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Abstract 

In this paper we find that in the Swedish market principal protected notes (PPN) or 

an alternative replicating strategy of such kind, can be an adequate investment 

vehicle for retail investors with different sources of liquidity in periods of stable 

volatility and low interest rates. We assessed the fair value of such notes and 

compared the offered participation rates by the issuing financial institutions and 

found tendencies of overpricing for the index PPN at issuance. Our results illustrate 

how in addition of the capital protection, this type of structured products can be as 

profitable or more than other alternative investing choices. 
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1 Introduction 
 

Structured products have existed in Europe since the 1970s and were developed in 

response to investors demand for achieving risk-return objectives and for issuers 

risk distribution needs (Beder & Marshall, 2011).  More recently these types of 

securities have become increasingly popular in the United States and Asia. In the 

4th 2018 Nordic conference for structured products and derivatives, the data 

presented evidence of a global tendency to an increasing market for structured 

products.  

Structured products are investment vehicles where you pre-package two or more 

financial asset classes together to be comprised as a single pay-out structure. The 

market of structured products has undergone much criticism especially in the 

aftermath of the financial crisis in 2008, where major investors and financial 

institutions were affected by a special kind of structured products backed by credit 

and mortgage obligations such as CDO and MBS, which derived in stricter 

regulation for all types of structured products. In countries like Norway new 

regulations were introduced after the crisis which in practice constrained issuers to 

commercialise structured products to retail investors. In Sweden structured product 

issuers need to comply with regulations such as MiFIDǀǀ and PRIIP. While MiFIDǀǀ 

covers the general trading amongst financial products, PRIIP is mostly directed 

against the marketing of structured products to retail investors.  

There are several different types of structured products in the market, among them 

are the equity index linked notes. Equity index linked notes are divided into two 

different type of notes: Principal protected and yield enhancement notes. Principal 

protected note (PPN) is an instrument with fixed income security where the interest 

coupon or principal is linked to movements in equity market indexes. This type of 

instrument is popular among retail investors since it can enable them to create a 

differentiated exposure to an entire index with relatively low capital investment at 

a small transaction cost.  

The investment motives for this type of products arise from an environment of low-

interest rates and the demand from retail investors to generate higher returns. 

Another important motive is a “rule buster”, which takes views on markets where 

the asset class is not available to the interested party, either for regulatory or market 
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motives. The third reason for buying this type of product is simply because the 

investor wants to limit the risk exposure of their equity investment.  

Our main objective is to determine if equity linked products in the Swedish market 

are convenient investment instruments, and if they are priced fairly at primary 

issuance. We look at the Swedish market of structured products since among the 

Nordic countries, Sweden has the largest market.  Principal protected notes are the 

most common structured product investment in Sweden, we therefore investigate if 

those products, offer an adequate risk adjusted return to retail investors. We 

determined the return of expired PPN and investigate if they were fairly priced at 

issuance. This was done by setting up a Monte Carlo pricing model, following a 

geometric Brownian motion. The volatility parameter in the model was generated 

from an EGARCH (1,1). Furthermore, we calculated the compounded annualized 

returns and compare it to different benchmarks, and thus, determine if PPNs in the 

Swedish market are an efficient investment vehicle for retail investors.  

From our research we find that investing in PPN has been as profitable or more than 

investing in similar alternative investment strategies, in periods of stable volatility 

and low interest rates. Retail investors with certain characteristics such as low 

liquidity needs and limited access to derivative products, could benefit from 

investing in PPNs. Should their market views and investment characteristics be 

appropriate, investors with the possibility to invest in these products should 

consider the opportunity. 

The analysis of our research question is further divided into five more sections. 

Section 2 contains the literature review covering the topic of our research question. 

Section 3 shows the relevant data used for this purpose. Section 4 contains a detailed 

description of the methodology and theory used in our thesis. Section 5 shows the 

empirical evidence and the analysis of our results. Ultimately, section 6 contains 

the conclusion of our research and recommendations about further research. 

2 Literature Review 
Previous research from different countries on structured products pricing suggest, 

that these kinds of instruments are generally overpriced in the market. Most of the 

research on the matter was performed before the financial crisis in 2008 and has 

been mostly stalled ever since. In parallel, the structured products market size 

stagnated due to exacerbated fears and prejudices about the use of these 
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instruments. Recently, the market has started to show some revitalized interest in 

these sophisticated asset classes, which makes it a compelling moment to resume 

its study. 

Jørgensen, Nørholm, & Skovmand (2011) look at the price efficiency and cost 

structure for the Danish retail market of principal protected notes (PPNs). They find 

that on average the PPNs are 6% overpriced and that only half of that overpricing 

is disclosed by the sellers at the time of issuance (hidden costs). The writers of the 

paper also find that the degree of overpricing has declined over time but not the 

hidden costs. To come to this conclusion, they sum the present value of the bond 

element and use an extension of Black and Scholes to determine the price of the 

option element in the structure of the principal protected note. 

We can see further that structured products overpricing is not exclusive to the 

Nordic market. Benet, Giannetti & Pissaris (2006) conclude in their paper that 

reverse exchangeable securities are generally overpriced, and that there is a marked 

bias in the pricing of these products, in favour of the issuing financial institution in 

the United States. Additionally Chen & Wu (2007) were testing the pricing of 

bullish underlying linked securities (equity linked notes, with a similar structure to 

principal protected notes) in the US market, and concluded that BULS issued in 

2001 were overpriced during seasonal periods (the day after issuance and four 

months forward) but fairly priced afterwards. 

We find similar patterns in other major European countries such as Germany and 

Switzerland, where extensive research on this matter has been done due to the large 

market for structured products in that region. Stoimenov & Wilkens (2005) look at 

the German market for equity linked structured products and find that in the primary 

market on average instruments of this sort are overpriced at issuance, a clear 

detriment for investors who choose to hold their position until maturity. Their 

explanation for this is that the degree of overpricing is related to the hedging costs 

from the issuers. The same pattern of overpricing can be detected in the Swiss and 

Dutch market for structured products in research by Wohlwend, Burth & Kraus 

(2001), Wohlwend & Grünbichler (2003), and Szymanowska, Horst, & Veld 

(2009). 

To assess the efficiency and profitability of an investment instrument, we cannot 

limit in pricing considerations at issuance, but we need to analyse the return 
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achieved by the instrument. In an article by Henderson & Pearson (2011) they 

provide analysis on structured equity product SPARQS and its initial pricing and 

return behaviour. They provided evidence that the expected return of these asset is 

lower than the risk-free return. Their explanation is that this is due to a large 

overpricing of the SPARQS (8%) and that the call option is of short-term. Edwards 

& Swidler (2005), provide evidence that equity linked certificates of deposit in a 

sample period ranging from December 1981-2004 almost generates the same 

average return as the American treasury bill, even when these are much riskier. The 

standard deviation is almost 65% higher than the treasury bill. 

After the examination of earlier research, we expect that the structured products in 

the Swedish market will be overpriced at issuance. Furthermore, we expect that the 

structured notes will generate a similar or lower return as other less risky asset 

classes. By investigating and testing the research question that structured products 

in the Swedish market are correctly priced at issuance and if they generate a fair 

return. We will also be able to determine if the Swedish market for structured 

products shares the same characteristics as other larger markets. Individual research 

has been performed on either pricing or performance of structured products. Only 

Henderson & Pearson (2011), are incorporating both pricing and performance in 

their research. To our knowledge there has not been an exhaustive examination of 

pricing and performance of structured products in the Swedish market, which will 

differentiate our thesis report from earlier research in the area.  

3 Data 
In this section of the thesis we describe the data collected and used to perform the 

research. A principal protected note is a so-called capital protected investment with 

the underlying of a fixed income bond where the coupon or return is forgone and 

utilized to buy a call option usually written on an index.  The calculation of the 

option is the most complex part in our pricing model and parameters such as 

volatility, risk-free rate and dividend can be hard to determine.   

3.1 Principal protected notes 

The Swedish market has two main types of principal protected notes. The first is a 

safe product, where the whole investment is capital protected and the investor can 

expect to get the nominal amount back at time to maturity. And the other is a riskier 

product, since it is sold at a premium and only the nominal is capital protected. The 

riskier feature will accelerate the participation rate since the structure of the product 
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allows to incorporate, or buy, more options on the underlying index. Hence, it 

increases the end value of the PPN if the index experiences a positive development 

from the start value.  

The return on the investment will depend on the underlying index the call option is 

written on. It will also depend on the participation rate of the investment. If the 

index’s development is negative, the investor will only retain the full nominal 

amount. Hence there will be no return on the investment. If the development of the 

index is positive the investor will retain the full nominal amount and a percentage 

of the positive development of the index, which is determined by the participation 

rate.  

Most of the Swedish principal protected notes market experience a feature where 

the call option is European with an Asian tail. That means that the end value of the 

index is calculated as the arithmetic average over specified dates. Usually the 

measure time is one year before maturity with prespecified dates each month. The 

general form for this type of feature on the principal protected notes is: 

                      𝑃𝑃𝑁(𝑇) = 𝑁 + 𝑁 ∗ 𝜑 ∗ max⁡(
1

𝑀
∑ 𝑆𝑡𝑖−𝑆0
𝑀
𝑖=1

𝑆0
, 0)                           (3.1) 

Where N is the nominal amount, φ is the participation rate, M is the number of 

prespecified dates, t is time and 𝑆0 is the start value of the index.  

 

The characteristics of each of the PPNs is obtained from the website for structured 

products from each of the four main banks in Sweden. We collected information 

from 40 different expired PPN issued in the Swedish market between 2011 and 

2015, 19 are safe and 21 are risky. For each of the safe notes, there is usually an 

equivalent risky note with the same embedded option. A large part of the sample 

65% involves PPNs with an underlying that is denominated in a different currency 

than the domestic currency SEK, and thereby have returns that are also dependent 

on the currency fluctuations. More than half of the sample 55 % where issued in the 

year 2014.  

3.2 Volatility Modelling 

The determination of the volatility estimate is the most complex parameter to add 

to the model.  The greatest available approximation for the volatility measure is the 

implied volatility. But this type of measure is not available to us, since there are no 

call options written on the indices with maturities matching the PPNs. Instead it is 

10111191008516GRA 19703



6 

 

possible to use the historical volatility or more sophisticated time-series model. 

According to (Brooks, 2014) the usage of a more sophisticated time-series model 

to determine the volatility usually gives a more accurate option value. Hence, we 

chose GARCH (1,1), EGARCH (1,1) and GJR-GARCH (1,1) to forecast future 

volatility.  

The GARCH-model with the best goodness of fit is chosen to forecast volatility. It 

is determined by using Akaike and Bayesian information criterion. In the 

determination of which model fits the data best we choose the GARCH model with 

the lowest BIC and AIC measure.  For all the return series in our sample the 

EGARCH (1,1) gave the best fit, hence are model used for the purpose (table 8.1). 

EGARCH was developed to overcome weaknesses of GARCH to handle financial 

time series. This model allows for asymmetric effects between positive and 

negative asset returns. The formula for an EGARCH (1,1) model can be written as: 

           log(𝜎𝑡
2) = 𝜔 + 𝛽1 log(𝜎𝑡−1

2 ) + 𝛼1 [
|𝑟𝑡−1|

𝜎𝑡−1
− 𝐸 {

|𝑟𝑡−1|

𝜎𝑡−1
}] + 𝜉1 (

𝑟𝑡−1

𝜎𝑡−1
)             (3.2) 

Where 𝜎𝑡−1 is the last estimate of variance rate, 𝑟𝑡−1 is the last estimate of squared 

return, ω  is the weighted long-run average variance rate, α⁡and β⁡are the respective 

weights for each factor and 𝜉1 will capture the size effect of asymmetry.  

3.2.1 Procedure to fit the data to GARCH models 

To fit the return data to the GARCH model we perform statistical tests for 

stationarity, autocorrelation and conditional heteroscedasticity.   

3.2.1.1 Stationarity 

An important basis for a time-series analysis is stationarity. Time-series says to be 

strictly stationary if the joint distribution of the time-series variables is invariant 

over time-shifts (Tsay, 2001).  This condition is strong and hard to verify. 

Therefore, it is possible to assume a weaker version of stationarity. A test used for 

checking the time-series for stationarity is Augmented Dickey Fuller (ADF) test. 

The ADF tests the null hypothesis that a unit root is present in the time-series 

sample. If this is the case the time-series sample is non-stationary. Index prices are 

collected from Bloomberg and are typically non-stationary. Therefore, we use the 

log-returns of the prices for modelling volatility: 

                                                         𝑢𝑖 = 𝑙𝑜𝑔 (
𝑆𝑖

𝑆𝑖−1
)                                                (3.3) 
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We use the Econometric Modeler App in MATLAB to perform the volatility 

modelling. To describe the process, we will display the modelling for one of the 

PPNs written on the Swedish index OMXS30. The rest of the results from the 

volatility modelling can be find in table 8.1. We start by adding the log-return time-

series into the app.   

Figure 3.1: Historical return OMXS30. This graph shows the historical returns from 2005-01-04 

and up to the issuance of the PPN 2013-05-06. 

 

Figure 3.1 shows that the historical returns seem to be mean reverting to zero. 

Furthermore, the figure of the historical returns displays some clustering effect 

especially in the end of 2008. To be able to fit the data to the GARCH models we 

need to check for stationarity in the return series. We perform an ADF-test. The 

null hypothesis is rejected; hence we have a time-series without a unit root which 

is stationary (table 8.2).  

3.2.1.2 Autocorrelation 

The residuals in a conditional volatility model need to be described as a white noise 

process, they should be random and experience no pattern. The autocorrelation 

function (ACF) is commonly used to investigate these patterns and to give a visual 

overview of the structure in the residual return. To further examine if there exist 

any autocorrelation in the residuals, we can use Ljung- Box Q test. The Ljung-Box 

Q tests for autocorrelation in multiple lags jointly. The null hypothesis is stated as: 

The autocorrelation up to lag m are jointly zero. 

Figure 3.2: Autocorrelation and partial autocorrelation function historical returns. The plot 

displays the sample autocorrelation and partial autocorrelation function of historical returns. The 

blue line states the confidence level at 5%. 
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The next step is to plot the autocorrelation function of the sample this to see if the 

residuals in the returns follow a white noise process. In figure 3.2 the residuals in 

the returns seem to experience autocorrelation for lags larger than one. This is 

confirmed by the Ljung-Box Q test (table 8.2) where the null hypothesis for no 

autocorrelation is rejected. Since the residuals are autocorrelated it can indicate that 

the return is not only determined by an intercept and an error term: 

                                                              𝑟𝑡 = 𝜇 + 𝜀𝑡                                                (3.4) 

Where 𝑟𝑡 is the return at time t,  𝜇 is the intercept and 𝜀𝑡 is the residual at time t. 

The structure in the residuals need to be modelled separately with a conditional 

mean model before we can estimate the conditional variance with the GARCH-

models. The plot of the autocorrelation and partial autocorrelation seem to be 

geometrically declining. The autocorrelation in the residuals can be successfully 

removed by assuming that the returns follow an ARMA (2,2) process (equation 

8.1). The new property indicates that the residuals follow a white-noise process and 

that the null hypothesis is no longer rejected (table 8.2). 

3.2.1.3 Autocorrelation in squared residuals 

The residuals in the return can be uncorrelated but can still experience conditional 

heteroscedasticity. This would say that the squared residuals are autocorrelated. 

(Engle, 1982) A time-series that experience this type of autocorrelation in the 

squared returns is said to have ARCH-effect. The Engle ARCH test can be used to 

investigate if the residuals experience this type of characteristic. The null 

hypothesis in is stated as: there are no ARCH effects in the residuals.  

Figure 3.3: Autocorrelation function squared historical returns. The plot displays the sample 

autocorrelation function of the squared historical returns. The blue line states the confidence level 

at 5 %. 

 

Figure 3.3 depicts the autocorrelation function for the squared returns. From the 

figure one can see that the residuals of the squared returns seem to be autocorrelated 

at every lag. This result also coincide with the results from the Engle ARCH test 

(table 8.2). The null hypothesis is rejected hence there are ARCH effects in the 

squared residuals.  
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3.2.2 Historical volatility 

The simplest model used for forecasting volatility is the usage of historical volatility 

where it is assumed that the recent realized volatility will continue into the future. 

We calculate the lognormal returns from historical stock or index prices and obtain 

the volatility from the historical lognormal returns as follows: 

                                                𝜎 = √
1

𝑛−1
∑ (𝑢𝑖 − 𝑢̅)2𝑛
𝑖=1                                        (3.5) 

Where 𝑆𝑖 is the stock price, 𝑢𝑖 is the lognormal return, 𝑛 is the number of 

observations, 𝑢̅ is the mean of 𝑢𝑖 and 𝜎 is the historical volatility. 

For the Basket options we chose to use historical volatility due to the complexity of 

performing a multi-variate GARCH- model. The results from the procedure are 

depicted in table 8.3.  

3.3 Risk-free rate 

To find the most appropriate measure for the risk-free rate we obtained the 

government bond yields from the issuing countries of the indices. The government 

bonds are used for borrowing money in the countries own currency and by 

assumption can be considered risk-free securities. This given to the probability of a 

government defaulting on a loan denominated in its own currency is highly unlikely 

since they have the possibility to increase its money supply. (Hull, 2017). We obtain 

the government bond yield data from each of the countries’ central banks. The data 

obtained from the central banks did not contain all maturities matching the data 

sample, we therefore used linear interpolation to adjust the yield for the absent 

maturities (table 8.4 and 8.5). 

3.4 Dividend  

The principal protected notes in our data sample are written on one or several 

indices. The indices consist of a portfolio of stocks that pay out dividends to 

shareholders. The indices themselves do not pay out any dividend, but the price of 

the indeces will be adjusted after an ex-dividend date of an underlying stock. Hence, 

we need to add the dividend parameter to the model. We obtain the historical 

annualized dividend yields from Bloomberg. The average of the historical dividend 

yield for each of the indices are calculated and added to the pricing model (table 

8.4 and 8.5). 
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4 Methodology 

In this section we explain in detail the different pricing models that we used for the 

call option pricing embedded in the principal protected notes (PPN). To resolve the 

convenience of investing in this type of structured products, we first wanted to 

determine if we could replicate some of the marketed PPN and yield a higher 

participation rate than the one offered by the sampled Swedish banks. Subsequently, 

we determined their efficiency by comparing their performance against other 

alternative investment vehicles as benchmarks. To replicate the PPN and eventually 

obtain its potential participation rate, we calculated both legs of the structured 

product, the underlying call option and the zero-coupon bond.1  

4.1 Call Option Pricing 

The option within the principal protected notes that we priced were European Call 

Options with Asian tails, and the following characteristics: 

• Up to 5 years to maturity from the issuance date. 

• The strike price K is equal to the spot price at issuance S0. 

• Usually one year before the expiry of the PPN, the closing price of the index 

is registered. This process is repeated every month until the end date, 

totalling 13 different observation dates.  

• The observed registered values are averaged to determine the final value of 

the underlying, Savg. 

• The pay-off of the option is equal to the maximum between the appreciation 

of the underlying (Savg – K) and zero. 

4.1.1 Index Option Pricing 

We estimated the index call option price at issuance using a Monte Carlo simulation 

approach, based on a risk-neutral valuation framework where the underlying index 

follows a geometric Brownian Motion. For each option pricing we sampled 

1,000,000 different paths, to obtain the expected pay-off of the option under risk 

neutral conditions, and then discounted it with its corresponding risk-free rate. 

Additionally, we compared the computed option price with standard closed-form 

solutions such as Black-Scholes-Merton model for European call options (Black & 

Scholes, 1973), Kemna-Vorst approach for options based on average asset values 

                                                           
1 The MATLAB codes used to price the PPNs can be found in the Appendix 8.1.1 and 8.1.2 
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(Kemna & Vorst, 1990), and with the Levy pricing model for continuous arithmetic 

averaging options (Levy, 1992). 

4.1.2 Monte Carlo Simulation 

Presumably one of the most widely used approaches for valuing derivative 

securities, Monte Carlo simulation, is especially useful for pricing complex path-

dependent exotic options, such as the ones that we find in the principal protected 

notes structure. The Monte Carlo simulation of a geometric Brownian Motion is a 

robust method to sample a possible outcome for the process, with the possibility to 

create as many different random paths as desired. To perform a Monte Carlo 

simulation, and thus price the option pay-off of our path dependent option. We 

followed the 5 steps suggested by Hull (2017): 

• Sample a random path for S in a risk-neutral world, which in our case is 

generated following a geometric Brownian motion. 

• Compute the pay-off from the option. 

• Repeat the previous steps and get as many sample values as desired. In our 

case 1,000,000 different paths. 

• Calculate the sample mean of the pay-off to obtain an estimate of the option 

expected pay-off in a risk-neutral world. 

• Lastly, discount the obtained expected pay-off at its corresponding risk-free 

rate, to obtain the estimated value of the option. 

 4.1.3 Geometric Brownian Motion Index options 

In financial modelling, a common assumption is that stock prices follow a stochastic 

process in the form of a geometric Brownian motion. In our case, we furthermore 

extended this assumption to stock market indexes. The return to the asset holder, 

under this process in a time interval is considered normally distributed, with 

independent returns at each different period. An asset price following a geometric 

Brownian motion, has a lognormal geometric average price and an approximately 

lognormal arithmetic average price. The equation to determine the index price 

change with geometric Brownian motion is as follows: 

                                                 𝛥𝑆 = 𝑒([𝑟−𝛿]−
𝜎2

2
)𝛥𝑇 + ⁡εσ√𝛥𝑇⁡                              (4.1) 

Where ΔS is the stochastic price change of the index, r is the risk-free rate 

corresponding to the underlying asset, 𝛿 is the expected dividend yield of the index, 

the subtraction r-𝛿 represents the percentage drift of the process; 𝜎2 is the volatility 
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of the index, 𝛥𝑇 is the time step of the process, and ε is a random draw of a normally 

distributed number. The result of multiplying the geometric Brownian motion 

stochastic factor with the previous time instant spot price is the simulated predicted 

price one step ahead. 

4.1.4 Geometric Brownian Motion Basket options 

In the case of the basket option, the derivative price dependents in more than one 

underlying asset. For this, we need to determine a correlated stochastic process, 

among the paths of all these assets. As expressed by Hull (2017), if we consider a 

situation where the option pay-off depends on n different variables θi, with volatility 

σi,, and expected growth ϻi in a risk-neutral world (in this case the difference 

between the risk-free rates and dividend yields) ,with a correlation ρik between the 

Wiener processes θi  and θk, where the life of the option is divided into n subintervals 

of length Δt, and εi is a random sample from a standard normal distribution. These 

adjustments result in another version of the GBM. The discrete version of a process 

for θi equal to: 

                                            𝛥𝜃𝑖 = 𝑒(ϻi−
𝜎𝑖2

2
)𝛥𝑇 + ⁡ε𝑖σ𝑖√𝛥𝑇⁡                             (4.2) 

Each simulation implicates obtaining n samples of different εi from a multivariate 

standardized normal distribution, to eventually generate the desired simulated path 

for each θi. This process is repeated as many times as needed to obtain a sample 

value to compute the option value. 

To produce a n number of correlated samples ε1, ε2, …, εn from a standard normal 

distribution, for the basket option computation, we implemented the Cholesky 

decomposition procedure. Hull (2017) explained this procedure as follows:  

In a situation like this, where we need n correlated samples εn from normal 

distribution with the correlation between sample i and sample j being ρij. We start 

by sampling n different variables xi, from univariate normal distributions. The 

required samples ε1, are thus defined as:  

ε1 = ⁡𝛼11𝑥1 

ε2 = ⁡𝛼21𝑥1 + ⁡𝛼22𝑥2 

εi = ⁡𝛼𝑖1𝑥1 + 𝛼𝑖2𝑥2 +⋯+ ⁡𝛼𝑖𝑗𝑥𝑗⁡ 

We adjust the coefficients αij in a way that the variances and correlations are 

correct. So, if we set α11 = 1, we choose α21 so that α11 α21 = ρ21, and so on.   
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The obtained correlated random sample εi, was plugged to the aforementioned 

geometric Brownian motion formula, and produced the stochastic factor needed to 

predict the correlated future prices of the basket option underlying assets. 

Subsequently this process was repeated, until the needed price path was completed. 

The finalized option calculation was then compared with the Longstaff - Schwartz 

Monte Carlo model for basket options (Longstaff & Schwartz, 2001).  

4.1.5 Computation of the option pay-off  

Once we obtained the entire predicted path, we filtered the estimated prices in the 

pre-specified observation dates. With the filtered estimated values, we then 

proceeded to compute the arithmetic average for the option, which is computed by 

dividing the sum of the estimated observed prices Sti, by the number of observation 

dates.  

                                                    𝑆𝑎𝑣𝑔 = ⁡
1

𝑁
∑ 𝑆𝑡𝑖𝑁
𝑡=1                                           (4.3) 

For the basket option, we repeated this procedure in each different underlying asset, 

and computed a weighted average of these values. We then calculated the call 

option pay-off as the maximum value between zero, and the difference of Savg  

minus the strike value K (which is set to be equal to the initial price S0).  

4.1.6 Repetitions, confidence interval and option pricing 

We decided to use 1,000,000 repetitions in our model, to obtain an acceptably small 

standard error, at a cost of significantly more computation time. The reason behind 

this is that the standard error of the estimates depends on the sample size. As 

explained by Hull (2017), the accuracy of the estimates generated by a Monte Carlo 

simulation depend on the number of different trials performed in its estimation. We 

computed the standard deviation ω, and the mean μ of the payoffs derived from the 

simulation trials. The mean variable μ represents the estimated value of the 

derivative, and the standard deviation ω the squared root of the variance of the 

different path outcomes sampled; the last together with the square root of the 

variable M, representing the number of different trails, will be used to calculate the 

standard error SE of the estimate: 

                                                                     𝑆𝐸 =
𝜔

√𝑀
                                           (4.4) 

As we can see in the previous equation, the larger the sample size of the trials the 

smaller the size of the standard error of our result. The obtained standard error 

helped us to achieve a narrower confidence interval for our estimated pay-off 
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values. The 95% confidence interval for the option pay-off value Pavg is given then 

by the following formula: 

                                                      𝜇 −⁡
1.96⁡𝜔

√𝑀
< ⁡𝜇⁡ < ⁡𝜇 +⁡

1.96⁡𝜔

√𝑀
⁡                           (4.5) 

The 1,000,000 repetitions that we performed, provided more certainty to our 

estimates, than for instance a facile to compute 10,000 iteration model which would 

be ten times more inaccurate than the one we obtained.  

Once we obtained the estimated pay-off μ and it’s 95% confidence interval, we 

continued by discounting these values, with their respective risk-free rate. 

                                               𝑃𝑐𝑎𝑙𝑙⁡ = ⁡𝜇 ×⁡𝑒(−𝑟𝑓⁡×⁡𝑇)                                        (4.6) 

Finally, the obtained discounted pay-off and its confidence interval resulted in our 

final estimated Asian tailed Call option price and confidence interval. Overall, this 

component of the principal protected note is the factor determining the return of the 

security. The profitability level of the PPN will depend on how many of these call 

options can be bought with the pre-invest proceeds of the fixed leg of the PPN, the 

zero-coupon bond. 

4.2 Zero Coupon Bond Pricing 

To compute the zero-bond, we used the issuing bank borrowing cost at the time of 

issuance of the PPN, for a maturity equal to the one from the priced security. This 

connotes an enhanced yield, at the cost of taking some credit risk from the bank, 

compared to the usage of a risk-free rate security. The following formula, where 

100 represents the par value of the security, zy the zero-coupon yield and TMY the 

time to maturity, computes the present value of the zero-coupon bond: 

                                              𝑍𝑒𝑟𝑜⁡𝑏𝑜𝑛𝑑 = ⁡100𝑒−𝑧𝑦∗𝑇𝑀𝑌                                  (4.7) 

This component of the principal protected note is the one that vouches for a 

minimum return on the security at maturity. We find two different classes of 

principal protected notes depending on its riskiness. Of these, the safe notes 

guarantee an investment return not less to the initial capital invested, while the risky 

notes guarantee at least a significant part of it. In both cases the guaranteed amount 

is equal to the face value of the PPN, which is standardized to SEK 100. 

4.3 Principal Protected Note Participation Rate computation 

The participation rate is the percentage over the appreciation of the underlying asset 

that the investor is entitled to claim at the maturity of the note. Once we had the call 
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option and the zero-coupon prices, we proceed to compute the participation rate PR 

of the principal protected note. We obtained this by computing the ratio of the 

disposable investment capital DIC (the remaining capital after subtracting the cost 

of the zero-coupon bond) and the price of the call option Pcall.  

                                                        𝑃𝑅 =⁡
𝐷𝐼𝐶

𝑃𝑐𝑎𝑙𝑙
                                                        (4.8)  

After computing the participation rates derived from our pricing model, we 

compared them with the participation rates offered by the banks.  

4.4 CVA Computation 

An important factor to determine the fair-value of a principal protected note, is the 

credit value adjustment CVA. It is true, that the PPN is not entirely a risk-free 

security, since there is always the possibility, that the underwriting bank could 

default and fail to pay back the expected value of the note to the holder. An 

investment in PPN will also contain liquidity risk, since the secondary market for 

PPNs in Sweden is not very liquid.  

The CVA reflects the expected loss from a default by the counterparty. 

Consequentially the value of the security is adjusted by this factor, and part of its 

value is subtracted (Hull, 2018). We opted to use a method based on the implicit 

default probability derived from the credit default swaps spreads (Hull, 2018), since 

this reflects better the market sentiment, at the time of issuance, towards the default 

risk of the counterparty. The CVA computation is obtained by first obtaining the 

risk-neutral default probability qi, which is estimated from the counterparty credit 

spread. The first step to compute qi was to estimate the average hazard rate ƛi, which 

we obtained with the following formula: 

                                                   ƛ𝑖 =
𝑆𝑖

1−𝑅
⁡                                                           (4.9) 

Where Si is the credit default swap spread at the time, and R is the estimated 

recovery rate, which we estimated to be at 40%. Once we computed the hazard rate 

ƛi, we obtained the risk-neutral default probability derived from: 

                                          𝑞𝑖 = ⁡ 𝑒−(ƛ𝑖−1)(𝑡𝑖−1) −⁡⁡𝑒(−ƛ𝑖)(𝑡𝑖)                            (4.10) 

With the risk-neutral default probability qi, in addition to the present value of the 

expected exposure vi (in this case SEK 100) and the estimated recovery rate R in 

the event of the counterparty default (in this case 40%) defined, we continued with 

the final CVA computation: 
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                                           𝐶𝑉𝐴 =⁡∑ (1 − 𝑅)⁡𝑞𝑖⁡𝑣𝑖𝑛
𝑖=1                                          (4.11) 

By accounting for the CVA and the fixed brokerage fee (applied on the SEK 100 

and SEK 110 PPN’s prices), we were able to approximate better the actual fair value 

of the sampled principal protected notes. 

4.5 Comparing the PPNs with other benchmarks 

To continue our analysis, we computed the returns obtained by the investors of the 

principal protected notes at maturity based on the contract conditions of the issuing 

banks. The annual holding period return was calculated as the compounded return 

according to the equation: 

              𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑⁡𝑟𝑒𝑡𝑢𝑟𝑛 = (
𝐸𝑛𝑑⁡𝑣𝑎𝑙𝑢𝑒−𝑆𝑡𝑎𝑟𝑡⁡𝑣𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑟𝑡⁡𝑣𝑎𝑙𝑢𝑒

⁡
1

𝑇𝑀𝑌 − 1)               (4.12) 

Markowitz (1952) classic Modern Portfolio Theory, and the Capital Asset Pricing 

Model (Sharpe, 1964) are based on the assumption that financial assets returns are 

normally distributed, and that investors are always mean-variance oriented. 

Structured products such as the PPN are a different case, since their return 

distributions have important levels of kurtosis and skewness (Nørholm, 2012). 

Because of this, standard risk-adjusted performance measures such as, the Sharpe 

ratio or Jensen’s alpha are not optimal methods to measure the performance of the 

principal protected notes that we priced. Thus, we decided to compare the realized 

returns of our samples PPNs with a number of alternative investment strategies that 

a PPN investor would consider. The benchmarks considered contain securities such 

as risk-free debt (government zero-coupon bond from Sweden), risky debt (zero- 

coupon bond from the issuing bank) and the equity index investment (investment 

in the underlying index). 

5 Empirical Results / Analysis 
This section of our paper illustrates how efficient principal protected notes are as 

investment vehicles. The efficiency of the product is assessed by comparing the 

embedded European Asian option of the PPN with other types of options, by 

comparing the participation rate offered by the bank with a replication strategy, and 

ultimately, by comparing the  return obtained by the investor of the PPN with other 

investment alternatives. 
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The methods to compute the index options and the basket options are significantly 

different one to the other. To better explain the difference in prices between these 

two, we separated this part of the analysis for each of these types2. 

5.1 PPN Pricing Analysis 

5.1.1 Comparing the option prices with different pricing methods 

In this section, we asses which option type results in the most economically 

efficient, among Arithmetic Asian options and European options of similar kind. 

This to see if a different option type than the one chosen by the bank could be better 

for a retail investor to incorporate in a PPN structure. 

To better reflect the option prices, we followed the general practice of a 

standardized level of 100 units as the spot price at time zero 𝑆0 for all the different 

indexes. This facilitated the process of matching the obtained call option price with 

the standard value of 100 of the principal protected notes. We would like to 

highlight that in reality most of the index have contrasting different levels and 

multipliers, thus contract prices may vary. Nevertheless, with the appropriate 

adequation it is possible to obtain a value proportional to the one we present. 

Table 5.1: Index Option price comparison. Shows the approximated call option prices that we 

obtained from distinct methods for the index options. In column 1, we observe the underlying asset, 

in column 2 and 3 the issue and maturity dates, in column 4 the option price of the replicated 

embedded option, in column 5 the complete arithmetic Asian option from our Monte Carlo 

simulation model , in column 6 the arithmetic Asian with the Levy method, and in column 7 the 

price of a plain vanilla European option computed with the Black-Scholes-Merton method BSM.  

 

From table 5.1 and 5.2 we can see that the results from the different pricing methods 

strength the prime motivation of using the chosen settings for the Asian option that 

                                                           
2 We did not price any American option alternatives since the characteristics of these, are not 

compatible with the features of the principal protected notes we priced. 
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we replicated instead of a plain vanilla European option, or a standard averaging 

option over the whole period between the issue and the maturity of the contract. We 

can see that the replicated option price in general is lower than the European option 

with the BSM method and Longstaff-Schwartz, but larger than the other arithmetic 

average options. 

Table 5.2: Basket Option pricing comparison. Shows the approximated call option prices that we 

obtained from distinct methods for the basket options. In column 1, we observe the underlying assets, 

in column 2 and 3 the issue and maturity dates, in column 4 the option price of the replicated 

embedded option, in column 5 the complete arithmetic Asian option from our Monte Carlo 

simulation model , and in column 6 the price of a plain vanilla European option computed with the 

Longstaff-Schwartz method. 

 

The benefits of choosing the replicated option over a common European option are 

that the investor would pay less for the option and will be subject to lower volatility 

in the expected payoff of the option thanks to the averaging of the 13 different 

observed spot prices. The obvious drawback is that in case of a continuous 

appreciation and favourable volatile movements in the underlying asset, the 

investor would obtain a lower yield. 

Furthermore, the motivation to invest in the replicated option over the other 

arithmetic Asian options, relies in the fact that these alternatives are arguably better 

for hedging purposes, with lower expected pay-offs and hence option prices; as we 

can see their objective is not in line with the motivation of the common retail 

investor. The standard price of the arithmetic Asian option computed from the same 

paths produced by the original pricing model based on Monte Carlo simulation, and 

the Levy model are very similar. The result was expected since in both cases the 

averaging of the Asian options is over the whole predicted path. 

The outcome of the results points favourable for the banks chosen alternative, as 

this seem to be adequate for an individual looking to benefit from a possible 

appreciation of the underlying, compared to the other computed alternatives.  

5.1.2 Call Options Prices and Confidence Intervals  

From the replication of the embedded option in the PPN we experienced differences 

between the PPN with index and basket option (table 5.3). PPNs with basket options 
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are usually more expensive than the ones from a single index option. But a basket 

option is often less expensive than buying multiple single options. Table 5.3 also 

display the confidence interval for the replicated option at the 95% confidence 

interval. The confidence interval for the PPN with index option is often narrower 

and can be explained by the iterations in the simulation of the options. 

In general, we can see that the market conditions at the time of the analysis where 

very permissive and delivered very low option prices. We know that during the 

years 2012-2015, the world was experiencing record low interest rate yields after 

the implementation of Quantitative Easing policies by the different central banks 

around the world, and capital markets were enjoying a bullish period with sustained 

low-volatility conditions. Both of these factors were determinant for the low pricing 

of the equity options. 

Table 5.3: Call Options Prices and Confidence Intervals. Shows the approximated call option 

prices that we obtained from the Monte Carlo simulation and it is respective confidence level at 95 

%.  In column 1, we observe the type of option embedded in the PPN. In column 2, we observe the 

underlying asset, in column 3 the issue date, in column 4 the option price of the replicated embedded 

option, in column 5 the option price at the 95 % confidence level. 

 

5.1.3 Zero-Coupon Bonds Prices and Disposable Investment Capital 

The zero-coupon element in the principal protected note is discounted with the 

issuing banks borrowing cost at the time. The assumption made is that the issuing 

bank uses its own debt cost to create the bond leg of the principal protected note. 
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Table 5.4: Zero-Coupon Bonds Prices and Disposable Investment Capital. Shows the zero-

coupon bond price, the bond yield which the zero-coupon bond is discounted with and the disposable 

investment capital. In column 1 we observe the underlying asset, in column 2the notional amount in 

SEK, in column 3 the zero-coupon yield, which is the yield the zero-coupon bond is discounted with. 

In column 4 the zero-coupon bond price for each of the products and in column 5 the investment 

capital disposal which is the capital an investor has available to buy options for.  

 

Table 5.4 depicts the zero-coupon price, equal for both the safe and risky 

alternatives of the principal protected notes. The largest difference is the 

hypothetical capital available to the investor to buy call options on the underlying 

index/indices (pre-invest expected interest return on the bond ignoring the time-

value of money). The investor will have more capital at his disposal if he chooses 

the risky alternative instead of the safe one. The risky PPN is not 100% capital 
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protected and the investor can experience the possibility of losing a part of his 

investment. But the gain will be an enhanced upside, since he will end up with a 

larger stake of options, i.e., participation rate.  We can claim that the risky 

alternative is more suited for a retail investor willing to take more risk, who is 

looking for a superior yield while limiting his downside to some degree.  

For the safe principal protected note the disposable investment capital is relatively 

low, indicating that the investor might not be able to buy a large portion of a call 

option, thereby reducing its possible participation rate. This will reduce the upside 

the investor can experience, but his investment will still be completely capital 

protected and will not experience any loss related to a market downturn. Which is 

appropriate for a risk adverse retail investor looking for these kind of features in an 

investment. The result from pricing the zero-coupon bond has tendencies of 

following the characteristics shown in the prospectus of the issuing banks. That 

investors investing in the safe alternative have a participation rate lower than 100%, 

and hence can only do a fractional investment in a call option. 

5.2 Comparing the Participation Rates 

The participation rate offered by the bank is the rate at which the upside of the 

underlying will be multiplied with. From the participation rate of the replicated PPN 

is possible to determine if the security shows tendencies of overpricing. This by 

comparing the replicated participation rate with the one issued by the bank.  

5.2.1 Participation rate PPN with index options 

The replicated PPN with index option does offer in many cases a larger participation 

rate than the one from the from the issuing bank (table 5.5). This indicates that the 

PPNs in the Swedish market are overpriced at issuance. The larger participation rate 

obtained shows that a retail investor could be better off, by replicating a PPN payoff 

by himself.  

The source of difference in participation is a combination of the return on the zero- 

coupon bond and the cost of the call options on the index. Assuming that the issuing 

banks used their own cost of debt to determine the return on the bond, and used a 

pricing methodology comparable to the one we used, it is not possible to explain 

the large differences between participation rates that most, if not all of the products 

that we priced present. 
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During the sample period the interest rate environment was predominantly low, and 

the volatility levels moderately stable. Nonetheless, the yield spread between risky 

debt and risk-free was still important, giving room to a combination of relatively 

cheap call option prices and sufficient interest return from the risky bonds to finance 

the PPN strategy, and achieve meaningful participation rates. This scenario presents 

a favourable situation for the issuing banks, since they can offer attractive 

participation rates to the investors, even when these are below fair value. 

The difference in participation rates presents a positively skewed distribution with 

a mean difference of 40% and a median difference of 17%. The overpricing in PPN 

with index options goes in line with previous research in this area. The overpricing 

can come from additional margin taken by the bank to cover transaction costs or 

else.  

Table 5.5: Participation rate for safe and risky principal protected notes. Shows the 

participation rates generated by the pricing model in a comparison with the participation rate offered 

by the issuing bank.  In column 1, we observe the type of PPN, in column 2 the underlying asset, in 

column 3 the issue date, in column 4 the investment capital at disposal, in column 5 the option price 

of the replicated embedded option, in column 6 the participation rate offered by the issuing bank, in 

column 7 the participation rate we obtain from  the replication of the principal protected note, in 

column 8 the difference between the participation rate offered by the bank and the participation rate 

we obtained from the replication.  
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5.2.2 Participation rate PPN with basket options 

We can detect a pattern of under-pricing for the basket options (table 5.6). The 

participation rate obtained from replicating the PPN is lower than the stated rate by 

the bank. Yet, the sample tested is not large enough to draw a conclusion of fair 

pricing by the issuing bank. 

Table 5.6: Participation rate for principal protected notes with basket options. Shows the 

participation rates generated by the pricing model in a comparison with the participation rate offered 

by the issuing bank.  In column 1 we observe the type of option displayed.  In column 2, we observe 

the underlying asset, in column 3 the issue date, in column 4 the investment capital disposal, in 

column 5 the option price of the replicated embedded option, in column 6 the participation rate 

offered by the issuing bank, in column 7 the participation rate we obtain from the replication of the 

principal protected note, in column 8 the difference between the participation rate offered by the 

bank and the participation rate we obtained.  

 

We believe that the difference in participation rates arise from variations in the 

correlation and volatility coefficients of the underlying assets. Our model retrieves 

these factors from historical data, which are likely different to what a multivariate 

GARCH model would estimate. The aforementioned parameters are essential in the 

Cholesky decomposition process, and geometric Brownian motion employed to 

price the basket options. Additionally, the model for the basket options has only 

250,000 iterations in the Monte Carlo simulation (in contrast to the 1,000,000 

employed for the index options), resulting in lower accuracy.  

The results from this part of the analysis indicate that investors interested in 

investing in index PPNs, with unrestricted access to derivative products and with 

sufficient bargain power, or/and the ability to replicate the desired derivatives, 

should overweight the possibility to mimic the PPNs by themselves. 

5.3  Investor Holding Period Return 

5.3.1 Credit value adjustment 

The PPN investment is either fully or partly capital protected. But the investment is 

also connected with risk factors such as liquidity, currency and credit risk. The 

investor has the opportunity to sell the investment in the secondary market during 

the time to maturity. But, the secondary market for these products is not very liquid, 

hence the investor of a PPN experiences a large liquidity risk.  
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There is also the small possibility that the issuing bank of the PPN will default on 

the investment, which must be reflected in the price of the note. Hence a retail 

investor experiences credit risk when buying PPN from a dealer. To incorporate the 

credit risk in the price of the note, we included a credit value adjustment (CVA) to 

reflect this risk in the price of the PPN. The CVA is added into the total cost of the 

PPN together with the brokerage fee. The total amount is then used to determine 

the actual annualized holding period return (HPR). 

Table 5.7: Credit value adjustment to incorporate the credit risk of the issuing bank. Shows 

the CVA and the parameters included to estimate the credit risk of the issuing bank. In column 1 we 

observe the type of option displayed. In column 2  the underlying asset , in columns 3 the issue date, 

in column 4 the recovery rate, in column 5 the average yearly hazard rate calculated from the CDS-

spread and the recovery rate, in column 6 the implied default probability calculated from the hazard 

rate and time to maturity of the product, and column 7 the CVA calculated from  the default 

probability and the recovery rate. 

 

The CVA calculation from table 5.7 are ranging from an add-on of 0.96 SEK to 

3.66 SEK. For this we assumed a constant recovery rate of 40%. The adjustment 

will depend on the riskiness of the bank, at that particular time, extracted from the 

CDS-spread, and on the tenor of the PPN. The table depicts that the products issued 

around 2012-2013 have the highest CVA adjustment in our sample; hence, this was 

a riskier time to buy PPNs from the issuing banks. In 2014 as shown in the table the 

CVA was lower, this could indicate that at the time it was safer for a retail investor 

to invest in PPNs when considering the credit risk.  
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5.3.2 Comparing investors returns with different benchmarks 

It has been determined already that standard-risk performance measures are not a 

suitable benchmark to assess PPNs efficiency. We have therefore chosen to 

compare the PPN annualized holding period returns (HPR), with other benchmarks 

composed by risk-free debt, riskier debt and the underlying equity asset, with these, 

we can to some extent determine the opportunity cost and therefore, the efficiency 

of these products. 

We chose 7 different asset allocations with the following characteristics: 

1. PPN from the issuing banks 

2. PPN mimic strategy 

3. Risk free Swedish government bond 

4. Investment grade bonds from the issuing banks 

5. Long position in the equity underlying 

6. Equally weighted portfolio with risk free debt, risky debt and equity 

7. Equally weighted portfolio with risky debt and equity 

These portfolios with different characteristics illustrate different alternatives that a 

retail investor may consider together with the investment in the PPNs. 

Figure 5.1: HPR from replicated PPN and issuing banks. The histograms above show the 

annualized HPR from the replicated safe PPN and from the issuing banks. The histograms below 

show the annualized HPR from the replicated risky PPN and from the issuing banks. The red line in 

the histograms show the mean of the HPR. 

 

The returns obtained from the replication of the PPN and the banks are depicted in 

figure 5.1 in the form of histograms. All the four histograms are skewed to the right 
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in line with the characteristic of the PPN that is capital protected. The left-hand side 

histograms depict the net of fees annualized holding period returns, realized from 

the notes issued by the banks. From the same table, we can also notice that as 

expected the safe notes yielded lower returns than their riskier counterparts because 

of their lower exposure to the underlying appreciation. 

5.3.2.1 Return Comparison for Safe Index PPNs 

In this case, the asset allocation that generated the highest HPR was the investment 

on the underlying index (table 5.8), which is equal to a 100% participation. This 

type of investment generally produces a higher annualized HPR than a safe PPN, 

since the participation rate in the safe PPN is usually below 100%. The trade-off is 

that this strategy is riskier, since the PPN is capital protected and hedges the 

downside for the investor. Excluding the sole long position on the index, the PPN 

prevails as the most profitable alternative compared to the other portfolios. If a retail 

investor would have chosen to invest in the balanced portfolios of debt and equity, 

he could be worse off in terms of returns.  

Table 5.8: HPR and alternative investment sources to safe PPN. Shows the annualized holding 

period return for safe PPN and alternative investment sources. In column 1, we observe the 

underlying asset, in column 2 the issue date, in column 3 the HPR obtained from the PPN, in column 

4 the HPR obtained from the replication, in column 5 the HPR from an investment in a  Swedish 

zero-coupon bond, in column 6 the HPR obtained from investment in a zero-coupon bond form the 

issuing bank, in column 7 the HPR obtained from an investment in the underlying equity index, in 

column 8 the HPR obtained from investment in an equally weighted portfolio of the three alternative 

investment sources and in column 9 the HPR obtained from an investment in 50 % risky debt and 

50% in the equity index.  

 

In our sample period the Swedish government bonds and the bonds from the issuing 

bank yielded low returns, because of the low interest rates at the time. An investor 

knowing about these low returns ex-ante can alternatively choose to participate in 
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equity derivatives and take advantage of the low call options prices that result from 

the low interest rates and volatility in the market at the time. This indicates that an 

investment in a safe PPN could be a good option for a risk adverse retail investor. 

5.3.2.2 Return Comparison for Risky Index PPNs 

Depicted in table 5.9 are the holding period returns comparison with the risky PPNs. 

In this case the PPNs with risky characteristic generated the highest HPR. The risky 

PPN generates a higher return than a long position in the underlying, given that the 

risky PPN has a participation rate larger than 100%, coming from the exposure level 

of the derivative entrenched. This alternative additionally, includes some downside 

risk protection, where in the case of a large market sell-off the investor could still 

recover a large part of his invested capital.  

Table 5.9: HPR and alternative investment sources to risky PPN. Shows the annualized HPR 

for risky PPN and alternative investment sources. In column 1, we observe the underlying asset, in 

column 2 the issue date, in column 3 the HPR obtained from the PPN, in column 4 the HPR obtained 

from the replication, in column 5 the HPR from an investment in a  Swedish zero-coupon bond, in 

column 6 the HPR obtained from investment in a zero-coupon bond form the issuing bank, in column 

7 the HPR obtained from an investment in the underlying equity index, in column 8 the HPR 

obtained from investment in an equally weighted portfolio of the three alternative investment 

sources and in column 9 the HPR obtained from an investment in 50% risky debt and 50% in the 

equity index.  

 

5.3.2.3 Return Comparison for Safe and Risky Basket PPNs 

The results from the basket options are more mixed than the presented by their index 

counterparts, however they still show a tendency in the same direction (table 5.10) 

The basket PPNs are in average more profitable than a mixed portfolio of equity 

and debt, Additionally, investing in a PPN with a basket option can be a way for an 

investor to invest in multiple indices or equities at a lower cost and hedge its 

10111191008516GRA 19703



28 

 

position. Which makes this alternative attractive for a type of investors seeking for 

an investment with these special features. 

Table 5.10: HPR and alternative investment sources to basket PPN. Shows the annualized HPR 

for basket PPN and alternative investment sources. In column 1 we observe the type of option 

displayed.  In column 2, we observe the underlying asset, in column 3 the issue date, in column 4 

the HPR obtained from the PPN, in column 5  the HPR obtained from the replication, in column 6 

the HPR from an investment in a  Swedish zero-coupon bond, in column 7 the HPR obtained from 

investment in a zero-coupon bond form the issuing bank, in column 8 the HPR obtained from an 

investment in the underlying equity index, in column 9 the HPR obtained from investment in an 

equally weighted portfolio of the three alternative investment sources and in column 10  the HPR 

obtained from an investment in 50 % risky debt and 50% in the equity index 

 

An important consideration is the composition of the investor’s combined portfolio. 

If he complements his personal portfolio with other assets providing liquidity, and 

to some extent lowly correlated returns to the PPN; he will be affected to a lesser 

extent to the disadvantages of the PPNs. Such asset classes might come in the form 

of money market products, equity investments, and fixed income products. Other 

types of alternative investments could also provide diversification benefits, 

nevertheless this would be less appropriate given their correlated risks and 

investment characteristics.    

Another important consideration to weight in the investing decision process for 

PPNs is the possible tax benefit, inherent from bundling up the bond with the equity 

product. Since the profit from investing in a bond and an equity index separately 

would cost the investor a higher tax payment (the investor would need to pay tax 

on the interest received from the bond in addition to the tax on the equity index 

capital gains). With the PPN structure the investor can save on the tax payment for 

the bond interest and use that capital to further benefit on the equity investment. 

Allowing for a higher after-tax return in the overall investment portfolio. 

The suitability of PPN by a retail investor will depend in large part on the market 

conditions, the risk profile, market view, liquidity needs, taxable status, access level 

to derivative markets hedging opportunities, and current existing portfolio. A retail 

10111191008516GRA 19703



29 

 

investor under certain circumstances could benefit from the use of structure 

products as an investment vehicle. 

We define an ideal retail investor profile with the following characteristics and 

under the following market conditions: 

• Knowledgeable about the financial markets and products 

• Positive market view in the underlying 

• Limited access to derivative products, and desire to hedge/enhance return 

• Scarce (or none) sources of competitive low rate borrowing  

• No liquidity needs tied to the structured product 

• Investment horizon from 3 to 5 years 

• Taxable status that may benefit from the structure of the instrument 

• Diversified portfolio, with other highly liquid securities and low correlation 

with the underlying asset of the structured product 

This indicates that when the market conditions are right, certain type of retail 

investors with a specific market view (time horizon and asset class), and restricted 

access to derivative products, may benefit from an investment strategy involving 

principal protected notes.  

6 Conclusion 

6.1 Conclusion of the analysis 

There are different types of investors in the market, with different needs and 

characteristics, and a group of them can benefit from investing in structured 

products. Such as retail investors with diversified portfolios, who satisfy their 

liquidity needs from alternative sources, and with restricted access to levered 

market positions and direct hedging. These kind of investors can successfully 

incorporate PPNs to their portfolios, and benefit in a way they could hardly do 

without them. 

In a market environment with low interest rates, and moderate volatility, -and 

consequently low hedging costs-, an investor with the previously mentioned 

characteristics can benefit from the use of these hybrid notes and take advantage of 

the benefits of low hedging costs if that’s his wish. Since, the potential enhancing 

yields and/or low hedging costs that can be achieved with the use of PPN would 

have been very difficult to achieve with a mixed portfolio of bonds and equities.  
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Our analysis presents economic tendencies of overpricing for index PPNs, which 

indicates that retail investors with the ability to replicate the index options, or access 

to derivative products with low transaction costs, should overweight the possibility 

of mimicking the PPN themselves instead of buying it directly from a dealer.  

The investment in PPN is exposed to credit, currency and liquidity risk. From our 

analysis of credit risk, we can determine that retail investors in the years 2012-2013 

were more exposed to this specific risk factor. Nevertheless, given to the high credit 

rating of the issuing institutions, this is not an important undermining factor for the 

investment in these products. A retail investor investing in PPN with the underlying 

issued in a foreign currency will additionally experience a currency risk exposure, 

which will also determine the final payoff of the PPN. Furthermore, liquidity risk 

will be a part of the risks associated with the PPNs, since the products are often mid 

to long term investment vehicles and the secondary market for these is not very 

liquid. Depending on the circumstances and motivation of the retail investor these 

risk factors can act to the detriment of his investment.  

Investing in the Swedish PPNs market in the period from 2011-2015, generated 

higher returns than other alternative portfolio allocations combining riskless debt, 

investment grade debt, and the desired underlying equity assets. Yet additionally, 

the PPN offered a benefit of capital protection for the holder. Moreover, by 

bundling together a taxable zero-coupon bond and the equity instrument, the retail 

investor can benefit from higher after-tax returns than if they would invest in both 

securities separately, enhancing his after-tax return. 

When market conditions are adequate PPNs can be efficient investment vehicles for 

certain types of retail investors. The PPNs in the sample period generated returns 

higher or comparable to that of alternative benchmarks, which emphasises the claim 

that structured equity products can be efficient investing vehicles under certain 

conditions. Because of this, retail investors should not neglect the opportunities 

arose from investing in hybrid products with derivatives when assessing investment 

alternatives.  

6.2 Recommended further research on the topic 

There are several types of structured products in the Swedish market, with the 

largest group consisting of principal protected notes. For further research we 

recommend using a larger sample size collected for several years to obtain more 

robust results, since the amount of product issued every year are very limited. 
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Hence, our analysis might be exposed to some degree of time-period bias. 

Additionally, we recommend the development of a multivariate GARCH, and/or 

the use of the implied volatilities at the time of issuance, to assess the volatility 

parameter in the basket options. Our sample is collected among expired products, 

an alternative could be instead to use newly issued notes, and calculate the expected 

return for those. Our research might also have experienced problems of sample-

selection bias where particular attributes of the products could have been 

systematically excluded due to lack of sufficient data availability. This problem 

could be even greater when performing research on active PPNs. An alternative 

approach could be to perform research on the variety of different structured 

products that exist on the Swedish market, to analyse if there are common attributes 

among these products that could be assessed further. 
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8 Appendix 
 

8.1 MATLAB code pricing Principal protected notes 

 

8.1.1 MATLAB code pricing Principal protected notes with index option 

Load Data 

clear; 

close all; 

clc; 

% Load data and set Inputs 

load Underlying_Data_1 

load TS_Data1 

load FX_Data 

load DY_Data1 

Inputs 

Underlying = OMX; % Index or Stock 

CCY = 'SEK'; % Currency of the underlying (SEK, USD, EUR, JPY & HKD) 

Iterations = 1000000; % 1,000,000 iterations 

S0 = 100;  % Spot Price 

% Dates 

Start_Date = datetime('07-May-2013', 'InputFormat', 'd-MMM-y'); 

Maturity_Date = datetime('23-Apr-2018', 'InputFormat', 'd-MMM-y');  

Obs_Dates = {'23-Apr-2017';'23-May-2017';'23-Jun-2017';'23-Jul-2017';'23-Aug-

2017';'23-Sep-2017';'23-Oct-2017';'23-Nov-2017';'23-Dec-2017';'23-Jan-2018';'23-

Feb-2018';'23-Mar-2017';'23-Apr-2017'}; % Observation Dates 

 

idx_SD = find(Data_Date==Start_Date); % Date Index for S0 

TMY = (days(Maturity_Date - Start_Date)+1)/365; % Time in natural years 

Dif_Start_Mat = days252bus(Start_Date, Maturity_Date); %Number of sim to Maturity 

Dif_Start_Obs = days252bus(Start_Date, Obs_Dates)+1; %Number of sim to Obs 

FX, DY and RF 

idx_FX_TS = find(FX_Dates==Start_Date); % FX rate routine 

if strcmp(CCY,'USD') == 1 

    FX = FX_USD(idx_FX_TS,:); 

elseif strcmp(CCY,'HKD') == 1 
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    FX = FX_HKD(idx_FX_TS,:); 

elseif strcmp(CCY,'JPY') == 1 

    FX = FX_JPY(idx_FX_TS,:); 

elseif strcmp(CCY,'EUR') == 1 

    FX = FX_EUR(idx_FX_TS,:); 

else 

    FX = 1; 

end 

 

idx_SD_TS = find(TS_Dates==Start_Date); % Risk free rate routine 

if strcmp(CCY,'USD') == 1 

    rf = TS_USA(idx_SD_TS,round(days(Maturity_Date - Start_Date)/365)); 

elseif strcmp(CCY,'HKD') == 1 

    rf = TS_HongKong(idx_SD_TS,round(days(Maturity_Date - Start_Date)/365)); 

elseif strcmp(CCY,'JPY') == 1 

    rf = TS_Japan(idx_SD_TS,round(days(Maturity_Date - Start_Date)/365)); 

elseif strcmp(CCY,'EUR') == 1 

    rf = TS_Germany(idx_SD_TS,round(days(Maturity_Date - Start_Date)/365)); 

else 

    rf = TS_Sweden(idx_SD_TS,round(days(Maturity_Date - Start_Date)/365)); 

end 

 

idx_DY = find(year(Start_Date)==DY_Years); % Annual historical dividend Yield 

Routine 

if Underlying(1,1) == OMX(1,1) 

    DY = mean(DY_OMX(1:idx_DY-1,:)); 

elseif Underlying(1,1) == SP500(1,1) 

    DY = mean(DY_SP500(1:idx_DY-1,:)); 

elseif Underlying(1,1) == HANG_SENG(1,1) 

    DY = mean(DY_HS(1:idx_DY-1,:)); 

elseif Underlying(1,1) == NIKKEI(1,1) 

    DY = mean(DY_NIKK(1:idx_DY-1,:)); 

elseif Underlying(1,1) == DAX(1,1) 

    DY = mean(DY_DAX(1:idx_DY-1,:)); 

elseif Underlying(1,1) == CAC40(1,1) 

    DY = mean(DY_CAC40(1:idx_DY-1,:)); 

elseif Underlying(1,1) == FTSE(1,1) 

    DY = mean(DY_FTSE(1:idx_DY-1,:)); 

elseif Underlying(1,1) == EUROSTOXX(1,1) 

    DY = mean(DY_EURO(1:idx_DY-1,:)); 

elseif Underlying(1,1) == MSCI_WORLD(1,1) 

    DY = mean(DY_WORLD(1:idx_DY-1,:)); 

else 

    DY = 0; 

end 

clear ans 

 

clearvars -except Underlying CCY S0 TMY Iterations Start_Date Maturity_Date... 

    AvgDate idx_SD FX rf Dif_Start_Mat Dif_Start_Obs DY 

Statistics 

Hist_Und = Underlying(1:idx_SD-1,1); % Historical Prices Underlying 

Hist_Und = rmmissing(Hist_Und); % Remove missing data 

Ret_Hist = diff(log(Hist_Und)); % Historical Returns 

Mean_R = mean(Ret_Hist); % Mean historical daily Return 

Mean_R_Y = Mean_R*(252^(1/2)); % Mean historical annual Return 

Vol_Hist = std(Ret_Hist); % Index Historical Daily Volatility 

Vol_Hist_Y = Vol_Hist*(252^(1/2)); % Annualized volatility 
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Z = norminv(0.95); 

clear Hist_Und Underlying ans 

Volatility Modelling Econ App 1 

econometricModeler % We first test for heteroscedasticity, then we model with 

                   % GARCH(1,1), EGARCH(1,1) and GJR(1,1), compare them and 

                   % select the one with the lowest AIC and BIC. 

Volatility Modelling Econ App 2 

if  exist('GJR_Ret_Hist1','var') 

        vol_mdl=GJR_Ret_Hist1; 

    elseif exist('GARCH_Ret_Hist1','var') 

        vol_mdl=GARCH_Ret_Hist1; 

    else ,exist('EGARCH_Ret_Hist1','var') 

        vol_mdl=EGARCH_Ret_Hist1; 

end 

Vol_Inf = infer(vol_mdl,Ret_Hist); % Infer conditional variance 

[V,Y] = simulate(vol_mdl,252,'NumPaths',Iterations, 'E0', Ret_Hist, 'V0', 

Vol_Inf); 

F_Vol_D = mean(std(Y)); % Forecasted Daily Volatility 

F_Vol_Y = mean(std(Y))*(252^(1/2)); % Forecasted Anual Volatility 

Geometric Brownian Motion Simulation 

Vol = F_Vol_Y; % Volatility model 

r = rf-DY; % Daily Return for pricing %Mean_R; 

deltaT = TMY/Dif_Start_Mat; %Time step 

K = S0; % Strike price 

Mu = r; % r 

Qty_Und = 1; 

Steps = Dif_Start_Mat; 

Sim_Prices = zeros(Steps+1,Iterations); 

for i=(1:Iterations) 

    Rand_Draw = randn(Steps,Qty_Und); % Random draw of a normal value 

    Eps = Rand_Draw; % Random number adjusted by cov 

    Sim_Prices(:,i) = [ones(1,1);cumprod(exp(repmat((Mu... 

        -Vol.*Vol/2)*deltaT,Steps,1)+Eps... 

        *Vol*sqrt(deltaT)))]*S0; %GBM Paths 

end 

Option Pricing 

Sim_Obs = Sim_Prices(Dif_Start_Obs,:);                  % Retrieve Data from Obs 

Dates 

Sim_ObsT = max([mean(Sim_Obs)-K;zeros(1,Iterations)]);  % Option Pay-off per node 

MC1_Payoff_Call = mean(Sim_ObsT);                       % Option Pay-off 

Call_Price_MonteCarlo = MC1_Payoff_Call*exp(-rf*TMY);   % Price Computation 

Conf_Int1 = (MC1_Payoff_Call - Z*(std(Sim_ObsT)/sqrt(Iterations)))*exp(-rf*TMY); 

Conf_Int2 = (MC1_Payoff_Call + Z*(std(Sim_ObsT)/sqrt(Iterations)))*exp(-rf*TMY); 
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Monte Carlo Plain Vanilla European Asian Option 

Mean_Sim_Prices = max([mean(Sim_Prices)-K;zeros(1,Iterations)]); 

MCA_PO = mean(Mean_Sim_Prices); 

MCA_Pr = MCA_PO*exp(-rf*TMY); 

PPN Pricing 

Zero_Bond = 100*exp(-rf*TMY); Dif_100_Zero = 100-Zero_Bond; % Bond Pricing 

Qty_Opt = Dif_100_Zero/Call_Price_MonteCarlo; % Participation Rate 

Other models 

RateSpec = intenvset('ValuationDate', Start_Date, 'StartDates', Start_Date, ... 

'EndDates', Maturity_Date,'Rates', rf,  'Compounding', -1, 'Basis', 1); 

StockSpec = stockspec(Vol, S0, 'continuous', DY); 

 

    % Black and Scholes 

[Call_BS] = blsprice(S0,K,rf,TMY,Vol,DY); % European Call with Black and Scholes 

 

 

    % European geometric Average Price for the Asian option using the Kemna-Vorst 

model 

Call_KV = asiansensbykv(RateSpec, StockSpec, 'call', K, Start_Date, 

Maturity_Date); 

 

    % European arithmetic average price for the Asian option using the Levy model 

Call_Levy = asianbylevy(RateSpec, StockSpec, 'call', K, Start_Date, 

Maturity_Date); 

 

    % Monte Carlo Model 2 

 

OptSpec = 'call';                   % Call option 

OptionGBM = gbm(r, Vol, 'StartState', 1); % Geometric Brownian Motion 

[Paths, Times] = simBySolution(OptionGBM, Dif_Start_Mat, ... 

'NTRIALS',Iterations, 'DeltaTime',deltaT,'Antithetic',true); 

simPrice0 = squeeze(Paths); 

TimesonAvgDate = Times(Dif_Start_Obs,:); 

 

Times =  [0; TimesonAvgDate(end)]; 

simPriceOnAvgDate = simPrice0(Dif_Start_Obs,:); % Prices on average dates 

 

% Pre-calculate premium of options 

simPrice1 = [ones(1,Iterations); mean(simPriceOnAvgDate)]; 

Call_MC2 = optpricebysim(RateSpec, simPrice1 * S0, Times, OptSpec, K, TMY); 

Qty_Opt2 = Dif_100_Zero/Call_MC2; % Participation Rate 

clearvars -except Call_MC2 Call_Levy Call_KV Call_BS Call_Price_MonteCarlo... 

    MCA_Pr 

8.1.2 MATLAB code pricing Principal protected notes with basket option 

Load Data 

clear; 

close all; 

clc; 
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% Load data and set Inputs 

load Underlying_Data_1 

load TS_Data1 

load FX_Data 

load DY_Data1 

Inputs 

Underlying1 = SP500; % Index or Stock 

Underlying2 = OMX;   % Index or Stock 

Underlying3 = DAX;   % Index or Stock 

Underlying4 = HANG_SENG; % Index or Stock 

 

CCY1 = 'USD'; % Currency of the underlying (SEK, USD, EUR, JPY & HKD) 

CCY2 = 'SEK'; % Currency of the underlying (SEK, USD, EUR, JPY & HKD) 

CCY3 = 'EUR'; % Currency of the underlying (SEK, USD, EUR, JPY & HKD) 

CCY4 = 'HKD'; % Currency of the underlying (SEK, USD, EUR, JPY & HKD) 

 

Iterations = 250000; % 250,000 iterations 

Qty_Und = 4; % Number of Underlying assets 

S0 = 100;  % Underlying(idx_SD); % Spot Price 

K = S0; % Strike price 

% Dates 

Start_Date = datetime('08-Jul-2013', 'InputFormat', 'd-MMM-y'); %Settlement Date 

Maturity_Date = datetime('25-Jun-2018', 'InputFormat', 'd-MMM-y'); %Maturity Date 

Obs_Dates = {'25-Jun-2017';'25-Jul-2017';'25-Aug-2017';'25-Sep-2017';... 

    '25-Oct-2017';'25-Nov-2017';'25-Dec-2017';'25-Jan-2018';'25-Feb-2018';... 

    '25-Mar-2018';'25-Apr-2018';'25-May-2018';'25-Jun-2018'}; % Observation Dates 

idx_SD = find(Data_Date==Start_Date); % Date Index for S0 

TMY = (days(Maturity_Date - Start_Date)+1)/365; % Time in natural years 

Dif_Start_Mat = days252bus(Start_Date, Maturity_Date); %Number of sim to Maturity 

Dif_Start_Obs = days252bus(Start_Date, Obs_Dates)+1; %Number of sim to Obs 

FX, DY and RF 

% RF - Risk Free Rate 

idx_SD_TS = find(TS_Dates==Start_Date); % Risk free rate routine 

 

if strcmp(CCY1,'USD') == 1 

    rf1 = TS_USA(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY1,'HKD') == 1 

    rf1 = TS_HongKong(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY1,'JPY') == 1 

    rf1 = TS_Japan(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY1,'EUR') == 1 

    rf1 = TS_Germany(idx_SD_TS,round(TMY)); 

else 

    rf1 = TS_Sweden(idx_SD_TS,round(TMY)); 

end 

 

if strcmp(CCY2,'USD') == 1 

    rf2 = TS_USA(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY2,'HKD') == 1 

    rf2 = TS_HongKong(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY2,'JPY') == 1 

    rf2 = TS_Japan(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY2,'EUR') == 1 

    rf2 = TS_Germany(idx_SD_TS,round(TMY)); 
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else 

    rf2 = TS_Sweden(idx_SD_TS,round(TMY)); 

end 

 

if strcmp(CCY3,'USD') == 1 

    rf3 = TS_USA(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY3,'HKD') == 1 

    rf3 = TS_HongKong(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY3,'JPY') == 1 

    rf3 = TS_Japan(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY3,'EUR') == 1 

    rf3 = TS_Germany(idx_SD_TS,round(TMY)); 

else 

    rf3 = TS_Sweden(idx_SD_TS,round(TMY)); 

end 

 

if strcmp(CCY4,'USD') == 1 

    rf4 = TS_USA(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY4,'HKD') == 1 

    rf4 = TS_HongKong(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY4,'JPY') == 1 

    rf4 = TS_Japan(idx_SD_TS,round(TMY)); 

elseif strcmp(CCY4,'EUR') == 1 

    rf4 = TS_Germany(idx_SD_TS,round(TMY)); 

else 

    rf4 = TS_Sweden(idx_SD_TS,round(TMY)); 

end 

 

% DY - Dividend Yield 

idx_DY = find(year(Start_Date)==DY_Years); % Annual historical dividend Yield 

Routine 

 

if Underlying1(1,1) == OMX(1,1) 

    DY1 = mean(DY_OMX(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == SP500(1,1) 

    DY1 = mean(DY_SP500(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == HANG_SENG(1,1) 

    DY1 = mean(DY_HS(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == NIKKEI(1,1) 

    DY1 = mean(DY_NIKK(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == DAX(1,1) 

    DY1 = mean(DY_DAX(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == CAC40(1,1) 

    DY1 = mean(DY_CAC40(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == FTSE(1,1) 

    DY1 = mean(DY_FTSE(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == EUROSTOXX(1,1) 

    DY1 = mean(DY_EURO(1:idx_DY-1,:)); 

elseif Underlying1(1,1) == MSCI_WORLD(1,1) 

    DY1 = mean(DY_WORLD(1:idx_DY-1,:)); 

else 

    DY1 = 0; 

end 

 

if Underlying2(1,1) == OMX(1,1) 

    DY2 = mean(DY_OMX(1:idx_DY-1,:)); 

elseif Underlying2(1,1) == SP500(1,1) 

    DY2 = mean(DY_SP500(1:idx_DY-1,:)); 

elseif Underlying2(1,1) == HANG_SENG(1,1) 

    DY2 = mean(DY_HS(1:idx_DY-1,:)); 
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elseif Underlying2(1,1) == NIKKEI(1,1) 

    DY2 = mean(DY_NIKK(1:idx_DY-1,:)); 

elseif Underlying2(1,1) == DAX(1,1) 

    DY2 = mean(DY_DAX(1:idx_DY-1,:)); 

elseif Underlying2(1,1) == CAC40(1,1) 

    DY2 = mean(DY_CAC40(1:idx_DY-1,:)); 

elseif Underlying2(1,1) == FTSE(1,1) 

    DY2 = mean(DY_FTSE(1:idx_DY-1,:)); 

elseif Underlying2(1,1) == EUROSTOXX(1,1) 

    DY2 = mean(DY_EURO(1:idx_DY-1,:)); 

elseif Underlying2(1,1) == MSCI_WORLD(1,1) 

    DY2 = mean(DY_WORLD(1:idx_DY-1,:)); 

else 

    DY2 = 0; 

end 

 

if Underlying3(1,1) == OMX(1,1) 

    DY3 = mean(DY_OMX(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == SP500(1,1) 

    DY3 = mean(DY_SP500(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == HANG_SENG(1,1) 

    DY3 = mean(DY_HS(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == NIKKEI(1,1) 

    DY3 = mean(DY_NIKK(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == DAX(1,1) 

    DY3 = mean(DY_DAX(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == CAC40(1,1) 

    DY3 = mean(DY_CAC40(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == FTSE(1,1) 

    DY3 = mean(DY_FTSE(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == EUROSTOXX(1,1) 

    DY3 = mean(DY_EURO(1:idx_DY-1,:)); 

elseif Underlying3(1,1) == MSCI_WORLD(1,1) 

    DY3 = mean(DY_WORLD(1:idx_DY-1,:)); 

else 

    DY3 = 0; 

end 

 

if Underlying4(1,1) == OMX(1,1) 

    DY4 = mean(DY_OMX(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == SP500(1,1) 

    DY4 = mean(DY_SP500(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == HANG_SENG(1,1) 

    DY4 = mean(DY_HS(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == NIKKEI(1,1) 

    DY4 = mean(DY_NIKK(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == DAX(1,1) 

    DY4 = mean(DY_DAX(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == CAC40(1,1) 

    DY4 = mean(DY_CAC40(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == FTSE(1,1) 

    DY4 = mean(DY_FTSE(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == EUROSTOXX(1,1) 

    DY4 = mean(DY_EURO(1:idx_DY-1,:)); 

elseif Underlying4(1,1) == MSCI_WORLD(1,1) 

    DY4 = mean(DY_WORLD(1:idx_DY-1,:)); 

else 

    DY4 = 0; 

end 
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Statistics / Cholesky and Var-Cov Matrix 

% Calculate the daily log returns and the statistics 

 

% Underlying1 

S0_1 =Underlying1(idx_SD); 

Hist_Und1 = Underlying1(1:idx_SD-1,1); % Historical Prices Underlying 

Hist_Returns1 = diff(log(Hist_Und1)); % Historical Returns 

Hist_Returns1(isnan(Hist_Returns1))=0; % Change NaN for 0 

Mean_R1 = mean(Hist_Returns1); % Mean historical daily Return 

Vol1 = std(Hist_Returns1); % Index Historical Volatility 

 

% Underlying2 

S0_2 =Underlying2(idx_SD); 

Hist_Und2 = Underlying2(1:idx_SD-1,1); 

Hist_Returns2 = diff(log(Hist_Und2)); % Historical Returns 

Hist_Returns2(isnan(Hist_Returns2))=0; % Change NaN for 0 

Mean_R2 = mean(Hist_Returns2); % Mean historical daily Return 

Vol2 = std(Hist_Returns2); % Index Historical Volatility 

 

% Underlying3 

S0_3 =Underlying3(idx_SD); 

Hist_Und3 = Underlying3(1:idx_SD-1,1); 

Hist_Returns3 = diff(log(Hist_Und3)); % Historical Returns 

Hist_Returns3(isnan(Hist_Returns3))=0; % Change NaN for 0 

Mean_R3 = mean(Hist_Returns3); % Mean historical daily Return 

Vol3 = std(Hist_Returns3); % Index Historical Volatility 

 

% Underlying4 

S0_4 =Underlying4(idx_SD); 

Hist_Und4 = Underlying4(1:idx_SD-1,1); 

Hist_Returns4 = diff(log(Hist_Und4)); % Historical Returns 

Hist_Returns4(isnan(Hist_Returns4))=0; % Change NaN for 0 

Mean_R4 = mean(Hist_Returns4); % Mean historical daily Return 

Vol4 = std(Hist_Returns4); % Index Historical Volatility 

 

Mat_Hist_R = [Hist_Returns1 Hist_Returns2 Hist_Returns3 Hist_Returns4]; 

Mat_Mean_R = mean(Mat_Hist_R)*(252^(1/2)); % Mean Annualized return Matrix 

Mat_Mu = ([rf1-DY1,rf2-DY2,rf3-DY3,rf4-DY4])/(252^(1/2)); % Negative annual Mu 

Mat_Vol_R = std(Mat_Hist_R)*(252^(1/2)); %Annualized Volatility Matrix 

Mat_Corr = corrcoef(Mat_Hist_R); %Correlation Matrix 

Mat_Chol = chol(Mat_Corr); %Cholesky decomposition from correlation Matrix 

 

Mat_S0 = ones(1,Qty_Und)*S0; %S0 Matrix, for underlying assets 

% Mat_S0 = [S0_1,S0_2,S0_3,S0_4]; "Alternative" 

deltaT = TMY/Dif_Start_Mat; %Time step 

Z = norminv(0.95); 

 

Geometric Brownian Motion 

Sim_Prices = zeros(Dif_Start_Mat+1,Iterations,Qty_Und); 

for i=(1:Iterations) 

    Rand_Draw = randn(Dif_Start_Mat,Qty_Und); % Random draw of a normal value 

    Rand_Cov_Adj = Rand_Draw * Mat_Chol; % Random number adjusted by cov 

    Sim_Prices(:,i,:) = [ones(1,Qty_Und);cumprod(exp(repmat((Mat_Mu... 

        -Mat_Vol_R.*Mat_Vol_R/2)*deltaT,Dif_Start_Mat,1)+Rand_Cov_Adj... 
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        *diag(Mat_Vol_R)*sqrt(deltaT)))]*diag(Mat_S0); %GBM Paths 

end 

 

Sim_Und1 = Sim_Prices(:,:,1); % Simulation Underlying 1 

Sim_Und2 = Sim_Prices(:,:,2); % Simulation Underlying 2 

Sim_Und3 = Sim_Prices(:,:,3); % Simulation Underlying 3 

Sim_Und4 = Sim_Prices(:,:,4); % Simulation Underlying 4 

Option Pricing 

Und1 = max([mean(Sim_Und1(Dif_Start_Obs,:))-K;zeros(1,Iterations)]); %Call Pay-off 

per node 

Und1_PayOff = mean(Und1); % Call Option pay-off for underlying 1 

Und1_Price = Und1_PayOff*exp(-rf1*TMY); % Call option 1 at the money price 

 

% Underlying 2 

Und2 = max([mean(Sim_Und2(Dif_Start_Obs,:))-K;zeros(1,Iterations)]); %Call Pay-off 

per node 

Und2_PayOff = mean(Und2); % Call Option pay-off for underlying 1 

Und2_Price = Und2_PayOff*exp(-rf2*TMY); % Call option 1 at the money price 

 

% Underlying 3 

Und3 = max([mean(Sim_Und3(Dif_Start_Obs,:))-K;zeros(1,Iterations)]); %Call Pay-off 

per node 

Und3_PayOff = mean(Und3); % Call Option pay-off for underlying 1 

Und3_Price = Und3_PayOff*exp(-rf3*TMY); % Call option 1 at the money price 

 

% Underlying 4 

Und4 = max([mean(Sim_Und4(Dif_Start_Obs,:))-K;zeros(1,Iterations)]); %Call Pay-off 

per node 

Und4_PayOff = mean(Und4); % Call Option pay-off for underlying 1 

Und4_Price = Und4_PayOff*exp(-rf4*TMY); % Call option 1 at the money price 

 

% Basket Option Price 

Call_Basket_Option = mean([Und1_Price,Und2_Price,Und3_Price,Und4_Price]); 

PPN Pricing 

rf = mean([rf1,rf2,rf3,rf4]); % Weighted averaged risk free rate 

Zero_Bond = 100*exp(-rf*TMY); Dif_100_Zero = 100-Zero_Bond; % Bond Pricing 

Qty_Opt = Dif_100_Zero/Call_Basket_Option; % Participation Rate 

 

% Show results 

disp("Call Basket Option Price Monte Carlo"); disp(Call_Basket_Option); 

disp("Participation Rate MC"); disp(Qty_Opt); 

 

 

Asian Option 

Und1_A = max([mean(Sim_Und1)-K;zeros(1,Iterations)]); %Call Pay-off per node 

Und1_PayOff_A = mean(Und1_A); % Call Option pay-off for underlying 1 

Und1_Price_A = Und1_PayOff_A*exp(-rf1*TMY); % Call option 1 at the money price 

Und1_Conf_Int1 = (Und1_PayOff_A - Z*(std(Und1_A)/sqrt(Iterations)))*exp(-rf*TMY); 

Und1_Conf_Int2 = (Und1_PayOff_A + Z*(std(Und1_A)/sqrt(Iterations)))*exp(-rf*TMY); 
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% Underlying 2 

Und2_A = max([mean(Sim_Und2)-K;zeros(1,Iterations)]); %Call Pay-off per node 

Und2_PayOff_A = mean(Und2_A); % Call Option pay-off for underlying 1 

Und2_Price_A = Und2_PayOff_A*exp(-rf2*TMY); % Call option 1 at the money price 

Und2_Conf_Int1 = (Und2_PayOff_A - Z*(std(Und2_A)/sqrt(Iterations)))*exp(-rf*TMY); 

Und2_Conf_Int2 = (Und2_PayOff_A + Z*(std(Und2_A)/sqrt(Iterations)))*exp(-rf*TMY); 

 

% Underlying 3 

Und3_A = max([mean(Sim_Und3)-K;zeros(1,Iterations)]); %Call Pay-off per node 

Und3_PayOff_A = mean(Und3_A); % Call Option pay-off for underlying 1 

Und3_Price_A = Und3_PayOff_A*exp(-rf3*TMY); % Call option 1 at the money price 

Und3_Conf_Int1 = (Und3_PayOff_A - Z*(std(Und3_A)/sqrt(Iterations)))*exp(-rf*TMY); 

Und3_Conf_Int2 = (Und3_PayOff_A + Z*(std(Und3_A)/sqrt(Iterations)))*exp(-rf*TMY); 

 

% Underlying 4 

Und4_A = max([mean(Sim_Und4)-K;zeros(1,Iterations)]); %Call Pay-off per node 

Und4_PayOff_A = mean(Und4_A); % Call Option pay-off for underlying 1 

Und4_Price_A = Und4_PayOff_A*exp(-rf4*TMY); % Call option 1 at the money price 

Und4_Conf_Int1 = (Und4_PayOff_A - Z*(std(Und4_A)/sqrt(Iterations)))*exp(-rf*TMY); 

Und4_Conf_Int2 = (Und4_PayOff_A + Z*(std(Und4_A)/sqrt(Iterations)))*exp(-rf*TMY); 

 

% Basket Option Price 

Call_Basket_Option_Asian = 

mean([Und1_Price_A,Und2_Price_A,Und3_Price_A,Und4_Price_A]); 

Conf_Int1 = mean([Und1_Conf_Int1,Und2_Conf_Int1,Und3_Conf_Int1,Und4_Conf_Int1]); 

Conf_Int2 = mean([Und1_Conf_Int2,Und2_Conf_Int2,Und3_Conf_Int2,Und4_Conf_Int2]); 

disp("Call Basket Option Asian"); disp(Call_Basket_Option_Asian); 

Longstaff-Schwartz model for Basket Options 

RateSpec = intenvset('ValuationDate', Start_Date, 'StartDates',... 

Start_Date, 'EndDates', Maturity_Date, 'Rates', rf, 'Compounding', -1); 

BasketStockSpec = basketstockspec(Mat_Vol_R, Mat_S0,ones(1,Qty_Und)/Qty_Und, 

Mat_Corr); 

[Price,Paths,Times,Z] = basketbyls(RateSpec,BasketStockSpec,"call",K,... 

    Start_Date,Maturity_Date,'AmericanOpt',0,'NumTrials',Iterations); 

 

disp("Call Basket Option Price Longstaff-Schwartz"); disp(Price); 

disp("Participation Rate LS"); disp(Qty_Opt); 

 

Paths1 = Paths(:,1,:); Paths1 = permute(Paths1,[1 3 2]); 

Paths2 = Paths(:,2,:); Paths2 = permute(Paths2,[1 3 2]); 

Paths3 = Paths(:,3,:); Paths3 = permute(Paths3,[1 3 2]); 

Paths4 = Paths(:,4,:); Paths4 = permute(Paths4,[1 3 2]); 

 

Mean_Sim_Prices1 = max([mean(Paths1)-K;zeros(1,Iterations)]); 

MCA_PO1 = mean(Mean_Sim_Prices1); 

MCA_Pr1 = MCA_PO1*exp(-rf*TMY); 

 

Mean_Sim_Prices2 = max([mean(Paths2)-K;zeros(1,Iterations)]); 

MCA_PO2 = mean(Mean_Sim_Prices2); 

MCA_Pr2 = MCA_PO2*exp(-rf*TMY); 

 

Mean_Sim_Prices3 = max([mean(Paths3)-K;zeros(1,Iterations)]); 

MCA_PO3 = mean(Mean_Sim_Prices3); 

MCA_Pr3 = MCA_PO3*exp(-rf*TMY); 

 

Mean_Sim_Prices4 = max([mean(Paths4)-K;zeros(1,Iterations)]); 
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MCA_PO4 = mean(Mean_Sim_Prices4); 

MCA_Pr4 = MCA_PO4*exp(-rf*TMY); 

 

Call_Basket_Option_Asian2 = mean([MCA_Pr1,MCA_Pr2,MCA_Pr3,MCA_Pr4]); 

disp("Call Basket Option Asian 2"); disp(Call_Basket_Option_Asian2); 
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8.2 Volatility modelling 

8.2.1 Results Principal protected note with index option 

Table 8.1: Statistical test and volatility for PPNs with index option. Part one of the table shows 

the p-values from the statistical test performed to fit the return data to the GARCH-models. Part 

two of the table contain the goodness of fit result connected with the EGARCH (1,1) model. This 

model had the greatest fit for all the return series, and thus its result is displayed. The third part of 

the table shows the yearly forecasted volatility from the EGARCH (1,1) model and the yearly 

historical volatility. 

 

 

8.2.2 Result statistical models ISIN: SE0005095585 

Formula ARMA(2,2) process: 

                        (1 − 𝜑1𝐿 − 𝜑2𝐿
2) = 𝜇 + (1 + 𝜃1𝐿 + 𝜃2𝐿

2)𝜀𝑡                        (8.1) 

 

Table 8.2: Result from statistical tests. This table shows the result from Augmented Dickey-

Fuller test, Ljung-Box Q test and Engle ARCH for the PPN with ISIN: SE0005095585. The fourth 

column show the Ljung-Box Q test for an ARMA (2,2) process.  
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8.2.3 Results Principal protected notes with basket option 

Table 8.3: Historical volatility PPNs with basket option. This table contain the historical yearly 

volatility for PPNs which contain basket option. The volatility measure used in the pricing model 

is an average of the historical volatility for each of the indices. 

 

 

8.3 Parameters in the model  

 

Table 8.4: Parameter input PPN with index option. Shows the most important input parameters 

which has been used to replicate the principal protected note with index option.  In column 1, we 

observe the ISIN of the PPN. In column 2, we observe the underlying asset, in column 3 the issue 

date, in column 4 the yearly risk-free rate added to the pricing model, in column 5 the forecasted 

yearly volatility and in column 6 the yearly dividend yield.  

 

 

Table 8.5: Parameter input PPN with basket option. Shows the most important input 

parameters which has been used to replicate the principal protected note with basket option.  In 

column 1, we observe the ISIN of the PPN. In column 2, we observe the underlying assets, in 

column 3 the issue date, in column 4 the yearly risk-free rate added to the pricing model, in 

column 5 the forecasted yearly volatility and in column 6 the yearly dividend yield.  
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