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1. Introduction

In a strong competitive environment and with more and more
demanding customers, manufacturing and service systems must be
flexible (Johnzen et al., 2011) and able to deal with different ob-
jectives dynamically. Among the important operational decisions
are scheduling decisions where several types of flexibility have
been considered, and in particular operation flexibility that refers
to the ability of an operation to be performed in different ways.
The scheduling literature dealing with operation flexibility in the
classical Job-shop Scheduling Problem (JSP) has accumulated over
the last twenty five years (see the recent survey of Chaudhry and
Khan, 2016), leading to the so-called Flexible Job-shop Schedul-
ing Problem (FJSP). The FJSP is more realistic for modeling a wide
range of real-life applications, as it can capture key features of
modern manufacturing and service systems.

The Flexible Job-shop Scheduling Problem (FJSP) is defined as
follows. A set M of m machines are always available to process a
set of n jobs J = {J1.....Jn}. Each machine can only perform one
operation at a time. Each job consists of a sequence of operations,
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called routing, which can differ from one job to another, i.e. there
is not a single pre-specified order of machines for all jobs. The pre-
emption of operations is not allowed, i.e. an operation cannot be
interrupted once started. Each job J; has a release date r;, a weight
w; related to the priority of job J;, and a due date d; that speci-
fies the date before which J; should be completed. An important
feature of the FJSP is that the machine needed to perform an oper-
ation j is not given but must be selected from a subset R; € M of
eligible machines. The processing time p; of an operation j depends
on the selected machine in R;. Let us assume that these processing
times are non-negative integer, known and include non sequence-
dependent setup times between operations. The FJSP consists in
both assigning a machine to each operation and sequencing oper-
ations on the selected machines, to optimize a single criterion or
multiple criteria.

In single criterion optimization, the most studied criterion for
the FJSP is the minimization of the makespan Cpax, which cor-
responds to the completion time of all jobs. However, minimiz-
ing other criteria that include the weight of jobs and their due
dates are better suited to capture critical factors that affect the
competitiveness of a firm (Zhang and Wu, 2011). Regular crite-
ria are among the most common objectives considered in the
scheduling literature. A criterion is said to be regular if it is an
increasing function of the completion times of the jobs (see e.g.
Mati et al., 2011 for the JSP). In addition to the makespan, the
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following regular criteria are among the most popular ones in the
scheduling literature: (1) Maximum tardiness Tmax = maxT;, where
T; = max(0, G; — d;), C; is the completion time of job J; and d; is its
due date, (2) Total tardiness X;T;, (3) Total completion time X;C;,
and (4) Number of tardy jobs ¥;U;, where U;=1 if T;>0 and 0
otherwise.

The Multi-Objective Flexible Job-shop Scheduling Problem
(MOF]JSP) is the optimization of the FJSP with multiple criteria that
are in conflict to some extent. In this paper, we develop a general
local search approach that optimizes any combination of regular
criteria for the MOFJSP. The remainder of the paper is organized as
follows. Section 2 reviews the related literature. Section 3 details
the disjunctive graph model and the neighborhood structures that
are used to solve the FJSP. Section 4 proposes a theoretical frame-
work to evaluate the quality of the set of non-dominated solutions.
Section 5 describes the proposed local search approach based on
Pareto optimization with four new search strategies. Experiments
that validate the efficiency of our approach are presented and dis-
cussed in Section 6. Finally, Section 7 concludes the paper and pro-
vides some directions for future research.

2. Literature review

The FJSP has been extensively studied in the literature to op-
timize a single criterion or multiple criteria. A recent survey cov-
ering the various techniques to solve the FJSP with a single ob-
jective and multiple objectives, can be found in Chaudhry and
Khan (2016). This survey includes different comparative tables
to classify the literature according to the performance measures
and the types of techniques. It also gives, for each paper, the
algorithm and shop details, the objective functions considered
and the number of citations. Another survey can be found in
Genova et al. (2015) that only covers techniques developed to
solve the MOFJSP between 2005 and 2014. A recent literature
review on genetic algorithms to solve the FJSP is presented in
Amjad et al. (2018) where, for each paper, the considered objec-
tive functions, the parameters of the genetic algorithms and the
benchmarks are presented.

By taking a closer look at the literature on the MOFJSP, one
can observe that most papers focus on optimizing the makespan,
the total workload of machines, and the workload of the criti-
cal machine. Chaudhry and Khan (2016) report (Table 3) that the
makespan is used in combination with another objective func-
tion in 39.59% of papers, and 23.35% of them use the workload
of machines. Even though the list of papers in Chaudhry and
Khan (2016) is not exhaustive as they missed some papers, the
observation and trend are the same. The makespan remains the
most studied criterion for the FJSP, and is generally combined with
the workload of machines in the MOFJSP. A similar observation can
be drawn from Amjad et al. (2018) (Table 10) where 88.88% (i.e.
32 out of 36) of papers relying on genetic algorithms to solve the
MOFJSP consider the makespan and workload of machines. Since
there are a very large number of papers on the MOFJSP, we only
focus in this section on the recent, state-of-the-art and closely re-
lated works where multiple criteria are optimized, with special at-
tention to papers that consider regular criteria.

The MOFJSP is usually tackled in the literature using two types
of approaches. The first one consists in transforming the multi-
objective problem into a mono-objective problem by assigning dif-
ferent weights for each objective. Various heuristics in this cat-
egory were proposed in the literature. A Tabu Search algorithm
is presented in Li et al. (2014) that uses several neighborhood
search rules for machine assignment and operation scheduling.
A heuristic method that starts from an initial solution, and im-
proves it using two move search algorithms, is introduced in
Xing et al. (2009). Several hybrid heuristics are proposed such as

the hybridization of particle swarm optimization and Tabu Search
in Zhang et al. (2009), genetic algorithms and Shifting Bottleneck
in Gao et al. (2007), and Particle Swarm Optimization and Simu-
lated Annealing in Xia and Wu (2005).

The second type of approaches that started about fifteen years
ago is based on Pareto optimization where the goal is to determine
the set of non-dominated solutions, i.e. the Pareto front. A hier-
archical heuristic algorithm that is an adaptation of the Newton’s
method for continuous multi-objective unconstrained optimization
problems is proposed in Pérez and Raupp (2016). Two adapted ge-
netic algorithms are presented in Rahmati et al. (2013). A simple
and effective evolutionary algorithm that needs only two param-
eters is developed in Chiang and Lin (2013), and a filtered-beam-
search-based heuristic in Shi-Jin et al. (2008).

Many authors developed hybrid methods that combine two
or more algorithms to improve the convergence while ensuring
the diversity of solutions. Chun et al. (2013) combine an evolu-
tionary algorithm with a local search heuristic. A Non-dominated
Sorting Genetic Algorithm II is combined with a local search in
Yuan and Xu (2015), a Scatter Search algorithm that uses Tabu
Search and Path-Relinking is proposed in Gonzilez et al. (2015),
a Path-Relinking based on a Tabu Search algorithm with back-
jumping tracking is developed in Jia and Hu (2014), a hybrid dis-
crete Particle Swarm Optimization and Simulated Annealing algo-
rithm are proposed in Shao et al. (2013), a Pareto-based estimation
of distribution algorithm is combined with a local search heuris-
tic in Wang et al. (2013), a genetic algorithm and local search are
combined in Xiong et al. (2012), a genetic algorithm is combined
with a Simulated Annealing in Li (2011), and an approach hybridiz-
ing a discrete Artificial Bee Colony algorithm and local search ap-
proaches is proposed in Li et al. (2011).

All the above mentioned papers focus on optimizing the
makespan, the total workload of machines, and the workload
of the critical machine. There are only very few papers that
consider other objectives such as regular criteria. In the FJSP
with mono-objective, Garcia-Le6n et al. (2015) propose a gen-
eral approach for optimizing any regular criteria, which presents
new concepts to be used in local search methods. To min-
imize the total tardiness, Trkylmaz and Bulkan (2015) com-
bine a genetic algorithm and a Variable Neighborhood Search,
and Mousakhani (2013) presents a Mixed Integer Linear Pro-
gramming model and an iterated local search. For the MOF]JSP,
Singh et al. (2016) propose a Particle Swarm Optimization algo-
rithm to simultaneously minimize the makespan, mean flow time,
and mean tardiness. Gao et al. (2014) minimize a weighted com-
bination of the makespan and the mean of earliness and tardi-
ness, using a discrete Harmony Search algorithm that makes use
of several heuristics. A Variable Neighborhood Search algorithm is
proposed in Bagheri and Zandieh (2011) to minimize a weighted
sum of the makespan and the mean tardiness. Vilcot and Bil-
laut (2011) present a version of Tabu Search that minimizes a lin-
ear combination of Cyax, XT; and Lmax. Tay and Ho (2008) consider
the minimization of the weighted sum of the makespan, the mean
tardiness, and the mean flow time, by using priority rules and the
concept of genetic programming. A heuristic inspired from Parti-
cle Swarm Optimization and Variable Neighborhood Search is pro-
posed in Liu et al. (2006) for minimizing a weighted linear combi-
nation of the makespan and the sum of completion times.

The MOFJSP has also been addressed under a variety of con-
straints, assumptions and practical issues. In Lei et al. (2018),
the makespan and total tardiness are minimized under the con-
straint that the total energy consumption does not exceed a given
threshold. Mokhtari and Hasani (2017) develop an evolutionary al-
gorithm to minimize the makespan, the total availability of the
system, and the total energy cost of both production and mainte-
nance operations. The uncertainty in processing times is addressed
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in Shen et al. (2017) to simultaneously minimize makespan,
maximal machine workload, and robustness to uncertainties.
Lu et al. (2017) investigate the problem under controllable pro-
cessing times, i.e. the processing times of operations can be
controlled by allocating additional resources, to find an efficient
trade-off between the makespan and the total additional resource
consumption. Fuzzy processing times and fuzzy due dates are ad-
dressed in Chun et al. (2013) using a memetic algorithm that
combines genetic global optimization with a local search method.
Ahmadi et al. (2016) address random machine breakdowns by con-
sidering the makespan and stability measures. Li et al. (2014) con-
sider maintenance activities on machines and propose a dis-
crete Artificial Bee Colony algorithm to deal with the makespan,
the total workload of machines, and the workload of the criti-
cal machine. Random machine breakdowns are also considered in
Xiong et al. (2013) with the objective of minimizing the makespan
and the robustness. The dynamic FJSP with job release dates is ad-
dressed in Nie et al. (2013) to minimize the makespan, the mean
flow time, and the mean tardiness. Sadrzadeh (2013) considers
sequence-dependent setups using an Artificial Immune System and
Particle Swarm Optimization to minimize an aggregate function of
the makespan and the mean tardiness. Setup times are also consid-
ered in Bagheri and Zandieh (2011) using a Variable Neighborhood
Search approach to minimize the makespan and the mean tardi-
ness.

To conclude, the MOFJSP has been solved in the literature
using different methods that range from simple heuristics to
sophisticated metaheuristics. Although the MOFJSP gained con-
siderable attention from researchers during the last ten years,
most studies consider the optimization of the makespan and two
non-regular criteria (total workload and maximum workload of
machines). A very limited number of papers address regular crite-
ria even when optimizing a single criterion. Indeed, Chaudhry and
Khan (2016) report that the optimization of the makespan com-
bined with other regular criteria has little been studied, e.g. 2.5%
of the papers consider maximum tardiness and 1.5% deal with total
tardiness. When regular criteria are combined with the makespan,
most papers do not aim at Pareto optimization and instead aggre-
gate the criteria in one objective using a weight for each crite-
rion. Moreover, the concepts of disjunctive graph and estimation
functions are not exploited. One of the contributions of this paper
is the design of an efficient Pareto optimization approach for the
MOEFJSP with regular criteria by developing different strategies to
efficiently determine a set of non-dominated solutions.

3. Problem modeling and neighborhood structures for the FJSP

This section introduces the different concepts used in this pa-
per to model and solve the MOFJSP, and illustrates these concepts
using the example in Table 1 with three jobs and four machines.
Each job J; has four operations which are denoted O; (i=1,2,3
and j =1, 2, 3, 4). For example, the first operation of job J; has two
eligible machines M; and M3 with processing times of 3 and 5, re-
spectively. The third operation of J, has no flexibility, since it can
only be performed on machine M.

The FJSP with regular criteria can be modeled using a disjunc-
tive graph G = (V, A, €) where V is the set of nodes and AUE
is the set of arcs (see Dauzere-Péres and Paulli, 1997). Let us re-
call some important definitions. The set V includes operations of
jobs, a dummy node O that represents the start of each job, and
n dummy nodes ¢; associated to the completions of jobs (see e.g.
Mati et al., 2011). Nodes ¢; are necessary since regular criteria de-
pend on the completion times of jobs. The set .4 contains conjunc-
tive arcs that connect two consecutive operations (i.e. in the rout-
ing) of a job, the node 0 and every first operation of each job, and
the last operation of each job J; to its corresponding node ¢;. The

Table 1
An illustrative example of the FJSP.

Eligible machines and processing times for operations

Job 1 2 3 4
h M (3)/M5(5) My(3)/M4(4) M;(5)/M5(1) Ms(1)
I M;(5)/M5(4) M;(4)/Ma(5) M,y(1) M,(2)
) Mi(2) M3(3)/Ma(4) My(8) M3(2)/Ma(2)
Table 2
Critical paths of jobs and their corresponding blocks for solution in Fig. 1(b).
Job Critical path Block
I 0— 011 — 031 = 02— 013 — O1a — ¢4 (011 — 031 — 02 — O13)
I 0— 011 — 031 — 033 = 033 — 0214 — ¢ (011 = 031), (033 — Oa4)
IE 0— 011 — 031 — 033 — 033 — 034 — @3 (O — 031)

set £ = UpemEm contains disjunctive arcs where &p includes arcs
between pairs of operations that may use machine m. The arc from
0 to the first operation of a job J; has a length which is equal to the
release date r; of J;, and any remaining conjunctive or disjunctive
arc has a length which is equal to the processing time of the op-
eration from which it starts. Fig. 1(a) shows the disjunctive graph
for the example in Table 1.

A feasible solution of the FJSP is obtained by assigning a ma-
chine to each operation (thus keeping only the relevant disjunc-
tive arcs in E) and by fixing a direction to each disjunctive arc
in £ such that the induced graph does not contain any directed
cycle. To effectively exploit the structure and properties of the
graph in a local search approach, the graph must be simplified
by removing redundant arcs so that every node x has at most
one predecessor and one successor on the machine that performs
x. Fig. 1(b) shows a feasible solution for the example in Table 1.
For example, the first operation O,; of job J, is assigned to ma-
chine M3. The sequences of jobs with their operations on ma-
chines are the fOHOWil’lg: J](O“)—)]3(031)612(022)—)]](013) on
My, J1(012) = J3(033) = J2(024) on My, J2(021)—J3(032) — J1(014)
on Ms, and J5(033) — J3(034) 0N My.

The starting time hy (called head) of a node x is given by the
length of a longest path from 0 to x. The level Iy of node x is the
maximum number of arcs from node 0 to x. The tail g} of x to
a dummy node ¢; is the maximum length from the completion
of x to ¢; if a path exists from x to ¢; and —oo otherwise. Tails
are needed since regular criteria are considered in this paper. For
example, looking at Fig. 1(b), the head of operation 0,3 is 9, its
level is equal to 4 and its tail to ¢5 is equal to 2. However, the
tail of operation O,3 to ¢ is equal to —oo since there is no path
from 0,3 to ¢;. The longest path from node O to node ¢; is called
the critical path from O to ¢;, and its length is equal to h¢i, which
corresponds to the completion time of J;. Every node x belonging
to a critical path is critical according to J;, and satisfies hy + px +
qi = h¢,'_. Each arc (x, y) belonging to the critical path from 0 to
¢; is critical if nodes x and y are assigned to the same machine
and belong to the routing of different jobs. A block is a maximum
sequence of critical nodes assigned to the same machine. Table 2
shows the critical paths of jobs and their corresponding blocks for
the solution in Fig. 1(b). Note that Os; is critical for all jobs, Oo4
is only critical for job J,, whereas operations Oq,, 0,1, and O,3 are
not critical. The critical path of job J, contains two blocks.

Neighborhood structures are used in local search to generate
new solutions by performing small perturbations of a current solu-
tion. In the FJSP, a well-known perturbation proposed in Dauzére-
Pérés and Paulli (1997) consists in moving (i.e. resequencing or re-
assigning) a critical operation in the graph of the current solution.
In this paper, we consider two neighborhood structures (N; and
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Fig. 1. Disjunctive graph model and a feasible solution for the example in Table 1.

N,), which differ from one another in the selection of operations Table 3
that are moved. Neighborhood structure N; focuses on all critical Possible resequencing and reassignment moves in Fig. 1(b).

operations of jobs, while neighborhood structure N, c N; focuses

on operations that belong to blocks of critical paths of the jobs Critical Resequencing Reassignment
that affect the value of the criterion (e.g. jobs that are late for late- operation Move Machine Move
ness criteria). Our motivation in defining these two neighborhood [031 — Op ]t [0—0y]
structures is to analyze whether the concept of blocks is help- On [022 - O3] M (021 — O3]
ful to generate sets of non-dominated solutions for the MOFJSP. 01 —+]® [832_01‘%]1
To understand the difference between N; and N, let us consider [0 Oyt [014 =]
the minimization of X in the solution of Fig. 1(b). According to Oy [022 — O3]t
the critical paths and blocks of Table 2, neighborhood structure N; [043 — ]
considers the critical operations Oy;, O3, O14, Oz, Oa4, O3q, Osa, 02 (0-0u} [0 0]t
033 and O34, whereas neighborhood structure N, “only” focuses [On —0n ]! M, (012 — 05

33 34 . 2 . [013 — #]* [033 — Oz4]F
on 01y, Oq3, 057,004, O3; and Os3. Table 3 gives the possible re- (094 — #]®
sequencing and reassignment moves for each critical operation in [0—0y]F [0—05]F
both neighborhood structures. For a given critical operation Oy, the 03, [014 — x* M, [023 — Ozéli
notation [a — b] means that O; is moved between operations a and [0-04]® {(())3:1 6;}1
b. If a =0 (resp. b= x), O; is moved in the first (resp. last) posi- 01 (041 — Osy M; (01 — Osof
tion of the sequence of the machine on which it is resequenced or [031 — Op [t (03 — Oy Tt
reassigned. For example, Oy; can be resequenced between 0,, and [014 — %]®
013, and reassigned on machine M5 between O3, and O14. 033 [0*012]§

Moving an operation in both neighborhood structures N; and {nga*]]t (0 0p]®

N, can generate directed cycles in the resulting graph, thus O34 z Ms [0x ,2(1)32]®
leading to unfeasible solutions of the FJSP. To check the feasi- [03; — Oyt
bility of a move, the sufficient conditions proposed in Garcia- [014 — xJt
Leon et al. (2015) are used. Without actually transforming the 024 [3701(2)]*1
graph, they validate that a cycle is not created in the new graph. 0w {01352] ]3?@]

These conditions generalize previous conditions of the literature [021 — O

by using the concepts of heads, tails and levels of operations. In
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Table 3, feasible moves that are obtained by the sufficient con-
ditions are denoted by the superscriptf, unfeasible moves by the
superscript®, and moves that are feasible but cannot be validated
by the sufficient conditions are denoted by the superscriptf.

The best move in the neighborhood of a solution is generally
obtained using the value of the criterion of the generated solu-
tion. Previous studies on the FJSP have shown that using estima-
tion functions is more appropriate to evaluate the quality of moves,
because significant computational times can be saved and much
more iterations can be performed to reach better solutions. Since
regular criteria are considered in this paper, we need to estimate
the new completion times of nodes ¢; after moving an operation
(see Mati et al., 2011 for the classical job-shop scheduling prob-
lem). To do so, we use the estimation function proposed in Garcia-
Leon et al. (2015) by considering forward and backward moves. A
forward (resp. backward) move of a node x, currently sequenced
between nodes p and g, between two nodes u and v is defined
when Iy <1y (resp. Iy > I;). The idea of the estimation function con-
sists in considering the newly created paths after the move to-
gether with a suitable subset of paths that are available in the cur-
rent and new graphs. This is performed by focusing not only on the
operation x, but also on the operations involved in the move p, g, u
and v, as well as on operations w for which [, = Iy (see Mati et al.,
2011). In addition to its efficiency in estimating the value of the
criterion, the estimation function is fast and guarantees whenever
possible the lower bound property, i.e. the quality of a move is not
overestimated (Garcia-Ledn et al., 2015).

4. Evaluating sets of non-dominated solutions

An effective approach for solving the MOFJSP with regular cri-
teria is the Pareto approach, which aims at finding a set of non-
dominated solutions S, called the Pareto front. In this section, let
us briefly recall the main notions related to Pareto optimization
and introduce the measures to evaluate the quality of the set S.

4.1. Dominance of Pareto

Let C be the set of criteria to minimize in Pareto manner and
fc(s) be the value of the criterion c of a feasible solution s. Solution
s; dominates solution s, if the following two conditions are true:

1. Solution sy is not worse than solution s, for all criteria, i.e. Vc €
C, fe(s1) =fe(s2),

2. Solution s; is strictly better than s, for at least one criterion,
i.e. 3c e C such that fc(s1) < fc(s2).

Accordingly, any two solutions of S are non-dominated with re-
spect to each other, and any solution not in S is dominated by at
least one solution in S.

4.2. Quality measures of the set of non-dominated solutions

A good set of non-dominated solutions should satisfy two goals:
Convergence and diversity. Convergence ensures that the set of so-
lutions is as close as possible to the optimal Pareto front, and di-
versity is related to the sparsity of solutions to ensure that the de-
cision maker has multiple representative trade-off solutions among
conflicting objectives. Zitzler et al. (2003) state that it is difficult
to define appropriate measures to approximate the optimal Pareto
front when analyzing both goals, and that the discrepancies in-
crease when considering stochastic approaches.

For the MOFJSP, most previous studies aim at improving the
convergence and increasing the number of non-dominated solu-
tions without considering diversity (see e.g. Jia and Hu, 2014). In
this paper, we consider both the convergence and diversity to bet-
ter evaluate the quality of sets of non-dominated solutions. Three

measures are selected to evaluate the convergence: (1) The elite
solutions, (2) The mean ideal distance and (3) The hypervolume.
Elite solutions correspond to the best values of the criteria. The
Mean Ideal Distance (MID) is the average distance between non-
dominated solutions and the origin point (Singh et al., 2016), i.e.
the point (0,0) if two criteria are analyzed. MID is calculated using
(1), where |S| is the number of non-dominated solutions.

OO

seS ceC

MID IS] (1)

The HyperVolume (HV) is the volume covered by the solutions
of the front. When all criteria are minimized, a reference point
having as coordinates the worst values of the criteria is used to
limit this coverage (Zitzler et al., 2007). Thus, HV = Y, s Vs, where
Vs is the hypercube of s with respect to the reference point. Since
the hypervolume can lead to large values, (2) is used to calculate
HV, which corresponds to the ratio of the total volume V; covered
by the reference point and the origin point.

DV
HV = =5 — 2
|$| X VT ( )
The maximum spread (D) and spacing (SP) are selected to
evaluate the diversity. The metric D is the longest diagonal of
the hyperbox formed by the extreme values of the criteria in S
(Zitzler, 1999), and is calculated using (3), where f3 and f™" are
the maximum and minimum values of criterion c for all solutions
in S:

D= |y (fmex — fmin)2 (3)
ceC

The metric SP is the average distance between consecutive solu-
tions in S (Schott, 1995). Let d; be the distance between solution s;
and its nearest solution, i.e. d; = min Z | fe(si) — fe(sp)|, and let

spe ‘p#lc c

d be the average of these distances for all solutions in S. Spacing
is calculated using (4).

To ensure the quality of S, the spacing and mean ideal distance
must be minimized, the maximum spread and hypervolume must
be maximized and elite solutions must be as close as possible to
the optimal values of the criteria.

5. Solving the MOFJSP

The proposed Pareto approach for the MOFJSP with regular cri-
teria aims at finding a set of non-dominated solutions S whose
convergence and diversity are optimized. Let us first describe how
S is managed, then present the framework of the approach and the
initial solution, and finally propose four search strategies.

5.1. Controlling the set of non-dominated solutions

The control of the set of non-dominated solutions consists in
managing solutions entering and leaving S each time a new solu-
tion s is obtained by the search process. A schedule s € S is called
a reference schedule for criterion c if f(s) is the best possible value
for criterion c. The reference schedule for c is denoted by s?"f , and
the subset of S with the reference schedules is denoted by 5™/,

To efficiently control S, we propose a fast hierarchical test in
three steps to avoid performing too many evaluations to check
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Fig. 2. Test to check whether s is added to S.

whether s should be added to S. The test is illustrated in Fig. 2.
It first evaluates if the value of any criterion c of s is strictly lower
than the best value for criterion c. If it is the case, then s becomes
the reference schedule for criterion ¢, and s is added to S™f and
S, maybe replacing other solutions. Otherwise, the test validates
the dominance between s; € S and s starting with the reference
schedules. If no dominance is found, then s can be added to S,
maybe replacing other solutions. Hence, the step Update S consists
in adding s and removing the dominated solutions. Note that mul-
tiple solutions are not considered, i.e. if the values of all the crite-
ria of s and of a solution s; € S are equal.

5.2. Framework of the approach

The approach consists of two alternating phases, namely an im-
proving phase and a diversification phase. The improving phase is
a steepest descent that performs iterative improvements until a lo-
cal optimum is reached for a given criterion or all criteria. At each
iteration, a set of neighbor solutions is generated using the neigh-
borhood structures, the feasibility test and the move evaluation de-
scribed in Section 3. The diversification phase starts from the local
optimum of the improving phase and performs at most b itera-
tions. During this phase, a critical operation is randomly selected
and a move is randomly chosen. If the selected move is feasible,
the heuristic advances to the next iteration, otherwise the above
process is repeated until a feasible move is obtained. If a new best
solution is obtained in the diversification phase for a given crite-
rion, the search returns to the improving phase, otherwise it con-
tinues until b iterations are performed. The value of b is randomly
selected in [4,10] which is fixed experimentally.

After performing a move in both phases, all local values of the
criteria are updated, the hierarchical test to determine whether s
is added to S is performed, and S is updated if s is added as de-
scribed in Fig. 2. Additionally, the best values of the criteria are
updated.

To deal with multiple criteria for the MOFJSP, we propose four
versions of the above approach that differ mainly in the way the
criterion to optimize is selected, the way the approach is alternat-
ing between the improving and diversification phases, and the way
the solution is selected when each phase is resumed.

5.3. Initial solution

The initial solution is obtained using a constructive heuristic
that selects an operation at each step according to an established
order of the jobs. The main idea of the heuristic is to complete
the selected operation as soon as possible to try to minimize the
completion times of jobs. The jobs are ordered by non-decreasing
weights when at least one criterion considers weights. The ties are
broken using the due dates, and then the average processing times

Z;"':] |R17 ZGGRJ_ p; where n; is the number of operations of job J;.
For a given operation x and for each eligible machine M, € R, the
time t, at which the machine completes its previous operation v
on the sequence (if it exists) is calculated. Operation x is then as-
signed to the machine that completes x as soon as possible, i.e.
the machine M € Ry that minimizes t;, + px. The graph is updated
by adding arc (v, x) and the heuristic continues until all operations

have been selected.

5.4. Search strategy T

The idea of this strategy is to concentrate on optimizing a given
criterion by performing an improving phase followed by a diver-
sification phase. More precisely, a random criterion c is selected
in C, and the improving phase performs iterative improvements
of ¢ until reaching a local optimum for this criterion. The diver-
sification phase starts from this local optimum and, if the value
of the criterion c¢ is improved during this phase, the search re-
turns to the improving phase with the same criterion c. However,
if the maximum number of iterations b is reached, the search sets
all local values of the criteria to oo, randomly selects a new crite-
rion to minimize from the set C — {c} and returns to the improving
phase.

5.5. Search strategy T,

This strategy gives more attention to the improving phase since
most of the promising solutions are obtained in this phase. The
strategy intensifies the search in the improving phase until reach-
ing the local optimum of all criteria. To apply this strategy, the
concept of forbidden criterion or criteria is introduced. This con-
cept is defined and applied, for a given criterion ¢, only during
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the improving step when the local optimum of c is reached. More
precisely, a criterion becomes forbidden when, in the improving
phase, it is selected to create a move and it cannot generate an
improving move. A criterion is authorized to be selected as soon
as its local value is improved or in the finalization of the diversifi-
cation phase.

More precisely, Strategy T, starts by setting the set of for-
bidden criteria ¢fo" to ¢ to specify that initially all criteria are
authorized. Then, at each iteration of the improving phase, a cri-
terion c is randomly selected from the set ¢ — ¢fo" of authorized
criteria. The search optimizes ¢ whenever it is possible to generate
an improving move, and any forbidden criterion becomes autho-
rized if its local value is improved. However, if an improving move
is not possible with ¢, this criterion becomes forbidden and the
search continues with a criterion randomly selected in the set of
authorized criteria. If all criteria are forbidden, i.e. C — ¢/ = @, the
search goes to the diversification phase.

An important problem with the continuity of the search can be
caused by criterion Tmax since, if it is equal to zero, criteria XT;
and X U; will also be equal to zero, and it is not possible to create
a move. In this case, the search removes all forbidden criteria from
¢for and the selected criterion c is either Cpax or %C; if the latter
criterion belongs to C.

The diversification phase starts from the solution generated by
the neighborhood structure of the last forbidden criterion. If a local
value of any criterion is improved in this phase, the criterion be-
comes authorized, and the search returns to the improving phase
using the neighborhood of this criterion. In case of several im-
proved criteria, a random choice is performed. If it is not possible
to improve any criterion during b iterations, all criteria are autho-
rized, all local values of the criteria are set to oo and the search
goes to the improving phase with a random criterion.

5.6. Search strategy T3

This strategy is a variant of T, the only difference is in the im-
proving phase in which it is possible that criterion c is changed
in each iteration even if the last iteration was an improving
move for c¢. This means that, rather than continuing with a sin-
gle criterion until reaching its local optimum, T3 can modify the
optimized criterion by using a random selection from the set of
non-forbidden criteria. More precisely, in each iteration, a random
criterion c is selected to create a move from the set ¢ —cfo". If
this move improves the criterion, the set of forbidden criteria ¢/
is emptied. If it is not possible to create an improving move us-
ing c, this criterion becomes forbidden and it is added to c/o". If it
is not possible to create an improving move with all criteria, the
search goes to the diversification phase considering the neighbor-
hood of the last forbidden criterion and the same guidelines than
Strategy To.

5.7. Search strategy T,

Strategy T, operates as Strategy T3 but uses the concept of
global value of the criterion c. The only difference is in the improv-
ing phase in which, if the global value of a criterion ¢’ #c is im-
proved, this criterion becomes the optimized criterion in the next
iteration even if the search with the current criterion was improv-
ing. The motivation is that it is more suitable to shift the search
to optimize ¢’ with the aim of finding new reference schedules for
¢/, since these schedules can be lost if the search process does not
focus on ¢’ at this iteration. If several global values are improved, a
random choice is performed. Further, in the diversification phase,
the search can return to the improving phase with a criterion that
improves its global value.

6. Computational results

This section analyzes the efficiency of the general approach pro-
posed in the previous section, which was developed in Java. In the
remainder of the paper, this approach is denoted GMD. The exper-
iments were conducted on a PC with 3.40GHz and 8GB RAM. The
computational time for each search strategy and each neighbor-
hood structure was set to 300 seconds. Hence, the computational
time for an instance is 2400 seconds for a set of criteria to opti-
mize in Pareto manner, i.e. 300 seconds multiplied by four search
strategies and two neighborhood structures. Three sets of criteria
to optimize are considered: C4, Cg and Cc. C,4 includes three crite-
ria: Cmax, Tmax and XT;. Cg adds criterion X U; to the criteria in Ca,
and C¢ adds criterion XC; to the criteria in Cp.

The analysis was conducted in six phases that are described
in the following sections. Sections 6.1-6.5 use the problem in-
stances from Brandimarte (1993) by setting the due date of each

job J; to 1.3 x Z'}’;] “37206&_ pj, where n; is the number of op-
erations of job J;. Section 6.1 analyzes the Net Front Contribution
(NFC) and the Weak OutPerformance (WOP) of the two neighbor-
hood structures to check if one is dominating the other. Then, the
same analysis is performed for the search strategies. The impact
of adding criteria in the set of criteria to optimize on the num-
ber of non-dominated solutions is studied in Section 6.2. Elite so-
lutions for five regular criteria are analyzed in Section 6.3. The di-
versity is studied in Section 6.4. The analysis of the hypervolume
and the mean ideal distance is presented in Section 6.5. Finally,
Section 6.6 compares our approach to previous approaches to op-

timize the makespan and the total tardiness.

6.1. Analysis of the Net Front Contribution (NFC) and Weak
OutPerformance (WOP)

The Net Front Contribution (NFC) is the percentage of solutions
of the reference front that are included in a specified set of non-
dominated solutions (Deb et al., 2001). For example, if the NFC of
Strategy T, is 25%, then 25% of the solutions of the reference front
belong to T;. The Weak OutPerformance metric (WOPy,) evaluates
the dominance between two sets of non-dominated solutions sy
and s, (see Vilcot and Billaut, 2011). The set sy weakly outperforms
So if no solution in sy is dominated by a solution in s, and at least
one solution in sy dominates a solution in s,. Hence, WOPy, takes
value 1 if sy weakly outperforms s, and O otherwise. To further
improve the analysis of dominance between s, and s,, we extend
the numerical scale to three values —1, 0 and 1: WOPy, is equal to
1 (resp. —1) if sy (resp. so) weakly outperforms s, (resp. sx) and 0
otherwise.

Table 4 presents, over ten runs of the algorithm, the average
NFC and the average percentage for WOPy, y, (WOP) when it is
equal to 1 or —1 for each set of criteria and for each neighbor-
hood structure. As an example, mk01 has six machines (m), 10 jobs
(n) and a flexibility level (flex) of 2.09, i.e. one operation has on
average 2.09 eligible machines. For C,, the average NFC for neigh-
borhood N; is 50% and 53.3% for N,. N; weakly outperforms N, (1
in column WOP) in 33.3% of cases and N, weakly outperforms N;
(=1 in column WOP) in 60% of cases. Additionally, the neighbor-
hood structure with the average largest NFC and WOP are written
in bold.

Table 4 shows that there is not a dominant neighborhood struc-
ture, even though N, is slightly better, which confirms the ben-
efit of using the concept of blocks to solve the flexible job-shop
scheduling problem. Using the NFC metric, neighborhood struc-
ture N, generates larger contributions for 17 instances over 30 in-
stances: mk01, mk03, mk07, mk08 and mk10 for C4; mk02, mkO03,
mk04, mk05, mk08 and mk09 for Cg, and mk03, mk04, mk05, mkO06,
mk07 and mk08 for Cc. N; generates larger contributions for the
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Table 4

Average NFC and WOP for N; and N.

Ca Cp Cc
Inst Size flex NFC(%) WOP(%) NFC(%) WOP(%) NFC(%) WOP(%)
(mxn) N, N, 1 -1 N; Ny 1 -1 N N, 1 -1

mkO01 6x10 2.09 50.0 53.3 333 60.0 85.2 20.8 26.7 0.0 71.0 29.6 6.7 0.0
mk02 6 x 10 4.1 66.7 56.7 333 26.7 53.3 80.0 13.3 40.0 67.8 333 533 26.7
mkO03 8x 15 3.01 433 63.3 40.0 53.3 392 60.8 6.7 533 324 67.6 20.0 53.3
mk04 8x15 1.91 55.7 443 333 53.3 476 52.9 0.0 0.0 318 68.2 0.0 0.0
mk05 4x15 1.71 61.8 38.2 66.7 26.7 48.4 51.8 0.0 0.0 49.5 50.5 0.0 0.0
mk06 15 x 10 3.27 933 46.7 533 6.7 100.0 93.3 6.7 0.0 40.0 60.0 333 53.3
mk07 6 x 10 2.83 41.6 58.4 26.7 53.3 60.9 393 6.7 0.0 47.7 523 0.0 0.0
mk08 5x20 143 46.7 53.3 46.7 53.3 6.5 93.5 0.0 80.0 8.3 91.7 0.0 80.0
mk09 10 x 20 2.53 63.9 36.1 46.7 26.7 49.6 522 20.0 0.0 64.2 35.8 20.0 0.0
mk10 15 x 20 298 46.6 534 40.0 40.0 53.0 474 6.7 0.0 55.2 44.8 13.3 0.0

Table 5

Analysis of NFC for the different strategies and N,.
Inst Ca Cp Cc

Ty Ta T3 Ty Ty Ta T3 Ty Ty To T3 Ts

mk01 0.0 100.0 100.0 100.0 0.0 0.0 25.0 75.0 0.0 7.7 923 0.0
mk02 0.0 100.0 100.0 100.0 333 0.0 66.7 333 0.0 100.0 100.0 100.0
mk03 0.0 100.0 0.0 0.0 0.0 50.0 25.0 25.0 0.0 0.0 80.0 20.0
mk04 0.0 100.0 50.0 50.0 0.0 18.4 469 36.7 0.0 7.9 474 44.7
mk05 0.0 83.3 16.7 0.0 0.0 308 48.7 20.5 0.0 7.7 30.8 61.5
mk06 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0
mk07 0.0 0.0 100.0 100.0 0.0 4.6 50.0 45.5 0.0 0.0 88.0 12.0
mk08 0.0 100.0 100.0 100.0 0.0 81.5 18.5 0.0 0.0 0.0 0.0 100.0
mk09 20.0 80.0 0.0 0.0 0.0 19.1 38.1 42.9 0.0 0.0 240 76.0
mk10 0.0 0.0 100.0 20.0 0.0 333 22.2 444 0.0 0.0 10.0 90.0

remaining 13 instances. Concerning the metric WOP, N, weakly
outperforms N; in 11 instances: mk01, mk03, mk04, mk07 and mk08
for C4; mk02, mk03 and mkO08 for Cg and mk03, mk06 and mk08 for
Cc, and Ny weakly outperforms N, in 13 instances (4 for C4, 5 for
Cp and 4 for Cc). Additionally, no neighborhood structure weakly
outperforms the other in five instances: mk04 and mk05 for Cg and
Cc, and mk07 for Cc.

Table 5 helps us to analyze the contribution of each search
strategy to the reference front by considering only neighborhood
structure N, for each set of criteria. Note that the values in this
table are average values over ten runs of the algorithm.

The results of Table 5 reveals that the contribution of T; is
equal to zero except for mk09 with C4, mk02 with Cg, and mk06
for C4 and Cg. When using T, the entire solutions of the reference
front is obtained in 5 instances for C4 (mk01, mk02, mk03, mk04
and mk08) and 2 instances for Cc (mk02 and mk06). However, the
NFC of T, is equal to zero in 11 instances (3 for C4, 3 for Cp and
5 for Cc). Besides, T, has the largest number of non-dominated
solutions in 2 instances (mk05 and mk09 for C,), and 2 instances
(mk03 and mkO08) for Cg. The contribution of T, for the C¢ is re-
ally low, which implies that this search strategy is not adequate
for minimizing X C;. Further, T3 and T4 seem to be the best search
strategies and their results are comparable with a slight advantage
to the former for the three sets of criteria. Indeed, T3 generates the
highest contribution in 9 instances (1 for Cy, 4 for Cg, and 4 for C¢)
whereas T, obtains the highest contribution in 7 instances (3 for
Cp and 4 for C¢). Both T3 and T, reach all the solutions of the ref-
erence front in 6 instances (4 for C4 and 2 for C¢). The largest num-
ber of non-dominated solutions is obtained by T3 or T4 in 73.33%
of instances.

To extend the analysis of the four search strategies, Table 6
shows the WOP by considering again neighborhood structure N,.
It can be seen from WOP;_, (column 1 - 2), WOP;_3 (column
1-3) and WOP;_4 (column 1 -—4) that T; is dominated by the

other search strategies except for instance mk06 for C,. Strategy T»
dominates Strategies T3 and T, in only two instances (mk03 and
mk09) for C,, although T, is better for C4 regarding the metric NFC.
The comparison between T3 and T, does not show any obvious
dominance since WOP5_4 is equal to zero in the largest number of
instances (90% of instances for C4, 50% of instances for Cp, and 70%
of instances for C¢). T3 is better than T, in 4 instances and worst
in 5 instances.

It can be concluded from the analysis in this section that Strat-
egy T, is not suitable to optimize the three sets of criteria, T, is
effective for solving C, regarding the NFC but does not appear in-
teresting when considering the WOP, and Strategies T3 and T, are
the most efficient when considering both NFC and WOP, in partic-
ular for sets Cp and Cc.

6.2. Analysis of the number of non-dominated solutions

Table 7 is used to analyze the number of non-dominated solu-
tions considering three outputs: The minimum (Min), average (Av),
and maximum (Max) numbers of non-dominated solutions when
running ten times each set of criteria. For example, after executing
the approach ten times with set C4 for instance mk01, the min-
imum number of non-dominated solutions was 1, the maximum
was 2 and on average 1.3 solutions were obtained. In an ideal sit-
uation, it is desired that the three outputs are equal.

The addition of criteria and the flexibility level affects the num-
ber of non-dominated solutions, but there is not a clear behav-
ior in function of the flexibility level since different trends can be
identified. More precisely, in instances with a large flexibility level
(flex > 3), one or two solutions solve the problem, i.e. in instance
mk06 (flex = 3.27) only one solution is generated for the three sets
of criteria. In instance mk02 (flex = 4.10), no more than two non-
dominated solutions for the three sets of criteria were obtained,
and this is also the case for instance mk03 when optimizing sets Cy
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Table 6
Analysis of WOP for N,.
Inst Ca Cp Cc
1-2 1-3 1-4 2-3 2-4 3-4 1-2 1-3 1-4 2-3 2-4 3-4 1-2 1-3 1-4 2-3 2-4 3-4
mk01 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
mk02 -1 -1 -1 0 0 0 1 0 0 -1 -1 0 -1 -1 -1 0 0 0
mk03 -1 -1 -1 1 1 0 -1 -1 -1 -1 0 1 -1 -1 -1 -1 -1 0
mko4 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0
mko5 -1 0 0 -1 1 1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0
mko6 1 1 1 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 0 0 0
mk07 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0
mkog -1 -1 -1 0 0 0 -1 -1 -1 0 -1 1 -1 -1 -1 -1 -1 -1
mko9 -1 -1 -1 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
mk10 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Table 7
Analysis of the number of non-dominated solutions.
Inst Size flex Cy Cp Cc
mxn Min Av Max Min Av Max Min Av Max
mk01 6 x 10 2.09 1 13 2 4 4.8 5 10 15.8 28
mk02 6x 10 4.10 1 1.5 2 1 1.5 2 1 1.5 2
mk03 8x 15 3.01 1 13 2 1 18 2 2 73 17
mk04 8x15 191 1 2.3 4 22 35.0 51 30 36.0 41
mk05 4x15 1.71 4 6.8 1 17 26.0 30 27 303 32
mk06 15x 10 3.27 1 1 1 1 1 1 1 1
mk07 5x20 2.83 4 6.0 10 20 27.8 32 12 20.8 26
mk08 10 x 20 143 1 13 2 2 16.8 27 3 6.0 9
mk09 10 x 20 2.53 1 2.8 4 19 33.0 51 22 27.8 38
mk10 15 x 20 2.98 4 6.8 10 16 23.8 30 14 17.0 24
Table 8
Elite solutions for makespan.
Inst BKV Ca Cp Cc
Min Av Per(%) Min Av Per(%) Min Av Per(%)
mk01 40 42 42.0 5.0 40 40.0 0.0 40 40.0 0.0
mk02 26 28 29.0 11.5 29 30.0 15.4 28 29.0 11.5
mk03 204 204 204.8 0.4 204 204.0 0.0 204 204.0 0.0
mk04 60 67 68.8 14.6 60 615 2.5 62 63.8 6.3
mk05 172 176 176.3 2.5 174 174.8 1.6 175 175.5 2.0
mk06 57 67 69.5 219 69 713 25 70 70.5 23.7
mk07 139 144 146.3 53 142 143.0 29 148 148.3 6.7
mk08 523 523 523.0 0.0 523 523.0 0.0 523 523.0 0.0
mk09 307 320 3275 6.7 307 308.0 0.3 307 309.3 0.7
mk10 196 221 223.0 13.8 216 216.5 10.5 228 2313 18.0

and Cg. In instances with a small flexibility level (flex <2), the av-
erage number of non-dominated solutions increases when adding
criteria, such as the case of instances mk04 and mk05. However, in
instance mk08 (flex = 1.43), this average number increases from set
Ca to set Cp (1.3 to 16.8) and decreases when XC; is added (6.0).
The same observation can be drawn for the maximum number of
non-dominated solutions. The addition of criterion XU; to C4 in-
creases the number of non-dominated solutions, and adding XC;
to Cp increases the number of non-dominated solutions in 50% of
instances, i.e. instances mk01, mk03, mk04, mk05 and mk09.

6.3. Analysis of elite solutions

In the previous analysis of the number of non-dominated solu-
tions, the values of the criteria were not considered. Now, let us
evaluate elite solutions to determine which set of criteria effec-
tively leads to improving the convergence of the front. The first
criterion considered is the makespan since it is the most studied
in the literature and its quality can strongly explain the efficiency

of our approach. Then the other criteria are analyzed. Only neigh-
borhood structure N, is considered in the analysis.

6.3.1. Elite solutions for the makespan

The results for the makespan for each set of criteria are il-
lustrated in Table 8, which details the minimum value Min, the
average value Av and the percentage of error Per(%) generated
by the average value with respect to the best known value BKV
(Gonzalez et al., 2015) after running ten times our approach. The
value of the makespan is underlined for instances where the best
known value is obtained, and the minimum value is written in
bold for the remaining instances.

Minimizing the makespan performs better when the approach
optimizes Set Cg since, in 6 instances, the best known value is ob-
tained (mk01, mk03, mk04, mk07, mk08 and mk09). Fig. 3 shows
the sequences of operations on machines for instance mk01 when
the makespan is minimized. Besides, Set Cz has the best perfor-
mance compared to Sets C4 and C¢ in instances mk05 with an
error of 1.6% and mk10 in spite of the large error (9.9%). In the
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Fig. 3. Gantt diagram when minimizing makespan in instance mk01.
Table 9
Elite solutions for Tpax.
Inst Ca Cp Ce
Min Av Per(%) Min Av Per(%) Min Av Per(%)
mk01 10 11.5 15.0 9 9.0 0.0 9 9.0 0.0
mk02 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mk03 77 77.0 0.0 77 77.0 0.0 77 77.0 0.0
mk04 27 275 1.9 20 20.0 0.0 20 20.3 13
mk05 100 101.0 0.5 98 98.0 0.0 99 99.8 0.8
mk06 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mk07 73 78.0 6.8 70 70.3 0.4 76 773 1.6
mk08 310 310.0 0.0 310 310.0 0.0 310 310.0 0.0
mk09 137 143.0 44 123 1273 35 123 125.5 2.0
mk10 38 42.8 12.5 30 313 4.2 50 50.5 1.0
Table 10
Elite solutions for XT;.
Inst Ca Cp Cc
Min Av Per(%) Min Av Per(%) Min Av Per(%)
mk01 39 448 14.7 18 18.2 11 19 20.5 79
mk02 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mkO03 523 576.3 10.2 275 278.0 11 321 325.8 1.5
mk04 170 198.0 16.5 108 1124 41 125 130.5 44
mk05 1102 1179.3 7.0 788 811.2 2.9 854 916.0 73
mk06 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
mk07 895 995.3 11.2 808 840.0 4.0 845 887.5 5.0
mk08 4786 4832.0 1.0 2932 31024 5.8 3387 3496.5 3.2
mk09 2060 22925 113 1048 1144.0 9.2 1270 1321.8 41
mk10 496 566.8 14.3 340 395.2 16.2 482 548.0 13.7

instances mk02 and mkO06, the best known value is not obtained
for any set and the error is quite large, e.g. 11.5% and 21.9% with
Set Cy4. As illustrated in Section 6.2, few solutions are determined
for these two instances that have large flexibility levels. This means
that, to improve the convergence of the makespan, new strategies
might be needed, in particular for instances with large flexibility
levels.

6.3.2. Elite solutions for maximum tardiness and total tardiness

The performances of the approach with criteria Tmax and XT;
are shown in Tables 9 and 10. The meaning of columns is similar
to Table 8, except for Column Per(%) that corresponds to the per-
centage of error generated by the average and the minimum value.
This is due to the fact that there is a lack of results in the litera-
ture on instances from Brandimarte (1993). However, Per(%) gives
insights on the homogeneity of our approach in generating good
solutions in all ten runs.

It can be observed from Table 9 that optimizing Set Cp provides
the best results for Thax in all instances. This means that the addi-
tion of X U; improves the convergence not only for the makespan
but also for Tmax. Besides, including X C; does not affect the quality
of Tmax, since the minimum value is obtained in 7 instances. For
the remaining 3 instances, the obtained Tyax is very close to the
best value in instance mk05 (99 for set Cc against 98 for set Cg),
and the only bad result is obtained for instance mki10 where the
gap is really large (30 for Cp and 50 for C¢). This table also shows
that the approach is quite stable for Tmax as the average value is
always close to the minimum value for the three sets C4, Cp and
Ce.

For XT;, optimizing Set Cp provides much better results than
when optimizing the two other sets, since not only the best so-
lutions are always obtained for Cp, but there is also a large gap
between the value obtained with Cp and the ones obtained with
the two other sets (e.g. in instance mk08 where 2932 is obtained
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Table 11

Elite solutions for XU; and XC.
Inst XU; G

Cp Cc Cc
Min Av Per(%) Min Av Per(%) Min Av Per(%)

mkO01 3 3.0 0.0 3 3.0 0.0 272 274.0 0.7
mk02 0 0.0 0.0 0 0.0 0.0 237 241.0 17
mk03 5 5.8 15.0 6 6.5 8.3 2100 2159.0 2.8
mk04 6 6.3 42 7 73 3.6 653 656.0 0.5
mk05 12 12.5 4.2 12 12.8 6.3 1789 1851.0 35
mk06 0 0.0 0.0 0 0.0 0.0 657 662.0 0.7
mk07 15 15.5 33 15 15.0 0.0 2142 2177.0 1.6
mk08 16 17.0 6.3 17 17.8 44 7021 7130.0 1.5
mk09 13 14.8 13.5 15 15.8 5.0 4873 4919.0 0.9
mk10 1 123 114 14 143 1.8 3773 3835.0 1.6

Table 12

Results for maximum spread D and spacing SP for Cg.
Inst AVNDS D sp

Min Av Max o Min Av Max o

mkO01 4.8 7.9 94 10.2 1.0 12 2.0 2.6 0.6
mk02 1.5 0.0 13 32 1.6 0.0 0.1 0.5 0.2
mk03 1.8 0.0 17.6 30.7 13.5 0.0 03 0.8 0.3
mk04 35.0 74.7 79.9 84.2 43 3.8 6.3 114 35
mk05 26.0 293.9 341.6 396.7 43.7 53 8.7 10.0 23
mk06 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mk07 27.8 154.1 2439 3111 65.9 83 131 16.0 3.6
mk08 16.8 98.1 482.5 728.9 289.0 0.5 18.0 29.8 124
mk09 33.0 410.5 567.4 710.8 136.1 13.7 18.5 21.7 34
mk10 23.8 2511 321.6 384.1 60.6 193 23.7 322 5.9

with Cg whereas 4786 and 3387 are obtained with C4 and Cc, re-
spectively). Contrary to the case with Tmax, the value of Per(%) is
sometimes large such as in instance mk10 for the three sets. This
can be explained by the fact that the criterion XT; is more difficult
to solve than Tmax, Which implies that additional strategies might
be needed to make the approach more stable for XT;.

6.3.3. Elite solutions for total number of tardy jobs and total
completion times

2U; is one of the most difficult criteria to minimize, since it
is nonlinear. This is because U; is equal to 1 as soon as the com-
pletion time of job J; is strictly larger than its due date. The results
obtained wih sets Cg and C¢ are illustrated in Table 11. Note that Cg
still leads to the best results for all instances. Further, adding crite-
rion XC; to Cc has a small effect on the value of XUj, in particular
for instances with 15 and 20 jobs, i.e. mk03, mk04, mk08, mk09 and
mk10. Per(%) is sometimes large for Cg, which can be explained by
the small values of ¥ U; such as in instance mk05 in which Min =5
and Av = 5.8 leading to Per = 15.0. For criterion XC;, the only ob-
servation that can be drawn is that Per(%) is quite small, which
confirms the homogeneity of our approach for this criterion.

6.4. Analysis of the diversity

This section aims at validating that the front of Pareto is di-
verse in solutions, so that the decision maker can choose among
representative solutions in different regions of the front. The eval-
uation of the diversity is only presented for set Cp, because this
is the set of criteria for which our approach found the best re-
sults. Table 12 includes the minimum value (Min), the average
value (Av), the maximum value (Max) and the standard deviation
(o) for each instance. Column AvNDS recalls the average number
of non-dominated solutions of Table 7. For example, for instance
mkO1, on average 4.8 non-dominated solutions are generated (Col-
umn AvNDS) and, when considering the maximum spread D, the

minimum (resp. maximum) distance between extreme solutions is
7.9 (resp. 10.2), the average distance is 9.4 and o = 1.0. Besides, for
the average distance between nearest solutions (spacing SP), the
minimum (resp. maximum) distance is 1.2 (resp. 2.6) with an av-
erage of 2.0 and o = 0.6. If an ideal situation is taken as reference,
the tendency of o is to be equal to zero.

When analyzing the spacing SP, the ideal performance corre-
sponds to small values of SP and o. Looking at Table 12, it is possi-
ble to infer that, in the instances with high flexibility mk02, mk03
and mk06 (i.e. flex>3), the spacing values are very close to zero,
which is mainly explained by the results of Table 7 in which only
there are very few solutions in the set of non-dominated solutions.
Further, it is possible to infer two other trends. The first trend is
that spacing seems to increase with the size of the problem, in
particular for instances mk07, mk09 and mk10 with 20 jobs. The
second trend is that the number of non-dominated solutions does
not affect the spacing since, even though there are large values
for AvNDS in instances mk04, mk05 and mk08, the spacing is small
(3.8, 5.3 and 0.5). Moreover, for instance mk04, AvNDS = 35.0 and
the average spacing is 6.3 while, in instance mk10 with a lower
number of non-dominated solutions (AvNDS = 23.8), the average
spacing is 23.7.

Concerning the maximum spread D, an efficient value corre-
sponds to a large average and a low o. When looking at Table 12, it
is possible to infer that the maximum spread is large for instances
with medium flexibility (2 < flex < 3) such as instances mk07, mk09
and mk10. However, the size of the problem, especially the num-
ber of jobs, seems to not influence the maximum spread as the
values (i.e. Min, Av, Max) obtained in instance mk05 with 15 jobs
are larger than the corresponding values in instances mk07, mk08
and mk10. It is also possible to infer, by observing for example in-
stances mk07 and mk10, that there is no trend between the num-
ber of non-dominated solutions and the maximum spread. These
observed trends of diversity can be considered as additional argu-
ments to confirm the performance of our approach.



198 A.A. Garcia-Ledn, S. Dauzére-Pérés and Y. Mati/Computers and Operations Research 108 (2019) 187-200

Table 13

Analysis of HV and MID for Cg.
Inst Size flex HyperVolume (HV) Mean Ideal Distance (MID)

mxn Min Av Max Per(%) o Min Av Max Per(%) o

mk01 6x 10 2.09 0.80 0.82 0.85 34 0.01 43.22 43.95 45.29 1.69 0.49
mk02 6 x 10 4.10 0.95 0.98 1.00 13 0.02 29.00 30.21 31.00 419 0.65
mkO03 8x15 3.01 0.75 0.77 0.80 3.7 0.01 219.02 224.34 231.47 243 4.60
mk04 8x15 1.91 0.65 0.67 0.69 32 0.01 73.86 75.41 7768 210 115
mk05 4x15 171 0.50 0.51 0.52 23 0.00 218.26 221.08 227.37 1.29 2.38
mk06 15x 10 3.27 0.99 0.99 0.99 0.0 0.00 69.00 71.33 73.00 3.38 1.50
mk07 5x20 2.83 0.53 0.54 0.55 2.0 0.01 173.05 176.19 182.29 1.82 3.01
mk08 10 x 20 143 0.47 0.48 0.49 22 0.01 640.25 652.11 662.71 1.85 6.27
mk09 10 x 20 2.53 0.54 0.55 0.57 2.8 0.01 364.68 376.42 384.45 3.22 5.35
mk10 15x 20 2.98 0.55 0.58 0.60 34 0.01 230.97 238.25 246.64 315 4.72

Table 14

Comparison of GMD and MODE.
Inst GMD MODE

NDS Solutions NDS Solutions SCM, SCM, WOP

(2285, 15141) (2573, 14383
(2290, 14716) (2579, 14381
(2313, 14469) (2582, 14344
(2556, 14457) (2583, 14313

dpp02a 8 1

(2146, 21689) (2239, 19839)
(2148, 21337) (2280, 19692)
(2150, 20253) (2284, 19659)
(2155, 20244) (2288, 19637) 14
(2176, 19953) (2290, 19571)
(2180, 19951) (2306, 19474)

dpp09a 12

2155, 20829) (2194, 20070)
2172, 20821) (2195, 20033)
2176, 20503) (2196, 19948)
2177, 20298) (2203, 19935)
2178, 20265) (2332, 19894)
2184, 20246) (2345, 19886)
2185, 20181
2186, 20137
2193, 20086)

2389, 31441) (2545, 30303)
2392, 30779) (2597, 30180)
2399, 30760) (2607, 30177)
2409, 30360) (2607, 30127)
2435, 30313) (2865, 30020)

dpplla
17

(2459, 19489)
(2461, 19486)

dpp16a 10 11

2237, 29053) (2298, 28626)
2238, 29033) (2321, 28563)
2246, 28924) (2327, 28530)
2280, 28722) 16

dpp18a 7

(61, 479) (64, 455)
mko4 6 (62, 464) (73, 438) 6
(63, 457) (75, 429)
(144, 1661) (184, 1618)
(147, 1660) (198, 1599) 7
(

150, 1629)

mk07 5

(307, 3498) (328, 3342)

(311, 3454) (332, 3338) 7
(325, 3386) (334, 3295)

(326, 3347)

mk09 7

2412, 16073.65) (2471, 15602.65)

2413, 15994.65) (2481, 15478.65)

2433, 15857.65) (2513, 15452.65) 1.00 0.00 1
2435, 15754.65) (3195, 15403.65)

2456, 15679.65) (3352, 15339.65)

2463, 15663.65)

2168, 21022.3) (2196, 20098.3)

2170, 20909.3) (2198, 20088.3)

2172, 20734.3) (2200, 20068.3)

2173, 20691.3) (2201, 20015.3) 0.71 0.50 0
2174, 20228.3) (2204, 19650.3)

2191, 20101.3) (2207, 19600.3)

2193, 20099.3) (2220, 19430.3)

2234, 21190.61) (2330, 20385.61)

2238, 21109.61) (2866, 20301.61)

2273, 21073.61) (2951, 20296.61)

2282, 20537.61) (3152, 20226.61)

2307, 20496.61) 1.00 0.00 1

(2582, 33004.83) (2643, 31674.83)

(2584, 32930.83) (2644, 31577.83)

(2607, 32909.83) (2652, 31294.83)

(2610, 32426.83) (2657, 31187.83) 1.00 0.00 1
(2636, 32159.83) (3552, 31130.83)

(2642, 32009.83)

(2227, 26698.92) (2254, 25651.92)

(2229, 26431.92) (2256, 25447.92)

(2233, 26428.92) (2276, 25307.92)

(2234, 26363.92) (2277, 25190.92) 0.00 1.00 -1
(2237, 26354.92) (2278, 25123.92)

(2238, 26135.92) (2280, 24991.92)

(2251, 26097.92) (2282, 24789.92)

(2253, 25754.92) (2789, 24078.92)

(64, 445.46) (67, 390.46)

(65, 439.46) (69, 388.46) 0 0.50 -1
(66, 401.46) (74, 386.46)

(143, 1789.49) (150, 1424.49)

(144, 1492.49) (152, 1413.49) 0 1.00 -1
(146, 1476.49) (154, 1341.18)

(147, 1465.49)

(307, 3216.1) (403, 3166.1)

(309, 3206.1) (409, 3084.1) 0 1.00 -1
(311, 3191.1) (418, 2993.1)

(315, 3190.1)

6.5. Analysis of HyperVolume (HV) and Mean Ideal Distance (MID)

In this section, we expand the analysis for Cp using the HV
and MID measures, which must be maximized and minimized, re-
spectively. Table 13 gives the minimum value (Min), the average
value (Av) and the maximum value (Max) of these measures for

each instance after running ten times our approach. The value
Per (%) = (Av — Min)/Min for MID and Per (%) = (Max — Av)/Max for
HV. To calculate HV, the coordinates of the reference point is fixed
to 10,000 for Cmax and Tmax, to 100,000 for XT; and to two times
the number of jobs for XU;. For example, the coordinates of the
reference point are (10, 000; 10, 000; 100, 000; 20) for instances
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Fig. 4. Set of non-dominated solutions for instance dpp02a and set Cy.

with 10 jobs. To improve the scale of distance when calculating
MID, the criterion XT; of each solution has been divided by the
number of jobs.

It is very difficult to assess the quality of our approach due to
the lack of previous values for HV and MID for the regular criteria
studied in this paper. However, we can observe that the values of
HV tend to 100% for instances mk02 and mk06 with few solutions
and large flexibility. Our approach is stable since o is closer to zero
for all instances and Per(%) is lower than 3.4%. The analysis of MID
also reveals uniformity in the results, which is explained by small
values of o and Per(%) except for two instances: mk08 (o = 6.27)
and mk09 (o = 5.35), which could be explained by the number of
jobs.

6.6. Comparison with previous approaches

The performance of our approach is compared against the
Multi-Objective Differential Evolution algorithm (MODE) pro-
posed in Wisittipanich and Kachitvichyanukul (2014) to min-
imize the makespan and the total tardiness. In MODE, the
Pareto front was obtained by evaluating five search strate-
gies (MODE-ms1l, MODE-ms2, MODE-ms3, MODE-ms4 and
MODE-ms5) and the MOPSO algorithm proposed in Nguyen and
Kachitvichyanukul (2010). Note that the solutions of the Pareto
front are mainly obtained from those determined by MODE-ms1,
MODE-ms2, MODE-ms3 and MODE-ms5. The comparison is based
on a set of eight problem instances used in Wisittipanich and
Kachitvichyanukul (2014), which includes five problem in-
stances from Dauzére-Pérés et al. (1998) (dpp02a, dpp09a,
dpplla, dppl16a and dpp18a) and three problem instances from
Brandimarte (1993) (mk04, mk07 and mk09). The due dates of jobs
were determined using the expression provided in He et al. (1993).
Fig. 4 shows the non-dominated solutions obtained by N; and N,
for instance dpp02a with set Ca.

To compare the results of GMD with MODE, the Weak OutPer-
formance metric (WOPy,) and the set coverage metric (SCMy,) are
analyzed. WOPyx, evaluates the dominance between two sets of
non-dominated solutions sy and s,. SCMy, is the ratio of solutions
of s, weakly dominated by solutions of sy (Zitzler, 1999).

Table 14 provides for both GMD and MODE the number of
non-dominated solutions in column NDS, the Pareto set in col-
umn Solutions, the set coverage metric in column SCM; and SCM,,
and the Weak OutPerformance metric in column WOP. For exam-
ple in instance dpp09a, our approach finds 12 non-dominated so-
lutions when MODE finds 14 non-dominated solutions, and 71%

o GMD
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Fig. 5. Comparison of GMD and MODE using the instance dpp02a.

(10 of 14) of the solutions of MODE are weakly dominated by at
least one solution of GMD, and WOP =0 means that there are
weakly dominated solutions in both sets of non-dominated solu-
tions. Table 14 also shows that the performance of GMD and MODE
are comparable. Our approach is better for three instances (dpp02a,
dpplla and dpp16a, since WOP and SCM; are equal to 1 and SCM,
is equal to 0), and MODE is better for three instances (dpp18aq,
mk07 and mk09). Fig. 5 depicts the sets of non-dominated solu-
tions obtained by GMD and MODE for instance dpp02a. Note that
GMD was ran with criteria Cmpax and XT;.

7. Conclusions

In this paper, we proposed a general local search approach
to determine Pareto fronts for the Multi-Objective Flexible Job-
shop Scheduling Problem (MOFJSP) for any combination of reg-
ular scheduling criteria. Regular criteria correspond to various
customer service objectives, which are important in a competitive
environment. The local search approach is based on two neigh-
borhood structures (N; and N,), that consist in moving a critical
operation in the conjunctive graph, sufficient conditions to deter-
mine the feasibility of a move without transforming the graph, and
an estimation function to select the best move. A hierarchical test
is proposed to quickly update the set of non-dominated solutions
during the search, and four search strategies (T, T, T3 and Tj)
have been proposed.

Three sets of criteria to optimize are considered in our ex-
periments. The experiments showed that N, is the dominant
neighborhood structure and generates the largest number of non-
dominated solutions. Besides, a combination of Strategies T3 and
T, is sufficient to solve the MOFJSP with all sets of criteria.

In future research, we would like to study how our approach
can be improved for specific regular criteria. New dedicated prop-
erties could be used to accelerate the search or avoid being stuck
in local optima for criteria such as XT; or XU;, that are more com-
plex to handle. Another research avenue is the use of sophisticated
metaheuristics that could help to better diversify the search pro-
cess to reach promising regions. We also intend to work on ex-
tending our approach to search for more diverse solutions by bet-
ter considering different types of criteria.
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