-GARCH (1,1) to forecast future
volatility.

The GARCH-model with the best goodness of fit is chosen to forecast volatility. It
is determined by using Akaike and Bayesian information criterion. In the
determination of which model fits the data best we choose the GARCH model with
the lowest BIC and AIC measure. For all the return series in our sample the
EGARCH (1,1) gave the best fit, hence are model used for the purpose (table 8.1).

EGARCH was developed to overcome weaknesses of GARCH to handle financial
time series. This model allows for asymmetric effects between positive and

negative asset returns. The formula for an EGARCH (1,1) model can be written as:

log(0?) = @ + By log(oZ1) + a == — E {=}] 4 ¢, (22) (3.2)

Ot—1 Ot—1 Ot—1

Where g;_, is the last estimate of variance rate, r;_ is the last estimate of squared
return, w is the weighted long-run average variance rate, a and 3 are the respective
weights for each factor and &; will capture the size effect of asymmetry.

3.2.1 Procedure to fit the data to GARCH models

To fit the return data to the GARCH model we perform statistical tests for
stationarity, autocorrelation and conditional heteroscedasticity.

3.2.1.1 Stationarity

An important basis for a time-series analysis is stationarity. Time-series says to be
strictly stationary if the joint distribution of the time-series variables is invariant
over time-shifts (Tsay, 2001). This condition is strong and hard to verify.
Therefore, it is possible to assume a weaker version of stationarity. A test used for
checking the time-series for stationarity is Augmented Dickey Fuller (ADF) test.
The ADF tests the null hypothesis that a unit root is present in the time-series
sample. If this is the case the time-series sample is non-stationary. Index prices are
collected from Bloomberg and are typically non-stationary. Therefore, we use the

log-returns of the prices for modelling volatility:

u; = log( 5 ) (3.3)

Si-1
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We use the Econometric Modeler App in MATLAB to perform the volatility
modelling. To describe the process, we will display the modelling for one of the
PPNs written on the Swedish index OMXS30. The rest of the results from the
volatility modelling can be find in table 8.1. We start by adding the log-return time-

series into the app.

Figure 3.1: Historical return OMXS30. This graph shows the historical returns from 2005-01-04
and up to the issuance of the PPN 2013-05-06.
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Figure 3.1 shows that the historical returns seem to be mean reverting to zero.
Furthermore, the figure of the historical returns displays some clustering effect
especially in the end of 2008. To be able to fit the data to the GARCH models we
need to check for stationarity in the return series. We perform an ADF-test. The
null hypothesis is rejected; hence we have a time-series without a unit root which
is stationary (table 8.2).

3.2.1.2 Autocorrelation

The residuals in a conditional volatility model need to be described as a white noise
process, they should be random and experience no pattern. The autocorrelation
function (ACF) is commonly used to investigate these patterns and to give a visual
overview of the structure in the residual return. To further examine if there exist
any autocorrelation in the residuals, we can use Ljung- Box Q test. The Ljung-Box
Q tests for autocorrelation in multiple lags jointly. The null hypothesis is stated as:

The autocorrelation up to lag m are jointly zero.

Figure 3.2: Autocorrelation and partial autocorrelation function historical returns. The plot
displays the sample autocorrelation and partial autocorrelation function of historical returns. The
blue line states the confidence level at 5%.
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The next step is to plot the autocorrelation function of the sample this to see if the
residuals in the returns follow a white noise process. In figure 3.2 the residuals in
the returns seem to experience autocorrelation for lags larger than one. This is
confirmed by the Ljung-Box Q test (table 8.2) where the null hypothesis for no
autocorrelation is rejected. Since the residuals are autocorrelated it can indicate that

the return is not only determined by an intercept and an error term:

Where r; is the return at time t, u is the intercept and &, is the residual at time t.
The structure in the residuals need to be modelled separately with a conditional
mean model before we can estimate the conditional variance with the GARCH-
models. The plot of the autocorrelation and partial autocorrelation seem to be
geometrically declining. The autocorrelation in the residuals can be successfully
removed by assuming that the returns follow an ARMA (2,2) process (equation
8.1). The new property indicates that the residuals follow a white-noise process and
that the null hypothesis is no longer rejected (table 8.2).

3.2.1.3 Autocorrelation in squared residuals

The residuals in the return can be uncorrelated but can still experience conditional
heteroscedasticity. This would say that the squared residuals are autocorrelated.
(Engle, 1982) A time-series that experience this type of autocorrelation in the
squared returns is said to have ARCH-effect. The Engle ARCH test can be used to
investigate if the residuals experience this type of characteristic. The null

hypothesis in is stated as: there are no ARCH effects in the residuals.

Figure 3.3: Autocorrelation function squared historical returns. The plot displays the sample
autocorrelation function of the squared historical returns. The blue line states the confidence level
at5 %.
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Figure 3.3 depicts the autocorrelation function for the squared returns. From the
figure one can see that the residuals of the squared returns seem to be autocorrelated
at every lag. This result also coincide with the results from the Engle ARCH test
(table 8.2). The null hypothesis is rejected hence there are ARCH effects in the

squared residuals.
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3.2.2 Historical volatility
The simplest model used for forecasting volatility is the usage of historical volatility

where it is assumed that the recent realized volatility will continue into the future.
We calculate the lognormal returns from historical stock or index prices and obtain

the volatility from the historical lognormal returns as follows:

0= [Tk, (u —W)? (3.5)

n-1

Where S; is the stock price, u; is the lognormal return, n is the number of

observations, u is the mean of u; and o is the historical volatility.

For the Basket options we chose to use historical volatility due to the complexity of
performing a multi-variate GARCH- model. The results from the procedure are
depicted in table 8.3.

3.3 Risk-free rate
To find the most appropriate measure for the risk-free rate we obtained the

government bond yields from the issuing countries of the indices. The government
bonds are used for borrowing money in the countries own currency and by
assumption can be considered risk-free securities. This given to the probability of a
government defaulting on a loan denominated in its own currency is highly unlikely
since they have the possibility to increase its money supply. (Hull, 2017). We obtain
the government bond yield data from each of the countries’ central banks. The data
obtained from the central banks did not contain all maturities matching the data
sample, we therefore used linear interpolation to adjust the yield for the absent
maturities (table 8.4 and 8.5).

3.4 Dividend
The principal protected notes in our data sample are written on one or several

indices. The indices consist of a portfolio of stocks that pay out dividends to
shareholders. The indices themselves do not pay out any dividend, but the price of
the indeces will be adjusted after an ex-dividend date of an underlying stock. Hence,
we need to add the dividend parameter to the model. We obtain the historical
annualized dividend yields from Bloomberg. The average of the historical dividend
yield for each of the indices are calculated and added to the pricing model (table
8.4 and 8.5).
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4 Methodology
In this section we explain in detail the different pricing models that we used for the
call option pricing embedded in the principal protected notes (PPN). To resolve the
convenience of investing in this type of structured products, we first wanted to
determine if we could replicate some of the marketed PPN and yield a higher
participation rate than the one offered by the sampled Swedish banks. Subsequently,
we determined their efficiency by comparing their performance against other
alternative investment vehicles as benchmarks. To replicate the PPN and eventually
obtain its potential participation rate, we calculated both legs of the structured

product, the underlying call option and the zero-coupon bond.*

4.1 Call Option Pricing
The option within the principal protected notes that we priced were European Call

Options with Asian tails, and the following characteristics:

e Up to 5 years to maturity from the issuance date.
e The strike price K is equal to the spot price at issuance So.
e Usually one year before the expiry of the PPN, the closing price of the index
Is registered. This process is repeated every month until the end date,
totalling 13 different observation dates.
e The observed registered values are averaged to determine the final value of
the underlying, Savg.
e The pay-off of the option is equal to the maximum between the appreciation
of the underlying (Savg — K) and zero.
4.1.1 Index Option Pricing
We estimated the index call option price at issuance using a Monte Carlo simulation
approach, based on a risk-neutral valuation framework where the underlying index
follows a geometric Brownian Motion. For each option pricing we sampled
1,000,000 different paths, to obtain the expected pay-off of the option under risk
neutral conditions, and then discounted it with its corresponding risk-free rate.
Additionally, we compared the computed option price with standard closed-form
solutions such as Black-Scholes-Merton model for European call options (Black &

Scholes, 1973), Kemna-Vorst approach for options based on average asset values

1 The MATLAB codes used to price the PPNs can be found in the Appendix 8.1.1 and 8.1.2
10
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(Kemna & Vorst, 1990), and with the Levy pricing model for continuous arithmetic
averaging options (Levy, 1992).

4.1.2 Monte Carlo Simulation

Presumably one of the most widely used approaches for valuing derivative
securities, Monte Carlo simulation, is especially useful for pricing complex path-
dependent exotic options, such as the ones that we find in the principal protected
notes structure. The Monte Carlo simulation of a geometric Brownian Motion is a
robust method to sample a possible outcome for the process, with the possibility to
create as many different random paths as desired. To perform a Monte Carlo
simulation, and thus price the option pay-off of our path dependent option. We
followed the 5 steps suggested by Hull (2017):

e Sample a random path for S in a risk-neutral world, which in our case is
generated following a geometric Brownian motion.
e Compute the pay-off from the option.
e Repeat the previous steps and get as many sample values as desired. In our
case 1,000,000 different paths.
e Calculate the sample mean of the pay-off to obtain an estimate of the option
expected pay-off in a risk-neutral world.
e Lastly, discount the obtained expected pay-off at its corresponding risk-free
rate, to obtain the estimated value of the option.
4.1.3 Geometric Brownian Motion Index options
In financial modelling, a common assumption is that stock prices follow a stochastic
process in the form of a geometric Brownian motion. In our case, we furthermore
extended this assumption to stock market indexes. The return to the asset holder,
under this process in a time interval is considered normally distributed, with
independent returns at each different period. An asset price following a geometric
Brownian motion, has a lognormal geometric average price and an approximately
lognormal arithmetic average price. The equation to determine the index price

change with geometric Brownian motion is as follows:

0.2
4S = e AT + eoVAT 4.1)

Where A4S is the stochastic price change of the index, r is the risk-free rate
corresponding to the underlying asset, d'is the expected dividend yield of the index,
the subtraction r-Jrepresents the percentage drift of the process; o2 is the volatility

11
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of the index, AT is the time step of the process, and ¢ is a random draw of a normally
distributed number. The result of multiplying the geometric Brownian motion
stochastic factor with the previous time instant spot price is the simulated predicted
price one step ahead.

4.1.4 Geometric Brownian Motion Basket options

In the case of the basket option, the derivative price dependents in more than one
underlying asset. For this, we need to determine a correlated stochastic process,
among the paths of all these assets. As expressed by Hull (2017), if we consider a
situation where the option pay-off depends on n different variables 8;, with volatility
oi, and expected growth i in a risk-neutral world (in this case the difference
between the risk-free rates and dividend yields) ,with a correlation pik between the
Wiener processes 6; and 6k, where the life of the option is divided into n subintervals
of length Ay, and & is a random sample from a standard normal distribution. These
adjustments result in another version of the GBM. The discrete version of a process

for 6; equal to:

gi?
40i = e"T2IAT + eiciVAT (4.2)

Each simulation implicates obtaining n samples of different & from a multivariate
standardized normal distribution, to eventually generate the desired simulated path
for each 6. This process is repeated as many times as needed to obtain a sample

value to compute the option value.

To produce a n number of correlated samples €1, €2, ..., &n from a standard normal
distribution, for the basket option computation, we implemented the Cholesky
decomposition procedure. Hull (2017) explained this procedure as follows:

In a situation like this, where we need n correlated samples &, from normal
distribution with the correlation between sample i and sample j being pij. We start
by sampling n different variables xi, from univariate normal distributions. The

required samples €1, are thus defined as:
el = allxl
€2 = a2lx1+ a22x2
gl = ailxl + ai2x2 + -+ aijxj

We adjust the coefficients aij in a way that the variances and correlations are

correct. So, if we set a11 = 1, we choose a21 SO that a11 a21 = p21, and so on.
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The obtained correlated random sample €i, was plugged to the aforementioned
geometric Brownian motion formula, and produced the stochastic factor needed to
predict the correlated future prices of the basket option underlying assets.
Subsequently this process was repeated, until the needed price path was completed.
The finalized option calculation was then compared with the Longstaff - Schwartz
Monte Carlo model for basket options (Longstaff & Schwartz, 2001).

4.1.5 Computation of the option pay-off

Once we obtained the entire predicted path, we filtered the estimated prices in the
pre-specified observation dates. With the filtered estimated values, we then
proceeded to compute the arithmetic average for the option, which is computed by
dividing the sum of the estimated observed prices Sti, by the number of observation
dates.

Savg = ~¥N, sti (4.3)

For the basket option, we repeated this procedure in each different underlying asset,
and computed a weighted average of these values. We then calculated the call
option pay-off as the maximum value between zero, and the difference of Sayg
minus the strike value K (which is set to be equal to the initial price So).

4.1.6 Repetitions, confidence interval and option pricing

We decided to use 1,000,000 repetitions in our model, to obtain an acceptably small
standard error, at a cost of significantly more computation time. The reason behind
this is that the standard error of the estimates depends on the sample size. As
explained by Hull (2017), the accuracy of the estimates generated by a Monte Carlo
simulation depend on the number of different trials performed in its estimation. We
computed the standard deviation w, and the mean x of the payoffs derived from the
simulation trials. The mean variable x represents the estimated value of the
derivative, and the standard deviation w the squared root of the variance of the
different path outcomes sampled; the last together with the square root of the
variable M, representing the number of different trails, will be used to calculate the
standard error SE of the estimate:

SE = %M (4.4)

As we can see in the previous equation, the larger the sample size of the trials the
smaller the size of the standard error of our result. The obtained standard error

helped us to achieve a narrower confidence interval for our estimated pay-off
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values. The 95% confidence interval for the option pay-off value Pay is given then

by the following formula:

1.96 1.96
u— mw< u< u+ Ww

(4.5)

The 1,000,000 repetitions that we performed, provided more certainty to our
estimates, than for instance a facile to compute 10,000 iteration model which would

be ten times more inaccurate than the one we obtained.

Once we obtained the estimated pay-off x and it’s 95% confidence interval, we
continued by discounting these values, with their respective risk-free rate.

Pcall = pux eCT/xD (4.6)

Finally, the obtained discounted pay-off and its confidence interval resulted in our
final estimated Asian tailed Call option price and confidence interval. Overall, this
component of the principal protected note is the factor determining the return of the
security. The profitability level of the PPN will depend on how many of these call
options can be bought with the pre-invest proceeds of the fixed leg of the PPN, the

zero-coupon bond.

4.2 Zero Coupon Bond Pricing
To compute the zero-bond, we used the issuing bank borrowing cost at the time of

issuance of the PPN, for a maturity equal to the one from the priced security. This
connotes an enhanced yield, at the cost of taking some credit risk from the bank,
compared to the usage of a risk-free rate security. The following formula, where
100 represents the par value of the security, zy the zero-coupon yield and TMY the
time to maturity, computes the present value of the zero-coupon bond:

Zero bond = 100e~2*TMY (4.7)

This component of the principal protected note is the one that vouches for a
minimum return on the security at maturity. We find two different classes of
principal protected notes depending on its riskiness. Of these, the safe notes
guarantee an investment return not less to the initial capital invested, while the risky
notes guarantee at least a significant part of it. In both cases the guaranteed amount
is equal to the face value of the PPN, which is standardized to SEK 100.

4.3 Principal Protected Note Participation Rate computation
The participation rate is the percentage over the appreciation of the underlying asset

that the investor is entitled to claim at the maturity of the note. Once we had the call
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option and the zero-coupon prices, we proceed to compute the participation rate PR
of the principal protected note. We obtained this by computing the ratio of the
disposable investment capital DIC (the remaining capital after subtracting the cost

of the zero-coupon bond) and the price of the call option Pcall.

DIC
Pcall

PR = (4.8)

After computing the participation rates derived from our pricing model, we

compared them with the participation rates offered by the banks.

4.4 CVA Computation
An important factor to determine the fair-value of a principal protected note, is the

credit value adjustment CVA. It is true, that the PPN is not entirely a risk-free
security, since there is always the possibility, that the underwriting bank could
default and fail to pay back the expected value of the note to the holder. An
investment in PPN will also contain liquidity risk, since the secondary market for

PPNs in Sweden is not very liquid.

The CVA reflects the expected loss from a default by the counterparty.
Consequentially the value of the security is adjusted by this factor, and part of its
value is subtracted (Hull, 2018). We opted to use a method based on the implicit
default probability derived from the credit default swaps spreads (Hull, 2018), since
this reflects better the market sentiment, at the time of issuance, towards the default
risk of the counterparty. The CVA computation is obtained by first obtaining the
risk-neutral default probability gi, which is estimated from the counterparty credit
spread. The first step to compute gi was to estimate the average hazard rate Zi, which

we obtained with the following formula:

A= (4.9)

1-R

Where Si is the credit default swap spread at the time, and R is the estimated
recovery rate, which we estimated to be at 40%. Once we computed the hazard rate

Ai, we obtained the risk-neutral default probability derived from:

qi = e~ H=DE-1) _ o (=R)(tD) (4.10)

With the risk-neutral default probability gi, in addition to the present value of the
expected exposure vi (in this case SEK 100) and the estimated recovery rate R in
the event of the counterparty default (in this case 40%) defined, we continued with

the final CVA computation:
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CVA= ¥",(1—-R)qivi (4.11)

By accounting for the CVA and the fixed brokerage fee (applied on the SEK 100
and SEK 110 PPN’s prices), we were able to approximate better the actual fair value

of the sampled principal protected notes.

4.5 Comparing the PPNs with other benchmarks
To continue our analysis, we computed the returns obtained by the investors of the

principal protected notes at maturity based on the contract conditions of the issuing
banks. The annual holding period return was calculated as the compounded return

according to the equation:

(4.12)

1
End value—Start value Tmy 1
Start value

Annualized return = (
Markowitz (1952) classic Modern Portfolio Theory, and the Capital Asset Pricing
Model (Sharpe, 1964) are based on the assumption that financial assets returns are
normally distributed, and that investors are always mean-variance oriented.
Structured products such as the PPN are a different case, since their return
distributions have important levels of kurtosis and skewness (Ngrholm, 2012).
Because of this, standard risk-adjusted performance measures such as, the Sharpe
ratio or Jensen’s alpha are not optimal methods to measure the performance of the
principal protected notes that we priced. Thus, we decided to compare the realized
returns of our samples PPNs with a number of alternative investment strategies that
a PPN investor would consider. The benchmarks considered contain securities such
as risk-free debt (government zero-coupon bond from Sweden), risky debt (zero-
coupon bond from the issuing bank) and the equity index investment (investment
in the underlying index).

5 Empirical Results / Analysis
This section of our paper illustrates how efficient principal protected notes are as

investment vehicles. The efficiency of the product is assessed by comparing the
embedded European Asian option of the PPN with other types of options, by
comparing the participation rate offered by the bank with a replication strategy, and
ultimately, by comparing the return obtained by the investor of the PPN with other

investment alternatives.
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The methods to compute the index options and the basket options are significantly
different one to the other. To better explain the difference in prices between these
two, we separated this part of the analysis for each of these types?.

5.1 PPN Pricing Analysis

5.1.1 Comparing the option prices with different pricing methods
In this section, we asses which option type results in the most economically

efficient, among Arithmetic Asian options and European options of similar kind.
This to see if a different option type than the one chosen by the bank could be better
for a retail investor to incorporate in a PPN structure.

To better reflect the option prices, we followed the general practice of a
standardized level of 100 units as the spot price at time zero S, for all the different
indexes. This facilitated the process of matching the obtained call option price with
the standard value of 100 of the principal protected notes. We would like to
highlight that in reality most of the index have contrasting different levels and
multipliers, thus contract prices may vary. Nevertheless, with the appropriate

adequation it is possible to obtain a value proportional to the one we present.

Table 5.1: Index Option price comparison. Shows the approximated call option prices that we
obtained from distinct methods for the index options. In column 1, we observe the underlying asset,
in column 2 and 3 the issue and maturity dates, in column 4 the option price of the replicated
embedded option, in column 5 the complete arithmetic Asian option from our Monte Carlo
simulation model , in column 6 the arithmetic Asian with the Levy method, and in column 7 the
price of a plain vanilla European option computed with the Black-Scholes-Merton method BSM.

. . Replicated .MC . Kemna- Levy Black

Underlying Asset Issue Date  Maturity Date X Arithmetic Vorst Scholes

Option Asian Method Method Merton
OMXS30 17/02/2011 17/02/2016 17.7700 10.7075 9.5404 10.8402 18.3363
S&P 500 Index 26/05/2011 19/05/2014 11.1790 7.0095 6.5461 7.0529 11.8243
OMXS30 20/12/2012 22/11/2017 12.1425 7.9590 7.2211 8.0532 12.8712
S&P 500 Low Volatility Index 07/02/2013 07/02/2018 7.5944 4.8271 4.5418 4.8298 7.7684
OMXS30 07/05/2013 23/04/2018 12.7547 8.3062 7.4931 8.3838 13.4806
S&P 500 Index 03/06/2013 21/05/2018 13.3336 8.5025 7.7636 8.5698 14.2064
S&P Nordic Low Volatility 10/01/2014 27/12/2018 8.9525 5.9019 5.4858 5.9379 9.5005
S&P 350 Europe Low Volatility Index 05/02/2014 05/02/2019 5.8355 3.9833 3.7496 3.9812 6.1204
Hang Seng Index 03/03/2014 18/02/2019 14.9233 9.7201 8.6620 9.8271 16.0012
S&P 350 Europe Low Volatility Index 05/03/2014 05/03/2019 5.6951 3.8822 3.6435 3.8620 5.9331
OMXS30 09/04/2014 10/04/2018 11.4028 7.5281 6.8897 7.5871 12.2900
OMXS30 07/05/2014 07/05/2018 11.2050 7.4079 6.7918 7.4737 12.0715
S&P 350 Europe Low Volatility Index 27/08/2014 15/08/2018 4.7141 3.2752 3.1123 3.2652 4.9907
OMXS30 28/08/2014 15/08/2018 10.1254 6.7786 6.2423 6.8357 10.8793
S&P 350 Europe Low Volatility Index 03/12/2014 21/11/2018 4.5564 3.1712 3.0209 3.1660 4.8210
OMXS30 03/12/2014 21/11/2018 9.8910 6.6527 6.1046 6.6827 10.5585

From table 5.1 and 5.2 we can see that the results from the different pricing methods
strength the prime motivation of using the chosen settings for the Asian option that

2 We did not price any American option alternatives since the characteristics of these, are not
compatible with the features of the principal protected notes we priced.
17



GRA 19703

we replicated instead of a plain vanilla European option, or a standard averaging
option over the whole period between the issue and the maturity of the contract. We
can see that the replicated option price in general is lower than the European option
with the BSM method and Longstaff-Schwartz, but larger than the other arithmetic

average options.

Table 5.2: Basket Option pricing comparison. Shows the approximated call option prices that we
obtained from distinct methods for the basket options. In column 1, we observe the underlying assets,
in column 2 and 3 the issue and maturity dates, in column 4 the option price of the replicated
embedded option, in column 5 the complete arithmetic Asian option from our Monte Carlo
simulation model , and in column 6 the price of a plain vanilla European option computed with the
Longstaff-Schwartz method.

. . MC  Longstaff-
Maturity ~ Replicated onest

Underlying Asset Issue Date . Arithmetic Schwartz

Date Option .
Asian  European
Hang Seng. MSCI Singapore & MSCI Taiwan 23/11/2012 23/11/2016  17.1458 104378  17.9415
DAX . Hang Seng, OMXS30 & S&P 500 08/07/2013 25/06/2018 17.7561 11.0943  19.1843
MSCI Singapore & Taiwan Stock Exchange Index 09/04/2014 28/03/2017  11.4737 7.5541  13.0885
MSCI Singapore & MSCI Taiwan 08/10/2015 10/10/2018  11.2603 7.4014 13.2106

The benefits of choosing the replicated option over a common European option are
that the investor would pay less for the option and will be subject to lower volatility
in the expected payoff of the option thanks to the averaging of the 13 different
observed spot prices. The obvious drawback is that in case of a continuous
appreciation and favourable volatile movements in the underlying asset, the

investor would obtain a lower yield.

Furthermore, the motivation to invest in the replicated option over the other
arithmetic Asian options, relies in the fact that these alternatives are arguably better
for hedging purposes, with lower expected pay-offs and hence option prices; as we
can see their objective is not in line with the motivation of the common retail
investor. The standard price of the arithmetic Asian option computed from the same
paths produced by the original pricing model based on Monte Carlo simulation, and
the Levy model are very similar. The result was expected since in both cases the

averaging of the Asian options is over the whole predicted path.

The outcome of the results points favourable for the banks chosen alternative, as
this seem to be adequate for an individual looking to benefit from a possible

appreciation of the underlying, compared to the other computed alternatives.

5.1.2 Call Options Prices and Confidence Intervals
From the replication of the embedded option in the PPN we experienced differences

between the PPN with index and basket option (table 5.3). PPNs with basket options
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are usually more expensive than the ones from a single index option. But a basket
option is often less expensive than buying multiple single options. Table 5.3 also
display the confidence interval for the replicated option at the 95% confidence
interval. The confidence interval for the PPN with index option is often narrower

and can be explained by the iterations in the simulation of the options.

In general, we can see that the market conditions at the time of the analysis where
very permissive and delivered very low option prices. We know that during the
years 2012-2015, the world was experiencing record low interest rate yields after
the implementation of Quantitative Easing policies by the different central banks
around the world, and capital markets were enjoying a bullish period with sustained
low-volatility conditions. Both of these factors were determinant for the low pricing

of the equity options.

Table 5.3: Call Options Prices and Confidence Intervals. Shows the approximated call option
prices that we obtained from the Monte Carlo simulation and it is respective confidence level at 95
%. In column 1, we observe the type of option embedded in the PPN. In column 2, we observe the
underlying asset, in column 3 the issue date, in column 4 the option price of the replicated embedded
option, in column 5 the option price at the 95 % confidence level.

Type Underlying Asset Issue Date Rzpliltrizijd Confidence Interval
Index OMXS30 17/02/2011 17.7700 [17.7094, 17.8306]
Index S&P 500 26/05/2011 11.1790 [11.1435, 11.2146]
Index OMXS30 20/12/2012 12.1425 [12.0966, 12.1885]
Index S&P 500 Low Volatility 07/02/2013 7.5044 [7.5676, 7.6213]
Index OMXS30 07/05/2013 12.7547 [12.707, 12.8024]
Index S&P 500 03/06/2013 13.3336 [13.2885, 13.3788]
Index S&P Nordic Low Volatility 10/01/2014 8.9525 [8.9200, 8.9850]
Index S&P 350 Europe Low Volatility 05/02/2014 5.8355 [5.8125, 5.8586]
Index Hang Seng 03/03/2014 14.9233 [14.8687, 14.978]
Index S&P 350 Europe Low Volatility 05/03/2014 5.6951 [5.6725, 5.7177]
Index OMXS30 09/04/2014 11.4028 [11.3621, 11.4434]
Index OMXS30 07/05/2014 11.2050 [11.1646, 11.2453]
Index S&P 350 Europe Low Volatility 27/08/2014 4.7141 [4.6956, 4.7326]
Index OMXS30 28/08/2014 10.1254 [10.0877, 10.163]
Index S&P 350 Europe Low Volatility 03/12/2014 4.5564 [4.5383, 4.5745]
Index OMXS30 03/12/2014 9.8910 [9.8535, 9.9284]
Basket Hang Seng, MSCI Singapore & MSCI Taiwan 23/11/2012 17.1458 [17.0324, 17.2526]
Basket DAX, Hang Seng, OMXS30 & S&P 500 08/07/2013 17.7561 [17.6371, 17.8723]
Basket MSCI Singapore & Taiwan Stock Exchange Index 00/04/2014 11.4737 [11.4067, 11.5407]
Basket MSCI Singapore & MSCI Taiwan 10/09/2015 11.2333 [11.1625, 11.2935]
Basket MSCI Singapore & MSCI Taiwan 08/10/2015 11.2603 [11.1896, 11.3209]

5.1.3 Zero-Coupon Bonds Prices and Disposable Investment Capital
The zero-coupon element in the principal protected note is discounted with the

issuing banks borrowing cost at the time. The assumption made is that the issuing

bank uses its own debt cost to create the bond leg of the principal protected note.
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Table 5.4: Zero-Coupon Bonds Prices and Disposable Investment Capital. Shows the zero-
coupon bond price, the bond yield which the zero-coupon bond is discounted with and the disposable
investment capital. In column 1 we observe the underlying asset, in column 2the notional amount in
SEK, in column 3 the zero-coupon yield, which is the yield the zero-coupon bond is discounted with.
In column 4 the zero-coupon bond price for each of the products and in column 5 the investment
capital disposal which is the capital an investor has available to buy options for.

Notional Zero-Bond Disp.
Index amount Yield Zero-Bond Price Investment
(SEK) Capital

OMXS30 100 3.84% 82.5472 17.4528
OMXS30 110 3.84% 82.5472 27.4528
OMXS30 100 1.72% 91.9049 8.0951
OMXS30 110 1.72% 01.9049 18.0051
OMXS30 100 1.96% 90.7385 9.2615
OMXS30 110 1.96% 90.7385 19.2615
S&P Nordie Low Volatility 100 2.33% 89.0823 10.9177
S&P Nordic Low Volatility 110 2.33% 89.0823 20.9177
Hang Seng 100 2.12% 90.0309 9.9691
Hang Seng 110 2.12% 90.0309 19.9691
OMXS30 100 1.62% 03.7400 6.2600
OMXS30 110 1.62% 03.7400 16.2600
OMXS30 102 0.89% 96.5260 5.4740
OMXS30 110 0.89% 96.5260 13.4740
S&P 350 Europe Low Volatility 102 0.63% 07.5281 4.4719
S&P 350 Europe Low Volatility 110 0.63% 07.5281 12.4719
S&P 500 100 2.75% 02.1359 7.8641
S&P 500 110 2.75% 02.1359 17.8641
S&P 500 Low Volatility 100 2.03% 90.3436 9.6564
S&P 500 Low Volatility 110 2.03% 90.3436 19.6564
S&P 500 100 2.13% 89.9480 10.0520
S&P 500 110 2.13% 89.9480 20.0520
S&P 350 Europe Low Volatility 100 2.23% 89.4536 10.5464
S&P 350 Europe Low Volatility 110 2.23% 89.4536 20.5464
S&P 350 Europe Low Volatility 100 2.08% 90.1360 9.8640
S&P 350 Europe Low Volatility 110 2.08% 90.1360 15.8640
OMXS30 100 1.47% 04.2744 5.7256
OMXS30 110 1.47% 94.2744 15.7256
S&P 350 Europe Low Volatility 102 0.92% 96.4012 5.5988
S&P 350 Europe Low Volatility 110 0.92% 96.4012 13.5988
OMXS30 102 0.63% 07.5281 4.4719
OMXS30 110 0.63% 07.5281 12.4719
Hang Seng, MSCI Singapore & MSCI Taiwan 100 1.42% 04.4859 5.5141
Hang Seng, MSCI Singapore & MSCI Taiwan 110 1.42% 04.4859 15.5141
MSCT Singapore & Taiwan Stock Exchange Index 102 1.35% 96.0591 5.9409
MSCI Singapore & Taiwan Stock Exchange Index 110 1.35% 96.0591 13.9409
DAX. Hang Seng, OMXS30 & S&P 500 100 2.47% 88.4830 11.5170
DAX. Hang Seng, OMXS30 & S&P 500 110 2.47% 88.4830 21.5170
MSCI Singapore & MSCI Taiwan 110 0.15% 99.5655 10.4345
MSCI Singapore & MSCI Taiwan 110 0.33% 99.0220 10.9780

Table 5.4 depicts the zero-coupon price, equal for both the safe and risky
alternatives of the principal protected notes. The largest difference is the
hypothetical capital available to the investor to buy call options on the underlying
index/indices (pre-invest expected interest return on the bond ignoring the time-
value of money). The investor will have more capital at his disposal if he chooses

the risky alternative instead of the safe one. The risky PPN is not 100% capital
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protected and the investor can experience the possibility of losing a part of his
investment. But the gain will be an enhanced upside, since he will end up with a
larger stake of options, i.e., participation rate. We can claim that the risky
alternative is more suited for a retail investor willing to take more risk, who is

looking for a superior yield while limiting his downside to some degree.

For the safe principal protected note the disposable investment capital is relatively
low, indicating that the investor might not be able to buy a large portion of a call
option, thereby reducing its possible participation rate. This will reduce the upside
the investor can experience, but his investment will still be completely capital
protected and will not experience any loss related to a market downturn. Which is
appropriate for a risk adverse retail investor looking for these kind of features in an
investment. The result from pricing the zero-coupon bond has tendencies of
following the characteristics shown in the prospectus of the issuing banks. That
investors investing in the safe alternative have a participation rate lower than 100%,

and hence can only do a fractional investment in a call option.

5.2 Comparing the Participation Rates
The participation rate offered by the bank is the rate at which the upside of the

underlying will be multiplied with. From the participation rate of the replicated PPN
is possible to determine if the security shows tendencies of overpricing. This by
comparing the replicated participation rate with the one issued by the bank.

5.2.1 Participation rate PPN with index options

The replicated PPN with index option does offer in many cases a larger participation
rate than the one from the from the issuing bank (table 5.5). This indicates that the
PPNs in the Swedish market are overpriced at issuance. The larger participation rate
obtained shows that a retail investor could be better off, by replicating a PPN payoff

by himself.

The source of difference in participation is a combination of the return on the zero-
coupon bond and the cost of the call options on the index. Assuming that the issuing
banks used their own cost of debt to determine the return on the bond, and used a
pricing methodology comparable to the one we used, it is not possible to explain
the large differences between participation rates that most, if not all of the products

that we priced present.
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During the sample period the interest rate environment was predominantly low, and
the volatility levels moderately stable. Nonetheless, the yield spread between risky
debt and risk-free was still important, giving room to a combination of relatively
cheap call option prices and sufficient interest return from the risky bonds to finance
the PPN strategy, and achieve meaningful participation rates. This scenario presents
a favourable situation for the issuing banks, since they can offer attractive

participation rates to the investors, even when these are below fair value.

The difference in participation rates presents a positively skewed distribution with
a mean difference of 40% and a median difference of 17%. The overpricing in PPN
with index options goes in line with previous research in this area. The overpricing
can come from additional margin taken by the bank to cover transaction costs or

else.

Table 5.5: Participation rate for safe and risky principal protected notes. Shows the
participation rates generated by the pricing model in a comparison with the participation rate offered
by the issuing bank. In column 1, we observe the type of PPN, in column 2 the underlying asset, in
column 3 the issue date, in column 4 the investment capital at disposal, in column 5 the option price
of the replicated embedded option, in column 6 the participation rate offered by the issuing bank, in
column 7 the participation rate we obtain from the replication of the principal protected note, in
column 8 the difference between the participation rate offered by the bank and the participation rate
we obtained from the replication.

Option Bank

Type Index I];:tl: IE::; Price Part. Rel];af:rt Diff. in PR
Model Rate

Safe OMXS30 17/02/11 17.4528  17.7700 80% 98.21% 18.21%
Safe S&P 500 26/05/11 7.8641 11.1790 68% 70.35% 2.35%
Safe OMXS30 20/12/12 8.0051 12,1425 50% 66.67% 16.67%
Safe S&P Nordic Low Volatility 07/02/13 9.6564  7.5944 90%  127.15% 37.15%
Safe OMXS30 07/05/13 9.2615 12.7547 60% 72.61% 12.61%
Safe S&P 500 03/06/13 10.0520  13.3336 60% 75.39% 15.39%
Safe S&P Nordie Low Volatility 10/01/14 10.9177 8.9525 70% 121.95%  51.95%
Safe S&P 350 Europe Low Volatility 05/02/14 10.5464  5.8355 86%  180.73%  94.73%
Safe Hang Seng 03/03/14 9.9691 14.9233 60% 66.80% 6.80%
Safe S&P 350 Europe Low Volatility 05/03/14 9.8640 5.6951 87% 173.20%  86.20%
Safe OMXS30 09/04/14 6.2600 11.4028 44% 54.90% 10.90%
Safe OMXS30 07/05/14 5.7256 11.2050 37% 51.10% 14.10%
Safe S&P 350 Europe Low Volatility 27/08/14 5.5088  4.7141 50%  118.77%  68.77%
Safe OMXS30 28/08/14 54740  10.1254 50% 54.06% 4.06%
Safe S&P 350 Europe Low Volatility 03/12/14 44719 4.5564 50% 08.15%  48.15%
Safe OMXS30 03/12/14 4.4719 9.8910 50% 45.21% -4.79%
Risky OMXS30 17/02/11 27.4528 17.7700 131%  154.49%  23.49%
Risky S&P 500 26/05/11 17.8641  11.1790 147%  159.80%  12.80%
Risky OMXS30 20/12/12 18.0951  12.1425 105%  149.02%  44.02%
Risky S&P Nordic Low Volatility 07/02/13 19.6564 7.5944 195%  258.83%  63.83%
Risky OMXS30 07/05/13 19.2615  12.7547 145%  151.01% 6.01%
Risky S&P 500 03/06/13 20.0520 13.3336 130%  150.39%  20.39%
Risky S&P Nordic Low Volatility 10/01/14 20.9177 8.9525 155%  233.65%  78.65%
Risky S&P 350 Europe Low Volatility 05/02/14 20.5464 5.8355 204%  352.09%  148.09%
Risky Hang Seng 03/03/14 19.9691  14.9233 140%  133.81%  -6.19%
Risky S&P 350 Europe Low Volatility 05/03/14 19.8640 5.6951 202%  348.79% 146.79%
Risky OMXS30 09/04/14 16.2600  11.4028 149%  142.60%  -6.40%
Risky OMXS30 07/05/14 15.7256  11.2050 144%  140.34%  -3.66%
Risky S&P 350 Europe Low Volatility 27/08/14 13.5988  4.7141 160%  288.47% 128.47%
Risky OMXS30 28/08/14 13.4740  10.1254 122%  133.07%  11.07%
Risky S&P 350 Europe Low Volatility 03/12/14 12,4719 4.5564 140%  273.72% 133.72%
Risky OMXS30 03/12/14 124719 9.8010 120%  126.09% 6.09%
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5.2.2 Participation rate PPN with basket options
We can detect a pattern of under-pricing for the basket options (table 5.6). The

participation rate obtained from replicating the PPN is lower than the stated rate by
the bank. Yet, the sample tested is not large enough to draw a conclusion of fair
pricing by the issuing bank.

Table 5.6: Participation rate for principal protected notes with basket options. Shows the
participation rates generated by the pricing model in a comparison with the participation rate offered
by the issuing bank. In column 1 we observe the type of option displayed. In column 2, we observe
the underlying asset, in column 3 the issue date, in column 4 the investment capital disposal, in
column 5 the option price of the replicated embedded option, in column 6 the participation rate
offered by the issuing bank, in column 7 the participation rate we obtain from the replication of the
principal protected note, in column 8 the difference between the participation rate offered by the
bank and the participation rate we obtained.

Type Index Issue Disp. %l':t.l::o: Bank Part. Rep. Part. Diff. in
Date Invest. Model Rate Rate PR
Safe Hang Seng, MSCI Singapore & MSCI Taiwan 23/11/12 55141  17.1458 60% 32.16% -27.84%
Safe DAX. Hang Seng. OMXS30 & S&P 500 08/07/13 11.5170 17.7561 60% 64.86%  4.86%
Safe MSCI Singapore & Taiwan Stock Exchange Index  09/04/14  5.9409  11.4737 55% 51.78%  -3.22%
Risky Hang Seng. MSCI Singapore & MSCI Taiwan 23/11/12 155141 17.1458 165% 00.48% -74.52%
Risky DAX. Hang Seng. OMXS30 & S&P 500 08/07/13 21.5170 17.7561  150% 121.18% -28.82%
Risky MSCI Singapore & Taiwan Stock Exchange Index  09/04/14  13.9409 11.4737 186% 121.50% -64.50%
Risky MSCI Singapore & MSCI Taiwan 10/09/15 10.4345 11.2333  100% 02.89% -7.11%
Risky MSCI Singapore & MSCI Taiwan 08/10/15 10.9780 11.2603 107% 07.49%  -9.51%

We believe that the difference in participation rates arise from variations in the
correlation and volatility coefficients of the underlying assets. Our model retrieves
these factors from historical data, which are likely different to what a multivariate
GARCH model would estimate. The aforementioned parameters are essential in the
Cholesky decomposition process, and geometric Brownian motion employed to
price the basket options. Additionally, the model for the basket options has only
250,000 iterations in the Monte Carlo simulation (in contrast to the 1,000,000
employed for the index options), resulting in lower accuracy.

The results from this part of the analysis indicate that investors interested in
investing in index PPNs, with unrestricted access to derivative products and with
sufficient bargain power, or/and the ability to replicate the desired derivatives,
should overweight the possibility to mimic the PPNs by themselves.

5.3 Investor Holding Period Return

5.3.1 Credit value adjustment
The PPN investment is either fully or partly capital protected. But the investment is

also connected with risk factors such as liquidity, currency and credit risk. The
investor has the opportunity to sell the investment in the secondary market during
the time to maturity. But, the secondary market for these products is not very liquid,

hence the investor of a PPN experiences a large liquidity risk.
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There is also the small possibility that the issuing bank of the PPN will default on
the investment, which must be reflected in the price of the note. Hence a retail
investor experiences credit risk when buying PPN from a dealer. To incorporate the
credit risk in the price of the note, we included a credit value adjustment (CVA) to
reflect this risk in the price of the PPN. The CVA is added into the total cost of the
PPN together with the brokerage fee. The total amount is then used to determine
the actual annualized holding period return (HPR).

Table 5.7: Credit value adjustment to incorporate the credit risk of the issuing bank. Shows
the CVA and the parameters included to estimate the credit risk of the issuing bank. In column 1 we
observe the type of option displayed. In column 2 the underlying asset , in columns 3 the issue date,
in column 4 the recovery rate, in column 5 the average yearly hazard rate calculated from the CDS-
spread and the recovery rate, in column 6 the implied default probability calculated from the hazard
rate and time to maturity of the product, and column 7 the CVA calculated from the default
probability and the recovery rate.

Averaget Implied
Issue Recovery year Default

Type Index Date Rate hazard Probabilit cva
rate b

Index Safe and Risky OMXS30 17/02/11 40% 0.97% 4.75%  2.85
Index Safe and Risky S&P 500 26/05/11 40% 0.62% 1.86% 1.11
Index Safe and Risky OMXS30 20/12/12 40% 1.26% 6.10%  3.66
Index Safe and Risky ~ S&P 500 Low Volatility 07/02/13 40% 1.16%  5.61%  3.37
Index Safe and Risky OMXS30 07/05/13 40% 1.11% 540%  3.24
Index Safe and Risky S&P 500 03/06/13 40% 1.08% 5.26%  3.15
Index Safe and Risky S&P Nordic Low Volatility 10/01/14 40% 0.66%  2.60%  1.56
Index Safe and Risky S&P 350 Europe Low Volatility 05/02/14 40% 1.34%  6.48% 1.94
Index Safe and Risky Hang Seng 03/03/14 40% 0.80%  4.34%  2.60
Index Safe and Risky S&P 350 Europe Low Volatility 05/03/14 40% 1.26%  6.09%  1.83
Index Safe and Risky OMXS30 09/04/14 40% 0.94% 3.67% 1.10
Index Safe and Risky OMXS30 07/05/14 40% 0.89% 3.48% 1.04
Index Safe and Risky S5&P 350 Europe Low Volatility 27/08/14 40% 0.58%  2.29%  1.37
Index Safe and Risky OMXS30 28/08/14 40% 0.58% 2.29% 1.37
Index Safe and Risky S5&P 350 Europe Low Volatility 03/12/14 40% 0.56%  2.22%  1.33
Index Safe and Risky OMXS30 03/12/14 40% 0.56% 2.22% 1.33
Basket Safe and Risky ~ Hang Seng, MSCI Singapore & MSCI Taiwan 23/1112 40% 1.10%  4.30%  2.58
Basket Safe and Risky DAX, Hang Seng, OMXS30 & S&P 500 08/07/13 40% 1.25% 6.06%  3.04
Basket Safe and Risky ~ MSCI Singapore & Taiwan Stock Exchange Index 09/04/14 40% 0.94%  3.67% 1.10
Basket Risky MSCI Singapore & MSCI Taiwan 10/09/15 40% 0.56%  1.67%  1.00
Basket Risky MBSCI Singapore & MSCI Taiwan 08/10/15 40% 0.62% 1.84% 1.10

The CVA calculation from table 5.7 are ranging from an add-on of 0.96 SEK to
3.66 SEK. For this we assumed a constant recovery rate of 40%. The adjustment
will depend on the riskiness of the bank, at that particular time, extracted from the
CDS-spread, and on the tenor of the PPN. The table depicts that the products issued
around 2012-2013 have the highest CVA adjustment in our sample; hence, this was
a riskier time to buy PPNs from the issuing banks. In 2014 as shown in the table the
CVA was lower, this could indicate that at the time it was safer for a retail investor
to invest in PPNs when considering the credit risk.
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5.3.2 Comparing investors returns with different benchmarks

It has been determined already that standard-risk performance measures are not a
suitable benchmark to assess PPNs efficiency. We have therefore chosen to
compare the PPN annualized holding period returns (HPR), with other benchmarks
composed by risk-free debt, riskier debt and the underlying equity asset, with these,
we can to some extent determine the opportunity cost and therefore, the efficiency
of these products.

We chose 7 different asset allocations with the following characteristics:

PPN from the issuing banks

PPN mimic strategy

Risk free Swedish government bond
Investment grade bonds from the issuing banks
Long position in the equity underlying

Equally weighted portfolio with risk free debt, risky debt and equity

N o g s~ D

Equally weighted portfolio with risky debt and equity

These portfolios with different characteristics illustrate different alternatives that a

retail investor may consider together with the investment in the PPNs.

Figure 5.1: HPR from replicated PPN and issuing banks. The histograms above show the
annualized HPR from the replicated safe PPN and from the issuing banks. The histograms below
show the annualized HPR from the replicated risky PPN and from the issuing banks. The red line in
the histograms show the mean of the HPR.

Roalized return safa PPN issuing bank Realized return replicated safe PPN
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The returns obtained from the replication of the PPN and the banks are depicted in
figure 5.1 in the form of histograms. All the four histograms are skewed to the right
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in line with the characteristic of the PPN that is capital protected. The left-hand side
histograms depict the net of fees annualized holding period returns, realized from
the notes issued by the banks. From the same table, we can also notice that as
expected the safe notes yielded lower returns than their riskier counterparts because
of their lower exposure to the underlying appreciation.

5.3.2.1 Return Comparison for Safe Index PPNs

In this case, the asset allocation that generated the highest HPR was the investment
on the underlying index (table 5.8), which is equal to a 100% participation. This
type of investment generally produces a higher annualized HPR than a safe PPN,
since the participation rate in the safe PPN is usually below 100%. The trade-off is
that this strategy is riskier, since the PPN is capital protected and hedges the
downside for the investor. Excluding the sole long position on the index, the PPN
prevails as the most profitable alternative compared to the other portfolios. If a retail
investor would have chosen to invest in the balanced portfolios of debt and equity,

he could be worse off in terms of returns.

Table 5.8: HPR and alternative investment sources to safe PPN. Shows the annualized holding
period return for safe PPN and alternative investment sources. In column 1, we observe the
underlying asset, in column 2 the issue date, in column 3 the HPR obtained from the PPN, in column
4 the HPR obtained from the replication, in column 5 the HPR from an investment in a Swedish
zero-coupon bond, in column 6 the HPR obtained from investment in a zero-coupon bond form the
issuing bank, in column 7 the HPR obtained from an investment in the underlying equity index, in
column 8 the HPR obtained from investment in an equally weighted portfolio of the three alternative
investment sources and in column 9 the HPR obtained from an investment in 50 % risky debt and
50% in the equity index.

Rep. Alt. Alt. Alt. Alt. Alt.
Index Issue Bank Annual Port. 1 Port. 2 Port. 3 Port. 4 Port. 5
Date Annual R R Risk Low  Equity Balance Debt+

Free Risk  Index d Index
OMXS30 17/02/11 3.48% 4.55% 0.63% 0.77% 4.75% 2.05% 2.76%
S&P 500 26/05/11 1.63% 0.87% 0.78% 0.92% 6.52% 2.74% 3.72%
OMXS30 20/12/12 2.81% 3.23% 021% 0.35% 09.34% 3.30% 4.84%
S&P 500 Low Volatility 07/02/13 9.44%  6.79% 027% 0.41% 14.46% 5.05% 7.44%
OMXS30 07/05/13 257%  3.02%  026% 0.39% 6.33% 2.33% 3.36%
S&P 500 03/06/13 5.88%  4.55% 030% 043% 19.87% 6.87% 10.15%
S&P Nordic Low Volatility 10/01/14 5.88% 5.40% 034% 047% 8.38% 3.06% 4.43%
S&P 350 Europe Low Volatility 05/02/14 6.38% 4.29% 031% 0.45% 9.40% 3.38% 4.92%
Hang Seng 03/03/14 7.13%  6.74% 029% 0.43% 15.96% 5.56% 8.19%
S&P 350 Europe Low Volatility 05/03/14 5.60%  4.00% 030% 042% 8.74% 3.15% 4.58%
OMXS30 09/04/14 1.16%  1.65% 0.29% 040% 2.93% 1.21% 1.67%
OMXS30 07/05/14 1.07%  1.69% 0.26% 0.37% 4.74% 1.79% 2.56%
S&P 350 Europe Low Volatility 27/08/14 2.89% 0.66% 0.12% 0.23% 8.23% 2.86% 4.23%
OMXS30 28/08/14 0.93% 0.62% 0.11% 0.23% 3.84% 1.39% 2.03%
S&P 350 Europe Low Volatility 03/12/14 206% 0.21% 0.04% 0.16% 4.85% 1.68% 2.50%
OMXS30 03/12/14 0.23% 0.13% 0.04% 0.16% 023% 0.14% 0.20%

In our sample period the Swedish government bonds and the bonds from the issuing
bank yielded low returns, because of the low interest rates at the time. An investor

knowing about these low returns ex-ante can alternatively choose to participate in
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equity derivatives and take advantage of the low call options prices that result from
the low interest rates and volatility in the market at the time. This indicates that an
investment in a safe PPN could be a good option for a risk adverse retail investor.
5.3.2.2 Return Comparison for Risky Index PPNs

Depicted in table 5.9 are the holding period returns comparison with the risky PPNSs.
In this case the PPNs with risky characteristic generated the highest HPR. The risky
PPN generates a higher return than a long position in the underlying, given that the
risky PPN has a participation rate larger than 100%, coming from the exposure level
of the derivative entrenched. This alternative additionally, includes some downside
risk protection, where in the case of a large market sell-off the investor could still

recover a large part of his invested capital.

Table 5.9: HPR and alternative investment sources to risky PPN. Shows the annualized HPR
for risky PPN and alternative investment sources. In column 1, we observe the underlying asset, in
column 2 the issue date, in column 3 the HPR obtained from the PPN, in column 4 the HPR obtained
from the replication, in column 5 the HPR from an investment in a Swedish zero-coupon bond, in
column 6 the HPR obtained from investment in a zero-coupon bond form the issuing bank, in column
7 the HPR obtained from an investment in the underlying equity index, in column 8 the HPR
obtained from investment in an equally weighted portfolio of the three alternative investment
sources and in column 9 the HPR obtained from an investment in 50% risky debt and 50% in the
equity index.

Alt. Port. Alt. Port.
Index Issue Bank Rep. Alt. Port. Alt. Port. 2 3 Al fort. 5
Date Ammual R Annual R Risk Free Low Risk ];:;lg:g Balanced I]):lsg; ;—
OMXS30 17/02/11 5.99%  7.26%  0.63% 0.77% 4.75% 2.05% 2.76%
S&P 500 26/05/11 4.56%  4.28% 0.78% 0.92% 6.52% 2.74% 3.72%
OMXS30 20/12/12 6.38% 8.80% 0.21% 0.35% 9.34% 3.30% 4.84%
S&P 500 Low Volatility 07/02/13 18.09% 18.55%  0.27% 0.41% 14.46% 5.05% 7.44%
OMXS30 07/05/13 6.98%  7.18%  0.26% 0.39% 6.33% 2.33% 3.36%
S&P 500 03/06/13 12.20% 11.81%  0.30% 0.43% 19.87% 6.87% 10.15%
S&P Nordic Low Volatility 10/01/14  11.94% 13.74%  0.34% 0.47% 8.38% 3.06% 4.43%
S&P 350 Europe Low Volatility 05/02/14 13.79% 1541%  0.31% 0.45% 9.40% 3.38% 4.92%
Hang Seng 03/03/14  15.13% 13.90%  0.29% 0.43% 15.96% 5.56% 8.19%
S&P 350 Europe Low Volatility ~ 05/03/14  12.12% 14.12%  0.30% 0.42% 8.74% 3.15% 4.58%
OMXS30 09/04/14 5.10%  4.99% 0.29% 0.40% 2.93% 1.21% 1.67%
OMXS30 07/05/14 5.35% 5.47% 0.26% 0.37% 4.74% 1.79% 2.56%
S&P 350 Europe Low Volatility 27/08/14 9.91% 14.15% 0.12% 0.23% 8.23% 2.86% 4.23%
OMXS30 28/08/14 333%  3.96%  0.11% 0.23% 3.84% 1.39% 2.03%
S&P 350 Europe Low Volatility 03/12/14 6.71% 11.37%  0.04% 0.16% 4.85% 1.68% 2.50%
OMXS30 03/12/14 1.65% 2.19% 0.04% 0.16% 0.23% 0.14% 0.20%

5.3.2.3 Return Comparison for Safe and Risky Basket PPNs
The results from the basket options are more mixed than the presented by their index

counterparts, however they still show a tendency in the same direction (table 5.10)
The basket PPNs are in average more profitable than a mixed portfolio of equity
and debt, Additionally, investing in a PPN with a basket option can be a way for an

investor to invest in multiple indices or equities at a lower cost and hedge its
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position. Which makes this alternative attractive for a type of investors seeking for

an investment with these special features.

Table 5.10: HPR and alternative investment sources to basket PPN. Shows the annualized HPR
for basket PPN and alternative investment sources. In column 1 we observe the type of option
displayed. In column 2, we observe the underlying asset, in column 3 the issue date, in column 4
the HPR obtained from the PPN, in column 5 the HPR obtained from the replication, in column 6
the HPR from an investment in a Swedish zero-coupon bond, in column 7 the HPR obtained from
investment in a zero-coupon bond form the issuing bank, in column 8 the HPR obtained from an
investment in the underlying equity index, in column 9 the HPR obtained from investment in an
equally weighted portfolio of the three alternative investment sources and in column 10 the HPR
obtained from an investment in 50 % risky debt and 50% in the equity index

Rep. Alt. Alt. Alt. Alt. Alt.

Type Index Issue Bank Annual Pm.'t. 1 Port. 2 Port: 3 Port.4 Port. 5
Date Annual R R Risk Low  Equity Balance Debt+

Free Risk Index d Index

Basket Safe  Hang Seng. MSCI Singapore & MSCI Taiwan 231112 4.03% 1.12% 0.23% 0.35% 10.09% 3.56% 5.22%
Basket Safe  DAX. Hang Seng. OMXS30 & S&P 500 08/07/13 5.78% 4.20% 0.33% 0.50% 20.50% 7.11% 10.50%
Basket Safe  MSCI Singapore & Taiwan Stock Exchange Index 09/04/14 -0.96% 0.00% 0.32% 0.46% 10.91% 3.90% 5.68%
Basket Risky Hang Seng, MSCI Singapore & MSCI Taiwan 23/11/12 11.55% 6.02% 0.23% 0.35% 10.09% 3.56% 5.22%
Basket Risky DAX. Hang Seng. OMXS30 & S&P 500 08/07/13 13.65% 11.62% 0.33% 0.50% 20.50% 7.11% 10.50%
Basket Risky MSCI Singapore & Taiwan Stock Exchange Index 09/04/14 -0.94% 0.00% 0.32% 0.46% 10.91% 3.90% 5.68%
Basket Risky MSCI Singapore & MSCI Taiwan 10/09/15 10.78% 13.26% -0.10% 0.05% 11.79% 3.91% 5.92%
Basket Risky MSCI Singapore & MSCI Taiwan 08/10/15 11.17% 3.30% -0.10% 0.11% 10.80% 3.60% 5.45%

An important consideration is the composition of the investor’s combined portfolio.
If he complements his personal portfolio with other assets providing liquidity, and
to some extent lowly correlated returns to the PPN; he will be affected to a lesser
extent to the disadvantages of the PPNs. Such asset classes might come in the form
of money market products, equity investments, and fixed income products. Other
types of alternative investments could also provide diversification benefits,
nevertheless this would be less appropriate given their correlated risks and

investment characteristics.

Another important consideration to weight in the investing decision process for
PPN is the possible tax benefit, inherent from bundling up the bond with the equity
product. Since the profit from investing in a bond and an equity index separately
would cost the investor a higher tax payment (the investor would need to pay tax
on the interest received from the bond in addition to the tax on the equity index
capital gains). With the PPN structure the investor can save on the tax payment for
the bond interest and use that capital to further benefit on the equity investment.
Allowing for a higher after-tax return in the overall investment portfolio.

The suitability of PPN by a retail investor will depend in large part on the market
conditions, the risk profile, market view, liquidity needs, taxable status, access level
to derivative markets hedging opportunities, and current existing portfolio. A retail
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investor under certain circumstances could benefit from the use of structure

products as an investment vehicle.

We define an ideal retail investor profile with the following characteristics and

under the following market conditions:

e Knowledgeable about the financial markets and products

e Positive market view in the underlying

e Limited access to derivative products, and desire to hedge/enhance return

e Scarce (or none) sources of competitive low rate borrowing

¢ No liquidity needs tied to the structured product

e Investment horizon from 3 to 5 years

e Taxable status that may benefit from the structure of the instrument

o Diversified portfolio, with other highly liquid securities and low correlation
with the underlying asset of the structured product

This indicates that when the market conditions are right, certain type of retail
investors with a specific market view (time horizon and asset class), and restricted
access to derivative products, may benefit from an investment strategy involving

principal protected notes.

6 Conclusion

6.1 Conclusion of the analysis
There are different types of investors in the market, with different needs and

characteristics, and a group of them can benefit from investing in structured
products. Such as retail investors with diversified portfolios, who satisfy their
liquidity needs from alternative sources, and with restricted access to levered
market positions and direct hedging. These kind of investors can successfully
incorporate PPNs to their portfolios, and benefit in a way they could hardly do

without them.

In a market environment with low interest rates, and moderate volatility, -and
consequently low hedging costs-, an investor with the previously mentioned
characteristics can benefit from the use of these hybrid notes and take advantage of
the benefits of low hedging costs if that’s his wish. Since, the potential enhancing
yields and/or low hedging costs that can be achieved with the use of PPN would

have been very difficult to achieve with a mixed portfolio of bonds and equities.
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Our analysis presents economic tendencies of overpricing for index PPNs, which
indicates that retail investors with the ability to replicate the index options, or access
to derivative products with low transaction costs, should overweight the possibility

of mimicking the PPN themselves instead of buying it directly from a dealer.

The investment in PPN is exposed to credit, currency and liquidity risk. From our
analysis of credit risk, we can determine that retail investors in the years 2012-2013
were more exposed to this specific risk factor. Nevertheless, given to the high credit
rating of the issuing institutions, this is not an important undermining factor for the
investment in these products. A retail investor investing in PPN with the underlying
issued in a foreign currency will additionally experience a currency risk exposure,
which will also determine the final payoff of the PPN. Furthermore, liquidity risk
will be a part of the risks associated with the PPNSs, since the products are often mid
to long term investment vehicles and the secondary market for these is not very
liquid. Depending on the circumstances and motivation of the retail investor these

risk factors can act to the detriment of his investment.

Investing in the Swedish PPNs market in the period from 2011-2015, generated
higher returns than other alternative portfolio allocations combining riskless debt,
investment grade debt, and the desired underlying equity assets. Yet additionally,
the PPN offered a benefit of capital protection for the holder. Moreover, by
bundling together a taxable zero-coupon bond and the equity instrument, the retail
investor can benefit from higher after-tax returns than if they would invest in both

securities separately, enhancing his after-tax return.

When market conditions are adequate PPNs can be efficient investment vehicles for
certain types of retail investors. The PPNs in the sample period generated returns
higher or comparable to that of alternative benchmarks, which emphasises the claim
that structured equity products can be efficient investing vehicles under certain
conditions. Because of this, retail investors should not neglect the opportunities
arose from investing in hybrid products with derivatives when assessing investment

alternatives.

6.2 Recommended further research on the topic
There are several types of structured products in the Swedish market, with the

largest group consisting of principal protected notes. For further research we
recommend using a larger sample size collected for several years to obtain more

robust results, since the amount of product issued every year are very limited.
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Hence, our analysis might be exposed to some degree of time-period bias.
Additionally, we recommend the development of a multivariate GARCH, and/or
the use of the implied volatilities at the time of issuance, to assess the volatility
parameter in the basket options. Our sample is collected among expired products,
an alternative could be instead to use newly issued notes, and calculate the expected
return for those. Our research might also have experienced problems of sample-
selection bias where particular attributes of the products could have been
systematically excluded due to lack of sufficient data availability. This problem
could be even greater when performing research on active PPNs. An alternative
approach could be to perform research on the variety of different structured
products that exist on the Swedish market, to analyse if there are common attributes

among these products that could be assessed further.
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8 Appendix
8.1 MATLAB code pricing Principal protected notes

8.1.1 MATLAB code pricing Principal protected notes with index option
Load Data

clear;

close all;

clc;

% Load data and set Inputs
load underlying_Data_1
load TS_Datal

load FX_Data

load DY_Datal

Inputs

Underlying = OMX; % Index or Stock

CCY = 'SEK'; % currency of the underlying (SEK, USD, EUR, JPY & HKD)

Iterations = 1000000; % 1,000,000 iterations

S0 = 100; % Spot Price

% Dates

Start_Date = datetime('07-May-2013', 'InputFormat',6 'd-MMM-y');

Maturity_bDate = datetime('23-Apr-2018', 'InputFormat', 'd-MMM-y');

Obs_Dates = {'23-Apr-2017"';'23-May-2017"';"'23-Jun-2017";'23-3ul1-2017";"'23-Aug-
2017';'23-Sep-2017"; '23-0ct-2017";'23-Nov-2017";'23-Dec-2017";'23-Jan-2018";'23-
Feb-2018"';'23-Mar-2017";'23-Apr-2017'}; % Observation Dates

jdx_SD = find(Data_Date==Start_bDate); % Date Index for SO

TMY = (days(Maturity_Date - Start_bDate)+1)/365; % Time in natural years
Dif_Start_Mat = days252bus(Start_Date, Maturity_bDate); %Number of sim to Maturity
Dif_Start_Obs = days252bus(Start_Date, Obs_bDates)+1; %Number of sim to Obs

FX, DY and RF

jdx_FX_TS = find(FX_Dates==Start_Date); % FX rate routine
if strcmp(ccy,'usp') == 1

FX = FX_USD(idXx_FX_TS,:);
elseif strcmp(CCy,'HKD') == 1
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FX = FX_HKD(idX_FX_TS,:);
elseif strcmp(ccy,'IPY') ==1
FX = FX_IPY(idX_FX_TS,:);
elseif strcmp(ccCy,'EUR') == 1
FX FX_EUR(idX_FX_TS,:);
else
FX = 1;
end

jdx_SD_TS = find(TS_Dates==Start_Date); % Risk free rate routine

if strcmp(ccy,'usp') == 1
rf = TS_USA(idx_SD_TS, round(days(Maturity_Date - Start_Date)/365));
elseif strcmp(CCY,'HKD') == 1

rf = TS_HongKong(idx_SD_TS, round(days(Maturity_Date - Start_Date)/365));
elseif strcmp(cCy,'IPY') == 1

rf = TS_Japan(idx_SD_TS, round(days(Maturity_Date - Start_Date)/365));
elseif strcmp(CCY,'EUR') == 1

rf = TS_Germany (idx_SD_TS, round(days(Maturity_Date - Start_Date)/365));
else

rf = TS_Sweden(idx_SD_TS, round(days(Maturity_Date - Start_Date)/365));

end

idx_DY = find(year(Start_Date)==DY_Years); % Annual historical dividend Yield
Routine
if underlying(1,1) == omx(1,1)
DY = mean(DY_OMX(1:idx_DY-1,:));
elseif underlying(1,1) == sP500(1,1)

DY = mean(DY_SP500(1:idx_bY-1,:));
elseif underlying(l,1) == HANG_SENG(1,1)
DY = mean(DY_HS(1l:idx_DY-1,:));
elseif underlying(1l,1) == NIKKEI(1,1)

DY = mean(DY_NIKK(1l:idx_DY-1,:));
elseif underlying(l,1) == DAX(1,1)

DY = mean(DY_DAX(1:idx_DY-1,:));
elseif underlying(l,1) == CAC40(1,1)

DY = mean(DY_CAC40(1l:idx_bYy-1,:));
elseif underlying(l,1) == FTSE(1,1)

DY = mean(DY_FTSE(1l:idx_DY-1,:));
elseif underlying(l,1) == EUROSTOXX(1,1)
DY = mean(DY_EURO(1:idx_DY-1,:));
elseif underlying(l,1) == MSCI_WORLD(1,1)

DY = mean(DY_WORLD(1l:idx_bY-1,:));
else

end
clear ans

clearvars -except Underlying CCY SO TMY Iterations Start_Date Maturity_Date...
AvgDate idx_SD FX rf Dif_start_Mat Dif_Start_obs DY

Statistics

Hist_uUnd = Underlying(1l:idx_SD-1,1); % Historical Prices Underlying
Hist_Und = rmmissing(Hist_uUnd); % Remove missing data

Ret_Hist = diff(log(Hist_uUnd)); % Historical Returns

Mean_R = mean(Ret_Hist); % Mean historical daily Return

Mean_R_Y = Mean_R*(252A(1/2)); % Mean historical annual Return
VoI_Hist = std(Ret_Hist); % Index Historical Daily volatility
VOI_Hist_Y = Vol_Hist*(252A(1/2)); % Annualized volatility
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Z = norminv(0.95);
clear Hist_Und Underlying ans

Volatility Modelling Econ App 1

econometricModeler % we first test for heteroscedasticity, then we model with
% GARCH(1,1), EGARCH(1,1) and GJR(1l,1), compare them and

% select the one with the Towest AIC and BIC.

Volatility Modelling Econ App 2

if exist('GIJR_Ret_Histl','var')
vol_mdT=GIR_Ret_Histl;
elseif exist('GARCH_Ret_Histl','var')
vol_mdT=GARCH_Ret_Histl;
else ,exist('EGARCH_Ret_Histl', 'var')
vol_mdT=EGARCH_Ret_Histl;
end
vol_inf = infer(vol_md1,Ret_Hist); % Infer conditional variance
[V,Y] = simulate(vol_md1,252, '"NumPaths',Iterations, 'EOQ', Ret_Hist,
vol_inf);
F_Vol_D = mean(std(Y)); % Forecasted Daily Volatility
F_Vol_Y = mean(std(Y))*(252A(1/2)); % Forecasted Anual volatility

Geometric Brownian Motion Simulation

vol = F_Vol_Y; % Vvolatility model

r = rf-DY; % Daily Return for pricing %Mean_R;
deltaT = TMY/Dif_Start_Mat; %Time step

K = S0; % Strike price

Mu =r; %r

Qty_und 1;

Steps = Dif_Start_Mat;

Sim_Prices = zeros(Steps+1,Iterations);

for i=(1:Iterations)

Rand_braw = randn(Steps,Qty_und); % Random draw of a normal value

Eps = Rand_Draw; % Random number adjusted by cov
Sim_Prices(:,i) = [ones(1,1);cumprod(exp(repmat((Mu...
-vol.*vol/2)*deltaT,Steps,1)+Eps...
*vol*sqrt(deltaT)))]*s0; %GBM Paths
end

Option Pricing

Sim_Obs = Sim_Prices(Dif_Start_oObs,:);
Dates

% Retrieve Data from Obs

Sim_ObsT = max([mean(Sim_0Obs)-K;zeros(1l,Iterations)]); % Option Pay-off per node
Mcl_Payoff_call = mean(Sim_ObsT); % Option Pay-off

call_Price_MonteCarlo = MCl_Payoff_call*exp(-rf*T™My); % Price Computation
conf_Intl = (MCl_Payoff_call - z*(std(Sim_0bsT)/sqrt(Iterations)))*exp(-rf*TMY);
conf_Int2 = (MCl_Payoff_call + z*(std(Sim_0bsT)/sqrt(Iterations)))*exp(-rf*TMY);
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Monte Carlo Plain Vanilla European Asian Option

Mean_Sim_Prices = max([mean(Sim_Prices)-K;zeros(l,Iterations)]);
MCA_PO = mean(Mean_Sim_Prices);
MCA_Pr = MCA_PO*exp(-rf*TMy);

PPN Pricing

zero_Bond = 100*exp(-rf*TMY); Dif_100_zero = 100-zero_Bond; % Bond Pricing
Qty_oOpt = Dif_100_zero/Call_Price_MonteCarlo; % Participation Rate

Other models

RateSpec = intenvset('valuationDate', Start_bDate, 'StartDates', Start_Date,
'EndDates', Maturity_Date, 'Rates', rf, 'Compounding', -1, 'Basis', 1);
StockSpec = stockspec(vol, SO, 'continuous', DY);

% Black and scholes
[cal1_BS] = blsprice(s0,K,rf,T™MY,Vo1,DY); % European cCall with Black and Scholes

% European geometric Average Price for the Asian option using the Kemna-vorst
model
Call_kv = asiansensbykv(Ratespec, StocksSpec, 'call', K, Start_Date,
Maturity_Date);

% European arithmetic average price for the Asian option using the Levy model
Call_Levy = asianbylevy(RateSpec, StockSpec, 'call', K, Start_Date,
Maturity_Date);

% Monte Carlo Model 2

optsSpec = 'call'; % call option

OptionGBM = gbm(r, Vvol, 'StartState', 1); % Geometric Brownian Motion
[Paths, Times] = simBySolution(OptionGBM, Dif_Start_mat,
'NTRIALS',Iterations, 'DeltaTime',deltaT, 'Antithetic',true);
simPrice0 = squeeze(Paths);

TimesonAvgDate = Times(Dif_Start_obs,:);

Times = [0; TimesonAvgDate(end)];
simPriceonAvgDate = simPrice0(Dif_Start_Obs,:); % Prices on average dates

% Pre-calculate premium of options

simPricel = [ones(1l,Iterations); mean(simPriceOnAvgDate)];

Call_MC2 = optpricebysim(RateSpec, simPricel * SO, Times, OptSpec, K, TMY);
Qty_opt2 Dif_100_zero/Call_MC2; % Participation Rate

clearvars -except Call_MC2 Call_Levy Call_Kv Call_BS Call_Price_MontecCarlo...
MCA_Pr

8.1.2 MATLAB code pricing Principal protected notes with basket option
Load Data

clear;
close all;
clc;
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% Load data and set Inputs
load underlying_bata_1
load TS_Datal

load FX_Data

Jload DY_Datal

Inputs

Underlyingl = SP500; % Index or Stock
Underlying2 OMX; % Index or Stock
Underlying3 DAX; % Index or Stock
Underlying4 = HANG_SENG; % Index or Stock

CCyl = 'usD'; % currency of the underlying (SEK, USD, EUR, JPY & HKD)
CCY2 = "SEK'; % currency of the underlying (SEK, USD, EUR, JPY & HKD)
CCY3 = "EUR'; % currency of the underlying (SEK, USD, EUR, JPY & HKD)
CCY4 = "HKD'; % Currency of the underlying (SEK, USD, EUR, JPY & HKD)

Iterations = 250000; % 250,000 iterations

Qty_und = 4; % Number of Underlying assets

SO = 100; % underlying(idx_SD); % Spot Price

K = S0; % Strike price

% Dates

Start_Date = datetime('08-Jul1-2013', 'InputFormat',6 'd-MMM-y'); %Settlement Date

Maturity_bDate = datetime('25-Jun-2018', 'InputFormat', 'd-MMM-y'); %Maturity Date

Obs_Dates = {'25-Jun-2017"';"'25-3Jul1-2017";'25-Aug-2017";'25-Sep-2017";...
'25-0ct-2017";"'25-Nov-2017";'25-Dec-2017";"'25-3Jan-2018";'25-Feb-2018";...
'25-Mar-2018";'25-Apr-2018"';'25-May-2018";'25-3Jun-2018"'}; % Observation Dates

idx_sb = find(Data_bate==Start_Date); % Date Index for SO

TMY = (days(Maturity_Date - Start_bDate)+1)/365; % Time in natural years

Dif_start_Mat = days252bus(Start_Date, Maturity_bDate); %Number of sim to Maturity

Dif_start_Obs = days252bus(Start_Date, Obs_bDates)+1; %Number of sim to Obs

FX, DY and RF

% RF - Risk Free Rate
jdx_SD_TS = find(TS_Dates==Start_Date); % Risk free rate routine

if strcmp(CCyl,'usD') == 1

rfl = TS_USA(idx_SD_TS, round(TMY));
elseif strcmp(CCYl,'HKD') == 1

rfl = TS_HongKong(idx_SD_TS, round(TMY));
elseif strcmp(ccyl,'JPY') == 1

rfl = TS_Japan(idx_SD_TS, round(TMY));
elseif strcmp(CCYl,'EUR') == 1

rfl = TS_Germany (idx_SD_TS, round(TMY)) ;
else

rfl = TS_Sweden(idx_SD_TS, round(T™MY));
end
if strcmp(CCy2,'usD') == 1

rf2 = TS_USA(idx_SD_TS, round(T™MY));
elseif strcmp(CCY2,'HKD') == 1

rf2 = TS_HongKong(idx_SD_TS, round(TMY)) ;
elseif strcmp(CcCcy2,'JPY') == 1

rf2 = TS_Japan(idx_SD_TS, round(TMY));
elseif strcmp(CCY2,'EUR') == 1

rf2 = TS_Germany (idx_SD_TS, round(TMY));
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else

rf2 = TS_Sweden(idx_SD_TS, round(TMY));
end
if strcmp(ccy3,'usp') == 1

rf3 = TS_USA(idx_SD_TS, round(TMY));
elseif strcmp(CCY3, 'HKD') == 1

rf3 = TS_HongKong(idx_SD_TS, round(TMY));
elseif strcmp(ccy3,'JpPy') == 1

rf3 = TS_Japan(idx_SD_TS, round(T™MY));
elseif strcmp(CCY3,'EUR') == 1

rf3 = TS_Germany (idx_SD_TS, round(T™MY));
else

rf3 = TS_Sweden(idx_SD_TS, round(TMY));
end
if strcmp(ccy4,'usp') == 1

rf4 = TS_USA(idx_SD_TS, round(TMY));
elseif strcmp(CCY4,'HKD') == 1

rf4 = TS_HongKong(idx_SD_TS, round(T™MY));
elseif strcmp(ccy4,'Jpy') == 1

rf4 = TS_Japan(idx_SD_TS, round(TMY));
elseif strcmp(CCY4,'EUR') == 1

rf4 = TS_Germany (idx_SD_TS, round(TMY));
else

rf4 = TS_Sweden(idx_SD_TS, round(T™MY));
end

% DY - Dividend Yield
idx_DY = find(year(Start_Date)==DY_Years); % Annual historical dividend Yield
Routine

if uUnderlyingl(1,1) == omx(1,1)
DY1 = mean(DY_OMX(1:idx_DY-1,:));
elseif underlyingl(l,1) == sSP500(1,1)

DY1 = mean(DY_SP500(1:idx_DbY-1,:));
elseif uUnderlyingl(l,1) == HANG_SENG(1,1)
DY1 = mean(DY_HS(1:idx_DY-1,:));
elseif underlyingl(l,1) == NIKKEI(1l,1)

DY1 = mean(DY_NIKK(1l:idx_bY-1,:));
elseif underlyingl(l,1) == DAX(1,1)

DY1 = mean(DY_DAX(1l:idx_DY-1,:));
elseif underlyingl(l,1) == CAC40(1,1)

DY1 = mean(DY_CAC40(1l:idx_bY-1,:));
elseif underlyingl(l,1) == FTSE(1,1)

DY1 = mean(DY_FTSE(1l:idx_DbY-1,:));
elseif uUnderlyingl(l,1) == EUROSTOXX(1,1)
DY1 = mean(DY_EURO(1l:idx_DY-1,:));
elseif underlyingl(l,1) == MSCI_WORLD(1,1)

DY1 = mean(DY_WORLD(1l:idx_DY-1,:));
else

DYl = 0;
end

if underlying2(1,1) == omx(1,1)

DY2 = mean(DY_OMX(1l:idx_DY-1,:));
elseif underlying2(1,1) == sP500(1,1)

DY2 = mean(DY_SP500(1:idx_DY-1,:));
elseif uUnderlying2(1,1) == HANG_SENG(1,1)

DY2 = mean(DY_HS(1:idx_DY-1,:));
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elseif underlying2(1,1) == NIKKEI(1l,1)
DY2 = mean(DY_NIKK(1l:idx_DY-1,:));
elseif underlying2(1,1) == DAX(1,1)
DY2 = mean(DY_DAX(1l:idx_DY-1,:));
elseif underlying2(1,1) == CAC40(1,1)
DY2 = mean(DY_CAC40(1l:idx_bY-1,:));
elseif underlying2(1,1) == FTSE(1,1)

DY2 = mean(DY_FTSE(1l:idx_bY-1,:));
elseif underlying2(1,1) == EUROSTOXX(1l,1)
DY2 = mean(DY_EURO(1l:idx_bY-1,:));
elseif underlying2(1,1) == MSCI_WORLD(1,1)

DY2 = mean(DY_WORLD(1l:idx_DY-1,:));
else

DY2 = 0;
end

if underlying3(1,1) == oMx(1,1)
DY3 = mean(DY_OMX(1l:idx_DY-1,:));
elseif underlying3(1,1) == sp500(1,1)

DY3 = mean(DY_SP500(1:idx_bY-1,:));
elseif underlying3(1,1) == HANG_SENG(1,1)
DY3 = mean(DY_HS(1:idx_DY-1,:));
elseif underlying3(1,1) == NIKKEI(1,1)

DY3 = mean(DY_NIKK(1l:idx_bY-1,:));
elseif underlying3(1,1) == DAX(1,1)

DY3 = mean(DY_DAX(1l:idx_DY-1,:));
elseif underlying3(1,1) == CAC40(1,1)

DY3 = mean(DY_CAC40(1l:idx_bY-1,:));
elseif underlying3(1,1) == FTSE(1,1)

DY3 = mean(DY_FTSE(1l:idx_bY-1,:));
elseif underlying3(1,1) == EUROSTOXX(1,1)
DY3 = mean(DY_EURO(1l:idx_DY-1,:));
elseif underlying3(1,1) == MSCI_WORLD(1,1)

DY3 = mean(DY_WORLD(1l:idx_DY-1,:));
else

DY3 = 0;
end

if uUnderlying4(1,1) == omx(1,1)
DY4 = mean(DY_OMX(1:idx_DY-1,:));
elseif underlying4(1l,1) == sP500(1,1)

DY4 = mean(DY_SP500(1:idx_DY-1,:));
elseif uUnderlying4(1l,1) == HANG_SENG(1,1)
DY4 = mean(DY_HS(1:idx_DY-1,:));
elseif underlying4(1,1) == NIKKEI(1,1)

DY4 = mean(DY_NIKK(1l:idx_bY-1,:));
elseif uUnderlying4(1l,1) == DAX(1,1)

DY4 = mean(DY_DAX(1l:idx_DY-1,:));
elseif underlying4(1l,1) == CAC40(1,1)

DY4 = mean(DY_CAC40(1:idx_DY-1,:));
elseif underlying4(1,1) == FTSE(1,1)

DY4 = mean(DY_FTSE(1l:idx_DbY-1,:));
elseif underlying4(1l,1) == EUROSTOXX(1,1)
DY4 = mean(DY_EURO(1l:idx_bY-1,:));
elseif underlying4(1,1) == MSCI_WORLD(1,1)

DY4 = mean(DY_WORLD(1l:idx_DY-1,:));
else

DY4 = 0;
end
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Statistics / Cholesky and Var-Cov Matrix

% Ccalculate the daily log returns and the statistics

% Underlyingl

SO0_1 =underlyingl(idx_SD);

Hist_undl = Underlyingl(1l:idx_SD-1,1); % Historical Prices Underlying
Hist_Returnsl = diff(log(Hist_undl)); % Historical Returns
Hist_Returnsl(isnan(Hist_Returnsl))=0; % Change NaN for 0

Mean_R1l = mean(Hist_Returnsl); % Mean historical daily Return

Voll = std(Hist_Returnsl); % Index Historical volatility

% Underlying2

S0_2 =underlying2(idx_SD);

Hist_und2 = uUnderlying2(1l:idx_SD-1,1);

Hist_Returns2 = diff(log(Hist_und2)); % Historical Returns
Hist_Returns2(isnan(Hist_Returns2))=0; % Change NaN for 0
Mean_R2 = mean(Hist_Returns2); % Mean historical daily Return
Vol2 = std(Hist_Returns2); % Index Historical volatility

% Underlying3

S0_3 =underlying3(idx_SD);

Hist_und3 = uUnderlying3(1:idx_SD-1,1);

Hist_Returns3 = diff(log(Hist_und3)); % Historical Returns
Hist_Returns3(isnan(Hist_Returns3))=0; % Change NaN for 0O
Mean_R3 = mean(Hist_Returns3); % Mean historical daily Return
Vol3 = std(Hist_Returns3); % Index Historical volatility

% Underlying4

S0_4 =underlying4(idx_SD);

Hist_und4 = uUnderlying4(1:idx_SD-1,1);

Hist_Returns4 = diff(log(Hist_und4)); % Historical Returns
Hist_Returns4(isnan(Hist_Returns4))=0; % Change NaN for O
Mean_R4 = mean(Hist_Returns4); % Mean historical daily Return
Vol4 = std(Hist_Returns4); % Index Historical volatility

Mat_Hist_R = [Hist_Returnsl Hist_Returns2 Hist_Returns3 Hist_Returns4];
Mat_Mean_R = mean(Mat_Hist_R)*(252A(1/2)); % Mean Annualized return Matrix
Mat_Mu = ([rfl-pyl,rf2-pY2,rf3-pY3,rf4-pY4])/(252A(1/2)); % Negative annual Mu
Mat_Vol_R = std(Mat_Hist_R)*(252A(1/2)); %Annualized Vvolatility Matrix
Mat_corr corrcoef(Mat_Hist_R); %Correlation Matrix

Mat_Chol = chol(Mat_corr); %Cholesky decomposition from correlation Matrix

Mat_SO = ones(1l,Qty_und)*s0; %SO Matrix, for underlying assets
% Mat_SsO = [Ss0_1,s0_2,s0_3,s0_4]; "Alternative"

deltaT = TMY/Dif_Start_Mat; %Time step

Z = norminv(0.95);

Geometric Brownian Motion

Sim_Prices = zeros(Dif_Start_Mat+1l,Iterations,Qty_und);
for i=(1:Iterations)
Rand_Draw = randn(Dif_Start_Mat,Qty_uUnd); % Random draw of a normal value
Rand_Cov_Adj = Rand_braw * Mat_chol; % Random number adjusted by cov
Sim_Prices(:,i,:) = [ones(1l,Qty_und) ;cumprod(exp(repmat((Mat_Mu...
-Mat_Vol_R.*Mat_Vol_R/2)*deltaT,Dif_Start_Mat,l)+Rand_Cov_Adj...
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*diag(Mat_Vvol_R)*sqrt(deltaT)))]*diag(Mat_s0); %GBM Paths

end

Sim_undl = Sim_Prices(:,:,1); % Simulation Underlying 1
Sim_und2 = Sim_Prices(:,:,2); % Simulation Underlying 2
Sim_und3 = Sim_Prices(:,:,3); % Simulation Underlying 3

Sim_und4 = Sim_Prices(:,:,4); % Simulation Underlying 4

Option Pricing

undl = max([mean(Sim_undl(Dif_Start_Obs,:))-K;zeros(l,Iterations)]); %Call
per node

Undl_payoff = mean(undl); % call oOption pay-off for underlying 1
undl_Price = undl_Payoff*exp(-rfl*TMY); % Call option 1 at the money price

% Underlying 2

und2 = max([mean(Sim_und2(Dif_Start_Obs,:))-K;zeros(1l,Iterations)]); %Call
per node

und2_payoff = mean(und2); % call option pay-off for underlying 1
und2_Price = und2_payoff*exp(-rf2*TMY); % call option 1 at the money price

% Underlying 3

und3 = max([mean(Sim_und3(Dif_Start_Obs,:))-K;zeros(1l,Iterations)]); %cCall
per node

und3_payoff = mean(und3); % call option pay-off for underlying 1
und3_Price = und3_rayoff*exp(-rf3*TMY); % call option 1 at the money price

% Underlying 4

und4 = max([mean(Sim_und4(Dif_Start_obs,:))-K;zeros(l,Iterations)]); %call
per node

und4_payoff = mean(und4); % call option pay-off for underlying 1
und4_Price = und4_payoff*exp(-rf4*TMY); % call option 1 at the money price

% Basket Option Price
call_Basket_oOption = mean([uUndl_Price,Und2_Price,Und3_Price,uUnd4_Price]);

PPN Pricing

rf = mean([rfl,rf2,rf3,rf4]); % weighted averaged risk free rate
Zero_Bond = 100*exp(-rf*TMY); Dif_100_zero = 100-zero_Bond; % Bond Pricing
Qty_Opt = Dif_100_zero/cCall_Basket_oOption; % Participation Rate

% Show results

disp("call Basket Option Price Monte Carlo"); disp(call_Basket_Option);
disp("Participation Rate MC"); disp(Qty_oOpt);

Asian Option

pPay-off

Pay-off

Pay-off

Pay-off

undl_A = max([mean(Sim_undl)-K;zeros(1l,Iterations)]); %Call pPay-off per node

undl_payoff_A = mean(undl_A); % call option pay-off for underlying 1

undl_Price_A = uUndl_payoff_A*exp(-rfl*TMY); % call option 1 at the money price
undl_conf_Intl = (Undl_Payoff_A - z*(std(Undl_A)/sqrt(Iterations)))*exp(-rf*TMY);
undl_conf_Int2 = (Undl_Payoff_A + z*(std(Undl_A)/sqrt(Iterations)))*exp(-rf*TMY);
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% Underlying 2

und2_A = max([mean(Sim_und2)-K;zeros(1l,Iterations)]); %Call pPay-off per node
und2_payoff_A = mean(und2_A); % call option pay-off for underlying 1
uUnd2_Price_A = Und2_rayoff_A*exp(-rf2*TMY); % call option 1 at the money price
und2_conf_Intl = (Und2_Payoff_A - z*(std(und2_A)/sqrt(Iterations)))*exp(-rf*TMY);
und2_conf_Int2 = (Und2_Payoff_A + z*(std(Und2_A)/sqrt(Iterations)))*exp(-rf*TMY);

% Underlying 3

und3_A = max([mean(Sim_und3)-K;zeros(1l,Iterations)]); %Call pay-off per node
und3_pPayoff_A = mean(und3_A); % call option pay-off for underlying 1
und3_Price_A = Und3_Payoff_A*exp(-rf3*TMY); % call option 1 at the money price
und3_conf_Intl = (Und3_Payoff_A - z*(std(und3_A)/sqrt(Iterations)))*exp(-rf*TMmY);
und3_conf_Int2 = (und3_Payoff_A + z*(std(Und3_A)/sqrt(Iterations)))*exp(-rf*TMY);

% Underlying 4

und4_A = max([mean(Sim_und4)-K;zeros(1l,Iterations)]); %Call Pay-off per node
und4_payoff_A = mean(und4_A); % call option pay-off for underlying 1
und4_Price_A = und4_rayoff_A*exp(-rf4*TMY); % Ccall option 1 at the money price
und4_conf_intl = (Und4_Payoff_A - z*(std(und4_A)/sqrt(Iterations)))*exp(-rf*TMmY);
und4_conf_Int2 = (und4_pPayoff_A + z*(std(Und4_A)/sqrt(Iterations)))*exp(-rf*TMY);

% Basket Option Price

call_Basket_oOption_Asian =
mean([undl_Price_A,und2_Price_A,und3_Price_A,und4_Price_A]);

conf_Intl = mean([undl_conf_Intl,und2_cConf_Intl,und3_Conf_Intl,und4_conf_Intl]);
conf_Int2 = mean([undl_cConf_Int2,und2_Conf_Int2,und3_cConf_Int2,und4_cConf_Int2]);
disp("call Basket Option Asian"); disp(Call_Basket_Option_Asian);

Longstaff-Schwartz model for Basket Options

RateSpec = intenvset('valuationDate', Start_Date, 'StartDates',...

Start_Date, 'EndDates', Maturity_Date, 'Rates', rf, 'Compounding', -1);

BasketStockSpec = basketstockspec(Mat_Vol_R, Mat_S0,ones(1,Qty_und)/Qty_und,

Mat_corr);

[Price,Paths,Times,z] = basketbyls(RateSpec,BasketStockSpec,"call", K,...
Start_Date,Maturity_Date, 'Americanopt',0, 'NumTrials',Iterations);

disp("call Basket Option Price Longstaff-Schwartz"); disp(Price);
disp("Participation Rate LS"); disp(Qty_oOpt);

Pathsl Paths(:,1,:); Pathsl = permute(Pathsl,[1 3 2]);
Paths?2 Paths(:,2,:); Paths2 permute(Paths2,[1 3 2]);
Paths3 = Paths(:,3,:); Paths3 = permute(Paths3,[1 3 2]);
Paths4 Paths(:,4,:); Paths4 permute(Paths4,[1 3 2]);

Mean_Sim_Pricesl = max([mean(Pathsl)-K;zeros(1l,Iterations)]);
MCA_POl1 = mean(Mean_Sim_Pricesl);
MCA_Prl = MCA_POl*exp(-rf*TMY);

Mean_Sim_Prices2 = max([mean(Paths2)-K;zeros(1l,Iterations)]);
MCA_PO2 = mean(Mean_Sim_Prices2);
MCA_Pr2 = MCA_P02*exp(-rf*TMY);

Mean_Sim_Prices3 = max([mean(Paths3)-K;zeros(l,Iterations)]);
MCA_PO3 = mean(Mean_Sim_Prices3);

MCA_Pr3 = MCA_PO03*exp(-rf*TMY);

Mean_Sim_Prices4 = max([mean(Paths4)-K;zeros(l,Iterations)]);
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MCA_PO4
MCA_Pr4

mean (Mean_Sim_Prices4);
MCA_PO4*exp (-rf*TMY) ;

call_Basket_oOption_Asian2 = mean([MCA_Prl,MCA_Pr2,MCA_Pr3,MCA_Pr4]);
disp("call Basket Option Asian 2"); disp(Call_Basket_Option_Asian2);
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8.2 Volatility modelling
8.2.1 Results Principal protected note with index option

Table 8.1: Statistical test and volatility for PPNs with index option. Part one of the table shows
the p-values from the statistical test performed to fit the return data to the GARCH-models. Part
two of the table contain the goodness of fit result connected with the EGARCH (1,1) model. This
model had the greatest fit for all the return series, and thus its result is displayed. The third part of
the table shows the yearly forecasted volatility from the EGARCH (1,1) model and the yearly
historical volatility.

P-value EGARCH (1,1
Forcasted  Historical

IS ADF-test Ljung-Box () Engle ARCH|ATC BIC Wolatility Volatility
SE0005095585 and SE000509559 0,001  8.40E-04  1,11E-15| -12979 -12956 22,94%  23.97%
SE00055055%1and SE000550560 0,001  4,22E-04 0,000 -15566 -15543 1744%  17,74%
SE0005133071 and SE000513308) 0,001 3,25B-12 0,000 -14147 -14125 20,36%  21,33%
SE0005506086 and SE000550609 0,001 0,003 0,000 -14244 -14221 24,99%  2542%
SE0005796570 and SE000579658 0,001 0,002 0,000 -14755 14731 22.45%  23,04%
SE0005677002 and SE000567701 0,001 9,99E-09 0,000 -16816 -16793 14,14%  14,65%
SE0005768215 and SE000576822) 0,001 0,0022 0,000 -14620 14597 22,54%  23,10%
SE0005562451 and SE000556246) 0,001 7,83E-09 0,000 -16678 -16655 1446%  14,67%
SE0006027504 and SE000602751 0,001 0,002 0,000 -15326 -15302 21,85%  22,76%
SE0006257338 and SE000625784) 0,001 3,04B-0% 0,000 -18267 -18243 13,52% 14,37
SE0006257887 and SE000625789 0,001 0,0017 0000 -15781 -15757 21,89%  22,5%9%
SE0006027454 and SE000602746) 0,001 1,14E-08 0,000 -17774 -17750 13.69%  1441%
SE0004898955 and SE000489896 0,001 0,005  200E-15] -12281 -12258 2257 24.40%
SE0003916931 and SE000391694) 0,001 4,11E-11  2,22E-16| -10685 -10664 2068%  22,22%
SE0004950491 and SE000495050) 0,001 5,09E-14 0,000 -14825 -14802 14,07%  15,65%
SE0003722198 and SE0003722200 0,001 0,0119  3,00E-14| -94787 -94572 24.77%  24.4%%
8.2.2 Result statistical models ISIN: SE0005095585
Formula ARMA(2,2) process:

(1= L —@ol?) =p+ (1 +6,L + 0,L%)¢, (8.1)

Table 8.2: Result from statistical tests. This table shows the result from Augmented Dickey-
Fuller test, Ljung-Box Q test and Engle ARCH for the PPN with ISIN: SE0005095585. The fourth
column show the Ljung-Box Q test for an ARMA (2,2) process.

[SIM: BE00050955585
ADFtest  Ljung-Box Q) Engle ARCHARMA(Z Z) Ljung-Box O

P-Vale 1,00E-03 8,41E-04 LI1E-15 0,1543
Test Statistic 47T 45,8662 64,2423 26,3571
Critical Value -1,94146 3L4104 38415 3l4104

Eeject/ Do not reject null Reject null Reject null Reject null Tio not reject null
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8.2.3 Results Principal protected notes with basket option

Table 8.3: Historical volatility PPNs with basket option. This table contain the historical yearly
volatility for PPNs which contain basket option. The volatility measure used in the pricing model
is an average of the historical volatility for each of the indices.

Historical Historical Historical Historical Average

volatility  wolatility  wolatility  wolatility  historical
I51H index 1 index 2 index 3 index 4 volatilty
SEOD005190865 and SE0005190873 L2 2383%  2L7M% 26,08%. 2348%
SEQOO07184429 15.84%  20,13% - - 19.43%,
SE0007184320 15,89%  20,16% - - 19,53%
SE000SETE000 and SE000S672018 19.80%  19,70% - - 19,75%
SEOD04E70079 and SE0004870087 260776% 2106%  21,93% - 23,25%

8.3 Parameters in the model

Table 8.4: Parameter input PPN with index option. Shows the most important input parameters
which has been used to replicate the principal protected note with index option. In column 1, we
observe the ISIN of the PPN. In column 2, we observe the underlying asset, in column 3 the issue
date, in column 4 the yearly risk-free rate added to the pricing model, in column 5 the forecasted
yearly volatility and in column 6 the yearly dividend yield.

ISIN Index fosue  Risk oty Ddend
Date  free rate yield

SE0003722195 and SEO003722206 OMIS30 170211 314% 2448%  3,26%
SE0003916931 and SEO003916949 S&P 500 Index 26,0511 0,83%%  2222%  211%
SEO004E35955 and SEODD4E95963 OMIE30 2001212 1,02%  2440% 345%
SE0004950431 and SE0004950509 SP500 Low Volatlity Index 070213  0,83%%  1565%  265%
SEN005095585 and SE0005095593 OMIS30 070513 1,31% 23,97%% 3.51%
SE0005133071 and SEO00S133089 S&P 500 Index 03.06.13  1,03%%  21,33% 213%
SE0005505591 and SEO005505609 S&P MNordic Low Volatility 100114 1,03%%  177A% 3,23%
SE0005562451 and SEO00S562469 S&P 350 Europe Low Volatility Index 05.02.14  0,58% 146790  3,54%
SE0005506086 and SE00055060%4  Hang Seng Index 03.03.14  1,52%  2542%  321%
SEO00SETI002 and SEO0OSETF0L0 S&P 350 Europe Low Volatility Index 05.03.14 061%  1465%  3,54%
SEO00STA5215 and SEODDSTAS223  OMIE30 09.04.14 114 2310% 3,54%
SE000ST36570 and SEO0DSTIGS8E  OMIE30 070514 1,05%  2304%  3,54%
SE0006027454 and SEO006027462 S&P 350 Europe Low Volatility Index 270814 0,10%  1441% 3,54%
SE0006027504 and SEO006027512  OMIE30 28.08.14  044%  2276%  3,54%
SE0006257538 and SE0006257846 S&P 350 Europe Low Volatility Index 03.12.14  0,04% 14,37%% 3,54%
SE0006257587 and SEO00AZ57ERS  OMIE30 031214 0154  2259%% 354%

Table 8.5: Parameter input PPN with basket option. Shows the most important input
parameters which has been used to replicate the principal protected note with basket option. In
column 1, we observe the ISIN of the PPN. In column 2, we observe the underlying assets, in
column 3 the issue date, in column 4 the yearly risk-free rate added to the pricing model, in
column 5 the forecasted yearly volatility and in column 6 the yearly dividend yield.

ISIN Index fsoue - Risk gy Ddend

Date  free rate yield
SEQ0004870079 and SE0004870087 Hang Seng, MSCI Singapore, MSCI Tarwan 231112 0,53% 23253 383
SE0005190865 and SE0005190873 DA Hang Seng, OMIS30 & 5&P 500 08.07.13 127 23483 3.01%
SEQ005675000 and SE00056T3018  Misci Smgapore, Taiwan Stock Exchange Index  09.04.14  0,80%  19,75% 3.98%
SE000714320 Isct Singapore, Mse1 Tamwan 100815 1,23%% 1908%% 389%
SE0ND71R4429 Isci Bingapore, Msci Tatwan 081015  1,02% 19494 389%
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