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Abstract

We estimate conditional multifactor models over a large cross-section of stock returns matching 25

CAPM anomalies. Using conditioning information associated with different instruments improves

the performance of the Hou, Xue, and Zhang (2015, HXZ) and Fama and French (2015, 2016, FF)

models. The largest increase in performance holds for momentum, investment, and intangibles-

based anomalies. Yet, there are significant differences in scaled models’ performance: HXZ clearly

dominates FF in explaining momentum and profitability anomalies, while the converse holds

for value-growth anomalies. Thus, the asset pricing implications of alternative investment and

profitability factors (in a conditional setting) differ in a non-trivial way.

Keywords: asset pricing models; conditional factor models; conditional CAPM; equity risk

factors; investment and profitability risk factors; stock market anomalies; cross-section of stock
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I. Introduction

Explaining cross-sectional equity risk premia represents one of the major goals in asset pricing.

Recently, this line of research has been particularly active with the emergence of new multifactor

models having the objective of representing the new work horses in the empirical asset pricing

literature. These include the four-factor model of Hou, Xue, and Zhang (2015) and the five-factor

model of Fama and French (2015), which represent a response to the failure of the traditional

multifactor models (e.g., three-factor model of Fama and French (1993) and four-factor model of

Carhart (1997)) in explaining several market anomalies. The key risk factors in both models are

related with the investment and profitability anomalies, yet, as shown in Maio and Santa-Clara

(2017), Maio (2018), and Cooper and Maio (2018), among others, the performance of the two

models varies widely when it comes to pricing a large cross-section of stock returns.

This paper contributes to the empirical asset pricing literature by testing conditional versions of

the multifactor models mentioned above given the widespread evidence of predictable time-series

variation in future stock returns.1 In fact, a large body of the asset pricing literature has focused on

estimating conditional factor models in an attempt to solve the failure of the baseline CAPM of

Sharpe (1964) and Lintner (1965) when it comes to explaining several patterns in the cross-section

of stock returns like the size, value, and momentum anomalies. A partial list includes Ferson,

Kandel, and Stambaugh (1987), Harvey (1989), Cochrane (1996), He, Kan, Ng, and Zhang

(1996), Jagannathan and Wang (1996), Ferson and Harvey (1999), Lettau and Ludvigson (2001),

Wang (2003), Petkova and Zhang (2005), Avramov and Chordia (2006), Ferson, Sarkissian, and

Simin (2008), and Maio (2013a). Yet, most of this literature focuses on the conditional CAPM and

neglects the role of conditioning information for multifactor models (with He et al. (1996), Ferson

and Harvey (1999), Wang (2003), and Maio (2013a) representing notable exceptions).2

We test conditional factor models over a large cross-section of stock returns associated with 25

different CAPM anomalies. These anomalies can be broadly classified as strategies related with
1Most of the time-series predictability literature focuses on the market return (see, e.g., Campbell and Thompson

(2008), Welch and Goyal (2008), and Maio and Santa-Clara (2012) for a comprehensive empirical analysis). However,
some studies have investigated the time-series predictability of value (see, e.g., Ferson and Harvey (1999), Stivers
and Sun (2010), and Gulen, Xing, and Zhang (2011)) and momentum factors (see, e.g., Chordia and Shivakumar
(2002), Cooper, Gutierrez Jr., and Hameed (2004), and Stivers and Sun (2010)). In related work, Maio (2014),

(2016) and Maio and Santa-Clara (2015) look at the time-series predictability of the returns on portfolios sorted on
size, book-to-market ratio, and momentum.

2In related work, Dumas and Solnik (1995) derive and test a conditional international asset pricing model.
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value, momentum, investment, profitability, and intangibles. We test conditional versions of the

CAPM, four-factor model of Hou et al. (2015), (2017) (HXZ), and the five-factor model of Fama and

French (2015), (2016) (FF). We estimate a conditional HXZ model that contains the value spread,

T-bill rate, investment-to-capital ratio, and return dispersion as instruments. In the estimation

of the conditional FF model we use the value spread, relative T-bill rate, net equity expansion,

and return dispersion as the conditioning variables. The choice of these variables stems from our

evidence showing that they produce the largest forecasting power for the profitability and investment

factors in each of these two models among a list of 21 predictors and is also consistent with previous

evidence (see, e.g., Cohen, Polk, and Vuolteenaho (2003), Stivers and Sun (2010), and Maio

(2016)). In line with the related literature, we employ the time-series regression approach to test

and evaluate the different factor models.

The analysis of the alphas for the 25 “high-minus-low” spreads in returns suggests that using

conditioning information has a positive impact on the performance of the two multifactor models

mentioned above. The model that registers the greatest improvement relative to the unconditional

test is the five-factor model. Yet, HXZ shows the best overall performance under both the

unconditional and conditional tests. When we test the alternative models over the full cross-section

of stock returns (for a total of 248 portfolios), our results also indicate that using conditioning

information improves the performance of the two multifactor models for the broad cross-section

of stock returns. The increased explanatory power is similar across both multifactor models: the

explanatory ratios associated with the benchmark scaled HXZ and FF models are 52% and 27%,

respectively, compared to 30% and 7% for the corresponding unconditional models, and these gains

in fit are statistically significant. However, the conditional HXZ model clearly dominates when it

comes to explaining the cross-sectional dispersion in risk premia as indicated by the substantially

larger explanatory ratios. Our results also suggest that the investment-to-capital ratio is the most

important instrument for the performance of the conditional HXZ model, while the value spread is

the key instrument in terms of driving the fit of the augmented conditional FF model. Our findings

are robust to several robustness checks: using alternative instruments in the construction of the

scaled factors in the conditional models; employing an alternative sample that covers a cross-section

of 29 market anomalies; and allowing the alphas to be time-varying.

We find that there is significant heterogeneity in the performance of the two multifactor models
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across groups of anomalies. On one hand, using conditioning information improves the performance

of HXZ for the investment (like operating accruals, net operating assets, investment-to-assets, or

inventory growth), intangibles (like organizational capital-to-assets and operating leverage), and

momentum (like earnings momentum) anomalies. The performance of FF also improves substantially

in terms of explaining the momentum (like industry momentum) and investment-based anomalies

(like accruals-related anomalies). On the other hand, the scaled factors do not help HXZ and FF (or

even have a negative impact) in terms of explaining the value-growth and profitability anomalies,

respectively. With regards to relative performance, our results suggest that the conditional HXZ

model outperforms the scaled FF model in terms of explaining the momentum and profitability

anomalies, while the inverse holds when it comes to pricing the group of value-growth anomalies.

This suggests, that even after accounting for the role of conditioning information, the asset pricing

implications of the different versions of the investment and profitability factors are quite different

for a large cross-section of stock returns.

In the last part of the paper, we estimate restricted versions of the conditional HXZ and FF

models in which only the scaled factors associated with the investment and profitability factors are

included. The objective is to better disentangle the effect of conditioning information associated with

the investment and profitability factors in terms of driving the explanatory power of each model for

the cross-section of stock returns. The results suggest that the scaled profitability and investment

factors are the most relevant in terms of driving the performance of both the conditional HXZ and

FF models. This implies that the remaining scaled factors in these models are of second-order

importance at explaining cross-sectional risk premia. This pattern is especially notable in the case

of the conditional HXZ models, while in the case of the scaled FF the missing factors have some

contribution in terms of pricing several anomalies (e.g., momentum anomalies). This suggests that

the conditional HXZ model not only achieves better overall pricing performance than the scaled FF

model, but it also does so with fewer scaled factors.

We also compute a decomposition of risk premia for each scaled model across the high-minus-low

return spreads associated with the 25 anomalies. Our results indicate that typically an instrument

produces a higher explanatory power for cross-sectional risk premia when combined (into a scaled

factor) with a raw factor for which it has greater forecasting power in the time-series.

The improved performance of the scaled models for momentum portfolios is consistent with the
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findings of time-variation in momentum profits (Chordia and Shivakumar (2002)). We hypothesize

a real options explanation as follows. Winner firms are firms with valuable growth options, that

is ‘in-the-money’ growth options, and are therefore riskier (see Sagi and Seasholes (2007) for a

formal model relating the momentum effect in stock returns to real options). Winner stocks are

likely high profitability stocks, whereas loser stocks likely experienced negative growth shocks and

are less profitable. This conjecture is supported by our untabulated result that the momentum

(UMD factor) and ROE factors are positively correlated (with a correlation coefficient of 0.5). Thus,

allowing for time variation in the betas with the profitability factor helps explaining the time

varying momentum profits. Conditioning is especially important for the profitability factor in the

FF model (RMW), which is rebalanced annually, and less important for the quarterly-updated

profitability factor (ROE) in the HXZ model in terms of explaining momentum profits. Hence, the

scaled factors in the FF model can act as a (partial) substitute for the ROE factor when it comes

to pricing momentum-based anomalies. Our hypothesized explanation certainly does not rule out

other possible explanations.

The improvement of the models in pricing the investment anomalies is consistent with a time-

varying cross-sectional dispersion in firms’ real options. When the dispersion is large, investing

firms are exercising particularly valuable growth options, leading to a sharp fall in their risk. Our

evidence presented in the paper that the value spread (a measure of the cross-sectional dispersion

in growth options) is a predictor of the investment factors of HXZ and FF lends support for the

conjecture that the real options dispersion drives the improvement of the conditional factor models.

Furthermore, the predictability tests that we conduct indicate that in both HXZ and FF models

the profitability and investment factor premiums exhibit countercyclical time variation. Thus, given

the importance of these two factors in summarizing the cross section of stock returns, countercyclical

risk aversion is potentially a driving force of time variation of several of the stock market anomalies.

The paper proceeds as follows. Section II. shows the theoretical background and models, while

Section III. describes the data and empirical methodology. In Section IV., we assess whether the

lagged instruments forecast the equity factors, while the main empirical analysis is presented in

Section V.. In Section VI., we provide a sensitivity analysis. Section VII. presents the estimation

results for restricted conditional models, and Section VIII. concludes.
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II. Conditional Factor Models

In this section, we present the theoretical background and the conditional factor models that are

tested in the following sections.

A. Theoretical Background

Given a raw risk factor (fj,t+1, j = 1, ...,K) and an instrument (zt), the term fj,t+1zt denotes a

scaled factor. This is often interpreted as the return on a “managed portfolio” (see, e.g., Hansen and

Richard (1987), Cochrane (1996), (2005), Bekaert and Liu (2004), and Brandt and Santa-Clara

(2006)).

We consider the following factor model (in unconditional representation) in which the role of

conditioning information is captured by the scaled factors,

(1) E(Rei,t+1) =
K∑
j=1

βi,jλj +
K∑
j=1

βi,j,zλj,z,

where Rei,t+1 denotes the excess return (relative to the risk-free rate) on an arbitrary risky asset i.

The factor loadings are obtained from the following regressions:

(2) Rei,t+1 = αi +
K∑
j=1

βi,jfj,t+1 +
K∑
j=1

βi,j,zfj,t+1zt + εi,t+1.

As shown in the online appendix, a K-factor conditional model with time-varying pricing kernel

coefficients (that are affine in the lagged instrument) is equivalent to the 2K-factor model presented

above.3 The regression above is equivalent to a conditional specification in which the loadings on

the original factors are allowed to be time-varying and affine in the instrument:4

(3) Rei,t+1 = αi +
K∑
j=1

(βi,j + βi,j,zzt)fj,t+1 + εi,t+1.

3We follow most of the literature on the conditional CAPM by estimating the unconditional representation of the
conditional factor models. Nagel and Singleton (2011) and Ang and Kristensen (2012) use alternative methods to
estimate the conditional CAPM.

4The practice of specifying time-varying betas as a function of lagged instruments is popular in the literature (see,
e.g., Shanken (1990), Ferson and Schadt (1996), Ferson and Harvey (1999), Lewellen (1999), Ferson et al. (2008),
among others). In related work, Lewellen and Nagel (2006) and Boguth, Carlson, Fisher, and Simutin (2011) use
realized betas estimated from daily returns.
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As noted in Cochrane (2005), Lewellen, Nagel, and Shanken (2010), and Maio (2018), when

the factors represent excess returns, the prices of risk must be equal to the corresponding factor

means:

E(fj,t+1) = λj ,(4)

E(fj,t+1zt) = λj,z, j = 1, ...,K.(5)

These conditions are obtained by applying the beta equation above for each factor, and noting

that each factor has a (multiple regression) beta of one on itself and a beta of zero on all the other

factors.5 By substituting the restrictions on the factor risk prices back into the beta equation, we

obtain the following multifactor model:

(6) E(Rei,t+1) =
K∑
j=1

βi,j E(fj,t+1) +
K∑
j=1

βi,j,z E(fj,t+1zt).

This specification represents the basis for the empirical work conducted in the following sections.

B. Models

Next, we present the empirical conditional factor models tested on the cross-section of stock returns.

The first model analyzed is the conditional CAPM,

(7) E(Rei,t+1) = E(RMt+1)βi,M + E(RMt+1zt)βi,M,z,

where RM denotes the excess market return.

The second model is a conditional version of the four-factor model of Hou et al. (2015), (2017)

(HXZ),

E(Rei,t+1) = E(RMt+1)βi,M + E(RMt+1zt)βi,M,z + E(MEt+1)βi,ME + E(MEt+1zt)βi,ME,z

+ E(IAt+1)βi,IA + E(IAt+1zt)βi,IA,z + E(ROEt+1)βi,ROE + E(ROEt+1zt)βi,ROE,z,(8)

where ME, IA, and ROE represent the size, investment (investment-to-assets), and profitability
5This restriction also applies to the scaled factors since they represent the returns on traded assets.
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(return-on-equity) factors, respectively.

The third model represents a conditional version of the five-factor model of Fama and French

(2015), (2016) (FF), which adds an investment (CMA) and a profitability (RMW) factor to the

three-factor model of Fama and French (1993), (1996):

E(Rei,t+1) = E(RMt+1)βi,M + E(RMt+1zt)βi,M,z + E(SMBt+1)βi,SMB + E(SMBt+1zt)βi,SMB,z

+ E(HMLt+1)βi,HML + E(HMLt+1zt)βi,HML,z + E(RMWt+1)βi,RMW + E(RMWt+1zt)βi,RMW,z

+ E(CMAt+1)βi,CMA + E(CMAt+1zt)βi,CMA,z.(9)

Both RMW and CMA are constructed in a different way than the investment and profitability

factors in Hou et al. (2015).

III. Data and Methodology

In this section, we describe the data and methodology employed in the empirical analysis conducted

in the following sections.

A. Data

The data on the risk factors associated with the CAPM and FF models (RM, SMB, HML, RMW,

and CMA) are retrieved from Kenneth French’s data library. The data on the remaining factors

(ME, IA, and ROE) are obtained from Lu Zhang. The sample is 1972:01 to 2013:12. The descriptive

statistics for the factors are displayed in Table 1. The factors with the largest mean returns are

ROE and RM, with estimates above 0.50% per month. On the other hand, the factor with the

lowest mean is SMB (0.23% per month), followed by ME with an average return of 0.31%. This

confirms previous evidence showing that the size premium has declined over time. The factor with

the highest volatility is the equity premium, with a standard deviation above 4.5% per month.

On the other hand, the investment factors (IA and CMA) are the least volatile, with standard

deviations below 2% per month.

Panel B of Table 1 shows the pairwise correlations among the different factors. The two size

(SMB and ME) and investment (IA and CMA) factors are strongly correlated as indicated by the

7



correlation coefficients above or around 0.90. On the other hand, the two profitability factors (ROE

and RMW) are not as strongly correlated (correlation of 0.67), thus indicating that they do not

exhibit a very large degree of overlap. Both investment factors are positively correlated with HML

(around 0.70). Further, both profitability factors show weak negative correlations with the size

factors as indicated by the correlation coefficients between −0.31 and −0.39.

We use six conditioning variables in the construction of the scaled risk factors. The instruments

are the T-bill rate (TB, Fama and Schwert (1977)); value spread (VS, Cohen et al. (2003), Campbell

and Vuolteenaho (2004), Liu and Zhang (2008)); relative T -bill rate (RREL, Campbell (1991),

Hodrick (1992)); stock return dispersion (RD, Stivers and Sun (2010), Maio (2016)); net equity

expansion (NTIS, Boudoukh, Michaely, Richardson, and Roberts (2007), Welch and Goyal (2008));

and the investment-to-capital ratio (IK, Cochrane (1991)).

The portfolio return data used in the cross-sectional asset pricing tests are associated with some

of the most prominent market anomalies. We employ a total of 25 anomalies or portfolio sorts,

which represents a subset of the anomalies considered in Hou et al. (2015). Table 2 contains the

list and description of the anomalies included in our analysis. Following Hou et al. (2015), these

anomalies can be broadly classified as strategies related with value-growth (BM, DUR, and CFP),

momentum (MOM, SUE, ABR, IM, and ABR*), investment (IA, NSI, CEI, PIA, IG, IVC, IVG,

NOA, OA, POA, and PTA), profitability (ROE, GPA, NEI, and RS), and intangibles (OCA and

OL). All the portfolios are value-weighted and all the groups include decile portfolios, except IM and

NEI with nine portfolios each. Compared to the portfolio groups employed in Hou et al. (2015),

we do not use portfolios sorted on earnings-to-price ratio since these deciles are strongly correlated

with the book-to-market (BM) deciles. Similarly, we do not consider the return on assets deciles

because they are strongly correlated with the return on equity deciles (ROE). Moreover, we use

only one measure of price momentum (MOM) and earnings surprise (SUE), since the other related

anomalies used in Hou et al. (2015) are strongly correlated with either MOM or SUE. We also

exclude all portfolio sorts used in Table 4 of Hou et al. (2015) that start after 1972:01. In contrast

to Hou et al. (2015), we use the deciles associated with revenue surprise (RS) since the respective

spread “high-minus-low” in average returns is statistically significant for the 1972:01–2003:12 sample

(t-ratio of 1.97). All the portfolio return data are obtained from Lu Zhang. To construct portfolio

excess returns, we use the one-month Treasury bill rate.
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Table 3 presents the descriptive statistics for high-minus-low spreads in returns between the

last and first deciles among each portfolio class. The anomaly with the largest spread in average

returns is price momentum (MOM), with a premium above 1% per month. The spreads in returns

associated with BM, ABR (abnormal one-month returns after earnings announcements), ROE, and

net stock issues (NSI) are also strongly significant in economic terms with (absolute) means around

0.70% per month. The anomalies with lower average returns are ABR* (abnormal six-month returns

after earnings announcements), RS, and operating leverage (OL), with average gaps in returns

around or below 0.30% in magnitude. MOM is the anomaly with more return volatility (standard

deviation above 7% per month) followed by IM and ROE (with standard deviations above 5%). The

least volatile return spreads are ABR*, NEI, and IG, all with volatilities below 3%.

B. Methodology

We use time-series regressions to test the alternative factor models, as in Fama and French (1993),

(1996), (2015) and Hou et al. (2015). This methodology is adequate when all the factors in the

model represent excess stock returns as it is the case in this paper (see Cochrane (2005)). In this

method, the implied risk price estimates are forced to be equal to the respective factor means.6

We estimate the conditional specifications associated with each of the multifactor models (HXZ

and FF) by using different sets of four instruments in each case.7 The conditional HXZ model

includes VS, TB, IK, and RD as instruments, while the conditional FF model contains VS, RREL,

NTIS, and RD as conditioning variables.8 The choice of these variables stems from the analysis

conducted in the next section showing that they produce the largest forecasting power for the

profitability (ROE and RMW) and investment (IA and CMA) factors among a list of different 21

predictors.9

Therefore, the time-series regressions for the conditional CAPM associated with the first set of

6This avoids the critique of implausible risk price estimates (see Lewellen and Nagel (2006) and Lewellen et al.
(2010)).

7The choice of four instruments in each scaled model is admittedly an ad hoc one. We follow previous studies that
employ a similar number of instruments in conditional asset pricing tests (see, e.g., Ferson and Harvey (1999) and
Petkova and Zhang (2005)).

8Other papers use lagged stock characteristics, like size and BM, as the instruments that drive factor loadings (e.g.,
Lewellen (1999) and Avramov and Chordia (2006)) in tests of the conditional CAPM.

9We thank the referee for suggesting this procedure in selecting the instruments.
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instruments are given by

Rei,t+1 = αi + βi,MRMt+1 + βi,M,VSRMt+1VSt + βi,M,TBRMt+1TBt

+βi,M,IKRMt+1IKt + βi,M,RDRMt+1RDt + εi,t+1,(10)

and similarly for the scaled HXZ model (containing 4× 4 = 16 scaled factors).

By using the second set of instruments, the regressions for the scaled CAPM are as follows:

Rei,t+1 = αi + βi,MRMt+1 + βi,M,VSRMt+1VSt + βi,M,RRELRMt+1RRELt

+βi,M,NTISRMt+1NTISt + βi,M,RDRMt+1RDt + εi,t+1,(11)

and similarly for the scaled FF (containing 4× 5 = 20 scaled factors).

To control for possible overfitting and multicollinearity problems, in addition to the augmented

conditional models (based on four instruments) we estimate single-instrument versions of the

conditional HXZ and FF models. This also enables to assess which instruments are driving the

performance of each conditional factor model and which instruments are less important. To evaluate

the statistical significance of the factor loadings, we use t-ratios based on heteroskedasticity-adjusted

standard errors.10

For the conditional models to be valid one needs to impose the condition that the intercepts

are zero for every testing asset i (αi = 0), which arise by taking expectations on both sides of the

regressions presented above. It is important to note that any conditional factor model does not

necessarily outperform the corresponding unconditional specification. The reason is that adding

factors to the time-series regressions does not imply lower intercept estimates (alphas).11

Assume that E(f) is the vector of factor means; T is the number of time-series observations;

N is the number of testing assets; K is the number of factors (including the scaled factors); and

α̂ ≡ (α̂1, ..., α̂N ) denotes the vector of alphas. A formal statistical test for the null hypothesis that

10In the time-series tests, the lagged conditioning variables are demeaned, which is a common practice in the
conditional CAPM literature (see, for example, Lettau and Ludvigson (2001) and Ferson, Sarkissian, and Simin
(2003)).

11Ghysels (1998) provides evidence that the unconditional CAPM produces smaller pricing errors than the
conditional CAPM.
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the alphas are jointly equal to zero is the following Wald test,

(12) T
[
1 + E(f)′Ω̂−1 E(f)

]−1
α̂′Σ̂−1α̂ ∼ χ2(N),

which is based on the GMM distribution, and thus is only valid asymptotically (see Cochrane

((2005), chapter 12) for details). In the expression above, the covariance matrices of the factors

(ft ≡ (f1,t, ..., fK,t)′) and residuals from the time-series regressions (ε̂t ≡ (ε̂1,t, ..., ε̂N,t)′) are given by

Ω̂ = 1
T

T∑
t=1

[ft − E(f)] [ft − E(f)]′ ,(13)

Σ̂ = 1
T

T∑
t=1
ε̂tε̂
′
t.(14)

This statistic generalizes the test provided by Gibbons, Ross, and Shanken (1989) (GRS) by relaxing

the restrictive assumptions that the errors from the time-series regressions are jointly normally

distributed and have a spherical variance (ie., the errors are homoskedastic and jointly orthogonal)

and is valid for finite samples.12

Although the χ2 statistic represents a formal test of the validity of a given model for explaining

a given cross-section of average returns, it is in general not robust and may produce perverse results.

The reason hinges on the problematic inversion of Σ̂, especially when there is a large number of

testing assets as in our case. Thus, one might reject a model (i.e., the value of both statistics is large)

because of a large estimate of Σ̂−1 even with low magnitudes of the alphas.13 This problem might

be accentuated by the term involving Ω̂−1, which might be poorly estimated with a large number of

factors. This is especially relevant in this paper since the conditional models have significantly more

factors than the corresponding unconditional models. Consequently, in the full estimation with the

25 anomalies, we report the number of anomalies (or portfolio groups) in which the model is not

rejected (at the 5% level) rather than reporting the p-values for the null that the alphas for the

248 portfolios are jointly equal to zero. We also report the number of alphas that are individually

statistically significant (at the 5% level) in each cross-sectional test.14

12The χ2-test is slightly more conservative than the GRS-test, hence we do not report the results associated with
the latter statistic.

13It is well known that both the GRS and Wald tests have size distortions (tend to over-reject the null of zero
pricing errors) when there is a large number of testing assets.

14We note that the number of significant t-ratios is not an exact measure of the joint statistical significance of the
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Compared to the Wald statistic, a more robust (albeit less formal) goodness-of-fit measure to

evaluate factor models is the mean absolute alpha,

(15) MAA = 1
N

N∑
i=1
|α̂i|.

The statistics mentioned above only refer to the magnitudes of the alphas (pricing errors),

without relating them to the magnitudes of the raw portfolio risk premia that we seek to explain. To

evaluate the capacity of the model in terms of explaining cross-sectional dispersion in risk premia,

we compute the (constrained) cross-sectional R2 proposed in Maio (2018),

(16) R2
C = 1− VarN (α̂i)

VarN (Rei )
,

where VarN (·) stands for the cross-sectional variance and Rei is the sample mean of the excess return

for asset i. R2
C represents a measure of the proportion of the cross-sectional variance of average

excess returns on the testing assets explained by the factor loadings associated with a given model.

Maio (2018) uses the above measure to evaluate the fit of multifactor models from a constrained

cross-sectional regression of average excess returns on factor betas in which the factor risk price

estimates correspond to the respective factor means. For example, in the case of the conditional

CAPM the constrained regressions are given by

Rei = RMβi,M + RMVSβi,M,VS + RMTBβi,M,TB + RMIKβi,M,IK + RMRDβi,M,RD,(17)

Rei = RMβi,M + RMVSβi,M,VS + RMRRELβi,M,RREL + RMNTISβi,M,NTIS + RMRDβi,M,RD,

(18)

where RM denotes the sample mean of the market factor, and RMz represents the sample mean of

each of the scaled factors where z ≡ VS,TB, IK,RD,RREL,NTIS. It is straightforward to show

that the pricing errors from such cross-sectional equations are numerically equal to the alphas

obtained from the time-series regressions. Thus, a cross-sectional regression where the factor risk

prices are equal to the factor means is equivalent to the time-series regression approach.15 This

alphas. The reason relies on a multiple testing problem, that is, the correlation of t-ratios (of alphas) among different
testing portfolios.

15Fama and French (2015) employ a similar measure based on the alphas from the time-series regressions.
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R2 measure can assume negative values, which means that the multifactor model does worse

than a simple cross-sectional regression containing just a constant. In other words, the factor

betas underperform the cross-sectional average risk premium in terms of explaining cross-sectional

variation in risk premia (the model performs worse than a model that predicts constant risk premia

in the cross-section of average returns).

The focus of this paper is in evaluating the incremental performance of conditional multifactor

models relative to the corresponding unconditional models. To assess the statistical significance of

the gain in R2
C between the scaled and unscaled models, S = R2

C,C −R2
C,U , we compute empirical

p-values based on a bootstrap simulation (see, e.g., Kan and Zhang (1999), Jagannathan and Wang

(2007), Maio and Santa-Clara (2017), and Maio (2018)). The empirical p-values represent the

fractions of artificial samples in which the pseudo spread in R2
C is higher than the corresponding

sample estimate. In this bootstrap simulation, the joint data-generating process for portfolio returns

and factors is simulated under the assumption that the factors are independent from the testing

returns (“useless factors”, as in Kan and Zhang (1999)). Nevertheless, this analysis of statistical

significance of S should be interpreted with some caution given previous evidence showing that the

cross-sectional R2 (and its difference across two different models) often exhibits large sampling error

in cross-sectional tests of multifactor models (see, e.g., Lewellen et al. (2010) and Kan, Robotti,

and Shanken (2013)). The full details of the bootstrap simulation algorithm are available in the

online appendix.

IV. Predicting Factors

In this section, we evaluate whether the factor risk prices are time-varying and predicted by

conditioning variables. To achieve this goal, we regress the equity factors onto the lagged instruments.

A. Selecting Instruments

We start by selecting the instruments employed in the construction of the scaled factors. We use

a set of popular variables from the equity premium predictability literature to forecast the equity

factors. We use univariate predictive regressions to assess the forecasting power of each individual

predictor in isolation. Our focus is on the profitability and investment factors since these are the
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most relevant factors in terms of driving the performance of the unconditional HXZ and FF models

(see Fama and French (2015) and Hou et al. (2015)).

We use the following list of 21 predictors, many of them employed in the comprehensive analysis

conducted in Welch and Goyal (2008): Term spread (TERM); Default spread (DEF); Dividend-

to-price ratio (DP); T-bill rate (TB); Dividend-payout ratio (DE); Net equity expansion (NTIS);

Cross-sectional portfolio return dispersion (RD); Default return spread (DFR); Value spread (VS);

Realized stock market variance (SVAR); Inflation rate (INF); Change in the Fed funds rate (∆FFR);

Relative T -bill rate (RREL); Cross-sectional stock return dispersion (CSV); Industrial Production

(IPG); Earnings-to-price ratio (EP); Stock-bond yield gap (YG); Price-earnings ratio (PE); Book-

to-market ratio (BM); Consumption-to-wealth ratio (CAY); and the Investment-to-capital ratio

(IK). A detailed description of these variables and their original references is included in the online

appendix.

Table 4 displays the estimates, and respective heteroskedasticity-robust t-ratios, for the slopes in

the single predictive regressions as well as the corresponding R2 estimates.16 We can see that both

the relative T-bill rate and NTIS forecast a significant decline in RMW, while CAY is positively

correlated with future RMW (t-ratio of 2.13). When it comes to predicting ROE, it turns out that

the T -bill rate forecasts a rise in the profitability factor, with an explanatory ratio around 1%.

IK is also positively correlated with future ROE, with the respective coefficient being marginally

insignificant at the 5% level (t-ratio=1.92). Yet, the corresponding R2 has a similar magnitude

(1.12%) to the fit in the regression with TB.

Turning to the investment factors, we can see that the slopes associated with RD are marginally

significant (10% level) when it comes to forecasting either IA or CMA, with the R2 estimates being

in the 1.32-1.91% range. This result is in line with the evidence in Stivers and Sun (2010) and Maio

(2016) showing that RD forecasts an increase in the returns of the value-minus-growth portfolios.

Since the investment factors are positively correlated with HML (see Table 1), it is natural that

return dispersion also has some forecasting power for both IA and CMA. Furthermore, the value

spread is a strong predictor (1% level) of a rise in both investment factors, with R2 estimates around

or above 2%. Most of the remaining predictors do not forecast significantly (at the 10% level) any

16In order to facilitate the interpretation of the size of the slope estimates, the predictors are standardized in this
section.

14



of these four factors. The few exceptions are TERM and IPG (when it comes to predicting RMW).

In light of these results, we select VS, TB, IK, and RD as the conditioning variables employed

in the conditional HXZ model. In the case of the conditional FF model, the instruments are VS,

RREL, NTIS, and RD. The rationale subjacent to this choice is to employ the variables with greater

forecasting power for the profitability and investment factors associated with the two multifactor

models. Moreover, most of these slope estimates seem economically significant: the magnitudes vary

between 0.20% and 0.30%, which indicates that a one-standard deviation increase in the predictor

leads to a change in the predicted future monthly return of the factor of around 20-30 basis points.

In Section VI., we estimate other specifications for these two models, which rely on alternative

instruments.

Figure 1 presents plots of the time series of the profitability and investment factor premiums.

These premiums represent the fitted values from the univariate regressions of each of the factors (on

selected predictors) described above. Both the investment and profitability premia are countercycli-

cal.17 This result supports the notion that the factors’ average returns represent compensations

for risk required by investors with countercyclical risk aversion, as for example, in Campbell and

Cochrane (1999). The prominence of the profitability and investment factors in summarizing the

cross section of average returns (as shown in the following sections) suggests that several stock

market anomalies might be time varying in a countercyclical fashion.

The predictive performance of the value spread for the investment factors can have the following

economic interpretation, consistent with the predictions of real options models (see, e.g., Carlson,

Fisher, and Giammarino (2006) and Cooper (2006)). A large value spread, that is book-to-market

spread, indicates a large dispersion in firms’ growth options, implying that some firms have very

valuable growth options (while others have little growth options and are likely highly operationally

leveraged). Under such circumstances, investing firms will be exercising valuable growth options

and will experience a sharp fall in volatility and risk (as they no longer possess the risky growth

options). Thus, the expected returns of high investment firms are substantially lower than those of

low investment firms. Given the positive correlation between the investment factors and HML, the

predictability associated with VS can also be explained by the present-value relation proposed in

17These results are confirmed by regressing each factor premium on the NBER business cycle dummy. Untabulated
results show that the slopes of these regressions are significantly negative in all four cases.
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Cohen, Polk, and Vuolteenaho (2003), which states that VS is positively correlated with future

returns on the value-growth factor.

We propose the following real options explanation for the predictive role of the aggregate

investment-to-capital ratio for ROE. The investment-to-capital ratio is highly persistent.18 Thus,

high IK in a given period indicates that many firms have exercised their investment options, whereas

a large group of other firms are about the exercise their valuable growth options in near future.19

Hence, high IK is associated with a large cross-sectional dispersion in growth options. A large

cross-sectional dispersion in growth options implies that profitable firms are riskier because their

expected investment is high as their growth options are in-the-money.20

B. Forecasting Factor Risk Premia

Next, we assess the joint forecasting power of the selected instruments for each of the factors within

the HXZ and FF models.

Specifically, in the case of IA and CMA, we run the following multivariate regressions,

IAt+1 = γ0 + γ1VSt + γ2TBt + γ3IKt + γ4RDt + ηt+1,(19)

CMAt+1 = γ0 + γ1VSt + γ2RRELt + γ3NTISt + γ4RDt + ηt+1,(20)

and similarly for the other factors in HXZ and FF. We test the null hypothesis of no joint significance

of the four slopes in the regressions above (γ1 = γ2 = γ3 = γ4 = 0) with a Wald test based on a

χ2(4) distribution.

From the regressions above it follows that the conditional mean of each factor, which corresponds

to the conditional risk price, is time-varying and affine on the lagged instruments. Since the

stochastic discount factor (SDF) coefficients are a linear transformation of the conditional risk prices
18Quarterly IK has an autocorrelation of 0.97 during the sample period.
19Gourio and Kashyap (2007) find that changes in the number of establishments undergoing investment spikes

(and thus exercising their growth options) account for the bulk of variation in aggregate investment.
20Hou, Mo, Xue, and Zhang (2018) find that an expected investment growth factor, defined as the excess returns of

high expected investment growth firms over low investment growth firms, earns on average 0.56% per month (t-ratio
= 6.66). An extensive literature documents that cash flows are significant predictors of future investment (Fazzari,
Hubbard, and Petersen (1988)). Profitable firms are likely high cash-flow firms. Hou et al. (2015) define ROE as
the ratio of income before extraordinary items to lagged book equity. The common definition of cash flows in the
literature is the ratio of the income before extraordinary items and depreciation and amortization to lagged total
assets. Because total assets and book equity are slow moving variables, much of the variation of ROE and cash flows
comes emanates from income before extraordinary items.
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(see Cochrane (2005)), the presence of time-variation in the conditional factor means legitimates an

SDF with time-varying coefficients (as suggested in Section II.).

The results for the multiple forecasting regressions for the equity factors are presented in Table

5. Starting with the HXZ factors (Panel A), we can see that there is a significant amount of

predictability in the regression for IA as the null of joint no-predictability from the four predictors

is strongly rejected (p-value of 1%) and the explanatory ratio is 3%. We do not reject the null of

joint no-predictability in the case of the other factors, including ROE, as the p-values are always

above 10%. In terms of individual significance, only the slopes associated with VS and TB in

the regression corresponding with future IA are significant at the 5% level. This arises from the

multicollinearity induced by the correlation among the predictors, which is especially relevant when

it comes to forecast ROE as none of the coefficients (including the slopes associated with TB and

IK) is significant at the 10% level.

The predictability results associated with the FF factors indicate stronger forecasting power.

Specifically, there are three factors (HML, RMW, and CMA) in which the null of no joint predictabil-

ity from the four instruments is rejected at the 5% or 1% levels. In terms of individual marginal

significance, VS helps to predict CMA, while the slopes associated with RREL are significant in

the regressions for all five factors. On the other hand, in contrast with the evidence for the single

regressions, there is no significance at the 5% level for both NTIS and RD, which again should be a

consequence of multicollinearity (the positive slope of RD is marginally significant in the regression

for HML).21

Overall, the results in this subsection indicate that there is a relevant share of multivariate

predictability from the lagged macro variables for the equity factors. This predictability is stronger

for the profitability (especially RMW), investment, and value factors.

V. Main results

In this section, we test the two conditional multifactor models presented above by using a broad

cross-section of stock returns. Our focus is more on assessing the impact of conditioning information

21The positive correlation between RD and future HML is consistent with the empirical and theoretical evidence
that both variables are countercyclical (see, e.g., Gomes, Kogan, and Zhang (2003), Petkova and Zhang (2005),
Zhang (2005), and Stivers and Sun (2010)).
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in the performance of each model rather than conducting a formal comparison of conditional models.

A. Return Spreads

As a preliminary exercise, we assess whether the loadings associated with the original equity factors

are time-varying. This justifies testing the conditional models in the first place. Hence, we conduct

Wald tests to assess if the loadings on the four scaled factors associated with a given factor (e.g.,

the four scaled factors corresponding to IA) are jointly statistically significant. The testing assets

employed are the spreads high-minus-low for each of the 25 market anomalies. The results presented

and discussed in the online appendix suggest that the betas associated with the scaled factors within

both HXZ and FF are statistically significant in most cases. Hence, it makes sense to conduct

conditional asset pricing tests in order to evaluate these two multifactor models.

We estimate time-series regressions for each factor model applied to the spreads high-minus-low

in returns. The alphas for the return spreads associated with both the unconditional and conditional

multifactor models are presented in Table 6. Results presented in the online appendix show that all

the 25 alphas associated with the baseline CAPM are statistically significant, thus confirming that

the single-factor model in its unconditional form cannot explain any of these 25 patterns in stock

returns.22 The conditional CAPM based on VS, TB, IK, and RD does not significantly improve

the corresponding baseline model as only in one case (GPA spread) is the respective alpha not

significant at the 5% level (still, there is significance at the 10% level). These results are in line

with previous evidence showing that the conditional CAPM is not a valid answer for explaining

cross-sectional equity risk premia (see Lewellen and Nagel (2006)).

The benchmark conditional HXZ model (with four instruments) improves marginally the baseline

four-factor model of Hou et al. (2015), (2017), with a mean absolute alpha (across the 25 spreads)

of 0.19% (versus 0.20%). Among the major changes relative to the unconditional model, the alphas

associated with both the BM and DUR return spreads become significant at the 5% level. In

opposite direction, the ABR* and NOA return spreads produce insignificant alphas under the

conditional model. Interestingly, the alpha estimate associated with the BM return spread becomes

insignificant in the conditional HXZ specification based on a single instrument (IK), while the

corresponding mean absolute alpha is the same as in the augmented model (0.19%). The scaled
22This is why these patterns in cross-sectional returns are often denominated as CAPM or market anomalies.
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HXZ based on TB produces a similar average pricing error, yet with more significant alphas (six

in total). This provides preliminary evidence that adding more instruments does not necessarily

improve the performance of the conditional HXZ model. On the other hand, the scaled model based

on RD does not seem to improve the unconditional model in terms of pricing the 25 return spreads,

with an average alpha of 0.21%.

The results for the scaled FF models (based on VS, RREL, NTIS, and RD) show that the

benchmark conditional model (with four instruments) registers an improvement against the respective

unconditional model of Fama and French (2015), (2016), with 12 significant alphas and a mean

absolute alpha of 0.29% (compared to 14 and 0.33%, respectively, for the unscaled model). The

main changes occur for the IM and NSI spreads, whose alphas become insignificant under the

conditional tests. The single-instrument conditional FF models based on VS and NTIS perform

slightly worse than the corresponding augmented model with mean alphas of 0.31%, with the return

spreads corresponding to NSI (both scaled models) and IM (version based on NTIS) being now

significant at the 5% level. The conditional model corresponding to RREL seems to be the worst

performer among the scaled FF models with a mean absolute alpha of 0.34% and 14 return spreads

with significant alphas, thus indicating that it does not improve the baseline model. We can also see

that the alphas associated with the ABR and OA return spreads are statistically significant across

both the benchmark and single-instrument conditional specifications associated with both HXZ and

FF.

Overall, the evidence from Table 6 suggests that using conditioning information has a small

positive impact on the performance of the two multifactor models. The model that registers the

greatest improvement relative to the corresponding unconditional tests is the five-factor model. Yet,

HXZ shows the best overall performance under both the unconditional and conditional tests.

B. Full Cross-Section of Stock Returns

Analyzing the spreads high-minus-low in average returns is important because a large portion of the

cross-sectional variation in average returns is associated with the extreme first and last deciles within

each portfolio group. Nevertheless, this represents a rather incomplete picture of the cross-section

of average returns since it ignores all the remaining deciles within each anomaly. For this reason, we

assess the explanatory power of the different factor models for all the deciles associated with each
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anomaly, which represents a total of 248 portfolios.

The results are presented in Table 7. First, both versions of the conditional CAPM cannot

really outperform the baseline CAPM as indicated by the negative R2
C estimates, which shows that

the scaled CAPM does worse than a trivial model that predicts constant equity risk-premia in the

cross-section. The benchmark conditional HXZ model improves considerably the performance of the

corresponding unconditional model as indicated by the MAA and R2
C estimates of 0.09% and 52%,

respectively (which compare to 0.11% and 30%, respectively, for the baseline four-factor model).

This represents an economically significant gain in fit for the large cross-section of 248 portfolios

that arises by incorporating conditioning information. Moreover, the gain in R2
C is also statistically

significant (at the 10% level). There are 28 individual portfolios with significant alphas in the

conditional model compared to 39 in the unconditional case. Moreover, there are 13 anomalies

or portfolio groups in which the conditional model passes the specification test, compared to only

seven anomalies for the baseline four-factor model.

Turning to the single-instrument conditional HXZ models, the specification that performs better

is the one using IK as instrument, with an average alpha of 0.10% and a R2
C of 48%, which nearly

matches the fit of the augmented HXZ. This suggests there is a good deal of overlapping among the

alternative instruments and scaled factors in terms of explaining cross-sectional risk premia and

it is consistent with the results obtained for the return spreads discussed above. Moreover, that

single-instrument model is not formally rejected in 12 of the 25 anomalies. This performance signals

an economically significant improvement relative to the unconditional HXZ. Yet, the conditional

models based on either VS or RD also register a sizable gain in terms of explaining risk premia

relative to the baseline model: a substantial fraction (around 40%) of the cross-sectional variation

in equity risk premia is explained by the factor loadings associated with those scaled models. The

single-instrument model that produces the smaller improvement relative to the four-factor model is

the one based on TB, with an explanatory ratio of 33% and seven anomalies in which the model is

not formally rejected (same as in the baseline case).23

The results presented in Panel B of Table 7 indicate that using conditioning information also

23As discussed in Section II., the scaled factors can originate from time-varying risk prices or time-varying conditional
factor loadings in which both are affine in the lagged instrument. Hence, the fact that a given instrument (e.g., TB)
forecasts factor risk premia does not necessarily imply that the corresponding scaled factor explains cross-sectional
risk premia.
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produces a considerable improvement in the performance of the FF model: the average alpha and

R2
C estimates associated with the augmented conditional FF model are 0.10% and 27%, respectively,

which compare to 0.11% and 7%, respectively, for the baseline five-factor model. This rise in fit is

statistically significant (10% level) and of similar magnitude to that observed for the conditional

HXZ model (around 20 percentage points), representing also a substantial improvement relative to

both the baseline and scaled CAPM. Turning to the single-instrument scaled FF models, we can

see the specification based on VS dominates the other versions as suggested by the explanatory

ratio of 19% and 46 significant alphas. The versions associated with NTIS and RD have a weaker

performance, but the R2
C estimates around 10% suggests that these two instruments contribute in a

non-negligible way for the fit of the augmented scaled FF model. On the other end of the spectrum,

the conditional FF based on RREL does not seem to improve the baseline five-factor model, with a

R2
C around zero (4%) and as many as 56 significant alphas, which is consistent with the performance

for the return spreads discussed above. This suggests that the choice of instruments can have a

relevant impact in the performance of conditional factor models. Indeed, instruments with high

forecasting power for factor risk premia (e.g., RREL) do not necessarily translate into scaled factors

with high predictive power for cross-sectional risk premia. On the other hand, instruments like

the value spread do have consistent predictive power in both the time-series and cross-sectional

dimensions.

When it comes to comparing the two conditional multifactor models, the augmented conditional

HXZ appears to clearly dominate the augmented conditional FF in terms of explaining cross-sectional

dispersion in risk premia, as indicated by the difference in R2
C estimates (a gap around 25 percentage

points), and this difference is statistically significant at the 10% level (p-values reported in the

online appendix). Moreover, the conditional HXZ also produces a smaller number of portfolios with

significant alphas (28 versus 43) and a larger number of anomalies in which the specification test is

passed (13 versus 9). Comparing the two scaled models when the sole conditioning variable is either

VS or RD allows for a sharper comparison since the instrument is common in both models. Results

presented in the online appendix show that the scaled HXZ model outperforms the scaled FF in

both specifications, with the differences in R2
C being significant at the 10% and 5% levels when the

instruments are VS and RD, respectively.

Overall, the results of this subsection indicate that using conditioning information improves in a
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relevant way the performance of the two multifactor models for the broad cross-section of stock

returns. The increased explanatory power is similar across both multifactor models. However, the

conditional HXZ model clearly dominates when it comes to explaining the cross-sectional dispersion

in risk premia as indicated by the substantially larger explanatory ratios. Our results suggest

that IK is the most important instrument for the performance of the conditional HXZ model,

while VS seems to be the most relevant instrument in terms of driving the fit of the augmented

conditional FF model.24 Furthermore, our results also show a substantial larger improvement in

model’s performance (by adding conditioning information) in comparison to the tests for return

spreads documented in the last subsection. This confirms the importance of looking at the full

cross-section of portfolios (rather than focusing only at the very extreme deciles within each portfolio

group) and shows that cross-sectional dispersion in risk premia is not exclusively concentrated in

these extreme deciles.

C. Categories

Next, we estimate the conditional factor models by categories of anomalies, whose results appear in

Table 8.

We conclude that using conditioning information tends to deteriorate the performance of the

HXZ model in terms of pricing the three value-growth anomalies (BM, DUR, and CFP): the average

alpha increases from 0.10% to values in the 0.12-0.13% range (depending on the instruments used),

while the cross-sectional R2 declines from 36% to values in the 9-30% range. The exception is the

scaled model based on TB, which produces a marginally better fit (explanatory ratio of 41%) than

the baseline model. In comparison, the fit of both the augmented conditional FF model and the

single-instrument versions based on VS and RD is slightly higher than the corresponding baseline

model, as indicated by the decline in average alpha (from 0.08% to 0.06-0.07%) and the increase in

the explanatory ratio from 66% to 72-79%. Hence, the conditional FF models seem to dominate the

conditional HXZ models when it comes to explaining the value-growth anomalies and the difference

in R2
C estimates across the two models is significant when we use the augmented specifications

as well as the single-instrument models based on VS (results provided in the online appendix).

24We estimate a conditional version of the four-factor model of Carhart (1997). Unreported results show that using
conditioning information has a negligible effect in the models’s performance in terms of explaining the 25 anomalies.
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Moreover, all five versions of the conditional FF model pass the specification test for the three

value-growth anomalies (in contrast to the conditional HXZ models).

Using instruments improves substantially the performance of the five-factor model for the five

momentum anomalies (MOM, SUE, ABR, IM, and ABR*), particularly when we consider the

augmented version containing four instruments: the average alpha declines from 0.16% to 0.13%,

while the cross-sectional R2 rises from negative (-33%) to marginally positive values (7%), with

such improvement being statistically significant (5% level). Yet, as with the unscaled model, the

benchmark conditional FF model is rejected by the χ2-test in the estimation with each of the

five momentum groups. Further, all the four single-instrument specifications produce negative R2
C

estimates (although significantly less negative than the baseline FF model when the conditioning

variable is VS with the gain in fit being statistically significant). This means that those conditional

models perform worse than a trivial model that predicts constant cross-sectional momentum risk

premia. Apart from the model scaled by TB, the improvement in the performance of HXZ (resulting

from adding the scaled factors) for the momentum anomalies seems economically significant: the

explanatory ratios vary between 53% (conditional model based on RD) and 66% (augmented

specification), compared to 42% for the unconditional model. Yet, none of these gains is statistically

significant at the 10% level, which suggests high statistical uncertainty when it comes to pricing

momentum risk premia. Still, the benchmark conditional HXZ is not formally rejected when tested

on three (out of the five) momentum anomalies, and there are only three individual portfolios with

significant alphas (compared to 12 in the augmented conditional FF model). These results suggest

a sharp dominance of HXZ relative to FF when it comes to pricing the five momentum anomalies

even after incorporating conditioning information (despite the significant gain in performance of the

second model by incorporating the scaled factors). Indeed, the results reported in the appendix

indicate that the spread in explanatory ratios between the two models is strongly significant (5%

level) when we use VS or RD as scaling variables as well as when comparing both augmented scaled

models.

In comparison to the momentum anomalies, the scaled factors have a smaller impact in the

performance of HXZ for the four profitability-based anomalies (ROE, GPA, NEI, and RS): the

average alphas associated with both the augmented conditional model and the specification based

on IK (0.08-0.09%) are very close to the corresponding estimate for the unconditional model, while
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the explanatory ratios increase marginally from 48% to values in the 56-58% range. These two

conditional specifications are not rejected by the χ2-test in the estimation with three of the four

profitability groups. On the other hand, the conditional HXZ models based on TB, RD, and VS do

not improve the performance of the baseline four-factor model (R2
C in the 45-49% range). Using

conditioning information has nearly no impact in the performance of the five-factor model for the

profitability anomalies as the R2
C estimates are negative in the augmented conditional model as well

as in the single-instrument models based on RREL, NTIS, and VS, similarly to the baseline model.

In the case of the model based on NTIS, the mean alpha is around 0.11%, while the explanatory

ratio is around zero (2%). Therefore, these results also suggest that the conditional HXZ models

clearly outperform the conditional FF models in terms of explaining the four profitability anomalies,

with the gap in fit assuming similar magnitudes to the case of the momentum anomalies (around

60 percentage points). In fact, the positive gaps in R2
C estimates between the two models are

statistically significant at the 5% level when comparing the augmented models as well as the versions

based on VS and RD.

Using conditioning information has a significant positive effect in the performance of both

multifactor models for the larger group of 11 investment-based anomalies. This is especially true for

HXZ, with average alphas varying between 0.09% (augmented model) and 0.10% (versions based on

VS and IK), compared to 0.11% for the baseline model. The range for the R2
C estimates is between

33% (version based on VS) and 48% (four-instrument model), which represents an economically

significant gain relative to the fit of the unscaled HXZ model (10%). This gain in performance

is statistically significant (at the 10% or 5% level) in the cases of the augmented HXZ as well as

the version scaled by IK, while being borderline insignificant in the version based on VS (p-value

marginally above 10%). The number of individually significant alphas is in the 11-14 range for

these three scaled models compared to 20 in the baseline case. In comparison, the models scaled

by either TB or RD do not improve significantly the baseline model. The augmented conditional

FF model outperforms the corresponding baseline model in a relevant way, as indicated by the

R2
C of 31% (compared to 18% in the baseline case). The scaled FF based on VS also improves the

performance of the baseline model as suggested by the R2
C estimate of 26%, while the remaining

three single-instrument versions do not add explanatory power (explanatory ratios in the 16-20%

interval). By comparing the performance of the two augmented conditional models, we can see that
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HXZ dominates FF, although by a significantly smaller margin than in the cases of the momentum

and profitability anomalies (which can also be seen by the fact that both models are not formally

rejected in four of the 11 investment-based anomalies). Indeed, the spreads in R2
C between the two

models are not significant at the 10% level (as shown in the online appendix).

Finally, we assess the models’ performance for the two anomalies related to intangibles (OCA

and OL). We can see that both the augmented conditional HXZ and the version based on IK

improve the baseline model by a considerable margin: the explanatory ratios are in the 54-65%

range (compared to 11% in the baseline case), while the mean alpha is 0.09% (compared to 0.12%).

Moreover, these gains in R2
C are statistically significant (10% or 5% level). The scaled HXZ based

on VS also outperforms considerably the baseline model (MAA = 0.11% and R2
C = 42%), and this

gain is insignificant by a small margin (p-value of 11%). Using conditioning information improves

the performance of the FF model for the 20 portfolios as indicated by the MAA of 0.08% (compared

to 0.10% in the baseline case) and the explanatory ratio of 35% (versus 18%), when we use the four

instruments. Yet, this level of fit is substantially smaller than that associated with the augmented

scaled HXZ and the difference in R2
C (relative to the baseline FF model) is not statistically significant.

The single-instrument FF specifications based on RREL, RD, and NTIS offer a marginal incremental

explanatory power relative to the baseline model (explanatory ratio in the 21-24% range), but the

same does not occur with the specification associated with VS (R2
C = 15%). In terms of comparing

the scaled HXZ and FF models, the former model deliver higher R2
C estimates but the differences

are not significant at the 10% level.

By comparing the single-instrument HXZ models, we can see that the version based on IK

dominates the other specifications across the profitability, intangibles, and investment (by a smaller

margin in the latter case) anomalies. When it comes to explaining the momentum anomalies, the

models scaled by VS and IK deliver a similar performance, while in the case of the value-growth

anomalies the model based on TB achieves the best fit. In the case of the conditional FF models,

the specification based on VS tends to outperform the other versions when it comes to pricing the

momentum and investment anomalies, while the model scaled by NTIS seems to dominate in terms

of explaining the profitability and intangibles anomalies.

The improved pricing of momentum-based anomalies for the scaled FF model stems largely

from the fact that RMW is updated only annually. Conditioning enables a monthly version of
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RMW, improving its ability to capture the time-varying momentum premium. Profitability is

important in capturing momentum because winner stocks are likely profitable stocks with good

growth opportunities, whereas loser stocks likely lack such options. Growth opportunities resemble

in nature to financial call options, and hence their moneyness (capture by their loadings with respect

to either ROE or RMW) is positively related to their risk.

Relatedly, Liu and Zhang (2014) find that winners have higher expected investment growth

and higher expected marginal productivity of capital (see also Maio and Philip (2018) for further

related evidence). Intuitively, high expected future value of capital (which means higher expected

investment) next period (relative to investment this period) implies higher riskiness. Similarly,

high expected capital productivity relative to current investment also signals higher risk. It is

plausible that high profitability firms have both features. That is, high current profitability implies

high expected profitability (see Hou et al. (2015)). Moreover, high profitability is also associated

with higher expected investment (see Hou et al. (2018). Therefore an updated RMW might have

a substantial advantage over the unscaled RMW in pricing momentum-related anomalies. An

alternative explanation is related to Johnson (2002). According to Johnson (2002), stock prices

are convex in growth rates, and given that winners are likely to have experienced positive growth

rate shocks, they are riskier. This explanation is also consistent with the substantial improvement

of the scaled FF model in terms of pricing the momentum-related anomalies.

We conjecture that the improvement of the conditional HXZ in describing the investment

anomaly is partially due to conditioning on the value spread. The value spread is the spread in

book-to-market ratios and hence is a proxy for the dispersion in growth options. Therefore, at times

of high value spread, investing firms are exercising valuable growth options, entailing a sharp fall in

their risk. On the other hand, low investment firms are likely particularly highly operationally (or

financially) levered during times of large value spreads, implying they are particularly risky in such

times.

Overall, the results of this subsection indicate that there is significant heterogeneity in the

performance of the two multifactor models across groups of anomalies. On one hand, using

conditioning information improves the performance of HXZ for the investment, intangibles, and

momentum anomalies, while the performance of FF improves substantially in terms of explaining the

momentum and investment anomalies. On the other hand, the scaled factors do not help HXZ and FF
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(or even have a negative impact) in terms of explaining the value-growth and profitability anomalies,

respectively.25 With regards to relative performance, our results suggest that the conditional HXZ

model outperforms the scaled FF model in terms of explaining the momentum and profitability

anomalies, while the inverse holds when it comes to pricing the group of value-growth anomalies.

The scaled HXZ also produces higher explanatory ratios than the scaled FF in the estimation with

the investment and intangibles anomaly groups, yet the gaps in fit are not statistically significant in

those cases.

D. Selected Anomalies

Next, we assess the performance of the two multifactor models for a selected number of relevant

market anomalies. We select nine anomalies with magnitudes of average spreads high-minus-low

above 0.50% per month (see Table 3). These include the spreads associated with BM, DUR, MOM,

ABR, IM, ROE, NSI, CEI, and OCA. Thus, these nine portfolio groups represent each of the five

categories described in Section III.. In principle, these anomalies are more difficult to explain than

the remaining anomalies given the largest spreads in average returns among the extreme deciles.

We also include ABR*, NOA, and OA given the evidence above showing that the return spreads

associated with these three anomalies are not explained by both unconditional multifactor models.

The results for the two multifactor models tested on each of the 12 anomalies referred above

are presented in Table 9. To keep the table readable, we only present results for selected single-

instrument conditional specifications associated with both HXZ and FF. Incorporating conditioning

information improves significantly the performance of HXZ in terms of pricing the ABR, ABR*,

NOA, OA, and OCA deciles as the the R2
C estimates increase by around or more than 20 percentage

points relative to the fit in the baseline four-factor model and these differences in R2
C are statistically

significant at the 5% in most cases (in the case of ABR*, there is significance at the 10% level). This

rise in fit is especially notable in the case of the OA deciles as the R2
C rises from a very negative

estimate (−1.05%) to a positive (albeit quite modest) fit when one uses the four instruments (5%).

Moreover, the augmented conditional HXZ passes the specification test (at the 5% level) in the

25The improved performance in terms of pricing the momentum anomalies of both models in their conditional
forms is consistent with evidence of time-variation in momentum profits (e.g., Chordia and Shivakumar (2002)). The
improved performance of the conditional models in pricing the investment-related anomalies is consistent with time
variation in the cross-sectional dispersion of growth options.
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estimations with the DUR, IM, ABR*, CEI, and OCA deciles.

The scaled FF model outperforms the respective unconditional model by a big margin when it

comes to pricing the MOM and IM deciles as indicated by the positive explanatory ratios (21%

and 53%, respectively), although only in the latter case the gain in R2
C is statistically significant

(5% level). There is also a substantial rise in fit in the estimation with the ABR, ABR*, and OA

deciles. Yet, such improvement is not enough to warrant a positive performance of the conditional

FF since the explanatory ratios are still negative in all three cases. Moreover, the gain in R2
C is

only statistically significant in the estimation with the OA deciles. The augmented conditional FF

is not rejected by the χ2-test when the testing assets are BM and DUR, thus confirming the good

performance for the value-growth anomalies.

At the other end of the spectrum, adding the scaled factors seems to hurt the performance of

HXZ when it comes to explaining the BM, DUR, ROE, and NSI deciles as indicated by the lower R2
C

estimates (relative to the baseline model), although these differences are not statistically different

from zero. On the other hand, the augmented scaled FF model produces lower explanatory ratios

than the corresponding unconditional model when it comes to pricing the ROE and NSI deciles, but

again these gaps in R2
C are not statistically significant.

Turning to the single-instrument HXZ specifications, we can see that the version based on IK

seems to dominate the model based on VS when it comes to pricing the DUR, OA, and OCA

deciles: the positive spreads in cross-sectional R2 are above or around 20 percentage points, which

is consistent with the evidence above for the full cross-section. The model scaled by IK dominates

statistically the baseline model in terms of pricing the NOA, OA, and OCA deciles, while in the

case of the model scaled by VS, such dominance only occurs in the estimation with the OA deciles.

In what relates the single-instrument FF models, the results suggest that the version based on VS

outperforms the specification associated with NTIS when it comes to pricing the MOM, IM, and

NOA deciles, while an inverse pattern holds in the estimation with the OA deciles. However, these

two conditional models do not outperform in statistical terms the baseline FF model for any of these

12 anomalies (marginally so for the version based on VS in the estimation with the IM portfolios).

The good performance of the scaled models also holds for some of the other anomalies studies in

this paper. Results presented in the online appendix show that the augmented scaled HXZ generates

statistically significant gains in R2
C (relative to the baseline model) in terms of pricing the GPA, OL,
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IA, PIA, and IVG deciles. A similar pattern holds for the single-instrument model based on IK when

it comes to pricing the first four of these anomalies in addition to the RS deciles. On the other hand,

the model scaled by VS generates statistically significant gains when it comes to price the GPA,

PIA, and IVG deciles. Turning to the five-factor model, the gain in performance of the augmented

scaled FF model (relative to the five-factor model) is statistically significant in the estimation with

the GPA, POA, PTA, and RS deciles. Yet, in the case of the single-instrument FF model based

on VS the difference in cross-sectional R2 is statistically significant only in the estimation with

the GPA deciles, while in the version based on NTIS there are no significant gains in R2
C for any

of these 13 anomalies. This suggests that excluding some of the scaled factors affects more the

performance of the conditional FF model in comparison to the scaled HXZ model. Moreover, these

results also suggest that the critical instruments for the performance of the augmented scaled HXZ

are VS and IK, while in the case of the augmented scaled FF model the other two instruments

(RREL and RD) also seem to play a relevant role for its pricing performance.

Overall, the results of this subsection are in line with the evidence above showing that the role

of conditioning information is especially important in driving the performance of both models for

the momentum and investment-based anomalies and the intangibles anomalies (in the case of HXZ).

However, this role is less relevant in terms of improving the performance (and is actually negative

in some cases) of HXZ and FF for the value-growth and profitability anomalies, respectively.

VI. Sensitivity Analysis

In this section, we present some robustness checks to the results presented in the last section.

A. Alternative Conditional Specifications

We estimate the conditional HXZ and FF models by using alternative instruments. First, we replace

IK by the log earnings yield (EP) in the augmented conditional HXZ, while NTIS is substituted by

CAY in the conditional FF model. The rationale for using these instruments is that EP is borderline

insignificant (at the 10% level) when it comes to predicting ROE (t-ratio=1.61), while CAY helps

to predict a significant rise in RMW, as shown in Table 4.

The results reported in the online appendix are similar to the corresponding results for the
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benchmark conditional models. Specifically, we obtain MAA and R2
C estimates of 0.10% and

49%, respectively for the augmented conditional HXZ (based on VS, TB, EP, and RD), while

the corresponding estimates for the four-instrument conditional FF (based on VS, RREL, CAY,

and RD) are 0.10% and 28%, respectively. It turns out that the pricing performance of the

single-instrument conditional HXZ model based on EP is quite similar to the version based on IK

(MAA = 0.10%, R2
C = 46%). On the other hand, the single-instrument FF version based on CAY

outperforms marginally the version based on NTIS when it comes to explaining cross-sectional

dispersion in risk premia, as indicated by the explanatory ratio of 19% (versus 12%). Hence, the

single-instrument FF models based on CAY and VS have an identical global explanatory power. In

terms of the spreads high-minus-low the results are also quite similar to those in the benchmark scaled

models: the main differences are that the return spread associated with CEI becomes significant in

the new augmented HXZ model, while the same occurs for the new augmented FF model in terms

of pricing the NSI return spread.

In the second alternative conditional tests, the lagged instruments associated with both the

scaled HXZ and FF models are TERM, DEF, DP, and TB. These conditioning variables have been

widely used in previous cross-sectional tests of conditional factor models (see, e.g., Harvey (1989),

Jagannathan and Wang (1996), Ferson and Harvey (1999), Petkova and Zhang (2005), and Maio

(2013a)), and represent traditional predictors of the aggregate equity premium.

The results tabulated in the online appendix indicate that the performance of the new augmented

HXZ (based on TERM, DEF, DP, and TB) is similar to the benchmark conditional model as indicated

by the average alpha and explanatory ratio of 0.10% and 53%, respectively. Among the single-

variable specifications, the version based on DP clearly dominates the versions based on TERM,

DEF, and TB, as indicated by the cross-sectional R2 of 53%, which coincides with the fit obtained

for the corresponding augmented model.26 This implies that the scaled HXZ models based on

TERM and DEF (as well as the case of TB already reported in the last section) improve marginally

(or do not improve) the baseline model.

Using the traditional equity premium predictors as instruments also leads to a significant rise in

the performance of the five-factor model: the mean alpha and R2
C estimates are 0.09% and 34%,

26These results are consistent with the evidence in Maio (2013a) showing that a scaled factor based on the lagged
dividend yield helps explaining cross-sectional equity risk premia.
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respectively, which indicates a slightly better fit than the benchmark augmented conditional FF

model. The gain in performance relative to the unconditional FF is in the same order of magnitude

as that registered for the conditional HXZ and is economically significant. The instruments that

drive the performance of the new scaled FF are DP and TERM as indicated by the explanatory

ratios above 20% in the corresponding single-instrument specifications.27

This conditional specification allows a more appropriate comparison between the two conditional

multifactor models, as the set of instruments is fixed across the two models. The results suggest that

the conditional HXZ clearly dominates the conditional FF when it comes to explaining cross-sectional

dispersion in risk premia, as indicated by the higher R2
C estimates. Turning to the anomaly return

spreads, the results displayed in the appendix confirm the positive performance of the scaled HXZ

based on DP: only three anomalies (ABR, NSI, and OA) have significant alphas. In comparison,

the single-instrument scaled FF based on DP originates 10 significant alphas (compared to 14 in the

baseline model), which is another sign of the dominance of the HXZ model in terms of explaining

the extreme deciles.

B. Alternative Sample

We estimate the conditional factor models by using a restricted sample, 1976:07 to 2013:12. This

enables to include deciles associated with four additional anomalies in the set of testing returns: Net

payout yield (NPY, Boudoukh et al. (2007)); revisions in analysts’ earnings forecasts with one-month

holding period (RE, Chan, Jegadeesh, and Lakonishok (1996)); advertisement expense-to-market

(ADM, Chan, Lakonishok, and Sougiannis (2001)); and R&D-to-market (RDM, Chan et al. (2001)).

Following Hou et al. (2015), NPY and RE belong to the larger groups of value-growth and

momentum anomalies, respectively, while ADM and RDM are included in the group of intangibles.

In total, we have 29 anomalies corresponding to 288 testing portfolios.

The results reported in the online appendix are qualitatively similar to the findings obtained

for the full sample (with 25 anomalies). Specifically, the augmented conditional HXZ produces an

explanatory ratio of 44%, which is more than twice the fit obtained for the unconditional four-factor

27These results also suggest that instruments with relatively weak time-series predictive power (e.g., DP, as shown in
Table 4) can originate scaled factors with large explanatory power for the cross-section of average returns. Hence, DP
can be motivated as a driving force of the (unobserved) conditional factor loading rather than a source of time-varying
factor risk premia.
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model (18%). As in the benchmark tests, the best performing single-instrument HXZ model is

the version associated with IK, with a R2
C of 36%, while the versions based on vs and RD, with

explanatory ratios around 30%, also outperform the baseline model.

In the restricted sample, using conditioning information has a smaller contribution to the

performance of the FF model, as indicated by the R2
C of 20%, which represents an increase of about

10 percentage points relative to the fit of the baseline five-factor model (9%). As in the benchmark

tests, the key instrument for the performance of the scaled FF is VS: the explanatory ratio of

the single-instrument version based on this variable is about the same magnitude as that of the

augmented model (20%), while the other single-instrument specifications improve rather marginally

(versions based on NTIS and RD) or do not improve at all (RREL) the baseline model in terms of

explaining cross-sectional risk premia.

Regarding the new anomalies, it turns out that the alpha for the high-minus-low spread

corresponding to NPY is priced by the conditional FF models (unlike the respective baseline model),

as suggested by the insignificant alphas. A similar pattern holds for the augmented conditional HXZ

in terms of driving the RDM spread. On the other hand, both the unconditional and conditional

HXZ models price the RE and ADM spreads and the same occurs for the FF model in terms

of explaining the ADM and RDM return gaps. Hence, incorporating conditioning information

is especially important for the FF and HXZ models in terms of explaining the NPY and RDM

anomalies, respectively.

C. Time-Varying Alphas

In this subsection, we allow alphas to be time-varying following Christopherson, Ferson, and

Glassman (1998), Ferson and Harvey (1999), Ferson et al. (2008), among others,

(21) αi,t = αi,0 + αi,VSVSt + αi,TBTBt + αi,IKIKt + αi,RDRDt,
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which implies that the time-series regression for the conditional CAPM (based on VS, TB, IK, and

RD) is now as follows,

Rei,t+1 = αi,0 + αi,VSVSt + αi,TBTBt + αi,IKIKt + αi,RDRDt

+βi,MRMt+1 + βi,M,VSRMt+1VSt + βi,M,TBRMt+1TBt

+βi,M,IKRMt+1IKt + βi,M,RDRMt+1RDt + εi,t+1,(22)

and similarly for the other factor models (and alternative conditional specification).

Since the instruments are demeaned, by taking unconditional expectations of the previous

regressions, we obtain:

E(Rei,t+1) = αi,0 + βi,M E(RMt+1) + βi,M,VS E(RMt+1VSt) + βi,M,TB E(RMt+1TBt)

+βi,M,IK E(RMt+1IKt) + βi,M,RD E(RMt+1RDt).(23)

This means that to check the validity of the conditional models for unconditional risk premia, we

need to test whether the intercept is zero (αi,0 = 0), exactly as in the benchmark specification tested

in the previous section. In other words, non-zero alpha coefficients on the instruments (αi,z 6= 0)

do not affect the asset pricing implications of the conditional factor model for unconditional risk

premia. Still, it could be the case that time-varying alphas can have an effect on the estimate of the

average alpha (αi,0), which represents the unconditional pricing error, and also on the respective

standard errors.

We redo the asset pricing tests for the joint 25 anomalies by using the augmented time-series

regression presented above, which includes the four lagged instruments as regressors in each version

of the conditional factor models. Untabulated results show that the estimated alphas (intercepts)

and goodness-of-fit measures are very similar to the corresponding estimates in the benchmark tests.

These results suggest that allowing alphas to be time-varying has a negligible impact in the fit of

the conditional factor models for the cross-section of average stock returns.
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VII. Restricted conditional models

A. Full cross-section

In this section, we estimate restricted versions of the scaled HXZ and FF models. In both groups of

conditional models, only the scaled factors associated with the investment and profitability factors

are included. The objective is to better disentangle the effect of conditioning information associated

with the investment and profitability factors in terms of driving the explanatory power of each

model for the cross-section of stock returns.

Specifically, the time-series regressions for the restricted HXZ model scaled by IK are given by

Rei,t+1 = αi + βi,MRMt+1 + βi,MEMEt+1 + βi,IAIAt+1 + βi,IA,IKIAt+1IKt

+βi,ROEROEt+1 + βi,ROE,IKROEt+1IKt + εi,t+1,(24)

and similarly for the models scaled by VS, TB, and RD. In the case of the restricted FF model

based on VS, we have

Rei,t+1 = αi + βi,MRMt+1 + βi,SMBSMBt+1 + βi,HMLHMLt+1 + βi,RMWRMWt+1

+βi,RMW,VSRMWt+1VSt + βi,CMACMAt+1 + βi,CMA,VSCMAt+1VSt + εi,t+1,(25)

and similarly for the models scaled by RREL, NTIS, and RD. Hence, each of these conditional

models contains only two scaled factors. We also estimate restricted versions of the augmented

scaled HXZ and FF models (based on all four instruments), which contain eight scaled factors.

The estimation results are presented in Table 10, which is similar to Table 7 above. We can see

that the performance of the restricted scaled HXZ models is very similar to that of the corresponding

models in Table 7. In particular, the MAA and R2
C are almost identical to the corresponding

estimates in the original scaled models. This suggests that the scaled factors associated with RM

and ME do not add significant explanatory power in terms of pricing the large cross-section of

equity risk premia. Importantly, it turns out that the gain in fit of the conditional model based on

IK (relative to the baseline HXZ) is now significant at the 10% level. This suggests that excluding

some noisy scaled factors can improve the power of the conditional asset pricing tests.
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In the case of the scaled FF models there is a slightly larger difference in performance (relative

to the benchmark scaled models) by excluding some of the scaled factors. Specifically, for both the

augmented model and the model scaled by VS the explanatory ratios decline by around 5 percentage

points. This implies that the gain in fit of the augmented model (relative to the baseline FF) is no

longer significant at the 10% level (p-value of 11%). These results suggest that the performance of

the scaled FF is more dependent of the other scaled factors. Moreover, the scaled HXZ model tends

to achieve its performance with fewer scaled factors than the scaled FF model, which is consistent

with the evidence from Section V..

We also assess the performance of the restricted conditional models across each anomaly group.

Results presented in the online appendix show that the fit of the restricted HXZ models is quite

similar to that of the corresponding unrestricted scaled models. In the case of the augmented

model and the single-instrument models scaled by VS and IK the R2
C estimates are very close to

the corresponding estimates for the unrestricted models: Only in the version based on VS when

estimated on the investment group does the explanatory ratio decline by more than 5 percentage

points. Excluding some of the scaled factors has a slightly larger negative impact on the performance

of the scaled FF models, in line with the results for the full cross-section. Specifically, the explanatory

ratio declines by more than 5 percentage points for both the FF version based on VS and augmented

model (when tested on the momentum group) and the model based on NTIS (in terms of pricing

the profitability group). This implies that the gain in fit (relative to the unconditional FF) is no

longer significant (at the 10% level) for the FF scaled by VS (whereas in the case of the augmented

model there is significance (for the difference in R2
C) only at the 10% level) when it comes to explain

the group of momentum anomalies.

Finally, we estimate restricted scaled models containing only one scaled factor. These models

represent special cases of the single-instrument HXZ models based on VS and IK on one hand

and the single-instrument FF models based on VS and NTIS on the other hand. Assessing the

fit of these lower-scale restricted models allows one to better discriminate which are the scaled

factors (profitability versus investment) driving the pricing performance of the models estimated

above. Untabulated results show that the explanatory ratios (for the full cross-section of stock

returns) associated with the scaled HXZ models containing ROEt+1IKt and IAt+1VSt as the sole

scaled factor are 36% in both cases. By comparing these values with the corresponding fit for the
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restricted models (based on two scaled factors) in Table 10, it follows that IAt+1IKt has an important

contribution in terms of pricing the average portfolio, while the incremental explanatory power

driven by ROEt+1VSt is relatively marginal. On the other hand, the R2
C estimates for the scaled

FF models based on CMAt+1VSt and RMWt+1NTISt are 8% and 11%, respectively. This suggests

that RMWt+1VSt helps explaining equity risk premia of the average portfolio while CMAt+1NTISt

has no incremental pricing power for a model that already contains RMWt+1NTISt.

Overall, the results of this subsection suggest that the scaled profitability and investment

factors are the most relevant in terms of driving the performance of both the conditional HXZ and

FF models. This implies that the remaining scaled factors in these models are of second-order

importance at explaining cross-sectional risk premia. This pattern is especially notable in the case

of the conditional HXZ models, while in the case of the scaled FF the missing factors have some

contribution in terms of pricing several anomalies (e.g., momentum anomalies). This suggests that

the conditional HXZ model not only achieves better overall pricing performance than the scaled FF

model (as shown in the previous sections), but it also does so with fewer scaled factors.

B. Decomposing return spreads

What is the role of conditioning information in terms of driving the fit of the conditional factor

models? More specifically, which scaled factors contribute the most for the fit of each model? To

answer this question, we conduct a decomposition for the spreads high-minus-low in average returns.

Following Maio (2013b) and Maio and Santa-Clara (2017), for each spread in returns we estimate

the contribution from each factor in producing the respective alpha, which arises from computing

the respective risk premium (beta times risk price). For example, in the case of the high-minus-low

spread associated with the BM deciles, the contribution of the scaled factor IAt+1IKt from the HXZ

model is given by

(26) E(IAt+1IKt)β10−1,BM,IA,IK,

where β10−1,BM,IA,IK denotes the loading on IAt+1IKt for the high-minus-low BM return spread.

For a given factor to help explaining the raw return spread, the risk premium associated with that

factor needs to have a relevant magnitude and the same sign as the original spread.
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We focus on the single-instrument restricted conditional models presented above in order to better

disentangle the contribution of each scaled factor for the model’s performance. The results tabulated

in the online appendix indicate that the scaled factors ROEt+1IKt and IAt+1VSt contribute the most

to explaining the raw risk premia for the conditional HXZ models based on IK and VS, respectively.

In the case of the conditional FF model based on VS and NTIS, the most relevant scaled factors

are CMAt+1VSt and RMWt+1NTISt, respectively, as indicated by the signs and magnitudes of the

respective risk premiums.

To a large extent these results support a consistency in the time-series and cross-sectional

dimensions of stock returns: an instrument produces a higher explanatory power for cross-sectional

risk premia when combined (into a scaled factor) with a raw factor for which it has greater forecasting

power in the time-series. Hence, this legitimates our method of selecting instruments based on the

time-series (univariate) predictive performance of the conditioning variables for the equity factors.

Nevertheless, the results of this subsection should be interpreted with some caution, since the

high-minus-low return spreads represent a rather incomplete picture of the broad cross-section of

equity risk premia.

VIII. Conclusion

In this paper, we test conditional factor models over a large cross-section of stock returns associated

with 25 different CAPM anomalies. These anomalies can be broadly classified as strategies related

with value, momentum, investment, profitability, and intangibles. We test conditional versions of

the CAPM, four-factor model of Hou et al. (2015), (2017) (HXZ), and the five-factor model of

Fama and French (2015), (2016) (FF). We employ alternative instruments in the construction of the

scaled factors within the conditional HXZ and FF models.

The analysis of the alphas for the 25 “high-minus-low” spreads in returns suggests that using

conditioning information has a positive impact on the performance of the two multifactor models

mentioned above. When we test the alternative models over the full cross-section of stock returns

(for a total of 248 portfolios), our results also indicate that using conditioning information improves

the performance of the two multifactor models for the broad cross-section of stock returns. The

increased explanatory power is similar across both multifactor models, however, the conditional
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HXZ model clearly dominates when it comes to explaining the cross-sectional dispersion in risk

premia as indicated by the substantially larger explanatory ratios. Our results also suggest that the

investment-to-capital ratio is the most important instrument for the performance of the conditional

HXZ model, while the value spread is the key instrument in terms of driving the fit of the augmented

conditional FF model.

We find that there is significant heterogeneity in the performance of the two multifactor models

across groups of anomalies. On one hand, using conditioning information improves the performance

of HXZ for the investment (like operating accruals, net operating assets, investment-to-assets, or

inventory growth), intangibles (like organizational capital-to-assets and operating leverage), and

momentum (like earnings momentum) anomalies. The performance of FF also improves substantially

in terms of explaining the momentum (like industry momentum) and investment-based anomalies

(like accruals-related anomalies). On the other hand, the scaled factors do not help HXZ and FF (or

even have a negative impact) in terms of explaining the value-growth and profitability anomalies,

respectively. With regards to relative performance, our results suggest that the conditional HXZ

model outperforms the scaled FF model in terms of explaining the momentum and profitability

anomalies, while the inverse holds when it comes to pricing the group of value-growth anomalies.

This suggests, that even after accounting for the role of conditioning information, the asset pricing

implications of the different versions of the investment and profitability factors are quite different

for a large cross-section of stock returns.

In the last part of the paper, we estimate restricted versions of the conditional HXZ and FF

models in which only the scaled factors associated with the investment and profitability factors

are included. The results suggest that the scaled profitability and investment factors are the most

relevant in terms of driving the performance of both the conditional HXZ and FF models. This

pattern is especially notable in the case of the conditional HXZ models, while in the case of the

scaled FF the missing factors have some contribution in terms of pricing several anomalies (e.g.,

momentum anomalies). This suggests that the conditional HXZ model not only achieves better

overall pricing performance than the scaled FF model, but it also does so with fewer scaled factors.
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Table 1: Descriptive Statistics for Equity Factors
This table reports descriptive statistics for the equity factors from alternative factor models. RM, SMB,
and HML denote the market, size, and value factors, respectively. ME, IA, and ROE represent the
Hou–Xue–Zhang size, investment, and profitability factors, respectively. RMW and CMA denote the
Fama–French profitability and investment factors. The sample is 1972:01–2013:12. φ designates the
first-order autocorrelation coefficient. The correlations between the factors are presented in Panel B.

Panel A. Basic Statistics

Mean (%) Std. Dev. (%) Min. (%) Max. (%) φ
RM 0.53 4.61 −23.24 16.10 0.08
ME 0.31 3.14 −14.45 22.41 0.03
IA 0.44 1.87 −7.13 9.41 0.06

ROE 0.57 2.62 −13.85 10.39 0.10
SMB 0.23 3.07 −15.26 19.05 0.03
HML 0.40 3.00 −12.61 13.88 0.15
RMW 0.29 2.25 −17.60 12.24 0.18
CMA 0.37 1.96 −6.76 8.93 0.14

Panel B. Correlations

RM ME IA ROE SMB HML RMW CMA
RM 1.00 0.25 −0.36 −0.18 0.25 −0.32 −0.23 −0.39
ME 1.00 −0.12 −0.31 0.98 −0.07 −0.38 −0.01
IA 1.00 0.06 −0.15 0.69 0.10 0.90

ROE 1.00 −0.38 −0.09 0.67 −0.09
SMB 1.00 −0.11 −0.39 −0.05
HML 1.00 0.15 0.70
RMW 1.00 −0.03
CMA 1.00
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Table 3: Descriptive Statistics for Spreads in Returns
This table reports descriptive statistics for the “high-minus-low” spreads in returns associated
with different portfolio classes. See Table 2 for a description of the different portfolio
sorts. The sample is 1972:01–2013:12. φ designates the first-order autocorrelation coefficient.

Mean (%) Std. Dev. (%) Min. (%) Max. (%) φ

BM 0.69 4.86 −14.18 20.45 0.11
DUR −0.52 4.34 −21.38 15.77 0.09
CFP 0.49 4.66 −18.95 16.26 0.02

MOM 1.17 7.21 −61.35 26.30 0.05
SUE 0.44 3.05 −14.27 12.09 −0.00
ABR 0.73 3.17 −15.80 15.32 −0.10
IM 0.54 5.09 −33.33 20.27 0.05

ABR* 0.30 2.08 −10.45 9.86 −0.01
ROE 0.75 5.28 −26.37 29.30 0.16
GPA 0.34 3.36 −13.55 12.35 0.04
NEI 0.36 2.79 −12.10 12.21 0.00
RS 0.30 3.46 −12.85 20.08 0.07
IA −0.42 3.62 −14.39 11.83 0.04

NSI −0.69 3.28 −20.47 12.88 0.10
CEI −0.55 4.06 −16.34 17.94 0.06
PIA −0.49 3.00 −10.37 8.60 0.08
IG −0.38 2.83 −12.81 9.67 0.07

IVC −0.43 3.19 −12.21 11.64 0.06
IVG −0.36 3.15 −9.69 12.04 0.07
NOA −0.39 3.11 −14.26 13.45 0.02
OA −0.27 3.10 −10.39 12.81 −0.01

POA −0.43 3.12 −11.84 19.87 0.06
PTA −0.40 3.38 −11.25 19.13 0.01
OCA 0.55 3.13 −13.68 13.60 −0.02
OL 0.39 3.86 −10.34 17.37 0.11
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Table 4: Univariate Predictive Regressions for Equity Factors
This table presents the slopes and respective t-ratios (in parentheses) in single regressions of eq-
uity factors on lagged predictors. The second row contains the R2 associated with each regression
(in %). IA and ROE represent the Hou–Xue–Zhang investment and profitability factors, respec-
tively. RMW and CMA denote the Fama–French profitability and investment factors, respectively.
The sample is 1972:01–2013:12. The t-ratios are heteroskedasticity-robust. Bold t-ratios indicate sta-
tistical significance at the 5% level. For a description of the variables see the text in Section 4.

IA ROE RMW CMA
DP 0.000 (0.14) 0.001 (0.53) −0.001 (−0.73) −0.001 (−0.75)

0.01 0.09 0.22 0.18
TERM −0.001 (−0.91) −0.002 (−1.49) 0.002 (1.68) −0.001 (−1.05)

0.17 0.49 0.56 0.24
TB 0.001 (1.34) 0.003 (2.22) −0.000 (−0.17) 0.001 (0.84)

0.28 1.04 0.00 0.13
DE 0.001 (0.60) −0.003 (−1.56) 0.000 (0.03) −0.000 (−0.13)

0.08 1.35 0.00 0.00
NTIS 0.001 (0.76) −0.000 (−0.30) −0.002 (−1.98) 0.000 (0.42)

0.10 0.02 0.53 0.03
RD 0.002 (1.66) 0.001 (0.26) 0.002 (0.96) 0.003 (1.82)

1.32 0.05 1.07 1.91
DEF 0.000 (0.09) −0.002 (−1.49) −0.001 (−0.54) −0.000 (−0.40)

0.00 0.78 0.05 0.03
DFR 0.000 (0.04) 0.000 (0.11) −0.001 (−0.85) 0.000 (0.02)

0.00 0.01 0.20 0.00
VS 0.003 (2.61) −0.001 (−0.38) 0.001 (0.44) 0.003 (3.08)

1.93 0.07 0.15 2.70
SVAR −0.001 (−0.79) −0.001 (−0.75) −0.000 (−0.02) 0.000 (0.46)

0.07 0.22 0.00 0.02
INF 0.001 (1.22) 0.001 (0.93) 0.000 (0.05) 0.001 (0.76)

0.24 0.16 0.00 0.10
∆FFR 0.001 (1.45) −0.000 (−0.37) −0.001 (−1.08) 0.001 (0.88)

0.29 0.03 0.19 0.15
RREL 0.000 (0.49) −0.001 (−0.89) −0.003 (−3.00) 0.001 (1.18)

0.04 0.15 1.32 0.26
CSV 0.001 (0.46) −0.001 (−0.67) −0.000 (−0.07) 0.001 (0.83)

0.12 0.28 0.01 0.39
YG −0.000 (−0.32) 0.003 (1.56) −0.001 (−0.88) −0.001 (−0.70)

0.03 1.13 0.21 0.13
IPG 0.000 (0.43) 0.000 (0.18) −0.002 (−1.73) −0.000 (−0.07)

0.03 0.01 0.52 0.00
EP −0.000 (−0.25) 0.003 (1.61) −0.001 (−0.84) −0.001 (−0.66)

0.02 1.18 0.19 0.11
PE −0.000 (−0.44) −0.000 (−0.25) 0.001 (0.71) 0.000 (0.32)

0.06 0.02 0.20 0.03
BM 0.001 (0.69) 0.001 (0.83) −0.001 (−1.35) −0.000 (−0.08)

0.11 0.18 0.43 0.00
CAY −0.001 (−1.10) 0.001 (1.34) 0.002 (2.13) −0.001 (−1.56)

0.20 0.22 0.53 0.40
IK 0.001 (0.48) 0.003 (1.92) 0.001 (0.42) 0.001 (0.92)

0.08 1.12 0.08 0.27
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Table 5: Multivariate Predictive Regressions for Equity Factors
This table presents the results for regressions of equity factors on lagged predictors. In Panel A, the
lagged instruments are the value spread (VS), one-month T-bill rate (TB), investment-capital ratio (IK),
and stock return dispersion (RD). In Panel B, the instruments are VS, RD, relative T-bill rate (RREL),
and net equity expansion (NTIS). RM, SMB, and HML denote the market, size, and value factors, re-
spectively. ME, IA, and ROE represent the Hou–Xue–Zhang size, investment, and profitability factors,
respectively. RMW and CMA denote the Fama–French profitability and investment factors. The sam-
ple is 1972:01–2013:12. For each regression, the first row presents the coefficient estimates and the
second row reports GMM-based t-ratios. R2 denotes the coefficient of determination. The column la-
beled χ2 presents the Wald statistic (first line) and associated p-value (in parenthesis) for the test on
the joint significance of the four predictors. Bold t-ratios indicate statistical significance at the 5% level.

Panel A. HXZ (VS,TB,IK,RD)

VS TB IK RD R2 χ2

RM −0.001 −0.001 −0.004 −0.001 0.01 4.74
(−0.46) (−0.29) (−1.43) (−0.48) (0.32)

ME 0.002 −0.000 0.000 −0.001 0.01 2.22
(1.21) (−0.13) (0.03) (−0.32) (0.69)

IA 0.003 0.002 −0.001 0.001 0.03 14.32
(2.33) (2.33) (−0.56) (0.82) (0.01)

ROE −0.000 0.002 0.002 0.000 0.01 6.63
(−0.06) (1.29) (1.25) (0.04) (0.16)

Panel B. FF (VS,RREL,NTIS,RD)

VS RREL NTIS RD R2 χ2

RM −0.001 −0.004 0.000 −0.003 0.01 5.63
(−0.43) (−2.04) (0.18) (−1.02) (0.23)

SMB 0.001 −0.003 0.001 −0.001 0.01 7.25
(0.74) (−2.15) (0.56) (−0.41) (0.12)

HML 0.001 0.004 0.001 0.004 0.04 12.79
(0.74) (2.68) (0.45) (1.89) (0.01)

RMW −0.001 −0.002 −0.001 0.002 0.03 15.59
(−0.32) (−2.12) (−1.24) (1.02) (0.00)

CMA 0.003 0.002 −0.001 0.001 0.04 12.36
(2.69) (2.13) (−0.81) (0.90) (0.01)
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Table 6: Spreads “High-minus-Low”
This table presents alphas for “high-minus-low” portfolio return spreads associated with unconditional
and conditional factor models. See Table 2 for a description of the different portfolio sorts. The
models are the Hou–Xue–Zhang four-factor model (HXZ) and Fama–French five-factor model (FF).
In the conditional HXZ models, the lagged instruments are the value spread (VS), one-month T-bill
rate (TB), investment-capital ratio (IK), and stock return dispersion (RD). In the conditional FF
models, the lagged instruments are VS, RD, relative T-bill rate (RREL), and net equity expansion
(NTIS). “All” refers to conditional models in which all the corresponding four instruments are em-
ployed. The sample is 1972:01–2013:12. Bold values indicate statistical significance at the 5% level.

HXZ VS TB RD IK All FF RREL NTIS RD VS All
BM 0.23 0.38 0.22 0.32 0.36 0.42 0.04 0.06 −0.03 0.03 0.02 0.01

DUR −0.27 −0.49 −0.26 −0.32 −0.39 −0.42 −0.15 −0.12 −0.13 −0.10 −0.12 −0.06
CFP 0.22 0.36 0.21 0.31 0.34 0.36 0.07 0.10 0.03 0.03 −0.03 −0.06

MOM 0.26 0.03 0.29 0.21 0.08 0.04 1.22 1.31 1.13 1.21 1.02 1.00
SUE 0.16 0.09 0.15 0.17 0.09 −0.01 0.44 0.44 0.39 0.48 0.48 0.42
ABR 0.64 0.58 0.63 0.63 0.59 0.50 0.84 0.84 0.81 0.85 0.83 0.78
IM 0.05 −0.09 0.03 −0.02 −0.03 −0.11 0.60 0.58 0.50 0.57 0.46 0.31

ABR* 0.26 0.18 0.25 0.24 0.20 0.11 0.44 0.42 0.42 0.44 0.43 0.39
ROE 0.02 0.10 0.05 0.10 0.11 0.19 0.54 0.57 0.52 0.60 0.63 0.67
GPA 0.11 0.12 0.07 0.11 0.11 0.11 0.11 0.11 0.14 0.09 0.09 0.11
NEI 0.15 0.10 0.13 0.10 0.12 0.05 0.44 0.44 0.44 0.45 0.47 0.45
RS 0.18 0.09 0.15 0.14 0.14 0.03 0.50 0.50 0.48 0.51 0.55 0.50
IA 0.13 0.03 0.10 0.05 0.09 0.01 0.11 0.10 0.11 0.09 0.08 0.05

NSI −0.26 −0.37 −0.28 −0.37 −0.32 −0.42 −0.26 −0.27 −0.25 −0.28 −0.26 −0.23
CEI −0.21 −0.26 −0.22 −0.23 −0.24 −0.27 −0.20 −0.20 −0.15 −0.16 −0.13 −0.05
PIA −0.24 −0.25 −0.26 −0.21 −0.12 −0.18 −0.30 −0.32 −0.28 −0.30 −0.32 −0.31
IG 0.07 0.03 0.02 0.09 0.08 0.01 −0.02 −0.04 −0.06 −0.01 −0.02 −0.07

IVC −0.26 −0.26 −0.30 −0.23 −0.16 −0.22 −0.34 −0.37 −0.36 −0.33 −0.36 −0.38
IVG 0.02 −0.02 0.01 0.02 0.06 0.03 −0.08 −0.09 −0.09 −0.10 −0.08 −0.09
NOA −0.37 −0.24 −0.32 −0.35 −0.27 −0.18 −0.43 −0.48 −0.46 −0.43 −0.32 −0.39
OA −0.53 −0.40 −0.49 −0.47 −0.43 −0.33 −0.51 −0.52 −0.46 −0.51 −0.48 −0.41

POA −0.11 −0.13 −0.10 −0.15 −0.13 −0.14 −0.12 −0.13 −0.09 −0.14 −0.11 −0.11
PTA −0.11 −0.21 −0.14 −0.16 −0.16 −0.21 −0.06 −0.07 −0.04 −0.05 −0.06 −0.03
OCA 0.11 0.17 0.14 0.12 0.14 0.23 0.30 0.33 0.32 0.31 0.33 0.41
OL −0.06 0.09 −0.04 0.04 0.02 0.05 0.02 −0.01 0.02 0.05 0.09 0.07
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Table 7: Joint Time-Series Tests
This table presents joint time-series tests of unconditional and conditional factor models. The test portfolios
are the 25 different portfolios sorts defined in Table 2. The unconditional models are the CAPM, Hou–Xue–
Zhang four-factor model (HXZ), and Fama–French five-factor model (FF). In Panel A, the lagged variables used
in the (single-instrument) conditional specifications of HXZ are the value spread (VS), one-month T-bill rate
(TB), investment-capital ratio (IK), and stock return dispersion (RD). In Panel B, the lagged variables used in
the (single-instrument) conditional specifications of FF are VS, RD, relative T-bill rate (RREL), and net equity
expansion (NTIS). “All” refers to conditional HXZ and FF models in which all the corresponding four instruments
are employed. “CAPM(All)” denotes the conditional CAPM containing all four instruments. The sample is 1972:01–
2013:12. MAA denotes the mean absolute alpha. # < 0.05 represents the number of portfolios in which the alphas
are significant at the 5% level. #χ2 denotes the number of portfolio groups in which the model is not rejected
by the χ2 specification test. R2

C is the cross-sectional constrained R2. The numbers in parentheses represent
empirical p-values (obtained from a bootstrap simulation) for testing the null hypothesis that the difference in
R2

C between each conditional multifactor model (and the corresponding unconditional model) is equal to zero.

Panel A. HXZ (VS,TB,IK,RD)

CAPM CAPM(All) HXZ VS TB IK RD All
MAA 0.15 0.13 0.11 0.10 0.10 0.10 0.11 0.09

# < 0.05 82 67 39 30 37 31 38 28
#χ2 4 6 7 8 7 12 9 13
R2

C −0.46 −0.20 0.30 0.41 0.33 0.48 0.39 0.52
(0.21) (0.41) (0.12) (0.25) (0.07)

Panel B. FF (VS,RREL,NTIS,RD)

CAPM CAPM(All) FF VS RREL NTIS RD All
MAA 0.15 0.14 0.11 0.11 0.11 0.11 0.11 0.10

# < 0.05 82 77 56 46 56 55 50 43
#χ2 4 6 8 9 8 11 8 9
R2

C −0.46 −0.34 0.07 0.19 0.04 0.12 0.10 0.27
(0.16) (0.43) (0.32) (0.41) (0.06)
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Table 9: Time-Series Tests for Selected Anomalies
This table presents time-series tests of unconditional and conditional factor models for selected individual anomalies. The
portfolios are sorted on BM, MOM, ROE, NSI, OCA, ABR, CEI, DUR, IM, ABR*, NOA, and OA. See Table 2 in the paper
for a description of the different portfolio sorts. The models are the Hou–Xue–Zhang four-factor model (HXZ) and the Fama–
French five-factor model (FF). In the conditional HXZ models, the lagged instruments are the value spread (VS), one-month
T-bill rate (TB), investment-capital ratio (IK), and stock return dispersion (RD). In the conditional FF models, the lagged
instruments are VS, RD, relative T-bill rate (RREL), and net equity expansion (NTIS). The sample is 1972:01–2013:12. MAA
denotes the mean absolute alpha. # < 0.05 represents the number of portfolios in which the alphas are significant at the
5% level. χ2 denotes the p-value associated with the χ2 specification test. R2

C is the cross-sectional constrained R2. The
numbers in parentheses represent empirical p-values (obtained from a bootstrap simulation) for testing the null hypothesis that
the difference in R2

C between each conditional multifactor model (and the corresponding unconditional model) is equal to zero.

BM DUR MOM ABR IM ABR* ROE NSI CEI NOA OA OCA

Panel A. HXZ (Uncond.)
MAA 0.09 0.08 0.13 0.13 0.13 0.07 0.09 0.11 0.11 0.12 0.15 0.12

# < 0.05 0 0 0 2 3 1 2 1 2 2 3 2
χ2 0.22 0.60 0.01 0.00 0.04 0.00 0.02 0.01 0.01 0.00 0.00 0.01
R2

C 0.60 0.62 0.67 −0.08 0.79 0.01 0.77 0.57 0.33 0.09 −1.05 0.16
Panel B. HXZ (IK)

MAA 0.12 0.13 0.15 0.11 0.07 0.07 0.10 0.11 0.12 0.09 0.12 0.10
# < 0.05 1 2 0 3 1 1 3 2 0 1 2 2

χ2 0.12 0.14 0.01 0.00 0.18 0.02 0.00 0.01 0.03 0.01 0.00 0.09
R2

C 0.51 0.39 0.64 0.18 0.83 0.45 0.67 0.63 0.55 0.47 −0.22 0.55
(0.40) (0.28) (0.47) (0.14) (0.46) (0.12) (0.39) (0.41) (0.22) (0.06) (0.02) (0.10)

Panel C. HXZ (VS)
MAA 0.12 0.14 0.15 0.12 0.06 0.07 0.10 0.11 0.12 0.11 0.13 0.11

# < 0.05 1 2 0 3 1 0 2 1 0 2 1 2
χ2 0.07 0.12 0.01 0.00 0.11 0.03 0.00 0.00 0.02 0.00 0.00 0.03
R2

C 0.34 0.17 0.67 0.14 0.83 0.44 0.65 0.63 0.58 0.31 −0.59 0.36
(0.24) (0.13) (0.49) (0.18) (0.46) (0.13) (0.37) (0.40) (0.19) (0.18) (0.09) (0.24)

Panel D. HXZ (VS,TB,IK,RD)
MAA 0.12 0.15 0.15 0.10 0.05 0.06 0.11 0.11 0.10 0.09 0.11 0.10

# < 0.05 2 5 0 2 0 1 2 1 1 1 1 0
χ2 0.05 0.07 0.02 0.01 0.25 0.05 0.00 0.00 0.08 0.01 0.00 0.14
R2

C 0.40 0.30 0.69 0.44 0.80 0.55 0.60 0.56 0.70 0.54 0.05 0.64
(0.33) (0.25) (0.48) (0.02) (0.46) (0.08) (0.36) (0.51) (0.11) (0.04) (0.01) (0.05)

Panel E. FF (Uncond.)
MAA 0.05 0.05 0.23 0.16 0.23 0.08 0.11 0.11 0.10 0.11 0.13 0.11

# < 0.05 0 0 3 3 6 3 2 3 2 4 5 2
χ2 0.72 0.84 0.00 0.00 0.00 0.00 0.03 0.01 0.03 0.01 0.01 0.01
R2

C 0.83 0.84 −0.10 −0.52 −0.36 −1.18 0.46 0.54 0.43 0.22 −0.60 0.26
Panel F. FF (VS)

MAA 0.05 0.06 0.18 0.16 0.15 0.08 0.11 0.13 0.10 0.10 0.13 0.12
# < 0.05 0 0 1 4 3 2 2 3 1 3 3 2

χ2 0.60 0.87 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.01 0.00
R2

C 0.83 0.88 0.21 −0.51 0.18 −1.21 0.34 0.50 0.50 0.41 −0.56 0.26
(0.47) (0.43) (0.16) (0.47) (0.10) (0.50) (0.36) (0.45) (0.39) (0.18) (0.42) (0.48)

Panel G. FF (NTIS)
MAA 0.07 0.05 0.22 0.16 0.22 0.08 0.10 0.11 0.10 0.12 0.12 0.11

# < 0.05 0 0 4 3 7 3 2 3 2 4 3 2
χ2 0.80 0.64 0.00 0.00 0.00 0.00 0.08 0.01 0.05 0.01 0.02 0.02
R2

C 0.85 0.81 0.02 −0.45 −0.07 −1.15 0.52 0.51 0.46 0.11 −0.33 0.31
(0.45) (0.48) (0.35) (0.36) (0.23) (0.44) (0.41) (0.44) (0.44) (0.32) (0.18) (0.39)

Panel H. FF (VS,RREL,NTIS,RD)
MAA 0.04 0.05 0.17 0.15 0.14 0.07 0.13 0.13 0.10 0.10 0.11 0.10

# < 0.05 0 0 1 4 4 2 2 4 1 3 2 2
χ2 0.92 0.79 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.01 0.02 0.01
R2

C 0.89 0.85 0.21 −0.31 0.53 −0.91 0.26 0.44 0.51 0.30 −0.08 0.35
(0.41) (0.45) (0.17) (0.15) (0.03) (0.19) (0.31) (0.37) (0.35) (0.32) (0.05) (0.30)

47



Table 10: Joint Time-Series Tests: Restricted Conditional Models
This table presents joint time-series tests of restricted conditional factor models. The test portfolios are the 25 different
portfolios sorts defined in Table 2. The unconditional models are the Hou–Xue–Zhang four-factor model (HXZ) and
Fama–French five-factor model (FF). In Panel A, the lagged variables used in the (single-instrument) conditional speci-
fications of HXZ are the value spread (VS), one-month T-bill rate (TB), investment-capital ratio (IK), and stock return
dispersion (RD). In Panel B, the lagged variables used in the (single-instrument) conditional specifications of FF are VS,
RD, relative T-bill rate (RREL), and net equity expansion (NTIS). “All” refers to conditional HXZ and FF models in
which all the corresponding four instruments are employed. Only the investment and profitability factors in both models
are scaled. The sample is 1972:01–2013:12. MAA denotes the mean absolute alpha. # < 0.05 represents the number of
portfolios in which the alphas are significant at the 5% level. #χ2 denotes the number of portfolio groups in which the
model is not rejected by the χ2 specification test. R2

C is the cross-sectional constrained R2. The numbers in parentheses
represent empirical p-values (obtained from a bootstrap simulation) for testing the null hypothesis that the difference
in R2

C between each conditional multifactor model (and the corresponding unconditional model) is equal to zero.

Panel A. HXZ (VS,TB,IK,RD)

HXZ VS TB IK RD All
MAA 0.11 0.10 0.10 0.10 0.10 0.09

# < 0.05 39 33 39 31 39 28
#χ2 7 8 8 12 9 12
R2

C 0.30 0.40 0.32 0.48 0.38 0.50
(0.22) (0.44) (0.10) (0.28) (0.07)

Panel B. FF (VS,RREL,NTIS,RD)

FF VS RREL NTIS RD All
MAA 0.11 0.11 0.11 0.11 0.11 0.10

# < 0.05 56 50 56 53 50 46
#χ2 8 8 8 8 8 9
R2

C 0.07 0.15 0.11 0.10 0.10 0.22
(0.25) (0.38) (0.40) (0.40) (0.11)
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Graph A. IA Graph B. ROE

Graph C. CMA Graph D. RMW

Figure 1: Investment and Profitability Factor Premia
This figure plots the time-series for the fitted values of the equity factors, which are obtained from regressing
the factors on a lagged instrument. The factors are the investment (IA and CMA) and profitability (ROE and
RMW) factors. The instrument associated with both IA and CMA is the value spread (VS). In the regres-
sions for ROE and RMW, the instruments are investment-capital ratio (IK) and net equity expansion (NTIS),
respectively. The sample period is 1972:01–2013:12. The vertical lines indicate the NBER recession periods.
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