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Abstract

This paper studies the identification of the coefficients in a linear equation when
data on the outcome, covariates, and an error-laden proxy for a latent variable are
available. We maintain that the measurement error in the proxy is classical and relax
the assumption that the proxy is excluded from the outcome equation. This enables
the proxy to directly affect the outcome and allows for differential measurement error.
Without the proxy exclusion restriction, we first show that the effects of the latent
variable, the proxy, and the covariates are not identified. We then derive the sharp
identification regions for these effects under any configuration of three auxiliary as-
sumptions. The first weakens the assumption of no measurement error by imposing
an upper bound on the noise to signal ratio. The second imposes an upper bound on
the outcome equation coefficient of determination that would obtain had there been
no measurement error. The third weakens the proxy exclusion restriction by specifying
whether the latent variable and its proxy affect the outcome in the same or the oppo-
site direction, if at all. Using the College Scorecard aggregate data, we illustrate our
framework by studying the financial returns to college selectivity and characteristics
and student characteristics when the average SAT score at an institution may directly
affect earnings and serves as a proxy for the average ability of the student cohort.
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1 Introduction

In many studies, the researchers do not observe a key explanatory variable U and employ

a useful proxy W in its place. For example, when estimating wage or earnings equations, a

test score is often used as a proxy for the unobserved individual “ability” (see e.g. Neal and

Johnson, 1996). When the equation for the outcome Y is linear and the proxy W suffers from

classical measurement error, a regression of Y on W and the correctly measured covariates

X does not point identify the effects of U or X on Y , except in special cases. In particular,

the regression estimand for the effect of U suffers from “attenuation bias.” Nevertheless, a

quintessential result establishes sharp bounds for the coefficients on U and X (e.g. Gini,

1921; Frisch, 1934; Klepper and Leamer, 1984; Bollinger, 2003). These bounds can be

informative in several empirical contexts. For example, Bollinger (2003) reports bounds on

the black-white wage gap when a test score serves as an error-laden proxy for ability.

These standard bounds are valid under the assumption that, unlike U , the proxy W is

excluded from the equation for Y . This is similar to the standard assumption that an in-

strumental variable is excluded from the outcome equation. As illustrated below, sometimes

the proxy for the latent variable may directly affect the outcome. What can be learned

about the effects of U , W , and X on Y if the available proxy W for the latent explanatory

variable U also affects the outcome Y ? To address this question, the paper characterizes the

sharp bounds on these effects under assumptions that allow W to be included in the outcome

equation. This is akin to studying the consequences of weakening the exclusion restriction

imposed on an instrumental variable (e.g. Conley, Hansen, and Rossi, 2012).

Without the proxy exclusion restriction, the measurement error is “differential” since the

proxy may help predict the outcome even after conditioning on the latent variable. Several

key identification results in the literature maintain that the measurement error is “non-

differential” (see e.g. Chesher (1991) and Chen, Hong, and Nekipelov (2011, assumption

2.1)). This assumption posits that the distributions of Y |(W,U,X) and Y |(U,X) (or e.g.

their means) coincide. We relax this assumption in the context of a linear specification that

allows W to directly enter the Y equation. In this sense, the paper puts forward partial

identification results that enable inference in a leading setting for differential measurement

error that “occurs when W is not merely a mismeasured version of [U ], but is a separate
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variable acting as a type of proxy for [U ]” (Carroll, Ruppert, Stefanski, and Crainiceanu,

2006, p. 36), as occurs in the examples below.

In particular, we characterize the joint sharp identification region for the direct and total

(direct and mediated via W ) effect of U on Y , the direct effects of W and X on Y , and the

(net-of-X) “signal to total variance ratio” (the ratio of the (net-of-X) variances of U and

W ). We then show that none of these parameters are separately identified since projecting

the joint identification region onto the supports of each of its components yields the full

support. This demonstrates the crucial role that the proxy exclusion restriction plays in

ensuring the validity of the standard bounds discussed above. To proceed, we derive the

joint and projected sharp identification regions under any configuration of three auxiliary

assumptions. The first weakens the benchmark assumption of “no measurement error” by

imposing an upper bound on the (net-of-X) “noise to signal” ratio (the ratio of the (net-of-

X) variances of the measurement error and U). The second imposes an upper bound on the

outcome equation coefficient of determination that would obtain had W measured U without

error. The third weakens the proxy exclusion restriction by specifying whether the latent

variable U and its proxy W affect the outcome in the same or the opposite direction, if at all.

We do not require particular auxiliary assumptions; rather, we establish the mapping from

each configuration of these assumptions to the sharp identification regions. By varying the

two upper bounds and the sign restriction in these three auxiliary assumptions, a researcher

can conduct a sensitivity analysis of how the measurement error in the proxy, the fit of the

model, and the proxy exclusion restriction affect the sharp identification regions.

After discussing estimation and inference, we illustrate our results by studying the finan-

cial returns to the college and student characteristics. Specifically, we analyze the recently

released College Scorecard (CS) data which reports information on postsecondary institu-

tions in the US. CS is aggregated at the institution level and includes information on the

institution, students, affordability, admission and academic attributes, and earnings out-

comes. While CS has some limitations that are partly due to data aggregation, it is “the

first nationally comprehensive data on students’ post-enrollment earnings, measured for a

consistently defined set of students at nearly all post-secondary institutions in the United

States” (Council of Economic Advisors, 2015). We use a parsimonious specification for a

student’s earnings as a function of his or her individual characteristics, the college’s char-
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acteristics, including its selectivity measured by the average SAT (equivalent) score of the

student’s cohort, and the student’s unobserved scholastic “ability.” We allow a student’s abil-

ity to freely depend on his or her observed characteristics as well as the characteristics of the

college he or she attended. We then study the consequences of deviating from the “selection

on observables” assumption by allowing a student’s SAT (equivalent) score to serve as an

error-laden proxy for his or her ability, with classical measurement error. Because CS reports

only aggregate data, we average the earnings equation across students in each college. The

average SAT score now serves as an error-laden proxy for the average latent ability and is

included in the average earnings equation, thereby violating the proxy exclusion restriction.

We apply the paper’s framework and obtain informative bounds on the earnings equation

coefficients and study their sensitivity to the three auxiliary assumptions on the extent of

the measurement error in the average SAT score, the fit of the model, and the signs of the

returns to the student’s ability and the selectivity of the college he or she attended.

More broadly, the paper’s results are useful in any setting where one suspects that the

proxy for the latent variable may directly affect the outcome. For example, consumers may

not fully observe the quality of a product (e.g. financial asset or movie) and their demand may

be influenced by a product rating (e.g. asset rating or movie score (e.g. Rotten Tomatoes))

that the econometrician uses as a proxy for quality. Also, a medical test result that serves

as a proxy for the unobserved health status of a patient may directly affect the patient’s

behavior (e.g. a worker may work shorter hours if he or she is incorrectly prescribed rest).

Another example occurs in studies of state-level corruption in the US, when convictions of

public officials for past corruption serves as a proxy for current corruption and can affect e.g.

growth or environmental policy by entailing a change in the bureaucracy. Last, aggregate

variables (e.g. income in a neighborhood) that serve as proxies for socioeconomic individual

variables (e.g. individual income) can directly affect the outcome (e.g. individual health) if

there are “contextual effects” (see e.g. Geronimus, Bound, and Neidert (1996) and Bound,

Brown, and Mathiowetz (2001, footnote 8)).

The paper is organized as follows. Section 2 specifies the assumptions and notation.

Section 3 characterizes the sharp identification regions when none, some, or all of the auxil-

iary assumptions are imposed. Section 4 provides a numerical example. Section 5 discusses

estimation and inference. Section 6 contains the empirical application. Section 7 concludes.
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The Supplement gathers the mathematical proofs and additional results.

2 Data Generation and Assumptions

We consider the following data generating structural system.

Assumption A1 Data Generation: (i) Let (X
k×1

′, W
1×1
, Y

1×1
)′ be a random vector with a finite

variance. (ii) Let a structural system, with constant slope coefficients, generate the random

vector X and variables η, ε, U , W , and Y such that

Y = X ′β +Wφ+ Uδ + η and W = U + ε. (1)

The researcher observes realizations of (X ′,W, Y )′ but not of (η, ε, U).

We maintain two standard assumptions on the unobservables η and ε. A2 assumes that

the “disturbance” η is uncorrelated with (X ′, U)′.

Assumption A2 Uncorrelated Disturbance: Cov[η, (X ′, U)′] = 0.

Further, A1 decomposes the proxy W into the “signal” component U and the “noise” or

error ε and A3 assumes that the measurement error ε is uncorrelated with (X ′, U, η).

Assumption A3 Uncorrelated measurement error: Cov[ε, (X ′, U, η)′] = 0.

We are interested in identifying φ, δ, φ+ δ, and β. The slope coefficients φ, δ, and β are

the ceteris paribus causal effects of the proxy W , the latent variable U , and the covariates

X on the outcome Y respectively. The sum φ + δ is the total (direct and mediated via W )

effect of U on Y . One identification challenge is due to U being unobserved and correlated

with W and possibly X. Moreover, we only require the uncorrelation assumptions A2 and

A3 and do not impose stronger (e.g. mean) independence assumptions. In particular, A2

suffices for a linear regression of Y on (X,U) to point identify φ + δ and β had U been

observed without error (i.e. ε = 0) and A3 relaxes the assumption that ε = 0.

A1 allows, but does not require, the proxy W to directly affect Y . When φ = 0, A1-

A3 are the classical error-in-variables assumptions (see e.g. Wooldridge, 2002, p. 80). We

relax these benchmark assumptions by studying the consequences of deviating from the

exclusion restriction φ = 0 on the identification of φ, δ, φ + δ, and β. Relaxing φ = 0 leads
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to a second identification challenge. In particular, it is widely assumed in the literature

that the measurement error is “nondifferential” so that E(Y |X,W,U) = E(Y |X,U) (see

e.g. Bollinger, 1996; Mahajan, 2006; Lewbel, 2007; Hu, 2008; Wooldridge (2002, p. 79)

refers to this as the “redundancy condition”). Incorrectly assuming that the measurement

error is nondifferential may result in misleading inference on δ and β. Bound, Brown, and

Mathiowetz (2001, p. 3717) discuss several examples that “highlight the potential importance

of differential measurement error.” Here, we have

E(Y |X,W,U)− E(Y |X,U) = [ε− E(ε|X,U)]φ+ E(η|X,W,U)− E(η|X,U)

so that, even when E(η|X,W,U) = E(η|X,U) and E(ε|X,U) = 0, E(Y |X,W,U) differs

from E(Y |X,U) by εφ and the measurement error is differential.

Last, we briefly comment on some related papers that modify A2-A3. Under φ = 0,

Erickson (1993) weakens A3 by imposing bounds on Corr(ε, η), Hyslop and Imbens (2001)

replace A3 with the assumption that W is an optimal prediction of U so that ε is uncorrelated

with W and correlated with U , and DiTraglia and Garcia-Jimeno (2016) weaken A2 to

allow Cov(U, η) to be nonzero. In contrast, Lewbel (1997) and Erickson and Whited (2002)

maintain φ = 0 and strengthen A2-A3 by imposing restrictions on the higher order moments

of η, ε, U, and X that can point identify (β′, δ)′. Last, recall that Cov(ε, U) = 0 in A3

generally rules out that U and W are binary variables. Imai and Yamamoto (2010) study

bounding the average effect of a binary misclassified treatment on a binary outcome under

alternative assumptions on the differential measurement error.

2.1 Notation and Linear Projection

To shorten the notation, for generic random vectors A and B, we write:

σ2
A ≡ V ar(A) and σA,B ≡ Cov(A,B).

Further, we use a concise notation for the linear regression estimand and residual

bA.B ≡ σ−2
B σB,A and ε′A.B ≡ [A− E(A)]′ − [B − E(B)]′bA.B

so that by construction E(εA.B) = 0 and Cov(B, εA.B) = 0. For example, bY.X is the vector

of slope coefficients associated with X in a linear regression of Y on (1, X ′)′. Last, for a
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scalar A, we let R2
A.B ≡ σ−2

A (σA,Bσ
−2
B σB,A) denote the population coefficient of determination

(R-squared) from a regression of A on B (if σ2
A = 0 set R2

A.B ≡ 0).

Under A1-A3, Cov[(η, ε)′, X] = 0. Thus, provided σ2
X is nonsingular, by substituting for

U = W − ε in the Y equation we obtain

bY.X = β + bW.X(φ+ δ). (2)

Using the shorthand notation Ã ≡ εA.X for the residuals from a regression of A on (1, X ′)′,

we employ the convenient system of projected linear equations:

Ỹ = W̃φ+ Ũδ + η̃ and W̃ = Ũ + ε̃, (3)

in order to study the identification of φ, δ, and φ + δ. The identification region for β then

obtains from the identification region for φ+ δ using equation (2).

2.2 Auxiliary Assumptions

We also study the identification gain that results from imposing any configuration of three

auxiliary assumptions A4-A6. The first weakens the standard “no measurement error” as-

sumption σ2
ε = 0 by imposing an upper bound κ on the net-of-X noise to signal ratio σ2

ε

σ2
Ũ

.

Assumption A4 Bounded Net-of-X Noise to Signal Ratio: σ2
ε ≤ κσ2

Ũ
where 0 ≤ κ.

For example, setting κ = 0 yields the no measurement error assumption σ2
ε = 0 and

setting κ = 1 assumes that the variance of the measurement error is at most as large as the

variance of Ũ , σ2
ε ≤ σ2

Ũ
. By A1-A3, we have σ2

W̃
= σ2

Ũ
+ σ2

ε . It follows that A4 sets a lower

bound 1
1+κ

on ρ, the net-of-X “signal to total variance ratio”:

1

1 + κ
≤ ρ ≡

σ2
Ũ

σ2
W̃

=
σ2
Ũ

σ2
Ũ

+ σ2
ε

.

Since ρ ≡ σ2
Ũ

σ2
W̃

=
R2
W.U−R

2
W.X

1−R2
W.X

(e.g. Dale and Krueger (2002, p. 1514) and DiTraglia and

Garcia-Jimeno (2016, eq. (20))), A4 imposes a lower bound κ′ on the “reliability ratio,”

κ′ ≡ 1+κR2
W.X

1+κ
≤ R2

W.U where R2
W.X ≤ κ′. A researcher can resort to any of these equivalent

interpretations of A4.

Let R̃2
∗ ≡ 1 − σ2

η

σ2
Ỹ

be the coefficient of determination that would obtain in equations (3)

had W measured U without error. By A1-A3 and Lemma 1 in the Supplement, R2
Ỹ .W̃
≤ R̃2

∗.

The second assumption imposes a bound τ on how large can R̃2
∗ be.
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Assumption A5 Bounded Net-of-X Coefficient of Determination: R̃2
∗ ≤ τ where 0 < τ

and R2
Ỹ .W̃
≤ τ ≤ 1.

Since R2
A.(X′,B)′ =

σ2
Ã

σ2
A

(R2
Ã.B̃
− 1) + 1, A5 imposes an upper bound τ ′ ≡ σ2

Ỹ

σ2
Y

(τ − 1) + 1 on

R2
∗ ≡ 1− σ2

η

σ2
Y

which would obtain in equations (1) had W measured U without error.

Klepper and Leamer (1984), Bekker, Kapteyn, and Wansbeek (1987), and Klepper (1988)

use restrictions similar to A4 and A5 when φ = 0. We vary κ and τ in A4 and A5 to conduct a

sensitivity analysis that weakens the no measurement error assumption κ = 0 (or τ = R2
Ỹ .W̃

in A5) or/and controls the fit of the model (R̃2
∗ ≤ τ). Conversely, we study for what value of

κ or τ does the identification region admit a plausible value or range for e.g. δ or β. To keep

the exposition concise, we impose A4 and A5 throughout the analysis and treat the results

when A4 or A5 is not binding as a special case in which κ→ +∞ or τ = 1.

The last auxiliary assumption weakens the proxy exclusion restriction φ = 0 (A0
6) by

specifying whether φ and δ have the same or the opposite (weak) sign.

Assumption A6 Coefficient Sign Restriction: φδ ≥ 0 (A+
6 ), φδ ≤ 0 (A−6 ), or φ = 0 (A0

6).

Under A+
6 (A−6 ), U and W affect Y in the same (opposite) direction. For instance, A+

6

assumes that the average SAT score W (the college selectivity) and the average student

ability U affect the mean earnings Y in the same direction. Similarly, a rating W of a

financial asset (movie) and the asset’s (movie’s) quality may affect the demand for the asset

(movie) in the same direction. On the other hand, A−6 assumes that a diabetic patient with a

high blood sugar level (U) may feel fatigued and exercise (Y ) less (δ ≤ 0) but that receiving

a high blood sugar test result (W ) may affect the patient’s exercising positively (φ ≥ 0).

We note that A4 and A6 resemble the assumptions of a maximum misclassification rate

and a monotone treatment response used in e.g. Kreider , Pepper, Gundersen, and Jolliffe

(2012) and Gundersen, Kreider, and Pepper (2012) to bound the average effect of a binary

treatment.

3 Identification

We characterize the sharp identification regions for φ, δ, and φ + δ, and thus β = bY.X −

bW.X(φ + δ), under the sequentially stronger assumptions A1-A5, A1-A+
6 or A1-A−6 , and A1-

A0
6. From the proof of Theorem 3.1 below, we can express the moments in V ar[(Ỹ , W̃ )′]
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under A1-A3 by

σ2
W̃

= σ2
Ũ

+ σ2
ε , σW̃ ,Ỹ = (φ+ δ)σ2

Ũ
+ φσ2

ε , and σ2
Ỹ

= (φ+ δ)2σ2
Ũ

+ φ2σ2
ε + σ2

η.

Dividing σW̃ ,Ỹ by σ2
W̃
6= 0, gives that bỸ .W̃ is a weighted average of φ and φ+ δ:

bỸ .W̃ = φ(1− ρ) + (φ+ δ)ρ where ρ ≡
σ2
Ũ

σ2
W̃

=
σ2
Ũ

σ2
Ũ

+ σ2
ε

. (4)

Clearly, 0 ≤ ρ ≤ 1. If there is no measurement error (σ2
ε = 0) then ρ = 1 and bỸ .W̃ = φ + δ

whereas if Ũ is degenerate (σ2
Ũ

= 0 and U and X are perfectly collinear) then ρ = 0 and

bỸ .W̃ = φ. Similarly, normalizing σ2
Ỹ

by σ2
W̃

, we have that

σ2
Ỹ

σ2
W̃

= φ2(1− ρ) + (φ+ δ)2ρ+
σ2
η

σ2
W̃

, (5)

where, by definition, we have the inequality

0 ≤ ξ2 ≡
σ2
η

σ2
W̃

. (6)

As we demonstrate, the nonlinear system of moment (in)equalities (2) and (4-6) exhausts

the information on (ρ, φ, δ, φ+ δ, β) implied by A1-A3. A4 adds the constraints 1
1+κ
≤ ρ ≤ 1,

A5 tightens the lower bound in (6) to (1 − τ)
σ2
Ỹ

σ2
W̃

≤ ξ2, and A6 specifies whether 0 ≤ φδ,

φδ ≤ 0, or φ = 0.

When U and X are not perfectly collinear (ρ 6= 0), Theorem 3.1 employs equations (2, 4,

5) to express δ, φ+δ, β, and ξ2 as functions D, G, B, and C2 of (ρ, φ). This mapping enables

characterizing the sharp identification region for (ρ, φ, δ, φ+ δ, β) in terms of restrictions on

(ρ, φ) only. It facilitates studying the consequences of deviating from the benchmark no

measurement error assumption (ρ = 1) or the proxy exclusion restriction (φ = 0).

Theorem 3.1 Assume A1-A3 and let V ar[(X ′, U)′] be nonsingular so that 0 < ρ ≤ 1. Then

δ = D(ρ, φ) ≡ 1

ρ
(bỸ .W̃ − φ)

φ+ δ = G(ρ, φ) ≡ 1

ρ
[bỸ .W̃ − φ(1− ρ)]

β = B(ρ, φ) ≡ bY.X − bW.X
1

ρ
[bỸ .W̃ − φ(1− ρ)], and

ξ2 = C2(ρ, φ) ≡
σ2
Ỹ

σ2
W̃

− (1− ρ)

ρ
(φ− bỸ .W̃ )2 − b2

Ỹ .W̃
.
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Theorem 3.1 shows that if ρ = 1 then φ + δ, β, and ξ2 are point identified. Further,

if R2
W̃ .Ỹ

= 1 then
σ2
Ỹ

σ2
W̃

= b2
Ỹ .W̃

and it follows from 0 ≤ ξ2 that either ρ = 1 or δ = 0 and,

therefore, that φ+ δ = bỸ .W̃ and β = bY.X − bW.XbỸ .W̃ . Last, if bW.X = 0 then bY.X = β.

3.1 Identification Regions under A1-A5

Corollary 3.2 uses (in)equalities (2) and (4-6) and the mappings in Theorem 3.1 to charac-

terize the sharp identification region for (ρ, φ, δ, φ+ δ, β) under A1-A5.

Corollary 3.2 Under the conditions of Theorem 3.1, A4, and A5, (ρ, φ, δ, φ+δ, β) is partially

identified in the sharp set

Sκ,τ ≡

{
(r, f,D(r, f), G(r, f), B(r, f)) :

1

1 + κ
≤ r ≤ 1 and (1− τ)

σ2
Ỹ

σ2
W̃

≤ C2(r, f)

}
.

Further, φ and δ are not identified, Fκ,τ = Dκ,τ = R, and ρ, φ + δ, and β are partially

identified in the sharp sets

Rκ,τ = [
1

1 + κ
, 1] and

Gκ,τ = {bỸ .W̃ + λ[κ(τ
σ2
Ỹ

σ2
W̃

− b2
Ỹ .W̃

)]
1
2} : −1 ≤ λ ≤ 1} with Bκ,τ = {bY.X − bW.Xg : g ∈ Gκ,τ}.

The proof of Corollary 3.2 shows that the joint identification region Sκ,τ is sharp since

for every (r, f, d, g, b) ∈ Sκ,τ there exists (U∗, η∗, ε∗), with
σ2
Ũ∗
σ2
W̃

= r and
σ2
η∗

σ2
W̃

= C2(r, f), that

satisfy A2-A5 and that could have generated Y and W according to A1. Corollary 3.2 also

derives the identification regions for ρ, φ, δ, φ+ δ, and β separately. Each of these projected

regions is sharp - for example, for every d ∈ Dκ,τ there exists (r, f, d, g, b) ∈ Sκ,τ .

When κ→ +∞ and R2
W̃ .Ỹ
6= τ (i.e. τ

σ2
Ỹ

σ2
W̃

6= b2
Ỹ .W̃

), projecting Sκ,τ onto the support (0, 1]

of ρ or the support R of φ, δ, φ+δ, and βl for l = 1, ..., k yields the full support. (Here, we drop

the superfluous κ, τ subscripts, S ≡ S∞,τ .) Without the proxy exclusion restriction φ = 0,

none of these parameters is identified under A1-A3 and A5. When κ <∞, Corollary 3.2 yields

two-sided sharp bounds for ρ, φ+δ, and β whereas φ and δ remain unidentified. Last, we note

that the paper’s bounds enable characterizing the bias of several key estimands. For example,

using the regression representation bY.(W,X′)′ = (bỸ .W̃ , b
′
Y.X− b′W.XbỸ .W̃ )′, Bκ,τ reveals that the

magnitude of the bias of the coefficient on X in bY.(W,X′)′ is at most |bW.X | [κ(τ
σ2
Ỹ

σ2
W̃

− b2
Ỹ .W̃

)]
1
2 .
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3.2 Identification Regions under A1-A6

Next, we impose A6. We begin by examining A+
6 , φδ ≥ 0. For this, we let E(r, f) ≡

fD(r, f) = 1
r
f(bỸ .W̃ − f). Also, we define the maximum L and the indicator T

L ≡ max{1

τ
R2
W̃ .Ỹ

,
1

1 + κ
} and T ≡ 1{R2

W̃ .Ỹ
∈ {(1− λ)

τ

1 + κ
+ λ

τκ

1 + κ
: 0 < λ < 1}}.

Corollary 3.3 Under the conditions of Theorem 3.1, A4, A5, and A+
6 , (ρ, φ, δ, φ + δ, β) is

partially identified in the sharp set

S+
κ,τ ≡

{
(r, f,D(r, f), G(r, f), B(r, f)) :

1

1 + κ
≤ r ≤ 1, (1− τ)

σ2
Ỹ

σ2
W̃

≤ C2(r, f), and 0 ≤ E(r, f)

}
.

Further, ρ, φ, δ, φ+ δ, and β are partially identified in the sharp sets

R+
κ,τ = [

1

1 + κ
, 1],

F+
κ,τ = {λbỸ .W̃ : 0 ≤ λ ≤ 1},

D+
κ,τ =

{
{λ(1 + κ)bỸ .W̃ [ 1

κ
( 1
L
− 1)]

1
2 : 0 ≤ λ ≤ 1} if T = 1 and κ > 0

{λbỸ .W̃ 1
L

: 0 ≤ λ ≤ 1} if T = 0 or κ = 0
,

G+
κ,τ = {bỸ .W̃{1 + λ[κ(

1

L
− 1)]

1
2} : 0 ≤ λ ≤ 1} with B+

κ,τ = {bY.X − bW.Xg : g ∈ G+
κ,τ}.

When κ → +∞, we obtain the two-sided sharp bounds F+ = F+
κ,τ and, except when

R2
W̃ .Ỹ

= τ (and thus L = 1), the one-sided sharp bounds D+ = {λbỸ .W̃ : 0 ≤ λ}, G+ =

{bỸ .W̃λ : 1 ≤ λ}, and B+ = {bY.X − bW.XbỸ .W̃λ : 1 ≤ λ}. Note that F+ and D+ identify the

common sign of φ and δ. Imposing A1-A+
6 with κ <∞ yields bounded identification regions

for ρ, φ, δ, φ + δ, and β that can be tighter than those obtained when κ → +∞, τ = 1, or

without A+
6 .

Corollary 3.4 examines the identifying power of A−6 , φδ ≤ 0.

Corollary 3.4 Under the conditions of Theorem 3.1, A4, A5, and A−6 , (ρ, φ, δ, φ + δ, β) is

partially identified in the sharp set

S−κ,τ ≡

{
(r, f,D(r, f), G(r, f), B(r, f)) :

1

1 + κ
≤ r ≤ 1, (1− τ)

σ2
Ỹ

σ2
W̃

≤ C2(r, f), and E(r, f) ≤ 0

}
.

Further, ρ, φ, δ, φ+ δ, and β are partially identified in the sharp sets

R−κ,τ = [
1

1 + κ
, 1], F−κ,τ = D−κ,τ =

{
{λbỸ .W̃ : λ 6∈ (0, 1)} if bỸ .W̃ 6= 0

R if bỸ .W̃ = 0
,
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and if L = 1
1+κ

then G−κ,τ = Gκ,τ with B−κ,τ = Bκ,τ whereas if L = 1
τ
R2
W̃ .Ỹ

then

G−κ,τ = {bỸ .W̃{λ
1

L
+(1−λ)[1−(κ(

1

L
−1))

1
2 ]} : 0 ≤ λ ≤ 1} with B−κ,τ = {bY.X−bW.Xg : g ∈ G−κ,τ}.

When κ → +∞, we obtain the same sharp identification regions for φ and δ as when

κ < ∞, F− = D− = F−κ,τ = D−κ,τ . This is a disconnected region which rules out that φ

or δ is in the open interval with end points 0 and bỸ .W̃ . Further, except when R2
W̃ .Ỹ

= 0

or R2
W̃ .Ỹ

= τ , we obtain the one-sided sharp bounds G−τ = {bỸ .W̃ τ
R2
W̃ .Ỹ

λ : λ ≤ 1} and

B−τ = {bY.X − bW.XbỸ .W̃
τ

R2
W̃ .Ỹ

λ : λ ≤ 1}. When κ < ∞, the sharp identification regions

G−κ,τ and B−κ,τ are tighter than Gκ,τ and Bκ,τ only if τ
1+κ

< R2
W̃ .Ỹ

. Last, unlike in Corollary

3.3, assigning specific signs to φ and δ may tighten the bounds in Corollary 3.4 - we do not

pursue this here for brevity.

Last, Corollary 3.5 imposes A1-A0
6 so that the proxy exclusion restriction φ = 0 holds.

The resulting bounds are nested in the bounds obtained under A1-A+
6 and A1-A−6 .

Corollary 3.5 Under the conditions of Theorem 3.1, A4, A5, and A0
6, (ρ, δ, β) is partially

identified in the sharp set

S0
κ,τ ≡

{
(r,D(r, 0), B(r, 0)) :

1

1 + κ
≤ r ≤ 1 and (1− τ)

σ2
Ỹ

σ2
W̃

≤ C2(r, 0)

}
.

Further, ρ, δ, and β are partially identified in the sharp sets

R0
κ,τ = {λL+ (1− λ) : 0 ≤ λ ≤ 1}

D0
κ,τ = {bỸ .W̃ [λ+ (1− λ)

1

L
] : 0 ≤ λ ≤ 1} with B0

κ,τ = {bY.X − bW.Xd : d ∈ D0
κ,τ}.

When κ→ +∞, τ = 1, and R2
W̃ .Ỹ
6= 0, the bounds in Corollary 3.5 reduce to the standard

sharp bounds R0, D0, and B0 with L = R2
W̃ .Ỹ

(see e.g. Gini, 1921; Frisch, 1934, Klepper and

Leamer, 1984; Bollinger, 2003). (If R2
W̃ .Ỹ

= 0, R0 = (0, 1] and D0 = {bỸ .W̃λ : 0 ≤ λ} = {0}.)

Setting κ <∞ or τ < 1 can yield tighter bounds.

To conclude, we briefly comment on the case when a researcher assumes that several

variables serve as proxies for U . When suitable, one can apply this paper’s framework

using each proxy separately by including the other proxies in X. Examining the analytical

expressions for the identification regions then reveals whether a bound obtained using an

included proxy has a narrower width than that obtained using another included or excluded
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proxy. For instance, consider two proxies Wh, h = 1, 2 that satisfy A1-A5 and either A+
6

(δφh ≥ 0) or A0
6 (φh = 0), with the same sufficiently small κ and large τ such that L = 1

1+κ

and T = 1 for either proxy. For h, h′ = 1, 2, h 6= h′, let bh denote the coefficient on Wh in

a regression of Y on (X ′,Wh,Wh′)
′. In this case, when letting Wh serve as the proxy and

Wh′ as a covariate, the smaller |bh| is the narrower the widths of the bounds on δ and, under

A+
6 , φh and φh + δ are. Similarly, the smaller the lth component of

∣∣bhbWh.(X′,Wh′ )
′
∣∣ is the

narrower the width of the bounds on the lth component of (β′, φh′)
′ is. Moreover, tighter

bounds obtain by taking the intersection of the bounds that use each of the multiple proxies

separately. We leave studying the sharp identification regions in the presence of multiple

included and/or excluded proxies to other work.

4 Numerical Example

It is instructive to consider an example that illustrates the shape of the identification regions

in Section 3. Specifically, let X, Y , and W be generated, according to A1, by

Y = X ′β +Wφ+ Uδ + η, X ′ = Uϕ+ η′X , and W = U + ε,

where X
2×1

= (X1, X2)′. Further, let U, η, ε, and ηX be jointly independent and normally

distributed with mean zero so that A2 and A3 hold. It follows that (X ′, Y,W )′ is normally

distributed and we can analytically express the identification regions for ρ, φ, δ, φ+δ, and β in

Section 3 using the elements of V ar[(U, η, ε, η′X)′]. To illustrate these identification regions,

we set β = (1, 0.7)′, φ = 0.5, δ = 0.9, and ϕ = (0.35, 0.14). Since 0 < φδ, A+
6 holds. Also,

we set σ2
U = 3, σ2

η = 0.4, σ2
ε = σ2

ηX1
= σ2

ηX2
= 1, and σηX1

,ηX2
= 0.2. We obtain ρ = 0.685

and R2
W̃ .Ỹ

= 0.805 and set (κ, τ) such that σ2
ε

σ2
Ũ

= 0.461 ≤ κ and R̃2
∗ = 0.918 ≤ τ .

Using a grid search, we approximate the joint identification regions Sκ,τ , S+
κ,τ , S−κ,τ , and

S0
κ,τ obtained under this parametrization. Figure 1 illustrates these regions by plotting their

projections onto the (φ, ρ), (φ, δ), and (β1, β2) spaces. Each graph in Figure 1 superimposes

the 4 projected identification regions that correspond to (κ, τ) = (+∞, 1), (2, 1), (2, 0.95),

and (0.5, 0.92). The darker intersections correspond to smaller κ or τ values (or both) and are

nested within the lighter regions. Sometimes the identification regions displayed in Figure 1

are unbounded. For example, B is an unbounded line whereas the projection of S+
κ,τ on the

(ρ, φ) space is a bounded set when κ <∞. Figure 1 illustrates how the vector of population
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coefficients (which we mark using a plus sign) is an element of the joint sharp identification

regions Sκ,τ and S+
κ,τ . On the other hand, neither φδ ≤ 0 nor φ = 0 holds and S−κ,τ and

S0
κ,τ do not contain (ρ, φ, δ, φ + δ, β). Last, Figure 1 illustrates how S−κ,τ is disconnected,

S0
κ,τ ⊆ S+

κ,τ∩S−κ,τ , and S+
κ,τ ∪ S−κ,τ = Sκ,τ .

Using the analytical expressions in Section 3, Table 1 reports the bounds for ρ, φ, δ,

φ + δ, β1, and β2 that correspond to the regions in Figure 1. It reports the sharp bounds

obtained under A1-A5 (column 1), A1-A+
6 (column 2), and the incorrect assumptions A1-A−6

(column 3) and A1-A0
6 (column 4). Column 5 reports the regression estimand bY.(W,X′)′ that

identifies (φ+ δ, β) if ρ = 1 or δ = 0. As Table 1 shows, the projections for S−κ,τ and S0
κ,τ do

not contain φ, δ, φ+δ, and β. In contrast, S+
κ,τ improves over Sκ,τ and both regions contain

the true parameter values and become tighter as κ or/and τ decrease(s).

5 Estimation and Inference

We conduct inference on each of the partially identified parameters ρ, φ, δ, φ + δ, and βl,

l = 1, ..., k, in Corollaries 3.2 to 3.5 (see e.g. Shi and Shum (2015) or Kline and Tamer (2016)

for inference procedures on the joint identification regions). Each of these identification

regions is of the form θ ∈ H ={H(P ;λ) : λ ∈ Λ} where H(·;λ) is a function of the estimands

P ≡ (b′Y.(W,X′)′ , b
′
W.(Y,X′)′ , b

′
Y.X , b

′
W.X ,

σ2
Ỹ

σ2
W̃

)′

and λ is a nuisance parameter that is partially identified in a known set Λ. (We use bW.(Y,X′)′

to form R2
W̃ .Ỹ

= bỸ .W̃ bW̃ .Ỹ and can dispense with it from P and use R2
W̃ .Ỹ

= b2
Ỹ .W̃

(
σ2
Ỹ

σ2
W̃

)−1

instead.) For example,

B+
κ,τ = {B+

κ,τ (P ;λ) : λ ∈ Λ} ≡ {bY.X − bW.XbỸ .W̃{1 + λ[κ(
1

L
− 1)]

1
2} : λ ∈ [0, 1]}.

We estimate an identification region H consistently using Ĥ={H(P̂ ;λ) : λ ∈ Λ} where P̂

denotes the plug-in estimator for P :

P̂ ≡ (b̂′Y.(W,X′)′ , b̂
′
W.(Y,X′)′ , b̂

′
Y.X , b̂

′
W.X ,

∑n
i=1 ε̂

2
Y.X,i∑n

i=1 ε̂
2
W.X,i

)′.

Specifically, given observations {Ai, Bi}ni=1 corresponding to random column vectors A and

B, let Ā ≡ 1
n

∑n
i=1 Ai and denote the linear regression estimator and sample residual by:

b̂A.B ≡ [
1

n

n∑
i=1

(Bi−B̄)(Bi−B̄)′]−1[
1

n

n∑
i=1

(Bi−B̄)(Ai−Ā)′] and ε̂′A.B,i ≡ (Ai−Ā)′−(Bi−B̄)′b̂A.B.
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Standard arguments show that the estimator P̂ for P is
√
n consistent and asymptotically

normally distributed. For this, let µ2
A = E(AA′) and define the 7+4k square diagonal matrix

Q ≡ diag{µ2
(1,W,X′)′ , µ

2
(1,Y,X′)′ , µ

2
(1,X′)′ , µ

2
(1,X′)′ , σ

2
W̃
}.

Theorem 5.1 Assume A1(i) and that Q is nonsingular. Suppose further that:

(i) 1
n

∑n
i=1(1, Yi,Wi, X

′
i)
′(1, Yi,Wi, X

′
i)

p→µ2
(1,Y,W,X′)′ and

(ii) n−1/2

n∑
i=1


(1,Wi, X

′
i)
′εY.(W,X′)′,i

(1, Yi, X
′
i)
′εW.(Y,X′)′,i

(1, X ′i)
′εY.X,i

(1, X ′i)
′εW.X,i

ε2Y.X,i − σ2
Ỹ

 d→N(0,Ξ) where Ξ ≡ V ar


(1,W,X ′)′εY.(W,X′)′
(1, Y,X ′)′εW.(Y,X′)′

(1, X ′)′εY.X
(1, X ′)′εW.X

ε2Y.X

 .
Then

√
n(P̂ − P )

d→N(0,Γ) where Γ obtains by removing the 1, 3 + k, 5 + 2k, and 6 + 3k

intercept rows and columns from Γ∗ ≡ Q−1ΞQ′−1.

See e.g. White (2001) for primitive conditions for the law of large numbers and cen-

tral limit theorem in Theorem 5.1. We estimate Γ using the relevant submatrix of the

heteroskedasticity-robust plug-in estimator Γ̂∗ ≡ Q̂−1Ξ̂Q̂′−1 (see e.g. White, 1980). For

example, we estimate V ar(XεY.X) using 1
n

∑n
i=1Xiε̂Y.X,i, ε̂Y.X,iX

′
i.

In Section 3, the function H(P ;λ) for an identification region H sometimes depends on

the value of R2
W̃ .Ỹ

via L and T . If R2
W̃ .Ỹ

is known then one can construct a 1 − α (e.g.

95%) confidence interval C1−α(λ) for H(P ;λ) for each λ ∈ Λ using the delta method. A

confidence region CRθ
1−α for a partially identified parameter θ ∈ H then obtains by applying

Proposition 2 of Chernozhukov, Rigobon, and Stoker (2010) and forming the union:

CRθ
1−α =

⋃
λ∈Λ

C1−α(λ).

In applications, R2
W̃ .Ỹ

must be estimated and CRθ
1−α needs to be adjusted to account for

this estimation. Let rỸ .W̃ ≡
σỸ .W̃
σỸ σW̃

denote the partial correlation between Y and W given X

and rewrite H in the form H ={Ḧ(P ; π) : π ∈ Π} where π = (λ, r̈) ∈ Λ×{rỸ .W̃} determines

R2
W̃ .Ỹ

, with Ḧ(·; π) continuously differentiable in P . For example, we have

B+
κ,τ = {B̈+

κ,τ (P ; π) : π ∈ Π}

≡ {bY.X − bW.XbỸ .W̃{1 + λ{κ[
τ

r̈2
1{ τ

1 + κ
< r̈2}+ (1 + κ)1{r̈2 ≤ τ

1 + κ
} − 1]}

1
2}

: (λ, r̈) ∈ [0, 1]× {rỸ .W̃}}.
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By the delta method, the plug-in estimator Ḧ(P̂ ; π) for an element Ḧ(P ; π) of H obeys

√
n(Ḧ(P̂ ; π)− Ḧ(P ; π))

d→N(0,∇P Ḧ(P ; π)Γ∇P Ḧ(P ; π)′).

This permits constructing a 1 − α1 confidence interval C1−α1(π) for Ḧ(P ; π) with π ∈ Π.

To obtain a 1 − α1 − α2 (e.g. 95%) confidence region CRθ
1−α1−α2

for θ ∈ H, we construct

a confidence interval CRr̈
1−α2

for rỸ .W̃ and apply Proposition 3 of Chernozhukov, Rigobon,

and Stoker (2010) to form the union:

CRθ
1−α1−α2

=
⋃

π∈Λ×CRr̈1−α2

C1−α1(π).

To construct CRr̈
1−α2

, we use the “Fisher z” variance stabilizing transformation (see e.g. van

der Vaart, 2000, p. 30-31). For brevity, we describe how we construct CRr̈
1−α2

and report

the expressions for the gradients ∇P Ḧ(P ; π) for Corollaries 3.2 to 3.5 in Section B of the

Supplement. In the empirical analysis in Section 6, we set α1 = 0.04 and α2 = 0.01.

6 The Returns to College Selectivity and Characteris-

tics

As discussed in Monks (2000, p. 283), together with a student’s individual characteristics,

the attributes of the college that a students attends may influence his or her earnings through

accumulating human capital and by signaling the student’s ability to employers. We illustrate

this paper’s results by studying the returns to college selectivity and other characteristics

as well as the student characteristics using the recent College Scorecard (CS) dataset. CS

is nationally comprehensive and reports data, aggregated at the institution level, on a wide

array of the attributes of postsecondary institutions in the US.

Following Black and Smith (2006, p. 703), we consider an education production function

determined by “various college-level inputs [...] such as the average SAT score of the entering

class, expenditures per student, and so on” and by “other factors affecting earnings and

college quality choice.” Specifically, we let the earnings of student j at college i be given by

Yij = f(Xc′
ij , X

s′
ij ,Wi, Uij, ηij) = Xc′

ijβ
c +Xs′

ijβ
s +Wiφ+ Uijδ + ηij

where Yij denotes student j′s earnings, Wi is the average SAT (equivalent) score of the

student’s cohort at college i, Xij = (Xc′
ij , X

s′
ij)
′ collects the other characteristics Xc

ij that may
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depend on the college (e.g. the college’s control (public or private non-profit) or the student’s

field of study) and the student’s demographic and socioeconomic characteristics Xs
ij, Uij is

student j’s unobserved scholastic “ability,” and ηij is an equation disturbance such that

Cov[ηij, (X
′
ij′ ,Wi, Uij′)

′] = 0 for all i, j, j′. The empirical illustration treats the average SAT

score Wi as an error-free measure of “college selectivity” (as in e.g. Dale and Krueger (2002,

2014) and Hoxby (2009)) which, along with the other college and student characteristics,

can directly affect earnings. Black and Smith (2006, p. 704) demonstrate the identification

difficulties that arise when imposing the “simplifying assumption of a ‘one-factor’ model,

in which quality has a single dimension” measured by an error-laden “single college quality

measure.” They then study approaches that use multiple college characteristics as excluded

error-laden proxies for the latent college quality. Here, we do not impose a one-factor model

for college quality. Instead, we estimate the coefficients φ, δ, and β = (βc′, βs′)′ of the

education production function which admits the multiple college characteristics (Xc′
ij ,Wi) as

inputs.

An important challenge in identifying φ, δ, and β arises because students with higher

unobserved ability Uij may earn more and enroll in colleges with a particular selectivity

and characteristics profile. In this case, Cov[Uij, (X
′
ij,Wi)

′] 6= 0 and a regression of Yij

on (X ′ij,Wi)
′ does not identify (β′, φ)′. To proceed, the literature sometimes assumes that

students with similar observed characteristics do not systematically select into colleges based

on their unobserved ability (e.g. Monks (2000) and Black and Smith (2006). See Black

and Smith (2004) for a nonparametric analysis). Because accounting for only the student’s

demographic and socioeconomic characteristics Xs
ij is not very likely to ensure this condition,

the literature conditions on (Xs′
ij ,Wij)

′, where Wij denotes a test score that measures the

ability of student j at college i. In the context of the above linear production function,

this “selection on observables” assumption is helpful because if the linear projection of Uij

on (X ′ij,Wi,Wij)
′ depends only on (Xs′

ij ,Wij)
′ then a regression of Yij on (X ′ij,Wi,Wij)

′

identifies (βc′, φ), albeit not βs or δ. To gain confidence in the resulting estimates, it is

useful to study their sensitivity to this assumption. In particular, a key sufficient condition

for selection on observables occurs when the test score Wij is a perfect measure of ability

Uij. However, if the test score measures ability with error Wij = Uij +εij then this condition

is not guaranteed to hold (e.g. Bollinger, 2003). The empirical application studies the
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consequences of deviating from the selection on observables assumption by allowing the SAT

(equivalent) score Wij to measure ability Uij with classical measurement error εij, such that

Cov[εij, (X
′
ij′ , Uij′ , ηij′)

′] = 0 for all i, j, j′, and letting a student’s unobserved ability Uij

freely depend on the college and student characteristics Xij.

A second identification challenge arises because the CS data is aggregated at the institu-

tion level - the individual data is not observed. Let Ai ≡ 1
Ni

∑Ni
j=1Aij denote the average of

Aij across Ni students in college i. Averaging the Yij and Wij equations across Ni yields

Yi = X ′iβ +Wiφ+ Uiδ + ηi and Wi = Ui + εi.

Here, A1-A3 hold, Cov[ηi, (X
′
i, Ui)

′] = 0 and Cov[εi, (X
′
i, Ui, ηi)

′] = 0. However, because

the average SAT score Wi may directly affect the average earnings, Wi violates the proxy

exclusion restriction and the standard measurement error bounds are not valid. Instead,

we use the aggregate equations to estimate the identification regions for φ, δ, φ + δ (the

total effect on average earnings of enrolling a cohort with a higher average ability), and

β under A1-A3 and the auxiliary assumptions A4-A6. Here, A4 restricts the extent of the

measurement error in how the average SAT score Wi proxies the average ability Ui, A5 places

an upper bound on the fit of the aggregate equation that would obtain had Wi measured

Ui without error, and A6 restricts the effects φ and δ of college selectivity and the student’s

ability on his or her earnings to have the same sign.

6.1 College Scorecard Data

CS reports comprehensive data on several dimensions of the higher education institutions

in the US over the last few decades. The data are aggregated at the institution level and

drawn from various sources including the Integrated Postsecondary Education Data System

(IPEDS), National Student Loan Data System (NSLDS), and administrative earnings data

from tax records maintained by the Department of Treasury.

CS has several advantageous features. The literature often analyzes survey data on stu-

dents who attend a small or moderate number of institutions that tend to be prestigious.

In contrast, CS covers a large number of post-secondary institutions in the US. In addition

to student demographic and socioeconomic characteristics, CS reports data on several char-

acteristics of the institution, including its setting, selectivity, affordability, fields of study,
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expenditures per student, completion rate, and earnings outcomes. Moreover, CS contains

data drawn from administrative records which may be less prone to reporting error.

While CS is detailed and nationally comprehensive, we summarize at the outset some of

its limitations that are partly due to data aggregation. First, the data based on NSLDS and

tax records cover only “Title IV” undergraduate students. This subpopulation of students

who receive federal aid may differ from the general population. Yet, the Title IV subpopu-

lation amounts to roughly “seventy percent of all graduating postsecondary students” and

seems “reasonably similar to the overall population of a school in terms of student charac-

teristics” (Council of Economic Advisors, 2015 (thereafter CEA), p. 26-27). Second, CS

employs the IPEDS definition of an institution and, although “about two-thirds of institu-

tions, collectively enrolling 83 percent of students, have only one main campus identifier”

(CEA, p. 29), complex institutions may differ in how they aggregate and report data across

multiple branches. Third, CS uses various student cohort definitions that “are imperfect

and vary for different metrics” (CEA, p. 30). For example, the mean earnings variable is

based on Title IV students who are non-enrolled and working e.g. 6 years after estimated

college entry and is reported for a pooled cohort across two consecutive entry years (e.g.

the 2006-2007 and 2007-2008 entry cohorts). On the other hand, the average annual total

cost of attendance is based on all full-time, first-time, degree-seeking Title IV undergraduate

students who enrolled in an institution during the academic year (e.g. 2010-2011). The

extent to which this inconsistency in cohort definitions can impact our estimates depends,

in part, on how stable the aggregate data is in the short run and across the cohorts used.

While addressing these data limitations is desirable, we do not pursue this here and we

keep the empirical illustration focused on demonstrating the consequences of allowing the

SAT score to measure scholastic ability with error. For a detailed account of CS, we refer the

reader to its documentation webpage (https://collegescorecard.ed.gov/data/documentation/)

and to the CEA report.

6.2 Sample Selection

We focus on the recent cohort of students who enrolled in an academic institution in the

fall of 2007 and were non-enrolled and working in 2013. As discussed above, CS reports

yearly data files which contain institution-level aggregate data that need not correspond to
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a uniform student cohort. To proceed, we draw from several CS files, the data that we

deem most representative of the 2007 student cohort. Table S1 in the Supplement defines

the variables that we employ in our analysis and specifies the CS variable(s) that we use in

constructing each of our variables. Further, Table S1 specifies the level of aggregation used

in reporting each CS variable and the CS data file from which it is drawn.

We restrict our sample to the main campus of bachelor’s degree granting institutions

that are either public or private non-profit. Although of policy interest, we exclude for-profit

institutions to focus on institutions that operate in a similar context and for which more

data is available (for-profit institutions differ from other institutions in several dimensions

including the admission requirements, funding, and online education. See e.g. Deming,

Goldin, and Katz (2012)). This yields a sample of 1710 institutions. After dropping 27

institutions that were missing from at least one of the relevant CS data files, we exclude

378 institutions that are missing data on SATAvg, the average SAT (or ACT equivalent)

score (some of these institutions are specialized in particular fields such as arts and design,

music, religion, or medical and health sciences). Last, we exclude institutions with missing

data on the other variables, leading to the final sample of 1165 institutions. Table 2 reports

summary statistics for the aggregate variables in the sample. For example, the average of

SATAvg is 1052.76 and the minimum and maximum average scores are 726 and 1491. The 5

most selective institutions in our sample are Harvard, Princeton, Yale, MIT, and Dartmouth.

The standard deviation of SATAvg is 119.93, which corresponds roughly to the difference

between Stanford and the University of Virginia. For brevity, we do not report results for

the coefficients on the variables that fall below the dividing line in Table 2.

6.3 Main Specification

We let Y denote the average earnings 6 years after enrollment (we do not observe wage or

hours worked). W denotes the average SAT equivalent score which serves as an “included”

proxy for the average unobserved ability U . X = (Xc′, Xs′)′ consists of several aggregate

college and student characteristics that have been discussed in the literature.

In particular, Xc includes 8 region indicators and 11 locale indicators for the institution’s

location, indicators for whether the institution is minority-serving, a women-only college (our

sample does not contain men-only colleges), has a religious affiliation, awards a graduate
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degree, has a private non-profit (as opposed to public) control, and the undergraduate student

population size. Further, Xc includes the average cost of attendance, average net price, the

shares of students with a federal student loan and with a Pell grant, the median student

debt (we use the median debt to approximate the average debt which CS does not report),

the instructional expenditures per student, and the completion rate within 150% of expected

graduation time. An advantageous feature of CS is that it reports data on the fields of study

which play an important role in understanding the labor market outcomes (see e.g. Altonji,

Arcidiacono, and Maurel, 2016; Kirkeboen, Leuven, and Mogstad, 2016). Omitting the fields

of study may lead to apparent effects that may partly reflect that students or institutions

with particular characteristics may specialize in fields that yield high (or low) labor market

returns. As such, we include in Xc the shares of degrees awarded in each field of study in

our sample according to the Classification of Instructional Programs (CIP) (out of the total

38 CIP fields of study, our sample includes 37 fields listed in Table S2 in the Supplement.

We exclude PCIP45 (Social Sciences) as the reference field).

The student characteristics Xs consist of the following averages of demographic and

socioeconomic indicators or variables: the shares of each available race category (Black,

Hispanic, Asian, American Indian/Alaska Native, Native Hawaiian/Pacific Islander, two or

more races, race is unknown, and non-resident alien - we omit White as the reference group),

the shares of students how are female, dependent, have at least one post-secondary educated

parent, and the average family income.

The empirical analysis sometimes imposes A4 (σ2
ε ≤ κσ2

Ũ
or R2

W.X ≤ κ′ ≤ R2
W.U) and A5

(R̃2
∗ ≤ τ or R2

Y.(X′,W )′ ≤ R2
∗ ≤ τ ′). Given the rich set of college and student characteristics

in X, the estimates R̂2
W.X and R̂2

Y.(X′,W )′ are 0.891 and 0.814. To report bounds without

requiring SAT to measure ability perfectly (κ = 0), we choose conservative κ and τ default

values. We set κ = 11.09 so that the κ′ estimate is κ̂′ = 0.9 ≥ 0.891. Similarly, we set τ =

0.736 so that τ̂ ′ = 0.95 ≥ 0.814. More generally, Section 6.5 conducts a sensitivity analysis

that allows κ and τ to range over [0, 30] and [R̄2
Ỹ .W̃

, 1] where R̄2
Ỹ .W̃

= max{r2 : r ∈ CRr̈
1−α2
}.

6.4 Results

Table 3 reports bounds and point estimates under sequentially stronger assumptions. Col-

umn 3 reports the regression estimates b̂Y.(W,X′)′ along with 95% confidence intervals in
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parentheses. This consistently estimates (φ + δ, β′)′ if either κ = 0 (the average SAT score

measures the average ability without error) or δ = 0 (a student’s ability does not directly

affect his or her earnings). Next, we examine the consequences of deviating from κ = 0.

Recall that if κ → ∞ and φ may be nonzero then none of the coefficients are identified.

Further, imposing A+
6 (φδ ≥ 0) only yields the half-lines F+, D+, G+, and B+

l with bounds

that correspond to the regression estimand. (We focus on A+
6 as opposed A−6 (φδ ≤ 0) since

we deem it plausible that the effects of college selectivity and ability on earnings are nonneg-

ative). To improve on these bounds, columns 1 and 2 report the bounds under A1-A5 and

A1-A+
6 respectively using the default setting (κ, τ) = (11.09, 0.736), i.e. (κ̂′, τ̂ ′) = (0.9, 0.95).

We note that R̂2
W̃ .Ỹ

is small, 0.0164. Thus, the bounds under A1-A+
6 when κ = 11.09 and

τ is either 0.736 or 1 coincide. Further, the standard bounds that set φ = 0, κ → ∞, and

τ = 1 are wide with especially wide confidence regions.

First, consider the returns to college selectivity and student ability. Under δ = 0, the

regression coefficient b̂Y.(W,X′)′ in column 3 estimates that a 100 point increase in SATAvg

(roughly the difference between Stanford and Boston College) increases a student’s earnings

6 years after enrollment by $1, 339, with a 95% confidence region (CR0.95) ($607, $2, 071).

As shown in column 1, φ and δ are not identified under A1-A5 and the bounds for φ + δ

are wide. However, A1-A+
6 yield considerably more informative bounds on φ, δ, and φ + δ

(and β below). In particular, the bounds in column 2 on the return to a 100 point increase

in SATAvg or U are [$0, $1, 339], with CR0.95 ($0, $2, 071), and [$0, $16, 190], with CR0.95

($0, $25, 464), respectively. Further, the bounds on φ + δ are [$1, 339, $16, 190] with CR0.95

($572, $25, 464) (this bounds the total (direct and mediated by an increase in SATAvg) effect

on mean earnings due to a 100 points increase in the average ability of the student cohort).

Next, we comment on the returns to the college and student characteristics. For certain

characteristics, the sign of the effect is not recovered under any of the considered assumptions.

This includes the college’s control, whether the institution offers a graduate degree, and the

net price. An intermediate case occurs when the CR0.95 for an effect does not contain 0 under

the assumption κ = 0 but includes 0 under A1-A5 and A1-A+
6 when 90% ≤ R2

U.W and R2
∗ ≤

95%. Among the college characteristics Xc, this includes the effects of the enrollment size,

cost, student debt, certain fields of study, and whether a student completes his or her degree

within 6 years. Among the student characteristics Xs, this includes the student’s family
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income. For example, the regression’s estimate for the premium to majoring in Engineering

relative to the Social Sciences is $12, 224 with CR0.95 ($2, 598, $21, 850) whereas the bounds

for this premium under A1-A+
6 are [$5, 512, $12, 224] with CR0.95 (−$9, 853, $22, 310) (Table

S3 in the Supplement reports the estimates for all the CIP fields of study). Last, for certain

effects, the sign is not very sensitive to deviations from (κ, τ) = (0, 1) but the magnitude may

be. Among Xc, this includes whether a student has a federal student loan or a Pell grant and

the instructional expenditures per student. For example, the effect of a $1, 000 increase in

instructional expenditures on a student’s earnings is bounded under A1-A+
6 by [$166, $290],

CR0.95 ($1, $440), with the upper bound corresponding to the regression estimate. Among

Xs, this includes the Black, Hispanic, and Asian race shares and the Female share. First, we

note that conditioning on SATAvg in a basic regression of the mean earnings on the race and

gender shares (relative to White and Male) renders the otherwise negative and significant

coefficients on the Black, Hispanic, and Female shares smaller and insignificant and the

significant and positive coefficient on the Asian share smaller (see e.g. Neal and Johnson,

1996). As Table 3 shows, further accounting for the college and student characteristics

and allowing for measurement error in how SAT measures ability (see e.g. Bollinger, 2003)

bounds the coefficients on the Black, Hispanic, and Asian shares in the positive range (Monks

(2000) reports similar patterns). Moreover, the regression estimates for the Female coefficient

is−$12, 700 with CR0.95 (−$18, 509,−$6.891) and the bounds under A1-A+
6 are slightly wider

[−$13, 094,−$12, 700] with CR0.95 (−$22, 507,−$3, 681).

Last, accounting for the fields of study reduces the magnitude of the bounds on the returns

to college selectivity and certain college and student characteristics. This is shown in Table S4

in the Supplement when replicating Table 3 without conditioning on the fields of study. For

instance, under A1-A+
6 and (κ̂′, τ̂ ′) = (0.9, 0.95), the return to attending an institution that

offers a graduate degree is small and not significantly different from zero in Table 3 whereas,

similar to Monks (2000), this return appears positive and larger [$1, 916, $2, 220] with CR0.95

($898, $3, 352) in Table S4. Similarly, under A1-A+
6 , the coefficient on Female becomes larger

in magnitude, [−$19, 697,−$17, 914] with CR0.95 (−$26, 163,−$10, 838), than is reported in

Table 3 (see e.g. Turner and Bowen (1999), Zafar (2013), and Gemici and Wiswall (2014)

who study the gender gap in major choices in the US.)
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6.5 Sensitivity to κ and τ

Table 3 impose the default setting for (κ, τ) = (11.09, 0.736) which sets (κ̂′, τ̂ ′) = (0.9, 0.95).

More generally, we conduct a sensitivity analysis that examines how the estimates change

as κ and τ vary. Figure 2 illustrates this by plotting the bounds F̂+
κ,τ , D̂+

κ,τ , B̂+
κ,τ (using

the darker shade) and the 95% confidence regions CR0.95 (using the lighter shade) for φ, δ,

and β. To ease the presentation for β, we focus on the coefficients associated with C150 4

(the completion within 150% of expected graduation time) and Female. The first panel in

Figure 2 sets τ = 1 and lets κ range over [0, 30] (i.e. R̂2
W.X = 0.891 ≤ κ′ ∈ [0.8945, 1]).

Since F̂+, D̂+, and B̂+ do not depend on τ , the second panel sets κ to the default value

κ = 11.09 and lets τ range from [R̄2
Ỹ .W̃

, 1] (i.e. R̂2
Y.(W,X′)′ = 0.814 ≤ τ ′ ∈ [0.8187, 1]). Figure

2 illustrates how, unlike φ, the bounds and confidence regions for δ and β vary with (κ, τ).

Further, it shows that the smallest integer κ (corresponding κ̂′ value) such that the CR0.95

for the coefficient on C150 4 or Female contains 0 is 2 (0.927) or 18 (0.897) respectively.

When κ = 11.09 and τ ∈ [R̄2
Ỹ .W̃

, 1], the CR0.95 for the coefficient on C150 4 (resp. Female)

always (resp. never) contains 0. Thus, the bounds on the Female coefficient are wider and

less sensitive to A4 than the bounds on C150 4 are.

6.6 Additional Analyses and Discussion

Section 6.6 reports additional analyses (in Tables S4-S8 of the Supplement) and extensions.

6.6.1 Earnings Outcomes

Section 6.4 considers the mean earnings of federally aided students who are non-enrolled

and working 6 years after college entry. To include the unemployed in the analysis, we

use the same specification and consider an alternative labor market outcome: the share of

individuals, including those with 0 earnings, who are non-enrolled and earning more than

$25, 000 per year, 6 years after college entry. This threshold “corresponds approximately to

the median wage of workers ages 25 to 34 with only a high-school degree” (CEA, p. 25).

The bounds on the coefficients on SATAvg and several college and student characteristics

include zero or are small in magnitude. However, the effects of the fields of study and of

having a loan or a Pell grant on the probability of earning more than $25, 000 per year are

significant and of a similar direction than the mean earnings results (see Table S4).
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Further, to gauge the consequences of excluding the enrolled students (e.g. those pursuing

a graduate degree), we replicate the analysis using the cohort of students who enrolled in

2002 and contrast the results when the earnings outcomes are measured in 2008 compared to

2012 (6 or 10 years after enrollment). As described in Table S5, we construct the sample for

the 2002 cohort as closely as possible to the 2007 cohort (CS reports a coarser race category

definition for the 2002 cohort. Also, we use the earliest available data from academic years

2007-08 or 2008-09 for the average cost and net price and the loan and Pell grant shares).

Tables S6 and S7 reports these results. The upper bound on the return to college selectivity

is slightly larger over the longer horizon, [$0, $2, 377] with CR0.95 ($0, $3, 191), and the

returns to the other college and student characteristics are generally comparable over these

two time horizons. We note that the earnings outcomes of students 6 years after enrollment

capture the short run labor market returns of timely completion of an undergraduate degree.

Whereas the earnings outcomes 10 years after enrollment embody the returns that may be

channeled via attending graduate school or accumulating work experience.

6.6.2 Specification and Aggregation

The literature sometimes imposes a log-linear specification (constant percentage effect) for

the individual earnings equation. CS reports aggregate data on several variables (e.g.

1
Ni

∑Ni
j=1 Yij) but not on certain transformations of these variables (e.g. 1

Ni

∑Ni
j=1 log(Yij)).

Substituting log( 1
Ni

∑Ni
j=1 Yij) for 1

Ni

∑Ni
j=1 log(Yij) introduces a specification error in the sense

that the bounds obtained using the aggregate equation are no longer guaranteed to corre-

spond to the coefficients from the individual earnings equation. In the specification above,

the variables enter in levels (similar to e.g. Kirkeboen, Leuven, and Mogstad, 2016). In this

case, the coefficients from the individual and aggregate equations coincide. Nevertheless,

Table S8 replicates the analysis for the aggregate earnings equation using a log-linear speci-

fication and reports qualitatively similar results (with a comparable R̂2
Y.(W,X′)′ , 0.851 versus

0.814), albeit these are less easily relatable to the individual earnings equation coefficients.

6.6.3 Connection to the Literature

The findings on the returns to college selectivity and characteristics are mixed. On the one

hand, some studies document a positive return to certain college qualities. For example,
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Brewer, Eide, and Ehrenberg (1999) find a significant selection-adjusted wage and earnings

premia (e.g. 6 or 10 years after high school graduation) to attending an elite (based on

Barron’s Profile of American Colleges) private college. Monks (2000, table 4) reports sim-

ilar findings. For example, relative to competitive institutions (based on Barron’s index),

the wage premium to attending highly or most competitive institutions is 13.1%. Using a

matching estimator, Black and Smith (2004, Table 7) find that college quality (measured by

an index based on faculty salaries, freshman retention rate, and the average SAT score) has

a positive effect on wage. For example, a move from the first to the fourth quartile of college

quality leads to a 13.9% increase in wage for men (7.8% for women), albeit this is somewhat

imprecisely estimated. Further, when comparing the earnings of individuals around the ad-

mission cutoff point, Hoekstra (2009) finds that attending a flagship state university leads to

22% higher earnings for white men 10 to 15 years after high school graduation. On the other

hand, other studies do not find strong evidence for a large return to college selectivity. For

example, Dale and Krueger (2002) find that students who attend varyingly selective colleges

(measured by the average SAT score) after being admitted to equally selective colleges earn

comparably. Dale and Krueger (2002, 2014) report similar findings using a “self-revelation”

model in which the student’s application record (e.g. the average SAT score at the colleges

to which the student applied) reveals his or her ability. Further, Kirkeboen, Leuven, and

Mogstad (2016) find that the effect of attending a more selective institution is small relative

to the substantial effect that the field of study has on earnings.

The paper’s empirical application and each of the above papers uses a different sample,

specification, covariates, and identifying assumptions. Moreover, they report the effects of

various interventions (e.g. a change in the average SAT score or in a quality index) on

various outcomes (e.g. wage or earnings). As such, a formal comparison of the estimates is

not straightforward. Nevertheless, to get a rough approximation, we focus on the return to

college selectivity and contrast some of these estimates to the paper’s upper bound $2, 377 for

the 10 year return to 100 SATAvg points. For example, using the 2002 cohort, the difference

in the average SATAvg across the lower and upper quartiles of institutions in our sample is

1, 212 − 922 = 290. Using the upper bound $2, 377, this difference increases earnings by at

most $6, 893 which corresponds to 16.4% of the weighted (by college enrollment size) average

earnings $41, 849 in the lower quartile of institutions. This upper bound admits some of the
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related estimates discussed above. Also, Hoekstra (2009, Section VI and Table 3) describes

that it is likely that the applicants who were nearly accepted to the flagship state university

attended a public college in-state and that the average SAT differential between the flagship

university (where the average SAT score is between 1, 000 and 1, 100) and 7 alternative

in-state public universities ranges from 65 to 147 points. Using the paper’s upper bound

$2, 377, a 147 points increase in SATAvg increases earnings by at most $3, 494 or 8.3% of

the weighted average earnings $41, 901 among public institutions with an average SAT score

between 853 and 953. This upper bound is smaller than the 22% local to the discontinuity

estimate of the return to attending the flagship state university in Hoekstra (2009). Among

other possibilities, this difference may be due to a nonlinearity in the return or to accounting

for characteristics, such as the field of study or completing a degree, that may explain a part

of the apparent return to college selectivity.

6.6.4 Future Work

The empirical illustration assumes that SAT measures ability with classical measurement

error, Wij = Uij + εij. The literature documents a high correlation between SAT scores

and other tests, such as the Armed Services Vocational Aptitude Battery and the Raven’s

Advanced Progressive Matrices (see e.g. Frey and Detterman (2004) who argue in favor

of the “appropriateness of the SAT as a measure of [general intelligence]”). An interesting

extension would relax Wij = Uij even further to allow εij to be correlated with Uij or Xij

or both. This would allow the error in how SAT proxies ability to statistically depend on

the ability level or on covariates such as family income (for example, some studies document

positive but small effects of coaching or repeating the test on SAT scores (DerSimonian and

Laird, 1983; Vigdor and Clotfelter, 2003; Domingue and Briggs, 2009).

Further, the analysis assumes that the average SAT equivalent score measures college

selectivity without error. It would be of interest to consider the more general model

Yi = X ′iβ + Siφ+ Uiδ + ηi with Wi = Ui + εi and Wi = αSi + ςi,

where Wi measures both the unobserved college selectivity Si and the average ability Ui with

error. Here, we let α = 1 and ςi = 0 so that Wi = Si and focus on relaxing the selection

on observables assumption by allowing the SAT score to measure ability with error. Section
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C of the Supplement demonstrates how the extended model above introduces additional

parameters to the system of (in)equalities encoded in V ar[(Ỹ , W̃ )′] which may therefore

alter the paper’s identification regions. We leave studying the sharp identification regions

for the parameters in this extended model under restrictions analogous to A4-A6 to future

work.

6.6.5 Discussion

The empirical illustration contributes to the literature by analyzing the CS aggregate data.

While CS is rich and comprehensive, the analysis may inherit some of its limitations that are

partly due to data aggregation. Further, the analysis imposes several assumptions which may

fail, including a linear specification with homogenous slope coefficients or that endogeneity

arises due to one variable U (ability) that is observed with classical measurement error.

As such, the empirical results should be interpreted carefully if one suspects that these

assumptions do not hold. Nevertheless, the analysis allows ability to freely depend on the

college and student characteristics and does not require exogenous instruments. As a result,

the coefficients are not point identified. Instead, the analysis studies the consequences of

deviating from the selection on observables assumption by allowing the SAT score to proxy

ability with error. The resulting bounds are wider and more sensitive to the extent of the

measurement error in W for some variables, such as completing a degree, than others, such

as gender or instructional expenditures per student.

7 Conclusion

This paper studies identifying the coefficients in a linear equation when data on the outcome

Y , covariates X, and an error-laden proxy W for a latent variable U are available. We main-

tain that the error in the proxy is classical and relax the proxy exclusion restriction which

sets the coefficient on W in the outcome equation to zero. This accommodates a leading

setting for differential measurement error that occurs when the latent variable U and its

proxy W may directly affect the outcome. First, we show that, without the proxy exclusion

restriction, the effects of U , W , and X are not separately identified. This demonstrates the

crucial role that the proxy exclusion restriction plays in ensuring the validity of the standard

classical measurement error bounds. We then characterize the sharp identification regions
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for these effects under any configuration of three auxiliary assumptions. The first imposes

an upper bound on the noise to signal ratio. The second places an upper bound on the

coefficient of determination that would obtain in the outcome equation had W measured

U without error. The third specifies whether the latent variable and its proxy affect the

outcome in the same or the opposite direction, if at all. These auxiliary assumptions enable

a sensitivity analysis that examines the consequences of deviating from the no measurement

error assumption, controlling the fit of the model, and weakening the proxy exclusion re-

striction. Using the recent College Scorecard aggregate data, we illustrate our framework

by studying the financial returns to college selectivity and characteristics as well as student

characteristics when the average SAT score at an institution may directly affect earnings

and serves as a proxy for the average ability of the student cohort. Useful extensions for

future work would accommodate a nonlinear specification or multiple latent variables and

(included) proxies.

29



Figure 1: Identification regions for (κ, τ) = (+∞, 1) (light), (2, 1), (2, 0.95), and (0.5, 0.92)
(dark).
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Table 1: Numerical Example (ρ = 0.685, φ = 0.5, δ = 0.9, β1 = 1, β2 = 0.7)

Sκ,τ S+
κ,τ S−κ,τ S0

κ,τ bY.(W,X′)′

κ→∞, τ = 1
ρ [0, 1] [0, 1] [0, 1] [0.805, 1]
φ [−∞,∞] [0, 1.116] R\(0, 1.116) 0
δ [−∞,∞] [0,∞] R\(0, 1.116) [1.116, 1.386]

φ+ δ [−∞,∞] [1.116,∞] [−∞, 1.386] [1.116, 1.386] 1.116
β1 [−∞,∞] [−∞, 1.207] [1.010,∞] [1.010, 1.207] 1.207
β2 [−∞,∞] [−∞, 0.745] [0.702,∞] [0.702, 0.745] 0.745

κ = 2, τ = 1
ρ [0.333, 1] [0.333, 1] [0.333, 1] [0.805, 1]
φ [−∞,∞] [0, 1.116] R\(0, 1.116) 0
δ [−∞,∞] [0, 1.386] R\(0, 1.116) [1.116, 1.386]

φ+ δ [0.340, 1.892] [1.116, 1.892] [0.340, 1.386] [1.116, 1.386]
β1 [0.642, 1.771] [0.642, 1.207] [1.010, 1.771] [1.010, 1.207]
β2 [0.622, 0.868] [0.622, 0.745] [0.702, 0.868] [0.702, 0.745]

κ = 2, τ = 0.95
ρ [0.333, 1] [0.333, 1] [0.333, 1] [0.848, 1]
φ [−∞,∞] [0, 1.116] R\(0, 1.116) 0
δ [−∞,∞] [0, 1.317] R\(0, 1.116) [1.116, 1.317]

φ+ δ [0.447, 1.785] [1.116, 1.785] [0.447, 1.317] [1.116, 1.317]
β1 [0.720, 1.693] [0.720, 1.207] [1.061, 1.693] [1.061, 1.207]
β2 [0.639, 0.851] [0.639, 0.745] [0.713, 0.851] [0.713, 0.745]

κ = 0.5, τ = 0.92
ρ [0.667, 1] [0.667, 1] [0.667, 1] [0.875, 1]
φ [−∞,∞] [0, 1.116] R\(0, 1.116) 0
δ [−∞,∞] [0, 1.275] R\(0, 1.116) [1.116, 1.275]

φ+ δ [0.818, 1.414] [1.116, 1.414] [0.818, 1.275] [1.116, 1.275]
β1 [0.990, 1.423] [0.990, 1.207] [1.091, 1.423] [1.091, 1.207]
β2 [0.698, 0.792] [0.698, 0.745] [0.720, 0.792] [0.720, 0.745]

Population identification regions and regression estimands.
σ2
ε

σ2
Ũ

= 0.461, R̃2
∗ = 0.918, and R2

W̃ .Ỹ
= 0.805.
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Table 2: Summary Statistics for the CS Sample of 1165 Institutions.

Variable Name Mean Std. Dev. Min Max

Mean earnings among who work MnEarnWnEP6 36985.24 9513.16 15700 102700
Share earning over $25K/year Gt25KP6 0.6528 0.1077 0.162 0.918

College Characteristics
Average SAT score SATAvg 1052.76 119.93 726 1491
Private control indicator ControlInd 0.6206 0.4854 0 1
Grad degree-awarding indicator HDeg 0.8635 0.3434 0 1
Undergraduate enrollment UGDS 5955.3 7143.88 178 56232
Average cost of attendance CostT4 30090.46 11886.28 9917 57590
Average net price NPT4 17638.82 6529.17 1081 39560
Percent with Federal student loan PctFLoan 0.6032 0.1618 0.0334 1
Percent with Pell grant PctPell 0.3679 0.1452 0.0738 0.9351
Median student debt GDebtMdn 19598.26 3732.304 4500 35500
Percent of degrees in 38 fields PCIP ##

Percent of Education degrees PCIP13 0.0804 0.0789 0 0.6452
Percent of Engineering degrees PCIP14 0.0316 0.0903 0 0.9088

Expenditure per student InExpFTE 9416.8 7578.22 1938 107380
Completion rate C150 4 0.5489 0.1697 0.049 0.9779

Student Characteristics
Share of Blacks UGDSBlack 0.1281 0.1858 0 0.9955
Share of Hispanics UGDSHisp 0.0774 0.1097 0 1
Share of Asians UGDSAsian 0.0397 0.0593 0 0.5054
Share of females Female 0.5869 0.1076 0.0773 0.986
Average family income FamInc 70495.26 21358.66 17501.84 143865.7

Additional College and Student Characteristics in X
10 region indicators Region ##

New England indicator Region 1 0.0833 0.2764 0 1
Southeast indicator Region 5 0.2592 0.4384 0 1

12 locale indicators Locale ##
City indicator Locale 11 0.206 0.4046 0 1
Rural remote indicator Locale 43 0.0069 0.0826 0 1

Minority-serving indicator SpecMis 0.1554 0.3624 0 1
Women-only college indicator WomenOnly 0.012 0.109 0 1
Religious affiliation indicator RelAffilInd 0.4094 0.4919 0 1
Share of Whites UGDSWhite 0.6409 0.2222 0 0.9666
% Nat. Hawaiian/Pacific Islander UGDSNHPI 0.0023 0.0083 0 0.1448
% two or more races UGSD2mor 0.015 0.0178 0 0.2617
% American Indian/Alaska Nat. UGDSAian 0.0077 0.0209 0 0.325
% whose race is unknown UGDSUnkn 0.0598 0.0721 0 0.675
Share of dependents Dependent 0.7504 0.1645 0.1238 0.9886
Share of nonresident aliens UGDSnRA 0.0291 0.0342 0 0.3617
% with tertiary-educated parent ParEdPctPS 0.6556 0.1025 0.4108 0.9381
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Table 3: The Returns to College Selectivity and Characteristics

κ̂′ = 0.9, τ̂ ′ = 0.95 Ŝκ,τ Ŝ+
κ,τ b̂Y (W,X′)′

10−2×SATAvg [−∞,∞] [0, 1.339] -
(−∞,∞) (0, 2.071)

10−2×U (ability) [−∞,∞] [0, 16.190] -
(−∞,∞) (0, 25.464)

10−2×(SATAvg,U) [−28.155, 30.833] [1.339, 16.190] 1.339
(−31.208, 34.482) (0.572, 25.464) (0.607, 2.071)

ControlInd [−2.684, 0.178] [−1.253,−0.533] −1.253
(−7.945, 5.439) (−3.666, 2.601) (−2.739, 0.232)

HDeg [−0.993, 0.566] [−0.214, 0.179] −0.214
(−3.627, 3.279) (−1.406, 1.763) (−0.943, 0.516)

10−3×UGDS [−0.254, 0.145] [−0.155,−0.055] −0.055
(−0.439, 0.322) (−0.285, 0.002) (−0.108,−0.001)

10−3×CostT4 [−0.480, 0.735] [−0.178, 0.127] 0.127
(−0.761, 1.027) (−0.421, 0.238) (0.022, 0.233)

10−3×NPT4 [−0.448, 0.330] [−0.059, 0.136] −0.059
(−0.761, 0.629) (−0.203, 0.355) (−0.196, 0.078)

PctFLoan [−11.205, 18.775] [3.785, 11.333] 3.785
(−20.679, 28.552) (0.508, 18.474) (0.657, 6.913)

PctPell [−15.704,−6.005] [−13.296,−10.855] −10.855
(−33.301, 10.346) (−24.043,−2.549) (−16.127,−5.583)

10−3×GDebtMdn [−0.639, 0.187] [−0.226,−0.018] −0.226
(−0.995, 0.539) (−0.357, 0.221) (−0.351,−0.101)

PCIP23 (English) [−33.702,−19.630] [−30.209,−26.666] −26.666
(−82.597, 24.598) (−61.141, 0.723) (−43.311,−10.020)

PCIP14 (Engineering) [−1.107, 25.554] [5.512, 12.224] 12.224
(−23.839, 48.679) (−9.853, 22.310) (2.598, 21.850)

10−3×InExpFTE [0.044, 0.535] [0.166, 0.290] 0.290
(−0.117, 0.782) (0.001, 0.440) (0.147, 0.433)

C150 4 [−70.137, 89.279] [−30.564, 9.571] 9.571
(−84.730, 104.313) (−56.614, 13.618) (5.709, 13.433)

UGDSBlack [−23.676, 35.776] [6.050, 21.018] 6.050
(−33.377, 46.374) (2.817, 32.591) (2.964, 9.136)

UGDSHisp [−30.195, 47.237] [8.521, 28.016] 8.521
(−45.189, 64.714) (3.950, 43.561) (4.158, 12.884)

UGDSAsian [12.793, 52.229] [22.582, 32.511] 32.511
(−8.444, 77.330) (6.281, 45.563) (20.054, 44.967)

Female [−13.482,−11.918] [−13.094,−12.700] −12.700
(−28.934, 5.022) (−22.507,−3.681) (−18.509,−6.891)

10−3×FamInc [0.044, 0.140] [0.068, 0.092] 0.092
(−0.074, 0.257) (−0.010, 0.146) (0.044, 0.139)

Y is 10−3×MnEarnWnEp6, W is 10−2×SATAvg, and U is scholastic ability scaled by 10−2. In addition, Xc contains 8 region

indicators, 11 locale indicators, the shares of the remaining CIP fields of study, indicators for whether the institution has a special

mission, is a women only college, or has a religious affiliation and Xs contains the shares of the remaining race categories, non-

resident aliens, and dependent students. 95% confidence regions are reported in parentheses.
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Figure 2: Bounds and 95% confidence regions when τ = 1 and κ ∈ [0, 30] (first panel) and
κ = 11.09 and τ ∈ [R̄2

Ỹ .W̃
, 1] (second panel). The vertical thick dashed line indicates the

smallest κ or τ value such that the confidence region contains zero.
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