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ON PARTIAL-SUM PROCESSES OF ARMAX RESIDUALS

By Steffen Grønneberg∗, Benjamin Holcblat†

BI Norwegian Business School∗ and Université du Luxembourg, LSF†

We establish general and versatile results regarding the limit be-
havior of the partial-sum process of ARMAX residuals. Illustrations
include ARMA with seasonal dummies, misspecified ARMAX models
with autocorrelated errors, nonlinear ARMAX models, ARMA with
a structural break, a wide range of ARMAX models with infinite-
variance errors, weak GARCH models and the consistency of kernel
estimation of the density of ARMAX errors. Our results identify the
limit distributions, and provide a general algorithm to obtain pivot
statistics for CUSUM tests.

1. Introduction. Autoregressive moving-average models with covari-
ates (ARMAX) is one of the most common model classes for at least three
reasons. Firstly, it nests and combines the widely-used linear regression
model and ARMA models, the backbone of traditional time series analysis
[e.g., 13]. Secondly, VARMAX models, which have met a renewed inter-
est with the emergence of “big data” through factor models [e.g., 18], can
be written as a system of ARMAX models [e.g., 9, sec. 7.2.2]. Thirdly, a
large class of nonlinear models [e.g., 23, sec. 2] and state-space models [28,
Theorem 1.2.1] have an ARMAX representation from which they can be
studied.

In many situations, estimation and inference in ARMAX models require
the use of residuals instead of the error terms, as the latter are unobserv-
able. The present paper provides weak assumptions that relate the partial-
sum processes of error terms and the partial-sum process of residuals, i.e.,

UT (s) := 1
T

∑bTsc
t=1 ut and ÛT (s) := 1

T

∑bTsc
t=1 ûT,t for s ∈ [0, 1], and where (ut)

and (ût) are respectively error terms and residuals originating from fitting
a univariate ARMAX model to a time-series of length T . Our main applica-
tion is the identification of the limit behavior of CUSUM tests for structural
breaks, i.e., statistical functionals, such as the supremum of the absolute
value of a function, applied to σ̂−1

u

√
T ÛT or transformations thereof, where

σ̂u is a consistent estimator of the residuals’ standard deviation. At least
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since Brown, Durbin and Evans [14], CUSUM tests have become standard
diagnostic tools in different areas, such as medical statistics, econometrics
and signal processing.

The core results of the present paper are of the form sups∈[0,1] |
√
T [ÛT (s)−

UT (s)]+ζT (s)| = oP (1), where ζT corresponds to the asymptotic gap between
the scaled partial-sum process of the residuals

√
T ÛT and the scaled partial-

sum process of the errors
√
TUT . When ζT = 0, the CUSUM tests based

on
√
T ÛT have the same critical values as when observing the error terms

directly. This is shown to hold in Bai [2] in the case of an ARMA with a
known zero-mean parameter, but it will not hold most of the time: Even the
inclusion of a mean parameter in the ARMA model is sufficient to affect the
behavior of

√
T ÛT , i.e., to make ζT non-zero. While known for some time in

the basic linear regression model, this was noticed by Lee [36] in the AR case,
and it was later generalized to the ARMA case in Yu [55] and in Ghoudi
and Rémillard [26]. A simple illustration of this effect is the linear regression
model with only a constant as regressor, i.e., Yt = µ + ut. Then, the OLS
estimator is the average, i.e., µ̂ = 1

T

∑T
t=1 Yt, so that ût−ut = (Yt−µ̂)−ut =

µ− µ̂, which, in turn, implies that ζT (1) =
√
T [ÛT (1)−UT (1)] =

√
T (µ− µ̂).

By the central limit theorem, this means that for s = 1, and thus a fortiori
for the supremum over s, the asymptotic gap ζT is a random element that
does not go to zero asymptotically.

As the above illustration suggests, the identification of ζT , and the re-
lated question of taking ζT into account when suggesting statistical tests,
are practically important: Ignoring ζT will result in erroneous critical val-
ues for CUSUM tests and most of the other inference procedures based
on residuals. Our paper develops a flexible calculus for identifying ζT in
a large class of cases encountered in practice, from simple cases such as
ARMA with seasonal dummy variables, to more complicated models. Once
ζT is calculated, attention is given to identifying a transformation ∆̃ of
σ̂−1
u

√
T ÛT which is s.t. (such that) sups∈[0,1] |∆̃[ζT ](s)| = oP (1), yielding

sups∈[0,1] |
√
T [∆̃[ÛT ](s) − ∆̃[UT ](s)]| = oP (1). Under weak conditions we

therefore have process convergence σ̂−1
u

√
T ∆̃[ÛT ](s)

L−−−−→
T→∞

∆̃[B](s) where

B is a Brownian motion, i.e., a pivot process, hence enabling the statistician
to apply CUSUM tests for structural stability. We define the pivot transfor-
mation ∆̃, which corresponds to a bounded linear operator, through an algo-
rithm. A special case of the transformation ∆̃ yields the scaled partial-sum

process V̂T (s) = 1
T

∑bTsc
t=1 v̂T,t where v̂T,t := ût− 1

T

∑T
j=1 ûj , not of residuals

but of average-corrected residuals. This transformation and its pivot prop-
erties were identified by Yu [55] in the case of an ARMA, and it suffices
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when sups∈[0,1] |ζT (s)−sζT (1)| = o(1), which is not the case in more general
ARMAX models.

In the present paper, we work with ARMAX models in a wide sense. In
particular, the error terms need not be weak white noise, i.e., zero-mean
and constant finite variance with zero autocorrelation. In this way, our re-
sults have direct implications for a large class of models, such as ARMA-
GARCH models where the error term is not IID (independent and iden-
tically distributed), as well as nonlinear models and state space models
with ARMAX representation, where errors terms are often not IID nor
martingale-difference processes, [e.g., 23, sec. 2]. Following Bai [2, 4], Yu
[55], and Ghoudi and Rémillard [26], we typically make no assumption on
the estimators of the ARMAX parameters other than they are OP (T−1/2)
away from their targets. Hence, almost all of our results hold irrespectively
of the estimation method chosen. In addition, motivated by practical con-
sideration and the latest development of estimation theory, our assumptions
allow for heteroskedasticity [e.g., 9, chap. 8, Assumption 8.1.1.], autocorre-
lation in the errors [e.g., 33] and higher-order dependence [e.g., 23], feedback
effect between the covariates and the dependent variable [e.g., 9, chap. 8, p.
155], nonlinear components in the covariates, infinite-variance errors [e.g.,
39], seasonal dummies, and several wide classes of covariates (e.g., integrable
stationary and ergodic [e.g., 10, p. 494], or fractional ARMA [13, Definition
13.2.2]). Finally, we are also able to analyze cases where the model is mis-
specified, and where we are estimating least-false parameters. Our reliance
on elementary but general inequalities in the crux of our proofs rather than
on probabilistic sophistication explains the generality and versatility of our
results.

1.1. Technical setup. We consider a univariate ARMAX processes (YT,t)
s.t.

Φ(B)(YT,t − µ) = λ′XT,t−1 + Θ(B)ut,(1.1)

where B denotes the lag operator, Φ(z) := 1 − φ1z − φ2z
2 − · · · − φpz

p,
Θ(z) := 1 + θ1z + θ2z

2 + · · · + θqz
q, λ := (λ1, λ2, . . . , λdλ)′ ∈ Rdλ and

XT,t−1 := (XT,t−1,1, . . . , XT,t−1,dλ)′ is a triangular vector array of covari-
ates. We assume that, based on observations (YT,t,XT,t−1)Tt=1, there exist

OP (T−
1
2 )-consistent estimators µ̂, λ̂, (φ̂i)

p
i=0 and (θ̂j)

q
j=1 of µ, λ, (φi)

p
i=0 and

(θj)
q
j=1, respectively. When (ut) has finite and constant variance, we denote

it by σ2
u.

Notice that since the covariates in XT,t−1 are allowed to depend on T ,
this dependence is transferred to YT,t, which therefore also depends on T .
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This allows us to study covariates such as the dummy variable I{t 6 Tp},
i.e., a change point at the first p-th fraction of the sample. This dependence
is transferred to YT,t, but we do not assume that ut depends on the sample-
size for mathematical convenience, although it should be possible to extend
our results in that direction.

The ARMAX residuals (ût)
T
t=−q+1 are then defined as follows. For t ∈

[[1, T ]],

ût:=(YT,t − µ̂)−
p∑
i=1

φ̂i(YT,t−i − µ̂)−
q∑
j=1

θ̂j ût−j−λ̂
′
XT,t−1, and(1.2)

for t ∈ Z−, ût = 0,1 where, for all (a, b) ∈ R2, [[a, b]] := [a, b] ∩ Z, and
Z− :=]] − ∞, 0]]. We also use the average-corrected error and the average-
corrected residuals

vt,T := ut −
1

T

T∑
j=1

uj , and v̂t,T := ût −
1

T

T∑
j=1

ûj .(1.3)

Our main focus is on the following partial-sum processes

ÛT (s) :=
1

T

bTsc∑
t=1

ût, UT (s) :=
1

T

bTsc∑
t=1

ut,

V̂T (s) :=
1

T

bTsc∑
t=1

v̂t,T , and VT (s) :=
1

T

bTsc∑
t=1

vt,T ,(1.4)

where for all a ∈ R, bac := max{n ∈ Z : n 6 a}. The present paper estab-
lishes general limit theorems for partial-sums process of ARMAX residuals
and transformations thereof.

1.2. Related literature. While, to the best of our knowledge, the present
paper is the first to study partial-sum processes of residuals from full-blown
ARMAX models, it is related to many existing papers in addition to the
already cited papers. In particular, the present paper complements Andreou
and Werker [1], Ghoudi and Rémillard [26], and an extensive literature on
partial-sum processes and empirical processes of residuals of regression mod-
els [e.g., 50, sec. 4.6, and references therein]. Andreou and Werker [1] rely

1Following the existing literature [e.g., 2], residuals with negative indexes are put to
zero because they cannot be deduced from the observable data (i.e., the Yts and Xts with
positive indexes) as in equation (1.2). However, this does not imply that the Yts and Xts
with negative indexes are assumed to be zero.
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on Le Cam’s theory to develop an elegant and general framework to ana-
lyze residual-based statistics. However, their high-level assumptions cannot
always be checked (many statistical models cannot be expressed in terms of
likelihood as the ULAN assumption requires) and satisfied [e.g., 39, 49, for
counter examples to the assumption on asymptotic normality]. Ghoudi and
Rémillard [26] derive the asymptotic limit of empirical processes of ARMA
residuals, which is a more general object than the partial-sum process of
residuals. However, Ghoudi and Rémillard [26] do not allow for covariates,
and they require IID square-integrable errors with a probability distribution
absolutely continuous w.r.t.(with respect to) the Lebesgue measure. Another
advantage of the approach developed in the present paper w.r.t. [1] and [26]
is that the crux of our proofs is based on elementary inequalities, thereby
gaining a high degree of generality and versatility.

The literature on partial-sum processes and empirical processes of residu-
als from regression models include results for autoregressive processes [e.g.,
12, 34, 7] with long-memory errors [e.g., 15] and time trends [e.g., 54, 40, 7].
Our main contribution with respect to this literature is to allow for a MA
(moving average) component in the process in eq. (1.1). Inspection of the
proofs shows that tackling the MA component is one the main technical
challenges of the present paper. Unlike this literature [e.g., 34, 20, 53, 54],
the present paper does not tackle unit roots and polynomial time trend.
However, as a follow-up paper shows, the framework of the present paper
can readily be extended to tackle these cases. The present paper is also
indirectly related to papers that derives consistency results for some spe-
cific functions of ARMAX residuals [e.g. 51, 22], and to the literature on
CUSUM tests. Following MacNeill [38], Ploberger and Krämer [44, 45] and
others, but unlike a part of the literature on CUSUM tests [e.g., 14, 35],
our CUSUM tests statistics are not based on recursive residuals, but on the
standard residuals from the whole sample. From a practical point of view,
the rationale for using standard residuals instead of recursive residuals is
that the former are readily computed, while the latter requires repetitive
computations, which can become numerically unstable, especially given the
nonlinear objective functions of full-blown ARMA and full-blown ARMAX
models. From a theoretical point of view, neither of the two types of residuals
has been shown to yield uniformly superior tests.

1.3. Organization of the paper. Besides this introductory section, our
paper has two sections: Core results, found in Section 2, which encompasses
most standard cases of interest, and extensions, found in Section 3. Section
3 also introduce a general algorithm to obtain pivot statistics for CUSUM
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tests. All asymptotic statements of the present paper are understood as
T →∞, so the latter qualification is omitted from the main text.

All proofs, and a list of abbreviations with their meaning are found in
the supplementary material [27], which consists of several appendices. Page
numbers in the supplementary material are prefixed by “S” so that “S1” is
the first page in [27]. Because our assumptions are very weak, most proofs
consist of long calculations to reach the point where low-level techniques,
such as, say, the use of sub-additivity of probability measures, can be applied.
We therefore build up a library of lemmas to simplify these calculations, and
we also provide very detailed proofs. The high level of detail in the proofs
is motivated firstly by the desire for transparency, and secondly in order to
make our techniques easy to apply in further research.

2. Core results and immediate applications.

2.1. Core assumptions and expansion of the ARMA part. As mentioned
in the introduction, we consider ARMAX processes in a wide sense, i.e.,
we consider a process (Yt) to be an ARMAX processes if it is a solution
to an equation of the form of eq. (1.1) on p. 3. Thus, our assumptions,
which are extensions or weakening of the assumptions in the related papers
[2, 4, 55, 26], allow us to consider processes that are outside the traditional
ARMAX framework where error terms are usually IID or martingale differ-
ences. Assumption 1, which is standard, requires the roots of Φ(.) and Θ(.)
to be outside the unit circle.

Assumption 1 (Invertibility of lag polynomial). Let Φ(.) and Θ(.) be
the AR and MA polynomials of the ARMAX process (1.1) on p. 3. (a) All
roots of Φ(z) lie outside the unit circle of the complex plane. (b) All roots
of Θ(z) lie outside the unit circle of the complex plane.

For ARMA processes with IID errors, Assumption 1(a) and (b) respec-
tively correspond to causality and invertibility [e.g., 13, pp. 83–89]. As-
sumption 1(a) allows us to solve eq. (1.1) for YT,t. Assumption 1(a) is not
a binding assumption, as we can always incorporate the autoregressive part
with roots inside the unit circle of the complex plane among the covariates’
part. In a follow-up paper, we tackle unit roots in this way. In contrast to
Assumption 1(a), Assumption 1(b) is crucial and binding. Assumption 1(b)
ensures that errors (or alternatively residuals) can be expressed in terms of
observables (see Lemma 12 in Appendix B.1, p. S11 of [27]). Under Assump-
tion 1 (b), we note that the process Y̌t := Φ(B)−1Θ(B)ut is a so-called weak
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ARMA if (ut) is weak white noise. We will sometimes work with (Y̌t) in the
proofs, which, in contrast to the ARMAX process (Yt), is unobservable.

The following Assumption 2 is mild: It requires the difference between the
estimators of the ARMA parameters and the population ARMA parameters
to be OP (T−

1
2 ).

Assumption 2 (OP (T−
1
2 )-consistency of ARMA parameters). Define

the stacked parameter φ := (φ1, . . . , φp)
′ and θ := (θ1, . . . , θq)

′. Let µ̂, φ̂, and

θ̂ be the respective estimators of µ, φ, and θ s.t. (a)
√
T (µ̂ − µ) = OP (1);

(b)
√
T (φ̂− φ) = OP (1); and (c)

√
T (θ̂ − θ) = OP (1).

Assumption 2 allows us to determine which terms survive asymptotically
once we multiply the difference between the partial-sum process of the resid-
uals and the partial-sum process of the errors by

√
T . Assumption 2 is weaker

than
√
T -asymptotic normality, which has been proved for ARMAX [e.g.,

29, 9]. Assumption 2 allows for faster rates of convergence such as the one
that has been established for ARMA with infinite-variance errors [e.g., 39,
p. 310, Theorem 2.2]: See Section 3.1 on p. 17. Note that Assumption 2
rules out any identification problem, because identifiability is a necessary
condition for the consistency of an estimator.

Remark 1. For ARMAX models with unknown lag order, Hannan and
Deistler [28, Chap. 5] give conditions under which certain model-selection
criteria are consistent. As noticed by Hannan and Quinn [30, p 191] and
further discussed in Pötscher [46, see especially his Lemma 1] with the caveat
pointed out in [37], this means that all asymptotic results based on the
assumption that the true model is known also hold when using consistent
model-selection procedures. This observation, of course, also applies to our
results. �

The following Assumption 3 is also mild, as we explain below.

Assumption 3 (Error term ut). (a) For a constant εu > 0, supt∈Z E|ut|1+εu <

∞. (b) sups∈[0,1]

∣∣∣ 1
T

∑bTsc
t=1 ut

∣∣∣ = oP (1).

Assumption 3(a) ensures the existence of certain power series in B applied
to the error ut (Lemma 7(i) on p. S4 of [27]). In the present paper, except
when indicated otherwise, we understand power series in B applied to a pro-
cess in terms of almost sure convergence: As we do not always require the
existence of the second moment, using the standard convergence in L2 (i.e.,
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the space of square-integrable random variables) is not possible. Assump-
tion 3(a) also allows us to apply the Phillips-Solo device [42]. The latter is a
technique based on the Beveridge-Nelson decomposition [8] that allows us to
asymptotically reduce the study of partial-sums of linear filters of a process
to simply the partial-sums of the process, i.e., it allows us to factor out linear
filters. See Lemma 9 on p. S6 of [27] for a precise statement of the versions
of the Phillips-Solo device used in the present paper. By the Phillips-Solo
device [42], Assumption 3(b) ensures that the partial-sum average process
of power series of the error vanishes asymptotically (Corollary 3 on p. S8
of [27]). Assumption 3(b) is weaker than the standard assumptions that
(ut)t∈Z is a square-integrable zero-mean IID process, or that it is at least a
Lp-bounded martingale difference with p > 2 [e.g., 2, 55]. Appendix B.6 (p.
S19) of [27] provides a catalogue of sufficient conditions. In particular, As-
sumption 3(b) allows for (unconditional and conditional) heteroscedasticity
and for autocorrelation or higher forms of time-dependence. Heteroscedas-
ticity and time-dependence in the errors are likely to occur. Many finan-
cial and economic time series appear unconditionally heteroscedastic [e.g.,
48, and references therein]. Similarly, autocorrelation of the errors is often
difficult to rule out [e.g., 33, and references therein], and ARMAX repre-
sentations of nonlinear models often yield errors that are neither IID nor
martingales differences [e.g., 23]. Thus, as further illustrated below in some
examples, the generality of Assumption 3(b) is useful.

Lemma 1(i) shows that the “ARMA part” of the partial-sum processes
defined in eq. (1.4) can be characterized without assumptions on the covari-
ates. It is therefore the core lemma we use in all upcoming results, under
various assumptions on the covariates.

Lemma 1 (Fundamental Lemma: Expansion for ARMA part). Under
Assumptions 1, 2 and 3, w.p.a.1 as T →∞,

(i) sup
s∈[0,1]

∣∣∣∣∣∣√T [ÛT (s)− UT (s)] + s
Φ(1)

Θ(1)

√
T (µ̂− µ)− 1√

T

bTsc∑
t=1

Ξt,T

∣∣∣∣∣∣ = oP (1);

(ii) sup
s∈[0,1]

∣∣∣∣∣∣√T [V̂T (s)−VT (s)]− 1√
T

bTsc∑
t=1

[Ξt,T − Ξ̄T ]

∣∣∣∣∣∣ = oP (1),

where, denoting the lag coefficients in the inverse of the polynomial 1 +
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j=1 θ̂jz

j with (ψj(θ̂))∞j=0 (i.e.,
[∑∞

j=0 ψj(θ̂)zj
] [

1 +
∑q

j=1 θ̂jz
j
]

= 1),

(2.1)

Ξt,T := −
t−1∑
j=0

ψj(θ̂)

{
(λ̂− λ)′XT,t−1−j +

p∑
i=1

(φ̂i − φi)Φ(B)−1λ′XT,t−1−i−j

}
.

Proof. See Appendix C.2 on p. S28 of [27].

The inverse of the polynomial 1+
∑q

j=1 θ̂jz
j (i.e., the power series

∑∞
j=0 ψj(θ̂)zj)

exists w.p.a.1 (with probability approaching one) as T → ∞, so that ΞT,t
is well-defined (Proposition 9 on p. S12 in Appendix B.4 of [27]). Here-
after, we drop the qualification “w.p.a.1 as T → ∞” because all upcom-
ing results rest on Lemma 1. If there is no MA part in the model (i.e.,
θ = θ̂ = 0), then ψ0(θ̂) = 1 and ψj(θ̂) = 0 for j ∈ [[1,∞[[, and Ξt,T
simplifies to Ξt,T = −(λ̂ − λ)′XT,t−1 −

∑p
i=1(φ̂i − φi)Φ(B)−1λ′XT,t−1−i.

If there is no covariate (i.e., λ = λ̂ = 0 and Xt−1 = 0 for all t ∈ Z),
then, for all (t, T ) ∈ N2, Ξt,T = 0, and thus Lemma 1(i) and Lemma 1(ii)
respectively implies Theorem 1 and Corollary 1 in [55] for k = 1 because
sups∈[0,1] |sΦ(1)/Θ(1)− bTsc(1−

∑p
i=1 φi)/[T (1 +

∑q
j=1 θj)] | = o(1). If, for

all (t, T ) ∈ N2, Ξt,T = 0 and µ̂ = µ = 0 (i.e., no covariates and no intercept),
Lemma 1(i) implies the main result in Bai [2, Theorem 1]. We therefore gen-
eralize the core results of these papers by showing that they also hold under
weaker conditions on the error term. See the discussion of Assumption 3 and
the discussion that follows it. This generalization is practically relevant, as
illustrated in the following examples.

Example 1. To illustrate that heteroscedasticity and autocorrelation in
the error terms can easily arise within our assumptions, let us revisit the sim-
ple model Yt = µ+ut from the introduction. Assume (ut) is a linear process
ut =

∑∞
j=0 αjεt−j where (εt) is a zero-mean process with uncorrelated ele-

ments, but where Var εt may depend on t. Moreover, assume supt∈Z Eε2
t <∞

and that there exist M > 0 and ρ ∈]0, 1[ s.t., for all j ∈ [[0,∞[[, we have
|αj | < Mρj . Then, for the representation Yt = µ + ut estimated with the

OLS estimator µ̂ = 1
T

∑T
t=1 Yt, Assumptions 1-3 hold, as shown in Appendix

C.3 on p. S33 of [27]. �

Example 2. An important class of models are ARMA models where (ut)
has time varying volatility. A prominent example is ARMA-GARCH mod-
els, where the error term follows a GARCH model. By definition, integrable
GARCH processes are martingale difference sequences [e.g., 25, Definition
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2.1.(i)]. Now, in Proposition 11 of [27] (p. S23), we show that martingale dif-
ferences satisfy Assumption 3(b) under the standard assumption that they
are uniformly Lr-bounded with r > 1. Thus, Lemma 1 covers most ARMA-
GARCH models. In this way, Lemma 1 greatly generalizes Bai [2, Theorem
1], which applies to ARMA-GARCH models only when the intercept is as-
sumed to be zero and hence not estimated – not even indirectly through
first subtracting the average of the observations, and which requires (ut)
to be at least uniformly Lr-bounded martingale differences with r > 2 [2,
assumption a.1’]. The upcoming Theorem 1 further generalizes this result
to a large class of ARMAX-GARCH models, which, in particular, nests the
ARCH regression model of Engle [19, sec. 5]. �

Example 3. A weak GARCH process is any process (εt) s.t. (ε2
t ) is an

ARMA process of the form Φ(B)(Yt − µ) = Θ(B)ut where (ut) is at least
assumed to be weak white noise (see Francq and Zaköıan [24, Section 2]
where additional technical assumptions are made). Weak GARCH processes
generalize the class of standard GARCH models and span several other
interesting volatility models, including Markov-switching GARCH processes,
stochastic volatility models and aggregated GARCH processes [25, Section
4.2]. For several of these representation results to hold, it is essential that
(ut) is not restricted to be IID or even martingale difference sequences.
Previously known theory on partial-sum processes of residuals therefore does
not apply in this setting. Estimation theory for weak GARCH processes is
developed in Francq and Zaköıan [24], providing

√
T -consistent estimators

for the parameters. The analysis of partial-sum processes of residuals and
average-corrected residuals from weak GARCH models is a consequence of
Lemma 1, as long as the ARMA representation of (ε2

t ) fulfils Assumptions
1, 2 and 3. Assumptions 1 and 2 follow from [24]. Because (ut) is assumed
to be weak white noise, Assumption 3 also holds (Lemma 18 (a), Appendix
B.6 on p. S19 of [27]). �

The upcoming Section 2.2.2 shows that, under weak assumptions, we have

sups∈[0,1] |σ̂−1
u V̂T (s)| L−−−−→

T→∞
sups∈[0,1] |B◦(s)| where B◦ is a Brownian bridge

process and σ̂u is the empirical standard deviation of the residuals. For weak
GARCH processes treated in Example 3, this appears to induce new tests
for structural stability.

2.2. Expansions for generic covariates. We here study the contribution
of covariates to expansions of the partial-sum process in the most common
cases encountered in practice, namely settings where λ̂ is

√
T -consistent.
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2.2.1. Assumption and theorem. We now analyze the process s 7→ 1√
T

∑bTsc
t=1 Ξt,T .

Lemma 1 (p. 8) shows that this process is central for understanding ARMAX
residuals. We make the following assumptions.

Assumption 4 (Covariates XT,t). (a)
√
T (λ̂ − λ) = OP (1). (b) For

a constant εX > 0, for all l ∈ [[1, dλ]], sup(T,t)∈N×Z E|XT,t,l|1+εX < ∞.

(c) sups∈[0,1]

∣∣∣ 1
T

∑bTsc
t=1 (XT,t−1 − EXT,t−1)

∣∣∣ = oP (1). (d) For all i ∈ [[1, p]],

sups∈[0,1]

∣∣∣[ 1
T

∑bTsc
t=1 EXT,t−1−i

]
− s 1

T

∑T
t=1 EXT,t−1−i

∣∣∣ = o(1).

Assumption 4 (a) requires OP (T−
1
2 )-consistency. As noted for the ARMA

parameters, this allows for faster rate of convergence. Assumption 4 (b)
ensures the a.s. (almost sure) finiteness of the infinite series Φ(B)−1Xt,
Θ(B)−1XT,t−1, and Θ(B)−1Φ(B)−1XT,t−1, and their expectation by an ex-
tended Minkowski inequality (Lemma 7 on p. S4 in [27]). It also allows the
application of the Phillips-Solo device [42] on partial-sums of Θ(B)−1XT,t−1

and Θ(B)−1Φ(B)−1XT,t−1 (Lemma 9 on p. S6 in [27]). Assumption 4 (b)
can be weakened into sup(T,t)∈N×Z E|XT,t,l| < ∞, but Assumptions 4 (c)
and (b) would then need to be modified and extended.

Assumptions 4 (a)-(c) reduce the study of the process s 7→ 1√
T

∑bTsc
t=1 Ξt,T

into the study of the deterministic processes

L1,T (s) :=
1

T

bTsc∑
t=1

Θ(B)−1EXT,t−1, and(2.2)

L2,i,T (s) :=
1

T

bTsc∑
t=1

Θ(B)−1Φ(B)−1EXT,t−1−i,

where i ∈ [[1, p]]. Taken together Assumptions 4 (c) and (d) are the coun-
terparts of Assumption 3 (b) for the covariates: Assumption 4 (d) places
restrictions on the term subtracted in Assumption 4 (c). Appendices B.6 (p.
S19) and C.5 (p. S38) in [27] show that Assumption 4 (c) and (d) hold for
most of the processes considered in the time-series literature. By the Phillips-
Solo device [42], Assumptions 4 (c) and (d) allow a further reduction of the
processes in eq. (2.2).

Theorem 1 (Expansion for generic covariates). Under Assumptions 1,
2, 3, and 4(a)-(c),

(i) sups∈[0,1]

∣∣∣ 1√
T

∑bTsc
t=1 Ξt,T −

√
T (λ̂− λ)′L1,T (s)−

∑p
i=1

√
T (φ̂i − φi)λ′L2,i,T (s)

∣∣∣ =
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oP (1) and hence sup
s∈[0,1]

∣∣∣∣√T [ÛT (s)−UT (s)]+s
Φ(1)

Θ(1)

√
T (µ̂−µ)−

√
T (λ̂−

λ)′L1,T (s)−
p∑
i=1

√
T (φ̂i − φi)λ′L2,i,T (s)

∣∣∣∣ = oP (1);

(ii) Under the additional Assumption 4(d),

(ii.a) sups∈[0,1]

∣∣∣L1,T (s)− sΘ(1)−1 1
T

∑T
t=1 EXT,t−1

∣∣∣ = o(1) and, for all

i ∈ [[1, p]], sups∈[0,1]

∣∣∣L2,i,T (s)− sΘ(1)−1Φ(1)−1 1
T

∑T
t=1 EXT,t−1−i

∣∣∣ =

o(1); and

(ii.b)
√
T sups∈[0,1]

∣∣∣V̂T (s)−VT (s)
∣∣∣ = oP (1).

Proof. See Appendix C.4 on p. S35 of [27].

Theorem 1(i), which does not assume Assumption 4 (d), characterizes the
asymptotic difference ζT between the scaled residual partial-sum process and
the scaled errors partial-sum process. Note that while the expansion does
not depend on θ̂, the actual MA terms θ influence the functions L1,T and
L2,i,T , see eq. (2.2). Theorem 1(ii) shows that Assumption 4(d) yields a
simplification in the analysis of the partial-sum process of average-corrected
residuals. More precisely, Theorem 1(ii.a), which relies on the Phillips-Solo
device, simplifies the expression of L1,T (.) and L2,i,T (.). Theorem 1(ii.b)
provides an easy way to reach a pivot statistic for CUSUM-type tests even
when the covariates (XT,t−1) have non-zero-mean. In order to actually reach
a pivot statistic in standard cases, σu needs to be consistently estimated.
This is treated in Section 2.2.2. We also generalize Theorem 1 (ii.b) in Section
3.4.

We end this section with an example verifying Theorem 1 (i) in an ele-
mentary case where —in contrast to the large classes of models we consider
in the upcoming subsections— Assumption 4 (d) does not hold. The exam-
ple also anticipates various extensions of Theorem 1 given later in the paper,
and will be revisited in Sections 3.4 and 3.5.2.

Example 4. Consider the model Yt = λI{t 6 pT} + ut where 0 <
p < 1 is known and (ut) is zero-mean IID with finite variance. Note that
XT,t depends on T . Note also that Assumption 4 (c) trivially holds since
the covariate is deterministic. However, Assumption 4 (d) does not hold.

Indeed, 1
T

∑bTsc
t=1 I{t 6 pT} = 1

T

∑min(bTsc,bpT c)
t=1 1 = 1

T min(bTsc, bpT c) =

min(s, p) + o(1), and s 1
T

∑T
t=1 I{t 6 pT} = sp + o(1) w.r.t. the uniform

norm, hence their difference does not go to zero.
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By definition, we have ût = Yt − λ̂I{t 6 pT} = (λ − λ̂)I{t 6 pT} + ut,

so
√
T ÛT (s) =

√
T (λ − λ̂) 1

T

∑bTsc
t=1 I{t 6 pT} +

√
TUT (s), which agrees

with Theorem 1 (i) since L1,T (s) = 1
T

∑bTsc
t=1 I{t 6 pT}. Following the

above calculation, we see that if
√
T (λ − λ̂) = OP (1), then

√
T ÛT (s) =

min(s, p)
√
T (λ − λ̂) +

√
TUT (s) + oP (1) uniformly. We have

√
T V̂T (s) =√

T ÛT (s)− s
√
T ÛT (1) + oP (1) =

√
TUT (s)− s

√
TVT (1) + min(s, p)

√
T (λ−

λ̂)−smin(1, p)
√
T (λ−λ̂)+oP (1) uniformly. Hence, average-correcting resid-

uals does not lead to an asymptotic pivot, i.e., the nuisance term related to
min(s, p)

√
T (λ − λ̂) is not removed. In this special case, we could study√

T (λ− λ̂) and derive the joint process limit of
√
T ÛT . However, this limit

would in general depend on further nuisance parameters, and the joint pro-
cess limit can be more challenging to derive in more complex settings.
As a special case of a general technique described in Section 3.4, we see
that

√
T ÛT (s)− [min(s, p)/p]

√
T ÛT (1) = min(s, p)

√
T (λ− λ̂) +

√
TUT (s)−

[min(s, p)/min(1, p)][min(1, p)
√
T (λ− λ̂)+

√
TUT (1)]+oP (1) =

√
TUT (s)−

[min(s, p)/min(1, p)]
√
TUT (1) + oP (1). Thus, if σ̂u

P→ σu > 0, the func-
tional central limit theorem and the continuous mapping theorem imply that

σ̂−1
u

√
T sups∈[0,1] |ÛT (s)−[min(s, p)/p]ÛT (1)| L→ sups∈[0,1] |B(s)−[min(s, p)/min(1, p)]B(1)|,

where B is a Brownian motion. This CUSUM test, which to our knowledge
is new, has critical values easily found via simulation. �

2.2.2. Consistency of empirical residual-based variance, and obtaining pivot
statistics. We here derive asymptotic pivot statistics from partial-sum pro-
cesses. This requires estimating σu, which is the first topic of this section.
Because our proofs immediately generalize to the multivariate case, we will
here consider a system of ARMAX models, and treat ARMAX residuals as
a special case. We are minimalistic in the introduced notation, as we will
only work with the multivariate case in the present section.

Proposition 1 (Consistency of empirical variance). Suppose given a
system of d ARMAX models, each fulfilling Assumptions 1, 2, 3, 4 (a).
Denote the i’th element of the covariates in the j’th ARMAX model with
Xt−1,i,j, and the error terms of the j’th ARMAX model with ut,j. If, for all
j ∈ [[1, d]], supt∈Z E|ut,j |2 <∞ and, for all i ∈ [[1, dλ]], supt∈Z EX2

t−1,i,j <∞,
then

Σ̂u,T = Σu,T + oP (1),

where Σu,T := 1
T

∑T
t=1 utu

′
t −

(
1
T

∑T
t=1 ut

)(
1
T

∑T
t=1 ut

)′
denotes the em-

pirical covariance matrix of the error ut := (u1,t, . . . , u1,t)
′ and Σ̂u,T :=
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1
T

∑T
t=1 ûtû

′
t −

(
1
T

∑T
t=1 ût

)(
1
T

∑T
t=1 ût

)′
the empirical covariance matrix

of the residuals ût := (ût,1, . . . , ût,d)
′.

Proof. See Appendix C.6.1 on p. S40 of [27].

Proposition 1 combined with Theorem 1(ii) provides pivot CUSUM statis-
tics when used in conjunction with a statistical functional, such as the supre-
mum.

Corollary 1 (Pivot statistic). Assume that the following conditions
hold.

(a) Σu,T = Σu + oP (1), where Σu is the covariance matrix of ut.

(b) We have process convergence
√
T (U1,T (s), . . . ,Ud,T (s))′

L−−−−→
T→∞

Σ
1/2
u (B1(s), . . . , Bd(s))

′,

where B1, . . . , Bd are independent Brownian motion processes on [0, 1],

and Σ
1/2
u is the lower-triangular invertible Cholesky matrix.

Then, under the assumptions of Proposition 1 and Assumptions 4(b)-(d) for
each ARMAX model of the d-dimensional system, we have process conver-
gence

Σ̂
−1/2
u,T

√
T (V̂1,T (s), . . . , V̂d,T (s))′

L−−−−→
T→∞

(B◦1(s), . . . , B◦d(s))′,

where B◦1 , . . . , B
◦
d are independent Brownian bridge processes on [0, 1].

Proof. See Appendix C.6.2 on p. S45 of [27].

Corollary 1 immediately implies the asymptotic distribution of various
multivariate CUSUM-statistics, whose limit distribution is easily identifiable
due to the independence of the above Brownian bridge processes. For brevity
we do not discuss this further. Condition (a) corresponds to a multivariate
functional central limit theorem, which has been proved in various settings
[e.g 42, 17, Section 27.7] when (ut) has no autocorrelation. Condition (b)
just requires the usual empirical covariances to converge to the covariance.
Such results have been proved under mild assumptions [e.g 42, Theorems
3.7 and 3.16 and Remark 3.9].

2.3. Examples and immediate applications. For simplicity, we consider
different types of covariates separately. However, it is clear from the formula
of ΞT,t, as well as Lemma 1 and Theorem 1 and their proofs, that, by the

triangle inequality, we can jointly consider them (e.g., λXt−1 = λ1X
(1)
t−1 +

λ2X
(2)
t−1 with (X

(1)
t−1) an L1 ergodic stationary process and where (X

(2)
t−1)

contains seasonal dummy variables).
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2.3.1. ARMA with seasonal dummies. Seasonality is present in many
time series. One way to model seasonality is to introduce seasonal dummies.
The following proposition shows how seasonal dummies affect the partial-
sum processes of residuals. This is an example of practical importance, since
many time-series are analyzed after being seasonally adjusted in this way.
We see that the seasonal dummies induce extra terms in the expansion for
the partial sum of the residuals, which vanish for average-corrected residuals.

Proposition 2 (Seasonal dummy). Let d = dλ+1 and XT,t−1 = (I{t ≡
1 (mod d)}, . . . , I{t ≡ d−1 (mod d)})′, so that λ′XT,t−1 =

∑d−1
k=1 λkI{t ≡ k

(mod d)} models a seasonal component. Then, under Assumptions 1, 2, 3,
and 4(a),

(i) for all l ∈ [[1, dλ]], sups∈[0,1] |L1,T,l(s)− sΘ(1)−1

d | = o(1)

sups∈[0,1] |L2,i,T,l(s) − sΘ(1)−1Φ(1)−1

d | = o(1) for all i ∈ [[1, p]], where
L1,T (s) =: (L1,T,1(s), L1,T,2(s), . . . , L1,T,dλ(s))′ and
L2,i,T (s) =: (L2,i,T,1(s), L2,i,T,2(s), . . . , L2,i,T,dλ(s))′; and

(ii) the conclusions of Theorem 1 hold (i.e., Assumptions 4(b)-(d) hold).

Proof. See Appendix C.6.3 on p. S45 of [27].

2.3.2. ARMA with covariates whose expectations are constant. The fol-
lowing Proposition 3 provides conditions that ensure the assumptions of
Theorem 1 regarding the covariates (XT,t−1) under common conditions.

Proposition 3 (Covariates with constant expectations). Assume that
(XT,t−1)t∈Z does not depend on T (i.e., for all (T, t) ∈ Z2, XT,t−1 = Xt−1),
and satisfies one of the following conditions.

(a) (Xt−1)t∈Z is a strictly stationary and ergodic process.
(a’) For all t ∈ Z, EXt = EX0, and, for each k ∈ [[1, dλ]], there exist a β ∈

]0, 1[, so that supk∈N

[
(1 + k)β sup(i,j)∈[[1,∞[[2:| i−j|=k |Cov(Xi,k, Xj,k)|

]
<

∞.

Then, under Assumptions 1, 2, 3, and 4(a)(b), Theorem 1 holds, (i.e., As-
sumptions 4(c)-(d) hold).

Proof. See Appendix C.6.4 on p. S46 of [27].

Conditions (a) and (a’) are weaker than the usual assumption in econo-
metrics: See Appendix B.6 in [27], in which Propositions 10 and 11 provide
a catalogue of sufficient conditions.
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2.3.3. Simplifications of the limit processes for zero-mean covariates. In
several particular cases, a stream of results, which go back at least to
Ploberger and Krämer [44, Theorem 1], has shown that the scaled partial-
sum process of residuals asymptotically behaves as the scaled partial-sum
process of average-corrected errors. The following Proposition 4 provides
general assumptions under which such results can be extended to full-blown
ARMAX models.

Proposition 4 (Equivalence between residuals and average-corrected er-
rors). Define the polynomial estimator Φ̂(z) := 1− φ̂1z− φ̂2z

2−· · ·− φ̂pzp.
Assume that

(a) EXT,t = 0, for all (t, T ) ∈ Z×N;

(b) µ̂ = 1
T

∑T
t=1 Yt −

λ̂
′

Φ̂(1)
1
T

∑T
t=1XT,t + oP (T−1/2).

Then, under Assumptions 1, 2, 3, 4 (a)-(c),

sup
s∈[0,1]

√
T |ÛT (s)−VT (s)| = oP (1).

Proof. See Appendix C.6.5 on p. S46 of [27].

The proposition identifies conditions that imply that the limit processes
of residuals and average-corrected error terms are asymptotically equiva-
lent. Assumption (a) of Proposition 4 can be fulfilled through a reparame-
terization [e.g., 44, Assumption A.2] when EXT,t does not depend on the
sample size T . Assumption (b) of Proposition 4 is by the Phillips-Solo de-
vice [42] connected to the empirical average of the reduced form equation
Yt − µ = Φ(B)−1λXT,t−1 + Φ(B)−1Θ(B)ut where the unobservable ARMA
part Φ(B)−1Θ(B)ut is left out, and where the unknown parameters are es-
timated. When there is no covariate (i.e., XT,t = 0, for all (t, T ) ∈ Z×N),
assumption (b) requires that µ̂ corresponds to the average of (Yt) modulo

oP (T−
1
2 ). In this case the common practice of average adjusting data prior

to analysis trivially implies assumption (b).

Remark 2. Because this equivalence is somewhat counter-intuitive, let
us check Proposition 4 in the linear regression model with only a constant
as regressor, i.e., Yt = µ + ut. As recalled in the introduction, in this case,
the OLS estimator is the average, i.e., µ̂ = 1

T

∑T
t=1 Yt. Then ût = Yt −

1
T

∑T
t=1 Yt = (µ + ut)− 1

T

∑T
t=1(µ + ut), so that ÛT (s)−VT (s) is not only

oP (1) as stated by Proposition 4, but is equal to zero. �
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The conclusion of Proposition 4 is contrary to what is expected from
Bai [2], where partial-sum processes of residuals are asymptotically first
order equivalent to partial-sum processes of error terms. The inclusion of
the estimation of a mean parameter is seen to change the behavior of the
partial-sum process of residuals in an abrupt manner. Proposition 4 extends
this observation from the pure ARMA case treated in Yu [55] and Ghoudi
and Rémillard [26], the AR case treated in Lee [36], and the linear regression
case in [43, 44]. Ploberger and Krämer [44] derive the weak process limit of
partial-sums of residuals when using the OLS in a linear regression problem
under standard econometric assumptions. In their Theorem 1 [see eq. (12)
and (13) of 44] it is shown that sups∈[0,1]

√
T |ÛT (s)−VT (s)| = oP (1) (in our

notation). The stated conclusion of their Theorem 1 is a direct implication
of this uniform approximation. Hence their Theorem 1 is a special case of
Proposition 4.

3. Extensions and further applications.

3.1. ARMA with infinite-variance errors. Lemma 1 only assumes bounded
(1+ε)-moment, and specifically does not assume finite variance. This means
that our results have implications for a wide range of ARMA models with
infinite-variance errors.

There are not many results for ARMAX models with infinite-variance
errors, but we mention Mikosch et al. [39], which works with ARMA models
without intercept nor covariates, and Klüppelberg and Mikosch [32] which
extends Mikosch et al. [39] to allow for model misspecification (the topic of
Section 3.2) in the infinite variance case. In these papers, it is shown under
IID conditions and under Assumption 1, that there are estimators φ̂, θ̂ such

that (T/ log T )1/α (φ̂
′ − φ′, θ̂′ − θ′)′ = OP (1). Since α < 2, we have faster

than
√
T -convergence, so Assumption 2 holds. Note that Mikosch et al. [39]

allows for 0 < α < 2, but that α 6 1 is incompatible with Assumption 3(a)
which our results require.

Assumption (a) of the following result assumes no covariates, but we
allow for an intercept term. While Mikosch et al. [39] assumes µ = 0, and
their setting can be re-gained by setting µ̂ = µ = 0, there seems to be no
inference theory for the case when µ is estimated. Even so, we include it
and assume that it can be estimated at the OP (T−

1
2 ) rate, since we see

that the upcoming expansion of the partial-sum process of ARMA residuals
is here not influenced by nuisance terms originating from the estimation
of µ. Proposition 5 shows that the scaled difference between the residual
partial-sum process and the error partial-sum process even goes to zero. This
is a rare case where having an intercept term, or not, does not affect our
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expansions, which is counter to the intuition built up by Proposition 4 in the
finite variance case. In the following proposition, all process convergences are
understood in D[0, 1] using the J1 Skorokhod metric where D[0, 1] denotes
the space of càdlàg functions on [0, 1].

Proposition 5 (ARMA with infinite-variance errors). Assume that the
following two conditions hold.

(a) For all (T, t) ∈ N× Z, XT,t−1 = 0.

(b) There is an α ∈]1, 2[ such that T−1/α
∑bTsc

t=1 ut
L−−−−→

T→∞
Y (s), where Y

is non-degenerate.

Under Assumptions 1, 2, and 3,

1

T
1
α

bTsc∑
t=1

ût =
1

T
1
α

bTsc∑
t=1

ut + oP (1)
L−−−−→

T→∞
Y (s).

Proof. See Appendix D.1 on p. S48 of [27].

Assumption (a) of Proposition 5 rules out covariates. Assumption (b) of
Proposition 5 corresponds to a functional version of eq. (2.2) in [39]. Unlike
the Brownian motion, the limit process Y is not continuous, and we therefore
use the J1 Skorokhod topology, see Section 12 in Billingsley [11].

3.2. Misspecification. In this section, we investigate the situation in which
one fits an ARMAX model to the observations (Yt,Xt−1)Tt=1, although the
process (Yt,Xt−1)Tt=1 does not need to solve eq. (1.1) (p. 3) for a process
(ut) that is IID or even weak white noise. Standard estimators then do
not have their usual interpretation, but usually converge towards least-false
parameters, see e.g. Dahlhaus et al. [16] and Klüppelberg and Mikosch [32].

Our core results also hold in such settings. The present section explores
these settings (i) by deriving the formula of the error term (ut) for a given
set of least-false parameters (Lemma 2, p. 19), (ii) by providing assumptions
directly on the observables to verify our core assumptions (Proposition 6, p.
19), and (iii) by deducing the limiting behaviour of the partial sum process
of average corrected residuals when the data generating process is a linear
process (Corollary 2, p. 20). Note that in this section, we do not allow the
covariates (Xt) to depend on T because this may lead to a dependence on
T also for (ut), which would require an extension of our main results.

The following lemma shows that, under Assumption 1 (b), for any process
(Yt,Xt−1)t∈Z with bounded first absolute moments, there exists a process
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(ut)t∈Z s.t. (Yt,Xt−1, ut)t∈Z is an ARMAX process, which corresponds to
equation (1.1) on p. 3. Such a result parallels the fundamental econometric
OLS assumption for a linear regression model Yt = X ′tλ + ut given by
E[Xtut] = 0, which can either be seen as an assumption on ut, or as a
requirement for λ which defines the error term ut using the observations
[see e.g. 31, Section 2.9].

Lemma 2 (ARMAX representation of arbitrary processes). Any process
(Yt,Xt−1)t∈Z s.t. supt∈Z E|Yt| < ∞ and supt∈Z E|Xt−1| < ∞, where the
Yt are random scalars and the Xt−1 random vectors, defines an ARMAX
process that corresponds to equation (1.1) on p. 3 for

ut := Θ(B)−1
[
Φ(B)(Yt − µ)− λ′Xt−1

]
, t ∈ Z,

where µ,λ,Θ(B) and Φ(B) are respectively any chosen scalar, vector of the
same dimension as (Xt−1) and lag polynomials (of finite order) s.t. Θ(B)
is invertible.

Proof. See Appendix D.2.1 on p. S49 of [27].

In order to apply our results, we make assumptions on the observable
processes, which leads to conditions verifying Assumption 3. This is achieved
under the assumptions of Proposition 6, which can be checked by the same
arguments that lead to Assumption 3. In view of Lemma 18 of [27] (Appendix
B.6, p. S19), assumption (b) of Proposition 6 is weak, but it still rules out
cases where there is a global misspecification of the expectation structure:
For example, if we do not model a trend in the mean of a time-series under
consideration, assumption (b) of Proposition 6 typically does not hold.

Proposition 6 (Theorem 1 for misspecified ARMAX). Assume that

(a) for a constant εY > 0, supt∈Z E|Yt|1+εY <∞; and that

(b) sups∈[0,1]

∣∣∣ 1
T

∑bTsc
t=1 [Φ(B)(Yt − µ)− λ′E(Xt−1)]

∣∣∣ = oP (1).

Under Assumption 1(b),

(i) if Assumptions 4(b) and (c) hold, then Assumption 3 holds for (ut) as
given in Lemma 2; and

(ii) if Assumption 1(a), Assumption 2, and Assumption 4 hold, then The-
orem 1 holds for (ut) as given in Lemma 2.

Proof. See Appendix D.2, p. S49 of [27].
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We now provide an illustration of the above results for a class of linear
processes.

Corollary 2. Let Yt − µ =
∑∞

j=0 αjεt−j where (εt) is a zero-mean

IID sequence with finite non-zero variance, |αj | < Mρj with M ∈ R and
ρ ∈]0, 1[, for all j ∈ N, and where there exists a j ∈ N s.t. |αj | > 0. If
Assumptions 1 and 2 hold for an ARMA representation Φ(B)(Yt − µ) =
Θ(B)ut where Φ(B) and Θ(B) are chosen finite lag polynomials, then we
have process convergence

σ̂−1
u

√
T V̂T (s)

L−−−−→
T→∞

τB◦(s) with τ :=

(∑∞
j=0 ζ̌j

)(∑∞
j=0 αj

)
√(∑∞

j=0 ζ̌
2
j

)(∑∞
j=0 α

2
j

) ,
where B◦ is a Brownian Bridge on [0, 1], σ̂2

u := ( 1
T

∑T
t=1 û

2
t )− ( 1

T

∑T
t=1 ût)

2

(as in the univariate version of Proposition 1 on p. 13), and where (ζ̌j) are
the lag coefficients of Θ(B)−1Φ(B). Moreover, if the ARMA representation
is correctly specified (i.e., Φ(B)−1Θ(B) =

∑∞
j=0 αjB

j), then τ = 1.

Proof. See Appendix D.2.3 on p. S51 of [27].

Comparison of Corollary 2 with Corollary 1 (p. 14) shows that the mis-
specification only affects the asymptotic behaviour of CUSUM-test statistics
through the factor τ , which therefore can be seen as a robustness measure.

Example 5. Let us revisit the basic model Yt = µ + ut from Exam-
ple 1 (p. 9) under the additional assumptions of Corollary 2. This is an
ARMA(0,0) so that ζ̌j = I{j = 0}, giving τ =

∑∞
j=0 αj/

∑∞
j=0 α

2
j . �

Remark 3. Proposition 5 (p. 18) combined with Basrak and Krizmanić
[6] yields a counterpart of Corollary 2 for potentially misspecified ARMA
models with infinite-variance errors as in Klüppelberg and Mikosch [32]. �

3.3. Nonparametric density estimation of the errors. This section estab-
lishes uniform consistency of nonparametric density estimation of the p.d.f.
of ARMAX errors. More precisely, under weak assumptions, the following
theorem shows that the p.d.f. of the errors can be estimated using standard
kernel estimation with the residuals in place of the unobserved errors.

Theorem 2 (Kernel estimation). Let f(.) be a p.d.f. and fT (.) := 1
ThT

∑T
t=1K

(
.−ut
hT

)
be a kernel estimator of f s.t.
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(a) the bandwidth parameters (hT )T∈Z are a sequence of non-zero real
numbers s.t.

√
Th2

T →∞, as T →∞;
(b) the kernel K(.) is a Lipschitz-continuous function;
(c) supx∈R |fT (x)− f(x)| = oP (1).

Then, under Assumptions 1, 2, 3 and 4(a)(b),

sup
x∈R

∣∣∣f̂T (x)− f(x)
∣∣∣ = oP (1),

where f̂T (x) := 1
ThT

∑T
t=1K

(
x−ût
hT

)
.

Proof. See Appendix D.3 on p. S54 of [27].

To the best of our knowledge, Theorem 2 is the first to establish consis-
tency of kernel estimation of errors from full-blown ARMAX models. Theo-
rem 2 generalizes a result in Bai [2] and complements one of the main theo-
rems in [47]. Under stronger assumptions, Bai [2, p. 257, eq. 30] proves the
same result for ARMA processes with known zero-mean parameter. Robin-
son [47] proves the same result for a wide class of zero-mean covariance-
stationary processes without covariates. In Robinson [47, Theorem 3], the
assumptions are neither weaker (e.g., they require finite second moment) nor
stronger (e.g., less stringent conditions on the rate of convergence to zero of
the bandwidth parameter), but they are more complicated, as pointed out
in Bai [2, p. 257]. In Theorem 2, condition (a) is stronger than the usual
bandwidth assumptions, which require ThT →∞ or Th2

T →∞ [41, eq. 2.8,
and eq. 3.6, respectively], but condition (a) is satisfied by usual “optimal”

bandwidths, which are of order T−
1
5 [41, Lemma 4A, eq. 4.15 for r = 2].

Condition (b) is also satisfied by the usual “optimal” kernel,2 the Epanech-
nikov kernel [21, sec. b], and other commonplace kernels (e.g., Gaussian
kernel): Their derivatives are bounded so that they are Lipschitz-continuous
by the mean-value theorem. Condition (c) corresponds to a standard re-
sult in kernel estimation, which has been proved under general conditions
[41, Theorem 3A, eq. 3.7]. The proof of Theorem 2 easily follows from an
intermediary result proved to establish the consistency of the empirical vari-
ance (Proposition 1, p. 13). This indicates that the toolbox developed in the
present paper is useful beyond CUSUM tests.

2We write “optimal” in quotation marks, because the traditional criterion of optimality
for bandwidth parameters and kernels is questionable [e.g., 52, chap. 1].
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3.4. Generalized average corrections. Theorem 1 (ii.b) and Corollary 1
show that under Assumption 4 (d), the partial-sum process of average-
corrected residuals divided by σ̂ is an asymptotic pivot process under weak
conditions. This enables the statistician to perform CUSUM type tests in a
large set of cases.

There are practically relevant examples where the assumptions of Theo-
rem 1 (i) hold, but Assumption 4 (d) does not, meaning we cannot use the
simplification provided by Theorem 1 (ii). As we saw in Example 4, there
may then be transformations of the residual process which are asymptotic
pivot processes. We here develop a general framework which under weak
additional assumptions leads to asymptotic pivots under the conditions of
Theorem 1 (i), i.e., we generalize Theorem 1 (ii.b).

For brevity, we only provide a single illustration, extending Example 4.
Another illustration is ARMA models with potentially a unit root and a
polynomial time trend. The details of this case is lengthy and complex, and
is given in a follow-up paper.

Example 6 (Continuation of Example 4). Consider an ARMA model
withXT,t−1 = I{t 6 pT}. We here assume that p is known. In the upcoming
Section 3.5.2 (p. 27), we show that the estimation of p does not substantially
affect the following discussion due to certain adaptivity properties.

We may use a slight extension of the Phillips-Solo device [42] (see Lemma
9 on p. S6) and the calculations in Example 4 (p. 12) to get L1,T (s) =

Θ(1)−1 1
T

∑bTsc
t=1 I{t 6 pT}+o(1) = Θ(1)−1 1

T

∑min(bTsc,bpT c)
t=1 +o(1) = Θ(1)−1 min(s, p)+

o(1) uniformly. Similarly, L2,i,T (s) = Θ(1)−1Φ(1)−1 min(s, p) + o(1) uni-

formly. Under the conditions of Theorem 1 (i), we see that sups∈[0,1] |
√
T [ÛT (s)−

UT (s)]+ζT (s)| = oP (1) where ζT (s) = sΦ(1)Θ(1)−1
√
T (µ̂−µ)−Θ(1)−1 min(s, p)

√
T (λ̂−

λ)−λΘ(1)−1Φ(1)−1 min(s, p)
∑p

i=1

√
T (φ̂i−φi) is of the form ζT (s) =

∑2
j=1 bT,jgj(s),

with g1(s) = s and g2(s) = min(s, p), and where bT,1, bT,2 are both OP (1)
random variables. �

Under general assumptions, Theorem 1 (i) gives conditions for sups∈[0,1] |
√
T [ÛT (s)−

UT (s)] + ζT (s)| = oP (1) where ζT (s) = s[Φ(1)/Θ(1)]
√
T (µ̂ − µ) −

√
T (λ̂ −

λ)′L1,T (s)−
∑p

i=1

√
T (φ̂i − φi)λ′L2,i,T (s), i.e.,

(3.1) ζT (s) =

n∑
j=1

bT,jgj(s),

in which (bT,j)
n
j=1 are OP (1) random variables that are unknown and not

possible to estimate consistently, but where (gj)
n
j=1 are either known or can
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be consistently estimated. Note that certain nuisance parameters may be
included in (bT,j)

n
j=1, such as Φ(1)/Θ(1) in Example 6. However, in that

example, g2(s) = min(s, p) includes the nuisance parameter p, which cannot
be absorbed in (bT,j)

n
j=1, but has to be estimated.

The central component of our proposed pivot transformation is the fol-
lowing bounded linear operator. For any bounded function x : [0, 1] 7→ R
and a number a ∈ [0, 1] s.t. x(a) 6= 0, define the operator ∆̃[x, a] on functions
with domain [0, 1] by

∆̃[x, a]y(s) = y(s)− x(s)

x(a)
y(a).(3.2)

Notice that if ūT = OP (1) and x(s) = s then

√
TVT (s) =

1√
T

bTsc∑
t=1

(ut − ūT ) =
1√
T

bTsc∑
t=1

ut −
√
T
bsT c
T

ūT

=
√
TUT (s)− s

√
TUT (1) + oP (1) = ∆̃[x, 1]

√
TUT (s) + oP (1),

where the third equality follows from Lemma 25 of [27] (Appendix C.1, p.
S28). The linear operator ∆̃[x, a] therefore generalizes the average-correction
of Theorem 1 (ii.b) on p. 11.

We also define the compounded operator ∆̃[g
(n)
n , an] with g

(n)
n := (g

(1)
1 , . . . , g

(n)
n ),

an := (a1, . . . , an) ∈ [0, 1]n and n ∈ N, through

∆̃[g(n)
n , an] := ∆̃[g

(1)
1 , a1] ◦ ∆̃[g

(2)
2 , a2] ◦ · · · ◦ ∆̃[g(n)

n , an],(3.3)

where g
(k)
k is defined recursively through a starting set of functions g1(s), . . . , gn(s).

The recursion is

(3.4) g
(n)
j (s)=gj(s), g

(n−k−1)
j (s):=g

(n−k)
j (s)−

g
(n−k)
n−k (s)

g
(n−k)
n−k (an−k)

g
(n−k)
j (an−k)

for k ∈ [[0, n − 2]] and j ∈ [[1, n − k]]. The following lemma shows that

∆̃[g
(p)
p , ap] is a transformation that has good properties and that cancels out

the asymptotic gap between
√
T ÛT and

√
TUT .

Lemma 3 (Algorithm to reach a pivot statistic). Let (a1, a2, . . . , an) ∈
[0, 1]n be real numbers with n ∈ N. Let g1(s), g2(s) . . . , gn(s) be a set of
known bounded real-valued functions with domain [0, 1] s.t., for all j ∈ [[1, n]],

g
(j)
j (aj) 6= 0 where g

(j)
j are defined by recursion (3.4). Then, for any function

f : [0, 1]→ R of the form f(s) =
∑n

j=1 bjgj(s),
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(i) ∆̃[g
(n)
n , an]f(s) = 0; and

(ii) if, for all j ∈ [[1, n]], sups∈[0,1] |gj(s)| < ∞, ∆̃[g
(n)
n , an] is a linear

bounded operator on any linear subspace of the space of real-valued
functions with domain [0, 1], and thus it is continuous on the same
linear subspace.

Proof. See Appendix D.4.1 on p. S55 of [27].

Lemma 3 requires two assumptions on the functions gjs. Firstly, it requires
them to be bounded over [0, 1], which is a condition that is trivially satisfied

in our applications. Secondly, it requires that g
(j)
j (aj) 6= 0. This can be

numerically checked, as the bjs do not enter in the definition of the g
(j)
j s:

See recursion (3.4) on p. 23. In practice, choosing distinct aj ’s appears to
be sufficient to satisfy this second assumption.

We now apply Lemma 3. We assume uniformly consistent estimators
(ĝj)

n
j=1 of (gj)

n
j=1 to be at hand.

Theorem 3. Suppose sups∈[0,1] |
√
T [ÛT (s)− UT (s)] + ζT (s)| = oP (1) in

which ζT (s) =
∑n

j=1 bT,jgj(s) where bT,j = OP (1) for j = 1, 2, . . . , n. Let
a1, . . . , an be constants fulfilling the conditions of Lemma 3 w.r.t. g1, . . . , gn.
Suppose there are functions (ĝj)

n
j=1 computed from data s.t. sups∈[0,1] |gj(s)−

ĝj(s)| = oP (1) for all j ∈ [[1, n]]. Letting ĝ
(n)
n be defined through the recursion

of eq. (3.4) starting with ĝ1, ĝ2, . . . , ĝn, the following holds.

(i) If
√
TUT = OP (1) w.r.t. the uniform norm, we have

sup
s∈[0,1]

∣∣∣∆̃[ĝ(n)
n , an][

√
T ÛT ](s)− ∆̃[g(n)

n , an][
√
TUT ](s)

∣∣∣ = oP (1).

(ii) If also σ̂u = σu + oP (1) with σu > 0 and σ−1
u

√
TUT

L−−−−→
T→∞

B for some

process B, we have process convergence

∆̃[ĝ(n)
n , an][σ̂−1

u

√
T ÛT ](s)

L−−−−→
T→∞

∆̃[g(n)
n , an][B](s).

Proof. See Appendix D.4.2 on p. S58 of [27].

Example 7. Continuing Example 6 from p. 22, we have ĝ1(s) := g1(s) =
s and ĝ2(s) := min(s, p̂). In Appendix D.4.3 on p. S60 of [27] we show that
sups∈[0,1] |ĝ2(s)−g2(s)| = oP (1) as long as p̂ = p+oP (1), a weak assumption,
since we typically have T (p̂−p) = OP (1), see e.g. Bai [5, 3]. Hence, Theorem
3 can be applied, yielding a new type of CUSUM test. �
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Remark 4. We note that the estimation of (gj)
n
j=1 is a simpler problem

than identifying critical values directly from the expansion of Theorem 1 (i).
Using this expansion directly, one can typically show that σ̂−1

u

√
T ÛT con-

verges weakly to a zero-mean Gaussian process, whose covariance function
depends on the functions L1,T and L2,i,t of eq. (2.2) as well as the asymptotic

covariance matrix of
√
T (σ−1

u

√
TUT , µ̂−µ, φ̂−φ, λ̂−λ). Hence, one would

need to estimate a greater number of nuisance parameters than when using
Theorem 3. �

3.5. Nonlinear ARMAX models. Consider the nonlinear ARMAX model

Φ(B)(Yt − µ) = λ′g(ZT,t,γ0) + Θ(B)ut,(3.5)

where (ZT,t) is an observable time-series and γ 7→ g(.,γ) is a given function
with domain Ω. In such a model, which is a useful extension of linear AR-
MAX [e.g., 9, sec. 7.4, pp. 152-153], the definition of the residuals is such
that
(3.6)

ũt=

{
(Yt − µ̂)−

∑p
i=1 φ̂1(Yt−i − µ̂)−

∑q
j=1 θ̂1ût−j − λ̂

′
X̂T,t−1 for t∈[[1, T ]]

0 for t∈Z−,

where X̂T,t−1 := g(ZT,t, γ̂). The only difference between the definition of
(ût) in eq. (1.2) on p. 4 and (ũt) in eq. (3.6) is that XT,t−1 is replaced with

X̂T,t−1. Thus, subtracting eq. (1.2) to eq. (3.6), and then summing over t
and multiplying by 1√

T
yields

(3.7)

√
T [ŨT (s)−ÛT (s)]=λ̂

′ 1√
T

bTsc∑
t=1

[X̂T,t−1−XT,t−1]=λ̂
′ 1√
T

bTsc∑
t=1

[g(ZT,t, γ̂)−g(ZT,t,γ0)],

where ŨT (s) := 1
T

∑bTsc
t=1 ũt. As the above equation relates ŨT (s) to ÛT (s)

in a simple manner, we can study the partial-sum residual process ŨT (s)
through ÛT (s), for which Lemma 1 and Theorem 1 provide uniform approx-
imations. We here give two examples of this technique. One non-smooth
example, where g(ZT,t,γ0) = I{t 6 pT} for g(x,γ0) = I{γ−1

0 6 x} with
ZT,t = T/t and γ0 = p, and one smooth example, where γ 7→ g(ZT,t,γ) is
differentiable and ZT,t does not depend on T .

3.5.1. Smooth nonlinear ARMAX models. In this section, we assume
λ̂ = λ = 1 and XT,t−1 = g(Zt,γ0), where (Zt) is an observable time-series
that does not depend on T as in Bierens [9, sec. 7.4], and our observations
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follow equation (3.5). Proposition 7 characterizes ζT , i.e., the asymptotic gap
between the scaled partial-sum process of nonlinear ARMAX errors and its
residual counterpart.

Proposition 7 (Smooth nonlinear ARMAX). Let (Yt) and (Zt) be two
processes that satisfy eq. (3.5) where λ is known to be equal to one, i.e.,
λ̂ = λ = 1. Let the function g(.) in eq. (3.5) and γ̂, which denotes an
estimator of γ0, be s.t. they satisfy the following assumptions.

(a)
√
T (γ̂ − γ0) = OP (1).

(b) For each x, the function γ 7→ g(x,γ) is twice continuously differen-
tiable in a neighborhood Vγ0

of γ0, and, for all γ ∈ Ω, x 7→ g(x,γ) is
measurable.

(c) There exists a vector G such that sups∈[0,1]

∣∣∣ 1
T

∑bTsc
t=1

∂
∂γ g(Zt,γ0)− sG

∣∣∣ =

oP (1).

(d) supt∈N E
[
supγ∈Vγ0

∣∣∣ ∂2

∂γ′∂γ g(Zt,γ)
∣∣∣] <∞.

Then,

(i) sups∈[0,1]

∣∣∣√T [ŨT (s)− ÛT (s)] + s
√
T (γ̂ − γ0)G

∣∣∣ = oP (1); and

(ii) under the additional Assumptions 1, 2, 3, and 4 (a)-(c), sups∈[0,1]

∣∣∣∣√T [ŨT (s)−

UT (s)]+sΦ(1)
Θ(1)

√
T (µ̂−µ)−

∑p
i=1

√
T (φ̂i−φi)L2,i,T (s)−s

√
T (γ̂−γ0)G

∣∣∣∣ =

oP (1).

Proof. See Appendix D.5 on p. S60 of [27].

Proposition 7 shows that the asymptotic gap ζT between the scaled partial-
sum process of nonlinear ARMAX

√
TUT and its residual counterpart

√
T ŨT

has a structure similar to the linear case (i.e., Theorem 1(i) on p. 11).
Writing ζT in the form of eq. (3.1) (p. 22), the first term in ζT can be

written as bT,1g1(s) where bT,1 = b
(1)
T,1 + b

(2)
T,1 = OP (1), with g1(s) = s,

b
(1)
T,1 = −

√
T (γ̂ −γ0)G and b

(2)
T,1 = (Φ(1)/Θ(1))

√
T (µ̂−µ). Thus, using The-

orem 3 (p. 24), the pivot transformation is the same as if we knew γ0 and
thus observed g(Zt,γ0). The assumptions of Proposition 7 are quite gen-
eral, although they could be weakened at the cost of more complex proofs.
Primitive conditions for assumption (a) of Proposition 7 can be found in
Bierens [9, p. 164, Theorem 8.2.4]. Assumptions (b) and (d) of Proposi-
tion 7 are standard primitive conditions to establish assumption (a) [e.g.,
9, p. 166-167, Assumptions 8.2.1(b) and 8.2.4]. Assumption (c) of Propo-
sition 7 is slightly nonstandard, but it is implied by the typical primitive
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conditions used to establish assumption (a). In particular, if (Zt) is strictly
stationary and ergodic, and E| ∂∂γ g(Zt,γ0)| < ∞ then assumption (c) holds

with G = E
[
∂
∂γ g(Zt,γ0)

]
by the ergodic theorem and a simple lemma from

Nielsen and Sohkanen [40, Lemma 4.2.]. Note also that in the latter case, if
g(.) is linear and (Zt)t∈Z is zero-mean, G = 0, i.e., there is adaptivity in the
trivial linear case.

3.5.2. Change points. In Examples 4 (p. 12) and 6 (p. 22), we worked
with an ARMAX model which included a change-point type covariate. We
here justify our claim that the estimation of the change-point does not affect
our results under weak conditions. Note that adaptivity with respect to the
estimation of the placement of the change-point also holds in related cases,
such as in the parameter estimation theory of Bai [5, 3], and so this result
is expected.

We here have λ′ = λ, which is univariate, and XT,t−1 = I{t 6 pT}
and X̂T,t−1 = I{t 6 p̂T}. In the following Proposition 8, we assume that

bp̂T c = bpT c + oP (T
1
2 ). This assumption is considerably weaker than the

expected T -convergence of change point problems found in e.g. Bai [3, 5],
i.e., that T (p̂ − p) = OP (1) which implies that bp̂T c = b(p̂ − p)T + pT c =
bOP (1) + pT c = bpT c+OP (1).

Proposition 8 (ARMAX with estimated change-point). Let (Yt) and
(ZT,t) be two processes that satisfy eq. (3.5) s.t. g(ZT,t,γ0) = I{t 6 pT}
for γ0 = p. Define the residuals s.t. g(ZT,t, γ̂) = I{t 6 p̂T} for γ̂ = p̂. If
bp̂T c = bpT c+ oP (

√
T ), then

(i) under Assumption 4(a), sups∈[0,1]

∣∣∣√T [ŨT (s)− ÛT (s)]
∣∣∣ = oP (1); and

(ii) under the additional Assumptions 1, 2, and 3, sups∈[0,1]

∣∣∣∣√T [ŨT (s) −

UT (s)] + sΦ(1)
Θ(1)

√
T (µ̂− µ)− Φ(1)−1 min(s, p)

√
T (λ̂− λ)

−Θ(1)−1Φ(1)−1 min(s, p)
∑p

i=1

√
T (φ̂i − φi)

∣∣∣∣ = oP (1).

Proof. See Appendix D.5 on p. S61 of [27].

In the setting of Proposition 8, a pivot transformation was identified in
Examples 6 and 7.
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