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a b s t r a c t 

In this paper, a general local search approach for the Multi-Objective Flexible Job-shop Scheduling Prob- 

lem (MOFJSP) is proposed to determine a Pareto front for any combination of regular criteria. The ap- 

proach is based on a disjunctive graph, a fast estimation function to evaluate moves and a hierarchical 

test to efficiently control the set of non-dominated solutions. Four search strategies using two neighbor- 

hood structures are developed. Numerical experiments are conducted on test instances of the literature 

with three sets of criteria to minimize and using metrics to evaluate and compare Pareto fronts. The 

results show that our approach provides sets of non-dominated solutions of good quality. 
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. Introduction 

In a strong competitive environment and with more and more

emanding customers, manufacturing and service systems must be

exible ( Johnzen et al., 2011 ) and able to deal with different ob-

ectives dynamically. Among the important operational decisions

re scheduling decisions where several types of flexibility have

een considered, and in particular operation flexibility that refers

o the ability of an operation to be performed in different ways.

he scheduling literature dealing with operation flexibility in the

lassical Job-shop Scheduling Problem (JSP) has accumulated over

he last twenty five years (see the recent survey of Chaudhry and

han, 2016 ), leading to the so-called Flexible Job-shop Schedul-

ng Problem (FJSP). The FJSP is more realistic for modeling a wide

ange of real-life applications, as it can capture key features of

odern manufacturing and service systems. 

The Flexible Job-shop Scheduling Problem (FJSP) is defined as

ollows. A set M of m machines are always available to process a

et of n jobs J = { J 1 , . . . , J n } . Each machine can only perform one

peration at a time. Each job consists of a sequence of operations,
∗ Corresponding author at: Facultad de Ingeniería, Programa de Ingeniería Indus- 
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alled routing, which can differ from one job to another, i.e. there

s not a single pre-specified order of machines for all jobs. The pre-

mption of operations is not allowed, i.e. an operation cannot be

nterrupted once started. Each job J i has a release date r i , a weight

 i related to the priority of job J i , and a due date d i that speci-

es the date before which J i should be completed. An important

eature of the FJSP is that the machine needed to perform an oper-

tion j is not given but must be selected from a subset R j ⊆ M of

ligible machines. The processing time p j of an operation j depends

n the selected machine in R j . Let us assume that these processing

imes are non-negative integer, known and include non sequence-

ependent setup times between operations. The FJSP consists in

oth assigning a machine to each operation and sequencing oper-

tions on the selected machines, to optimize a single criterion or

ultiple criteria. 

In single criterion optimization, the most studied criterion for

he FJSP is the minimization of the makespan C max , which cor-

esponds to the completion time of all jobs. However, minimiz-

ng other criteria that include the weight of jobs and their due

ates are better suited to capture critical factors that affect the

ompetitiveness of a firm ( Zhang and Wu, 2011 ). Regular crite-

ia are among the most common objectives considered in the

cheduling literature. A criterion is said to be regular if it is an

ncreasing function of the completion times of the jobs (see e.g.

ati et al., 2011 for the JSP). In addition to the makespan, the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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following regular criteria are among the most popular ones in the

scheduling literature: (1) Maximum tardiness T max = max T i , where

T i = max (0 , C i − d i ) , C i is the completion time of job J i and d i is its

due date, (2) Total tardiness �i T i , (3) Total completion time �i C i ,

and (4) Number of tardy jobs �i U i , where U i = 1 if T i > 0 and 0

otherwise. 

The Multi-Objective Flexible Job-shop Scheduling Problem

(MOFJSP) is the optimization of the FJSP with multiple criteria that

are in conflict to some extent. In this paper, we develop a general

local search approach that optimizes any combination of regular

criteria for the MOFJSP. The remainder of the paper is organized as

follows. Section 2 reviews the related literature. Section 3 details

the disjunctive graph model and the neighborhood structures that

are used to solve the FJSP. Section 4 proposes a theoretical frame-

work to evaluate the quality of the set of non-dominated solutions.

Section 5 describes the proposed local search approach based on

Pareto optimization with four new search strategies. Experiments

that validate the efficiency of our approach are presented and dis-

cussed in Section 6 . Finally, Section 7 concludes the paper and pro-

vides some directions for future research. 

2. Literature review 

The FJSP has been extensively studied in the literature to op-

timize a single criterion or multiple criteria. A recent survey cov-

ering the various techniques to solve the FJSP with a single ob-

jective and multiple objectives, can be found in Chaudhry and

Khan (2016) . This survey includes different comparative tables

to classify the literature according to the performance measures

and the types of techniques. It also gives, for each paper, the

algorithm and shop details, the objective functions considered

and the number of citations. Another survey can be found in

Genova et al. (2015) that only covers techniques developed to

solve the MOFJSP between 2005 and 2014. A recent literature

review on genetic algorithms to solve the FJSP is presented in

Amjad et al. (2018) where, for each paper, the considered objec-

tive functions, the parameters of the genetic algorithms and the

benchmarks are presented. 

By taking a closer look at the literature on the MOFJSP, one

can observe that most papers focus on optimizing the makespan,

the total workload of machines, and the workload of the criti-

cal machine. Chaudhry and Khan (2016) report ( Table 3 ) that the

makespan is used in combination with another objective func-

tion in 39.59% of papers, and 23.35% of them use the workload

of machines. Even though the list of papers in Chaudhry and

Khan (2016) is not exhaustive as they missed some papers, the

observation and trend are the same. The makespan remains the

most studied criterion for the FJSP, and is generally combined with

the workload of machines in the MOFJSP. A similar observation can

be drawn from Amjad et al. (2018) ( Table 10 ) where 88.88% (i.e.

32 out of 36) of papers relying on genetic algorithms to solve the

MOFJSP consider the makespan and workload of machines. Since

there are a very large number of papers on the MOFJSP, we only

focus in this section on the recent, state-of-the-art and closely re-

lated works where multiple criteria are optimized, with special at-

tention to papers that consider regular criteria. 

The MOFJSP is usually tackled in the literature using two types

of approaches. The first one consists in transforming the multi-

objective problem into a mono-objective problem by assigning dif-

ferent weights for each objective. Various heuristics in this cat-

egory were proposed in the literature. A Tabu Search algorithm

is presented in Li et al. (2014) that uses several neighborhood

search rules for machine assignment and operation scheduling.

A heuristic method that starts from an initial solution, and im-

proves it using two move search algorithms, is introduced in

Xing et al. (2009) . Several hybrid heuristics are proposed such as
he hybridization of particle swarm optimization and Tabu Search

n Zhang et al. (2009) , genetic algorithms and Shifting Bottleneck

n Gao et al. (2007) , and Particle Swarm Optimization and Simu-

ated Annealing in Xia and Wu (2005) . 

The second type of approaches that started about fifteen years

go is based on Pareto optimization where the goal is to determine

he set of non-dominated solutions, i.e. the Pareto front. A hier-

rchical heuristic algorithm that is an adaptation of the Newton’s

ethod for continuous multi-objective unconstrained optimization

roblems is proposed in Pérez and Raupp (2016) . Two adapted ge-

etic algorithms are presented in Rahmati et al. (2013) . A simple

nd effective evolutionary algorithm that needs only two param-

ters is developed in Chiang and Lin (2013) , and a filtered-beam-

earch-based heuristic in Shi-Jin et al. (2008) . 

Many authors developed hybrid methods that combine two

r more algorithms to improve the convergence while ensuring

he diversity of solutions. Chun et al. (2013) combine an evolu-

ionary algorithm with a local search heuristic. A Non-dominated

orting Genetic Algorithm II is combined with a local search in

uan and Xu (2015) , a Scatter Search algorithm that uses Tabu

earch and Path-Relinking is proposed in González et al. (2015) ,

 Path-Relinking based on a Tabu Search algorithm with back-

umping tracking is developed in Jia and Hu (2014) , a hybrid dis-

rete Particle Swarm Optimization and Simulated Annealing algo-

ithm are proposed in Shao et al. (2013) , a Pareto-based estimation

f distribution algorithm is combined with a local search heuris-

ic in Wang et al. (2013) , a genetic algorithm and local search are

ombined in Xiong et al. (2012) , a genetic algorithm is combined

ith a Simulated Annealing in Li (2011) , and an approach hybridiz-

ng a discrete Artificial Bee Colony algorithm and local search ap-

roaches is proposed in Li et al. (2011) . 

All the above mentioned papers focus on optimizing the

akespan, the total workload of machines, and the workload

f the critical machine. There are only very few papers that

onsider other objectives such as regular criteria. In the FJSP

ith mono-objective, García-León et al. (2015) propose a gen-

ral approach for optimizing any regular criteria, which presents

ew concepts to be used in local search methods. To min-

mize the total tardiness, Trkylmaz and Bulkan (2015) com-

ine a genetic algorithm and a Variable Neighborhood Search,

nd Mousakhani (2013) presents a Mixed Integer Linear Pro-

ramming model and an iterated local search. For the MOFJSP,

ingh et al. (2016) propose a Particle Swarm Optimization algo-

ithm to simultaneously minimize the makespan, mean flow time,

nd mean tardiness. Gao et al. (2014) minimize a weighted com-

ination of the makespan and the mean of earliness and tardi-

ess, using a discrete Harmony Search algorithm that makes use

f several heuristics. A Variable Neighborhood Search algorithm is

roposed in Bagheri and Zandieh (2011) to minimize a weighted

um of the makespan and the mean tardiness. Vilcot and Bil-

aut (2011) present a version of Tabu Search that minimizes a lin-

ar combination of C max , �T i and L max . Tay and Ho (2008) consider

he minimization of the weighted sum of the makespan, the mean

ardiness, and the mean flow time, by using priority rules and the

oncept of genetic programming. A heuristic inspired from Parti-

le Swarm Optimization and Variable Neighborhood Search is pro-

osed in Liu et al. (2006) for minimizing a weighted linear combi-

ation of the makespan and the sum of completion times. 

The MOFJSP has also been addressed under a variety of con-

traints, assumptions and practical issues. In Lei et al. (2018) ,

he makespan and total tardiness are minimized under the con-

traint that the total energy consumption does not exceed a given

hreshold. Mokhtari and Hasani (2017) develop an evolutionary al-

orithm to minimize the makespan, the total availability of the

ystem, and the total energy cost of both production and mainte-

ance operations. The uncertainty in processing times is addressed
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Table 1 

An illustrative example of the FJSP. 

Eligible machines and processing times for operations 

Job 1 2 3 4 

J 1 M 1 (3)/ M 3 (5) M 2 (3)/ M 4 (4) M 1 (5)/ M 3 (1) M 3 (1) 

J 2 M 1 (5)/ M 3 (4) M 1 (4)/ M 2 (5) M 4 (1) M 2 (2) 

J 3 M 1 (2) M 3 (3)/ M 4 (4) M 2 (8) M 3 (2)/ M 4 (2) 

Table 2 

Critical paths of jobs and their corresponding blocks for solution in Fig. 1 (b). 

Job Critical path Block 

J 1 0 → O 11 → O 31 → O 22 → O 13 → O 14 → φ1 ( O 11 → O 31 → O 22 → O 13 ) 

J 2 0 → O 11 → O 31 → O 32 → O 33 → O 24 → φ2 ( O 11 → O 31 ), ( O 33 → O 24 ) 

J 3 0 → O 11 → O 31 → O 32 → O 33 → O 34 → φ3 ( O 11 → O 31 ) 
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n Shen et al. (2017) to simultaneously minimize makespan,

aximal machine workload, and robustness to uncertainties.

u et al. (2017) investigate the problem under controllable pro-

essing times, i.e. the processing times of operations can be

ontrolled by allocating additional resources, to find an efficient

rade-off between the makespan and the total additional resource 

onsumption. Fuzzy processing times and fuzzy due dates are ad-

ressed in Chun et al. (2013) using a memetic algorithm that

ombines genetic global optimization with a local search method.

hmadi et al. (2016) address random machine breakdowns by con-

idering the makespan and stability measures. Li et al. (2014) con-

ider maintenance activities on machines and propose a dis-

rete Artificial Bee Colony algorithm to deal with the makespan,

he total workload of machines, and the workload of the criti-

al machine. Random machine breakdowns are also considered in

iong et al. (2013) with the objective of minimizing the makespan

nd the robustness. The dynamic FJSP with job release dates is ad-

ressed in Nie et al. (2013) to minimize the makespan, the mean

ow time, and the mean tardiness. Sadrzadeh (2013) considers

equence-dependent setups using an Artificial Immune System and

article Swarm Optimization to minimize an aggregate function of

he makespan and the mean tardiness. Setup times are also consid-

red in Bagheri and Zandieh (2011) using a Variable Neighborhood

earch approach to minimize the makespan and the mean tardi-

ess. 

To conclude, the MOFJSP has been solved in the literature

sing different methods that range from simple heuristics to

ophisticated metaheuristics. Although the MOFJSP gained con-

iderable attention from researchers during the last ten years,

ost studies consider the optimization of the makespan and two

on-regular criteria (total workload and maximum workload of

achines). A very limited number of papers address regular crite-

ia even when optimizing a single criterion. Indeed, Chaudhry and

han (2016) report that the optimization of the makespan com-

ined with other regular criteria has little been studied, e.g. 2.5%

f the papers consider maximum tardiness and 1.5% deal with total

ardiness. When regular criteria are combined with the makespan,

ost papers do not aim at Pareto optimization and instead aggre-

ate the criteria in one objective using a weight for each crite-

ion. Moreover, the concepts of disjunctive graph and estimation

unctions are not exploited. One of the contributions of this paper

s the design of an efficient Pareto optimization approach for the

OFJSP with regular criteria by developing different strategies to

fficiently determine a set of non-dominated solutions. 

. Problem modeling and neighborhood structures for the FJSP 

This section introduces the different concepts used in this pa-

er to model and solve the MOFJSP, and illustrates these concepts

sing the example in Table 1 with three jobs and four machines.

ach job J i has four operations which are denoted O ij ( i = 1 , 2 , 3

nd j = 1 , 2 , 3 , 4 ). For example, the first operation of job J 1 has two

ligible machines M 1 and M 3 with processing times of 3 and 5, re-

pectively. The third operation of J 2 has no flexibility, since it can

nly be performed on machine M 4 . 

The FJSP with regular criteria can be modeled using a disjunc-

ive graph G = (V, A , E ) where V is the set of nodes and A ∪ E
s the set of arcs (see Dauzère-Pérès and Paulli, 1997 ). Let us re-

all some important definitions. The set V includes operations of

obs, a dummy node 0 that represents the start of each job, and

 dummy nodes φi associated to the completions of jobs (see e.g.

ati et al., 2011 ). Nodes φi are necessary since regular criteria de-

end on the completion times of jobs. The set A contains conjunc-

ive arcs that connect two consecutive operations (i.e. in the rout-

ng) of a job, the node 0 and every first operation of each job, and

he last operation of each job J to its corresponding node φ . The
i i 
et E = ∪ m ∈M 

E m 

contains disjunctive arcs where E m 

includes arcs

etween pairs of operations that may use machine m . The arc from

 to the first operation of a job J i has a length which is equal to the

elease date r i of J i , and any remaining conjunctive or disjunctive

rc has a length which is equal to the processing time of the op-

ration from which it starts. Fig. 1 (a) shows the disjunctive graph

or the example in Table 1 . 

A feasible solution of the FJSP is obtained by assigning a ma-

hine to each operation (thus keeping only the relevant disjunc-

ive arcs in E ) and by fixing a direction to each disjunctive arc

n E such that the induced graph does not contain any directed

ycle. To effectively exploit the structure and properties of the

raph in a local search approach, the graph must be simplified

y removing redundant arcs so that every node x has at most

ne predecessor and one successor on the machine that performs

 . Fig. 1 (b) shows a feasible solution for the example in Table 1 .

or example, the first operation O 21 of job J 2 is assigned to ma-

hine M 3 . The sequences of jobs with their operations on ma-

hines are the following: J 1 ( O 11 ) → J 3 ( O 31 ) → J 2 ( O 22 ) → J 1 ( O 13 ) on

 1 , J 1 ( O 12 ) → J 3 ( O 33 ) → J 2 ( O 24 ) on M 2 , J 2 ( O 21 ) → J 3 ( O 32 ) → J 1 ( O 14 )

n M 3 , and J 2 ( O 23 ) → J 3 ( O 34 ) on M 4 . 

The starting time h x (called head ) of a node x is given by the

ength of a longest path from 0 to x . The level l x of node x is the

aximum number of arcs from node 0 to x . The tail q i x of x to

 dummy node φi is the maximum length from the completion

f x to φi if a path exists from x to φi and −∞ otherwise. Tails

re needed since regular criteria are considered in this paper. For

xample, looking at Fig. 1 (b), the head of operation O 23 is 9, its

evel is equal to 4 and its tail to φ3 is equal to 2. However, the

ail of operation O 23 to φ1 is equal to −∞ since there is no path

rom O 23 to φ1 . The longest path from node 0 to node φi is called

he critical path from 0 to φi , and its length is equal to h φi 
, which

orresponds to the completion time of J i . Every node x belonging

o a critical path is critical according to J i , and satisfies h x + p x +
 

i 
x = h φi 

. Each arc ( x, y ) belonging to the critical path from 0 to

i is critical if nodes x and y are assigned to the same machine

nd belong to the routing of different jobs. A block is a maximum

equence of critical nodes assigned to the same machine. Table 2

hows the critical paths of jobs and their corresponding blocks for

he solution in Fig. 1 (b). Note that O 31 is critical for all jobs, O 24 

s only critical for job J 2 , whereas operations O 12 , O 21 , and O 23 are

ot critical. The critical path of job J 2 contains two blocks. 

Neighborhood structures are used in local search to generate

ew solutions by performing small perturbations of a current solu-

ion. In the FJSP, a well-known perturbation proposed in Dauzère-

érès and Paulli (1997) consists in moving (i.e. resequencing or re-

ssigning) a critical operation in the graph of the current solution.

n this paper, we consider two neighborhood structures ( N and
1 
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Fig. 1. Disjunctive graph model and a feasible solution for the example in Table 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Possible resequencing and reassignment moves in Fig. 1 (b). 

Critical Resequencing Reassignment 

operation Move Machine Move 

[ O 31 − O 22 ] 
‡ [0 − O 21 ] 

‡ 

O 11 [ O 22 − O 13 ] 
‡ M 3 [ O 21 − O 32 ] 

‡ 

[ O 13 − ∗] � [ O 32 − O 14 ] 
‡ 

[ O 14 − ∗] �

[0 − O 11 ] 
‡ 

O 31 [ O 22 − O 13 ] 
‡ 

[ O 13 − ∗] † 

O 22 [0 − O 11 ] 
‡ [0 − O 12 ] 

‡ 

[ O 11 − O 31 ] 
‡ M 2 [ O 12 − O 33 ] 

‡ 

[ O 13 − ∗] ‡ [ O 33 − O 24 ] 
‡ 

[ O 24 − ∗] �

[0 − O 21 ] 
‡ [0 − O 23 ] 

‡ 

O 32 [ O 14 − ∗] ‡ M 4 [ O 23 − O 34 ] 
‡ 

[ O 34 − ∗] �

[0 − O 11 ] 
� [0 − O 21 ] 

‡ 

O 13 [ O 11 − O 31 ] 
‡ M 3 [ O 21 − O 32 ] 

‡ 

[ O 31 − O 22 ] 
‡ [ O 32 − O 14 ] 

‡ 

[ O 14 − ∗] �

O 33 [0 − O 12 ] 
‡ 

[ O 24 − ∗] ‡ 

[0 − O 23 ] 
‡ [0 − O 21 ] 

�

O 34 M 3 [ O 21 − O 32 ] 
�

[ O 32 − O 14 ] 
‡ 

[ O 14 − ∗] ‡ 

O 24 [0 − O 12 ] 
† 

[ O 12 − O 33 ] 
‡ 

O 14 [0 − O 21 ] 
�

[ O 21 − O 32 ] 
‡ 
N 2 ), which differ from one another in the selection of operations

that are moved. Neighborhood structure N 1 focuses on all critical

operations of jobs, while neighborhood structure N 2 ⊂ N 1 focuses

on operations that belong to blocks of critical paths of the jobs

that affect the value of the criterion (e.g. jobs that are late for late-

ness criteria). Our motivation in defining these two neighborhood

structures is to analyze whether the concept of blocks is help-

ful to generate sets of non-dominated solutions for the MOFJSP.

To understand the difference between N 1 and N 2 , let us consider

the minimization of �C i in the solution of Fig. 1 (b). According to

the critical paths and blocks of Table 2 , neighborhood structure N 1 

considers the critical operations O 11 , O 13 , O 14 , O 22 , O 24 , O 31 , O 32 ,

O 33 and O 34 , whereas neighborhood structure N 2 “only” focuses

on O 11 , O 13 , O 22 , O 24 , O 31 and O 33 . Table 3 gives the possible re-

sequencing and reassignment moves for each critical operation in

both neighborhood structures. For a given critical operation O ij , the

notation [ a − b] means that O ij is moved between operations a and

b . If a = 0 (resp. b = ∗), O ij is moved in the first (resp. last) posi-

tion of the sequence of the machine on which it is resequenced or

reassigned. For example, O 11 can be resequenced between O 22 and

O 13 , and reassigned on machine M 3 between O 32 and O 14 . 

Moving an operation in both neighborhood structures N 1 and

N 2 can generate directed cycles in the resulting graph, thus

leading to unfeasible solutions of the FJSP. To check the feasi-

bility of a move, the sufficient conditions proposed in García-

León et al. (2015) are used. Without actually transforming the

graph, they validate that a cycle is not created in the new graph.

These conditions generalize previous conditions of the literature

by using the concepts of heads, tails and levels of operations. In
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able 3 , feasible moves that are obtained by the sufficient con-

itions are denoted by the superscript ‡ , unfeasible moves by the

uperscript �, and moves that are feasible but cannot be validated

y the sufficient conditions are denoted by the superscript † . 

The best move in the neighborhood of a solution is generally

btained using the value of the criterion of the generated solu-

ion. Previous studies on the FJSP have shown that using estima-

ion functions is more appropriate to evaluate the quality of moves,

ecause significant computational times can be saved and much

ore iterations can be performed to reach better solutions. Since

egular criteria are considered in this paper, we need to estimate

he new completion times of nodes φi after moving an operation

see Mati et al., 2011 for the classical job-shop scheduling prob-

em). To do so, we use the estimation function proposed in García-

eón et al. (2015) by considering forward and backward moves. A

orward (resp. backward) move of a node x , currently sequenced

etween nodes p and q , between two nodes u and v is defined

hen l x ≤ l u (resp. l x > l u ). The idea of the estimation function con-

ists in considering the newly created paths after the move to-

ether with a suitable subset of paths that are available in the cur-

ent and new graphs. This is performed by focusing not only on the

peration x , but also on the operations involved in the move p, q, u

nd v , as well as on operations w for which l w 

= l x (see Mati et al.,

011 ). In addition to its efficiency in estimating the value of the

riterion, the estimation function is fast and guarantees whenever

ossible the lower bound property, i.e. the quality of a move is not

verestimated ( García-León et al., 2015 ). 

. Evaluating sets of non-dominated solutions 

An effective approach for solving the MOFJSP with regular cri-

eria is the Pareto approach, which aims at finding a set of non-

ominated solutions S, called the Pareto front. In this section, let

s briefly recall the main notions related to Pareto optimization

nd introduce the measures to evaluate the quality of the set S . 

.1. Dominance of Pareto 

Let C be the set of criteria to minimize in Pareto manner and

 c ( s ) be the value of the criterion c of a feasible solution s . Solution

 1 dominates solution s 2 if the following two conditions are true: 

1. Solution s 1 is not worse than solution s 2 for all criteria, i.e. ∀ c ∈
C, f c ( s 1 ) ≤ f c ( s 2 ), 

2. Solution s 1 is strictly better than s 2 for at least one criterion,

i.e. ∃ c ∈ C such that f c ( s 1 ) < f c ( s 2 ). 

Accordingly, any two solutions of S are non-dominated with re-

pect to each other, and any solution not in S is dominated by at

east one solution in S . 

.2. Quality measures of the set of non-dominated solutions 

A good set of non-dominated solutions should satisfy two goals:

onvergence and diversity. Convergence ensures that the set of so-

utions is as close as possible to the optimal Pareto front, and di-

ersity is related to the sparsity of solutions to ensure that the de-

ision maker has multiple representative trade-off solutions among

onflicting objectives. Zitzler et al. (2003) state that it is difficult

o define appropriate measures to approximate the optimal Pareto

ront when analyzing both goals, and that the discrepancies in-

rease when considering stochastic approaches. 

For the MOFJSP, most previous studies aim at improving the

onvergence and increasing the number of non-dominated solu-

ions without considering diversity (see e.g. Jia and Hu, 2014 ). In

his paper, we consider both the convergence and diversity to bet-

er evaluate the quality of sets of non-dominated solutions. Three
easures are selected to evaluate the convergence: (1) The elite

olutions, (2) The mean ideal distance and (3) The hypervolume.

lite solutions correspond to the best values of the criteria. The

ean Ideal Distance ( MID ) is the average distance between non-

ominated solutions and the origin point ( Singh et al., 2016 ), i.e.

he point (0,0) if two criteria are analyzed. MID is calculated using

1) , where |S| is the number of non-dominated solutions. 

ID = 

∑ 

s ∈S 

√ ∑ 

c∈C 
f 2 c (s ) 

|S| (1) 

The HyperVolume ( HV ) is the volume covered by the solutions

f the front. When all criteria are minimized, a reference point

aving as coordinates the worst values of the criteria is used to

imit this coverage ( Zitzler et al., 2007 ). Thus, HV = 

∑ 

s ∈S V s , where

 s is the hypercube of s with respect to the reference point. Since

he hypervolume can lead to large values, (2) is used to calculate

V , which corresponds to the ratio of the total volume V T covered

y the reference point and the origin point. 

V = 

∑ 

s ∈S 
V s 

|S| × V T 
(2) 

The maximum spread ( D ) and spacing ( SP ) are selected to

valuate the diversity. The metric D is the longest diagonal of

he hyperbox formed by the extreme values of the criteria in S
 Zitzler, 1999 ), and is calculated using (3) , where f max 

c and f min 
c are

he maximum and minimum values of criterion c for all solutions

n S: 

 = 

√ ∑ 

c∈C 
( f max 

c − f min 
c ) 2 (3) 

The metric SP is the average distance between consecutive solu-

ions in S ( Schott, 1995 ). Let ˆ d i be the distance between solution s i 
nd its nearest solution, i.e. ˆ d i = min 

s p ∈S;p� = i 

∑ 

c∈C 
| f c (s i ) − f c (s p ) | , and let

 ̄be the average of these distances for all solutions in S . Spacing

s calculated using (4) . 

P = 

√ 

1 

|S| 
|S| ∑ 

i =1 

( ̂  d i − d̄ ) 2 (4) 

To ensure the quality of S, the spacing and mean ideal distance

ust be minimized, the maximum spread and hypervolume must

e maximized and elite solutions must be as close as possible to

he optimal values of the criteria. 

. Solving the MOFJSP 

The proposed Pareto approach for the MOFJSP with regular cri-

eria aims at finding a set of non-dominated solutions S whose

onvergence and diversity are optimized. Let us first describe how

is managed, then present the framework of the approach and the

nitial solution, and finally propose four search strategies. 

.1. Controlling the set of non-dominated solutions 

The control of the set of non-dominated solutions consists in

anaging solutions entering and leaving S each time a new solu-

ion s is obtained by the search process. A schedule s ∈ S is called

 reference schedule for criterion c if f c ( s ) is the best possible value

or criterion c . The reference schedule for c is denoted by s 
re f 
c , and

he subset of S with the reference schedules is denoted by S re f . 

To efficiently control S, we propose a fast hierarchical test in

hree steps to avoid performing too many evaluations to check
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Fig. 2. Test to check whether s is added to S . 
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whether s should be added to S . The test is illustrated in Fig. 2 .

It first evaluates if the value of any criterion c of s is strictly lower

than the best value for criterion c . If it is the case, then s becomes

the reference schedule for criterion c , and s is added to S re f and

S, maybe replacing other solutions. Otherwise, the test validates

the dominance between s i ∈ S and s starting with the reference

schedules. If no dominance is found, then s can be added to S,

maybe replacing other solutions. Hence, the step Update S consists

in adding s and removing the dominated solutions. Note that mul-

tiple solutions are not considered, i.e. if the values of all the crite-

ria of s and of a solution s i ∈ S are equal. 

5.2. Framework of the approach 

The approach consists of two alternating phases, namely an im-

proving phase and a diversification phase. The improving phase is

a steepest descent that performs iterative improvements until a lo-

cal optimum is reached for a given criterion or all criteria. At each

iteration, a set of neighbor solutions is generated using the neigh-

borhood structures, the feasibility test and the move evaluation de-

scribed in Section 3 . The diversification phase starts from the local

optimum of the improving phase and performs at most b itera-

tions. During this phase, a critical operation is randomly selected

and a move is randomly chosen. If the selected move is feasible,

the heuristic advances to the next iteration, otherwise the above

process is repeated until a feasible move is obtained. If a new best

solution is obtained in the diversification phase for a given crite-

rion, the search returns to the improving phase, otherwise it con-

tinues until b iterations are performed. The value of b is randomly

selected in [4,10] which is fixed experimentally. 

After performing a move in both phases, all local values of the

criteria are updated, the hierarchical test to determine whether s

is added to S is performed, and S is updated if s is added as de-

scribed in Fig. 2 . Additionally, the best values of the criteria are

updated. 

To deal with multiple criteria for the MOFJSP, we propose four

versions of the above approach that differ mainly in the way the

criterion to optimize is selected, the way the approach is alternat-

ing between the improving and diversification phases, and the way

the solution is selected when each phase is resumed. 
.3. Initial solution 

The initial solution is obtained using a constructive heuristic

hat selects an operation at each step according to an established

rder of the jobs. The main idea of the heuristic is to complete

he selected operation as soon as possible to try to minimize the

ompletion times of jobs. The jobs are ordered by non-decreasing

eights when at least one criterion considers weights. The ties are

roken using the due dates, and then the average processing times
 n i 
j=1 

1 
| R j | 

∑ 

a ∈ R j p j where n i is the number of operations of job J i .

or a given operation x and for each eligible machine M k ∈ R x , the

ime t k at which the machine completes its previous operation v

n the sequence (if it exists) is calculated. Operation x is then as-

igned to the machine that completes x as soon as possible, i.e.

he machine M k ∈ R x that minimizes t k + p x . The graph is updated

y adding arc ( v, x ) and the heuristic continues until all operations

ave been selected. 

.4. Search strategy T 1 

The idea of this strategy is to concentrate on optimizing a given

riterion by performing an improving phase followed by a diver-

ification phase. More precisely, a random criterion c is selected

n C, and the improving phase performs iterative improvements

f c until reaching a local optimum for this criterion. The diver-

ification phase starts from this local optimum and, if the value

f the criterion c is improved during this phase, the search re-

urns to the improving phase with the same criterion c . However,

f the maximum number of iterations b is reached, the search sets

ll local values of the criteria to ∞ , randomly selects a new crite-

ion to minimize from the set C − { c} and returns to the improving

hase. 

.5. Search strategy T 2 

This strategy gives more attention to the improving phase since

ost of the promising solutions are obtained in this phase. The

trategy intensifies the search in the improving phase until reach-

ng the local optimum of all criteria. To apply this strategy, the

oncept of forbidden criterion or criteria is introduced. This con-

ept is defined and applied, for a given criterion c , only during
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he improving step when the local optimum of c is reached. More

recisely, a criterion becomes forbidden when, in the improving

hase, it is selected to create a move and it cannot generate an

mproving move. A criterion is authorized to be selected as soon

s its local value is improved or in the finalization of the diversifi-

ation phase. 

More precisely, Strategy T 2 starts by setting the set of for-

idden criteria C f or to ∅ to specify that initially all criteria are

uthorized. Then, at each iteration of the improving phase, a cri-

erion c is randomly selected from the set C − C f or of authorized

riteria. The search optimizes c whenever it is possible to generate

n improving move, and any forbidden criterion becomes autho-

ized if its local value is improved. However, if an improving move

s not possible with c , this criterion becomes forbidden and the

earch continues with a criterion randomly selected in the set of

uthorized criteria. If all criteria are forbidden, i.e. C − C f or = ∅ , the

earch goes to the diversification phase. 

An important problem with the continuity of the search can be

aused by criterion T max since, if it is equal to zero, criteria �T i 
nd �U i will also be equal to zero, and it is not possible to create

 move. In this case, the search removes all forbidden criteria from

 

f or and the selected criterion c is either C max or �C i if the latter

riterion belongs to C. 

The diversification phase starts from the solution generated by

he neighborhood structure of the last forbidden criterion. If a local

alue of any criterion is improved in this phase, the criterion be-

omes authorized, and the search returns to the improving phase

sing the neighborhood of this criterion. In case of several im-

roved criteria, a random choice is performed. If it is not possible

o improve any criterion during b iterations, all criteria are autho-

ized, all local values of the criteria are set to ∞ and the search

oes to the improving phase with a random criterion. 

.6. Search strategy T 3 

This strategy is a variant of T 2 , the only difference is in the im-

roving phase in which it is possible that criterion c is changed

n each iteration even if the last iteration was an improving

ove for c . This means that, rather than continuing with a sin-

le criterion until reaching its local optimum, T 3 can modify the

ptimized criterion by using a random selection from the set of

on-forbidden criteria. More precisely, in each iteration, a random

riterion c is selected to create a move from the set C − C f or . If

his move improves the criterion, the set of forbidden criteria C f or 

s emptied. If it is not possible to create an improving move us-

ng c , this criterion becomes forbidden and it is added to C f or . If it

s not possible to create an improving move with all criteria, the

earch goes to the diversification phase considering the neighbor-

ood of the last forbidden criterion and the same guidelines than

trategy T 2 . 

.7. Search strategy T 4 

Strategy T 4 operates as Strategy T 3 but uses the concept of

lobal value of the criterion c . The only difference is in the improv-

ng phase in which, if the global value of a criterion c ′ � = c is im-

roved, this criterion becomes the optimized criterion in the next

teration even if the search with the current criterion was improv-

ng. The motivation is that it is more suitable to shift the search

o optimize c ′ with the aim of finding new reference schedules for

 

′ , since these schedules can be lost if the search process does not

ocus on c ′ at this iteration. If several global values are improved, a

andom choice is performed. Further, in the diversification phase,

he search can return to the improving phase with a criterion that

mproves its global value. 
. Computational results 

This section analyzes the efficiency of the general approach pro-

osed in the previous section, which was developed in Java. In the

emainder of the paper, this approach is denoted GMD . The exper-

ments were conducted on a PC with 3.40 GHz and 8GB RAM. The

omputational time for each search strategy and each neighbor-

ood structure was set to 300 seconds. Hence, the computational

ime for an instance is 2400 seconds for a set of criteria to opti-

ize in Pareto manner, i.e. 300 seconds multiplied by four search

trategies and two neighborhood structures. Three sets of criteria

o optimize are considered: C A , C B and C C . C A includes three crite-

ia: C max , T max and �T i . C B adds criterion �U i to the criteria in C A ,
nd C C adds criterion �C i to the criteria in C B . 

The analysis was conducted in six phases that are described

n the following sections. Sections 6.1 –6.5 use the problem in-

tances from Brandimarte (1993) by setting the due date of each

ob J i to 1 . 3 × ∑ n i 
j=1 

1 
| R j | 

∑ 

a ∈ R j p j , where n i is the number of op-

rations of job J i . Section 6.1 analyzes the Net Front Contribution

NFC) and the Weak OutPerformance (WOP) of the two neighbor-

ood structures to check if one is dominating the other. Then, the

ame analysis is performed for the search strategies. The impact

f adding criteria in the set of criteria to optimize on the num-

er of non-dominated solutions is studied in Section 6.2 . Elite so-

utions for five regular criteria are analyzed in Section 6.3 . The di-

ersity is studied in Section 6.4 . The analysis of the hypervolume

nd the mean ideal distance is presented in Section 6.5 . Finally,

ection 6.6 compares our approach to previous approaches to op-

imize the makespan and the total tardiness. 

.1. Analysis of the Net Front Contribution (NFC) and Weak 

utPerformance (WOP) 

The Net Front Contribution (NFC) is the percentage of solutions

f the reference front that are included in a specified set of non-

ominated solutions ( Deb et al., 2001 ). For example, if the NFC of

trategy T 1 is 25%, then 25% of the solutions of the reference front

elong to T 1 . The Weak OutPerformance metric (WOP x,o ) evaluates

he dominance between two sets of non-dominated solutions s x 
nd s o (see Vilcot and Billaut, 2011 ). The set s x weakly outperforms

 o if no solution in s x is dominated by a solution in s o and at least

ne solution in s x dominates a solution in s o . Hence, WOP x,o takes

alue 1 if s x weakly outperforms s o and 0 otherwise. To further

mprove the analysis of dominance between s x and s o , we extend

he numerical scale to three values −1, 0 and 1: WOP x,o is equal to

 (resp. −1) if s x (resp. s o ) weakly outperforms s o (resp. s x ) and 0

therwise. 

Table 4 presents, over ten runs of the algorithm, the average

FC and the average percentage for WOP N 1 ,N 2 (WOP) when it is

qual to 1 or −1 for each set of criteria and for each neighbor-

ood structure. As an example, mk01 has six machines ( m ), 10 jobs

 n ) and a flexibility level ( flex ) of 2.09, i.e. one operation has on

verage 2.09 eligible machines. For C A , the average NFC for neigh-

orhood N 1 is 50% and 53.3% for N 2 . N 1 weakly outperforms N 2 (1

n column WOP) in 33.3% of cases and N 2 weakly outperforms N 1 

 −1 in column WOP) in 60% of cases. Additionally, the neighbor-

ood structure with the average largest NFC and WOP are written

n bold. 

Table 4 shows that there is not a dominant neighborhood struc-

ure, even though N 2 is slightly better, which confirms the ben-

fit of using the concept of blocks to solve the flexible job-shop

cheduling problem. Using the NFC metric, neighborhood struc-

ure N 2 generates larger contributions for 17 instances over 30 in-

tances: mk01, mk03, mk07, mk08 and mk10 for C A ; mk02, mk03,

k04, mk05, mk08 and mk09 for C B , and mk03, mk04, mk05, mk06,

k07 and mk08 for C . N generates larger contributions for the
C 1 
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Table 4 

Average NFC and WOP for N 1 and N 2 . 

C A C B C C 

Inst Size flex NFC(%) WOP(%) NFC(%) WOP(%) NFC(%) WOP(%) 

( m × n ) N 1 N 2 1 −1 N 1 N 2 1 −1 N 1 N 2 1 −1 

mk01 6 × 10 2.09 50.0 53.3 33.3 60.0 85.2 20.8 26.7 0.0 71.0 29.6 6.7 0.0 

mk02 6 × 10 4.1 66.7 56.7 33.3 26.7 53.3 80.0 13.3 40.0 67.8 33.3 53.3 26.7 

mk03 8 × 15 3.01 43.3 63.3 40.0 53.3 39.2 60.8 6.7 53.3 32.4 67.6 20.0 53.3 

mk04 8 × 15 1.91 55.7 44.3 33.3 53.3 47.6 52.9 0.0 0.0 31.8 68.2 0.0 0.0 

mk05 4 × 15 1.71 61.8 38.2 66.7 26.7 48.4 51.8 0.0 0.0 49.5 50.5 0.0 0.0 

mk06 15 × 10 3.27 93.3 46.7 53.3 6.7 100.0 93.3 6.7 0.0 40.0 60.0 33.3 53.3 

mk07 6 × 10 2.83 41.6 58.4 26.7 53.3 60.9 39.3 6.7 0.0 47.7 52.3 0.0 0.0 

mk08 5 × 20 1.43 46.7 53.3 46.7 53.3 6.5 93.5 0.0 80.0 8.3 91.7 0.0 80.0 

mk09 10 × 20 2.53 63.9 36.1 46.7 26.7 49.6 52.2 20.0 0.0 64.2 35.8 20.0 0.0 

mk10 15 × 20 2.98 46.6 53.4 40.0 40.0 53.0 47.4 6.7 0.0 55.2 44.8 13.3 0.0 

Table 5 

Analysis of NFC for the different strategies and N 2 . 

Inst C A C B C C 

T 1 T 2 T 3 T 4 T 1 T 2 T 3 T 4 T 1 T 2 T 3 T 4 

mk01 0.0 100.0 100.0 100.0 0.0 0.0 25.0 75.0 0.0 7.7 92.3 0.0 

mk02 0.0 100.0 100.0 100.0 33.3 0.0 66.7 33.3 0.0 100.0 100.0 100.0 

mk03 0.0 100.0 0.0 0.0 0.0 50.0 25.0 25.0 0.0 0.0 80.0 20.0 

mk04 0.0 100.0 50.0 50.0 0.0 18.4 46.9 36.7 0.0 7.9 47.4 44.7 

mk05 0.0 83.3 16.7 0.0 0.0 30.8 48.7 20.5 0.0 7.7 30.8 61.5 

mk06 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 100.0 100.0 

mk07 0.0 0.0 100.0 100.0 0.0 4.6 50.0 45.5 0.0 0.0 88.0 12.0 

mk08 0.0 100.0 100.0 100.0 0.0 81.5 18.5 0.0 0.0 0.0 0.0 100.0 

mk09 20.0 80.0 0.0 0.0 0.0 19.1 38.1 42.9 0.0 0.0 24.0 76.0 

mk10 0.0 0.0 100.0 20.0 0.0 33.3 22.2 44.4 0.0 0.0 10.0 90.0 
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remaining 13 instances. Concerning the metric WOP, N 2 weakly

outperforms N 1 in 11 instances: mk01, mk03, mk04, mk07 and mk08

for C A ; mk02, mk03 and mk08 for C B and mk03, mk06 and mk08 for

C C , and N 1 weakly outperforms N 2 in 13 instances (4 for C A , 5 for

C B and 4 for C C ). Additionally, no neighborhood structure weakly

outperforms the other in five instances: mk04 and mk05 for C B and

C C , and mk07 for C C . 
Table 5 helps us to analyze the contribution of each search

strategy to the reference front by considering only neighborhood

structure N 2 for each set of criteria. Note that the values in this

table are average values over ten runs of the algorithm. 

The results of Table 5 reveals that the contribution of T 1 is

equal to zero except for mk09 with C A , mk02 with C B , and mk06

for C A and C B . When using T 2 , the entire solutions of the reference

front is obtained in 5 instances for C A ( mk01, mk02, mk03, mk04

and mk08 ) and 2 instances for C C ( mk02 and mk06 ). However, the

NFC of T 2 is equal to zero in 11 instances (3 for C A , 3 for C B and

5 for C C ). Besides, T 2 has the largest number of non-dominated

solutions in 2 instances ( mk05 and mk09 for C A ), and 2 instances

( mk03 and mk08 ) for C B . The contribution of T 2 for the C C is re-

ally low, which implies that this search strategy is not adequate

for minimizing �C i . Further, T 3 and T 4 seem to be the best search

strategies and their results are comparable with a slight advantage

to the former for the three sets of criteria. Indeed, T 3 generates the

highest contribution in 9 instances (1 for C A , 4 for C B , and 4 for C C )
whereas T 4 obtains the highest contribution in 7 instances (3 for

C B and 4 for C C ). Both T 3 and T 4 reach all the solutions of the ref-

erence front in 6 instances (4 for C A and 2 for C C ). The largest num-

ber of non-dominated solutions is obtained by T 3 or T 4 in 73.33%

of instances. 

To extend the analysis of the four search strategies, Table 6

shows the WOP by considering again neighborhood structure N 2 .

It can be seen from WOP 1 −2 (column 1 − 2 ), WOP 1 −3 (column

1 − 3 ) and WOP 1 −4 (column 1 − 4 ) that T 1 is dominated by the
ther search strategies except for instance mk06 for C A . Strategy T 2 

ominates Strategies T 3 and T 4 in only two instances ( mk03 and

k09 ) for C A , although T 2 is better for C A regarding the metric NFC.

he comparison between T 3 and T 4 does not show any obvious

ominance since WOP 3 −4 is equal to zero in the largest number of

nstances (90% of instances for C A , 50% of instances for C B , and 70%

f instances for C C ). T 3 is better than T 4 in 4 instances and worst

n 5 instances. 

It can be concluded from the analysis in this section that Strat-

gy T 1 is not suitable to optimize the three sets of criteria, T 2 is

ffective for solving C A regarding the NFC but does not appear in-

eresting when considering the WOP, and Strategies T 3 and T 4 are

he most efficient when considering both NFC and WOP, in partic-

lar for sets C B and C C . 

.2. Analysis of the number of non-dominated solutions 

Table 7 is used to analyze the number of non-dominated solu-

ions considering three outputs: The minimum ( Min ), average ( Av ),

nd maximum ( Max ) numbers of non-dominated solutions when

unning ten times each set of criteria. For example, after executing

he approach ten times with set C A for instance mk01 , the min-

mum number of non-dominated solutions was 1, the maximum

as 2 and on average 1.3 solutions were obtained. In an ideal sit-

ation, it is desired that the three outputs are equal. 

The addition of criteria and the flexibility level affects the num-

er of non-dominated solutions, but there is not a clear behav-

or in function of the flexibility level since different trends can be

dentified. More precisely, in instances with a large flexibility level

 flex > 3), one or two solutions solve the problem, i.e. in instance

k06 ( flex = 3.27) only one solution is generated for the three sets

f criteria. In instance mk02 ( flex = 4.10), no more than two non-

ominated solutions for the three sets of criteria were obtained,

nd this is also the case for instance mk03 when optimizing sets C 
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Table 6 

Analysis of WOP for N 2 . 

Inst C A C B C C 

1 − 2 1 − 3 1 − 4 2 − 3 2 − 4 3 − 4 1 − 2 1 − 3 1 − 4 2 − 3 2 − 4 3 − 4 1 − 2 1 − 3 1 − 4 2 − 3 2 − 4 3 − 4 

mk01 −1 −1 −1 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 

mk02 −1 −1 −1 0 0 0 1 0 0 −1 −1 0 −1 −1 −1 0 0 0 

mk03 −1 −1 −1 1 1 0 −1 −1 −1 −1 0 1 −1 −1 −1 −1 −1 0 

mk04 −1 −1 −1 0 0 0 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 0 

mk05 −1 0 0 −1 1 1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 0 

mk06 1 1 1 0 0 0 −1 −1 −1 −1 −1 0 −1 −1 −1 0 0 0 

mk07 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 0 

mk08 −1 −1 −1 0 0 0 −1 −1 −1 0 −1 1 −1 −1 −1 −1 −1 −1 

mk09 −1 −1 −1 1 1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 

mk10 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 

Table 7 

Analysis of the number of non-dominated solutions. 

Inst Size flex C A C B C C 

m × n Min Av Max Min Av Max Min Av Max 

mk01 6 × 10 2.09 1 1.3 2 4 4.8 5 10 15.8 28 

mk02 6 × 10 4.10 1 1.5 2 1 1.5 2 1 1.5 2 

mk03 8 × 15 3.01 1 1.3 2 1 1.8 2 2 7.3 17 

mk04 8 × 15 1.91 1 2.3 4 22 35.0 51 30 36.0 41 

mk05 4 × 15 1.71 4 6.8 11 17 26.0 30 27 30.3 32 

mk06 15 × 10 3.27 1 1 1 1 1 1 1 1 1 

mk07 5 × 20 2.83 4 6.0 10 20 27.8 32 12 20.8 26 

mk08 10 × 20 1.43 1 1.3 2 2 16.8 27 3 6.0 9 

mk09 10 × 20 2.53 1 2.8 4 19 33.0 51 22 27.8 38 

mk10 15 × 20 2.98 4 6.8 10 16 23.8 30 14 17.0 24 

Table 8 

Elite solutions for makespan. 

Inst BKV C A C B C C 

Min Av Per (%) Min Av Per (%) Min Av Per (%) 

mk01 40 42 42.0 5.0 40 40.0 0.0 40 40.0 0.0 

mk02 26 28 29.0 11.5 29 30.0 15.4 28 29.0 11.5 

mk03 204 204 204.8 0.4 204 204.0 0.0 204 204.0 0.0 

mk04 60 67 68.8 14.6 60 61.5 2.5 62 63.8 6.3 

mk05 172 176 176.3 2.5 174 174.8 1.6 175 175.5 2.0 

mk06 57 67 69.5 21.9 69 71.3 25 70 70.5 23.7 

mk07 139 144 146.3 5.3 142 143.0 2.9 148 148.3 6.7 

mk08 523 523 523.0 0.0 523 523.0 0.0 523 523.0 0.0 

mk09 307 320 327.5 6.7 307 308.0 0.3 307 309.3 0.7 

mk10 196 221 223.0 13.8 216 216.5 10.5 228 231.3 18.0 
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nd C B . In instances with a small flexibility level ( flex < 2), the av-

rage number of non-dominated solutions increases when adding

riteria, such as the case of instances mk04 and mk05 . However, in

nstance mk08 ( flex = 1.43), this average number increases from set

 A to set C B (1.3 to 16.8) and decreases when �C i is added (6.0).

he same observation can be drawn for the maximum number of

on-dominated solutions. The addition of criterion �U i to C A in-

reases the number of non-dominated solutions, and adding �C i 
o C B increases the number of non-dominated solutions in 50% of

nstances, i.e. instances mk01, mk03, mk04, mk05 and mk09 . 

.3. Analysis of elite solutions 

In the previous analysis of the number of non-dominated solu-

ions, the values of the criteria were not considered. Now, let us

valuate elite solutions to determine which set of criteria effec-

ively leads to improving the convergence of the front. The first

riterion considered is the makespan since it is the most studied

n the literature and its quality can strongly explain the efficiency
f our approach. Then the other criteria are analyzed. Only neigh-

orhood structure N 2 is considered in the analysis. 

.3.1. Elite solutions for the makespan 

The results for the makespan for each set of criteria are il-

ustrated in Table 8 , which details the minimum value Min , the

verage value Av and the percentage of error Per (%) generated

y the average value with respect to the best known value BKV

 González et al., 2015 ) after running ten times our approach. The

alue of the makespan is underlined for instances where the best

nown value is obtained, and the minimum value is written in

old for the remaining instances. 

Minimizing the makespan performs better when the approach

ptimizes Set C B since, in 6 instances, the best known value is ob-

ained ( mk01, mk03, mk04, mk07, mk08 and mk09 ). Fig. 3 shows

he sequences of operations on machines for instance mk01 when

he makespan is minimized. Besides, Set C B has the best perfor-

ance compared to Sets C A and C C in instances mk05 with an

rror of 1.6% and mk10 in spite of the large error (9.9%). In the
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Fig. 3. Gantt diagram when minimizing makespan in instance mk01 . 

Table 9 

Elite solutions for T max . 

Inst C A C B C C 

Min Av Per (%) Min Av Per (%) Min Av Per (%) 

mk01 10 11.5 15.0 9 9.0 0.0 9 9.0 0.0 

mk02 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 

mk03 77 77.0 0.0 77 77.0 0.0 77 77.0 0.0 

mk04 27 27.5 1.9 20 20.0 0.0 20 20.3 1.3 

mk05 100 101.0 0.5 98 98.0 0.0 99 99.8 0.8 

mk06 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 

mk07 73 78.0 6.8 70 70.3 0.4 76 77.3 1.6 

mk08 310 310.0 0.0 310 310.0 0.0 310 310.0 0.0 

mk09 137 143.0 4.4 123 127.3 3.5 123 125.5 2.0 

mk10 38 42.8 12.5 30 31.3 4.2 50 50.5 1.0 

Table 10 

Elite solutions for �T i . 

Inst C A C B C C 

Min Av Per (%) Min Av Per (%) Min Av Per (%) 

mk01 39 44.8 14.7 18 18.2 1.1 19 20.5 7.9 

mk02 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 

mk03 523 576.3 10.2 275 278.0 1.1 321 325.8 1.5 

mk04 170 198.0 16.5 108 112.4 4.1 125 130.5 4.4 

mk05 1102 1179.3 7.0 788 811.2 2.9 854 916.0 7.3 

mk06 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 

mk07 895 995.3 11.2 808 840.0 4.0 845 887.5 5.0 

mk08 4786 4832.0 1.0 2932 3102.4 5.8 3387 3496.5 3.2 

mk09 2060 2292.5 11.3 1048 1144.0 9.2 1270 1321.8 4.1 

mk10 496 566.8 14.3 340 395.2 16.2 482 548.0 13.7 
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instances mk02 and mk06 , the best known value is not obtained

for any set and the error is quite large, e.g. 11.5% and 21.9% with

Set C A . As illustrated in Section 6.2 , few solutions are determined

for these two instances that have large flexibility levels. This means

that, to improve the convergence of the makespan, new strategies

might be needed, in particular for instances with large flexibility

levels. 

6.3.2. Elite solutions for maximum tardiness and total tardiness 

The performances of the approach with criteria T max and �T i 
are shown in Tables 9 and 10 . The meaning of columns is similar

to Table 8 , except for Column Per (%) that corresponds to the per-

centage of error generated by the average and the minimum value.

This is due to the fact that there is a lack of results in the litera-

ture on instances from Brandimarte (1993) . However, Per (%) gives

insights on the homogeneity of our approach in generating good

solutions in all ten runs. 
It can be observed from Table 9 that optimizing Set C B provides

he best results for T max in all instances. This means that the addi-

ion of �U i improves the convergence not only for the makespan

ut also for T max . Besides, including �C i does not affect the quality

f T max , since the minimum value is obtained in 7 instances. For

he remaining 3 instances, the obtained T max is very close to the

est value in instance mk05 (99 for set C C against 98 for set C B ),
nd the only bad result is obtained for instance mk10 where the

ap is really large (30 for C B and 50 for C C ). This table also shows

hat the approach is quite stable for T max as the average value is

lways close to the minimum value for the three sets C A , C B and

 C . 

For �T i , optimizing Set C B provides much better results than

hen optimizing the two other sets, since not only the best so-

utions are always obtained for C B , but there is also a large gap

etween the value obtained with C B and the ones obtained with

he two other sets (e.g. in instance mk08 where 2932 is obtained
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Table 11 

Elite solutions for �U i and �C i . 

Inst �U i �C i 

C B C C C C 

Min Av Per (%) Min Av Per (%) Min Av Per (%) 

mk01 3 3.0 0.0 3 3.0 0.0 272 274.0 0.7 

mk02 0 0.0 0.0 0 0.0 0.0 237 241.0 1.7 

mk03 5 5.8 15.0 6 6.5 8.3 2100 2159.0 2.8 

mk04 6 6.3 4.2 7 7.3 3.6 653 656.0 0.5 

mk05 12 12.5 4.2 12 12.8 6.3 1789 1851.0 3.5 

mk06 0 0.0 0.0 0 0.0 0.0 657 662.0 0.7 

mk07 15 15.5 3.3 15 15.0 0.0 2142 2177.0 1.6 

mk08 16 17.0 6.3 17 17.8 4.4 7021 7130.0 1.5 

mk09 13 14.8 13.5 15 15.8 5.0 4873 4919.0 0.9 

mk10 11 12.3 11.4 14 14.3 1.8 3773 3835.0 1.6 

Table 12 

Results for maximum spread D and spacing SP for C B . 

Inst AvNDS D SP 

Min Av Max σ Min Av Max σ

mk01 4.8 7.9 9.4 10.2 1.0 1.2 2.0 2.6 0.6 

mk02 1.5 0.0 1.3 3.2 1.6 0.0 0.1 0.5 0.2 

mk03 1.8 0.0 17.6 30.7 13.5 0.0 0.3 0.8 0.3 

mk04 35.0 74.7 79.9 84.2 4.3 3.8 6.3 11.4 3.5 

mk05 26.0 293.9 341.6 396.7 43.7 5.3 8.7 10.0 2.3 

mk06 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

mk07 27.8 154.1 243.9 311.1 65.9 8.3 13.1 16.0 3.6 

mk08 16.8 98.1 482.5 728.9 289.0 0.5 18.0 29.8 12.4 

mk09 33.0 410.5 567.4 710.8 136.1 13.7 18.5 21.7 3.4 

mk10 23.8 251.1 321.6 384.1 60.6 19.3 23.7 32.2 5.9 
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ith C B whereas 4786 and 3387 are obtained with C A and C C , re-

pectively). Contrary to the case with T max , the value of Per (%) is

ometimes large such as in instance mk10 for the three sets. This

an be explained by the fact that the criterion �T i is more difficult

o solve than T max , which implies that additional strategies might

e needed to make the approach more stable for �T i . 

.3.3. Elite solutions for total number of tardy jobs and total 

ompletion times 

�U i is one of the most difficult criteria to minimize, since it

s nonlinear. This is because U i is equal to 1 as soon as the com-

letion time of job J i is strictly larger than its due date. The results

btained wih sets C B and C C are illustrated in Table 11 . Note that C B 
till leads to the best results for all instances. Further, adding crite-

ion �C i to C C has a small effect on the value of �U i , in particular

or instances with 15 and 20 jobs, i.e. mk03, mk04, mk08, mk09 and

k10. Per (%) is sometimes large for C B , which can be explained by

he small values of �U i such as in instance mk05 in which Min = 5

nd A v = 5 . 8 leading to Per = 15 . 0 . For criterion �C i , the only ob-

ervation that can be drawn is that Per (%) is quite small, which

onfirms the homogeneity of our approach for this criterion. 

.4. Analysis of the diversity 

This section aims at validating that the front of Pareto is di-

erse in solutions, so that the decision maker can choose among

epresentative solutions in different regions of the front. The eval-

ation of the diversity is only presented for set C B , because this

s the set of criteria for which our approach found the best re-

ults. Table 12 includes the minimum value ( Min ), the average

alue ( Av ), the maximum value ( Max ) and the standard deviation

 σ ) for each instance. Column AvNDS recalls the average number

f non-dominated solutions of Table 7 . For example, for instance

k01 , on average 4.8 non-dominated solutions are generated (Col-

mn AvNDS ) and, when considering the maximum spread D , the
inimum (resp. maximum) distance between extreme solutions is

.9 (resp. 10.2), the average distance is 9.4 and σ = 1 . 0 . Besides, for

he average distance between nearest solutions (spacing SP ), the

inimum (resp. maximum) distance is 1.2 (resp. 2.6) with an av-

rage of 2.0 and σ = 0 . 6 . If an ideal situation is taken as reference,

he tendency of σ is to be equal to zero. 

When analyzing the spacing SP , the ideal performance corre-

ponds to small values of SP and σ . Looking at Table 12 , it is possi-

le to infer that, in the instances with high flexibility mk02, mk03

nd mk06 (i.e. flex > 3), the spacing values are very close to zero,

hich is mainly explained by the results of Table 7 in which only

here are very few solutions in the set of non-dominated solutions.

urther, it is possible to infer two other trends. The first trend is

hat spacing seems to increase with the size of the problem, in

articular for instances mk07, mk09 and mk10 with 20 jobs. The

econd trend is that the number of non-dominated solutions does

ot affect the spacing since, even though there are large values

or AvNDS in instances mk04, mk05 and mk08 , the spacing is small

3.8, 5.3 and 0.5). Moreover, for instance mk04, AvNDS = 35.0 and

he average spacing is 6.3 while, in instance mk10 with a lower

umber of non-dominated solutions ( AvNDS = 23.8), the average

pacing is 23.7. 

Concerning the maximum spread D , an efficient value corre-

ponds to a large average and a low σ . When looking at Table 12 , it

s possible to infer that the maximum spread is large for instances

ith medium flexibility (2 < flex < 3) such as instances mk07, mk09

nd mk10 . However, the size of the problem, especially the num-

er of jobs, seems to not influence the maximum spread as the

alues (i.e. Min, Av, Max ) obtained in instance mk05 with 15 jobs

re larger than the corresponding values in instances mk07, mk08

nd mk10 . It is also possible to infer, by observing for example in-

tances mk07 and mk10 , that there is no trend between the num-

er of non-dominated solutions and the maximum spread. These

bserved trends of diversity can be considered as additional argu-

ents to confirm the performance of our approach. 
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Table 13 

Analysis of HV and MID for C B . 

Inst Size flex HyperVolume (HV) Mean Ideal Distance ( MID ) 

m × n Min Av Max Per (%) σ Min Av Max Per (%) σ

mk01 6 × 10 2.09 0.80 0.82 0.85 3.4 0.01 43.22 43.95 45.29 1.69 0.49 

mk02 6 × 10 4.10 0.95 0.98 1.00 1.3 0.02 29.00 30.21 31.00 4.19 0.65 

mk03 8 × 15 3.01 0.75 0.77 0.80 3.7 0.01 219.02 224.34 231.47 2.43 4.60 

mk04 8 × 15 1.91 0.65 0.67 0.69 3.2 0.01 73.86 75.41 77.68 2.10 1.15 

mk05 4 × 15 1.71 0.50 0.51 0.52 2.3 0.00 218.26 221.08 227.37 1.29 2.38 

mk06 15 × 10 3.27 0.99 0.99 0.99 0.0 0.00 69.00 71.33 73.00 3.38 1.50 

mk07 5 × 20 2.83 0.53 0.54 0.55 2.0 0.01 173.05 176.19 182.29 1.82 3.01 

mk08 10 × 20 1.43 0.47 0.48 0.49 2.2 0.01 640.25 652.11 662.71 1.85 6.27 

mk09 10 × 20 2.53 0.54 0.55 0.57 2.8 0.01 364.68 376.42 384.45 3.22 5.35 

mk10 15 × 20 2.98 0.55 0.58 0.60 3.4 0.01 230.97 238.25 246.64 3.15 4.72 

Table 14 

Comparison of GMD and MODE . 

Inst GMD MODE 

NDS Solutions NDS Solutions SCM 1 SCM 2 WOP 

(2285, 15141) (2573, 14383) (2412, 16073.65) (2471, 15602.65) 

(2290, 14716) (2579, 14381) (2413, 15994.65) (2481, 15478.65) 

(2313, 14469) (2582, 14344) (2433, 15857.65) (2513, 15452.65) 1.00 0.00 1 

dpp02a 8 (2556, 14457) (2583, 14313) 11 (2435, 15754.65) (3195, 15403.65) 

(2456, 15679.65) (3352, 15339.65) 

(2463, 15663.65) 

(2146, 21689) (2239, 19839) (2168, 21022.3) (2196, 20098.3) 

(2148, 21337) (2280, 19692) (2170, 20909.3) (2198, 20088.3) 

(2150, 20253) (2284, 19659) (2172, 20734.3) (2200, 20068.3) 

dpp09a 12 (2155, 20244) (2288, 19637) 14 (2173, 20691.3) (2201, 20015.3) 0.71 0.50 0 

(2176, 19953) (2290, 19571) (2174, 20228.3) (2204, 19650.3) 

(2180, 19951) (2306, 19474) (2191, 20101.3) (2207, 19600.3) 

(2193, 20099.3) (2220, 19430.3) 

(2155, 20829) (2194, 20070) (2234, 21190.61) (2330, 20385.61) 

(2172, 20821) (2195, 20033) (2238, 21109.61) (2866, 20301.61) 

(2176, 20503) (2196, 19948) (2273, 21073.61) (2951, 20296.61) 

dpp11a (2177, 20298) (2203, 19935) (2282, 20537.61) (3152, 20226.61) 

17 (2178, 20265) (2332, 19894) 9 (2307, 20496.61) 1.00 0.00 1 

(2184, 20246) (2345, 19886) 

(2185, 20181) (2459, 19489) 

(2186, 20137) (2461, 19486) 

(2193, 20086) 

(2389, 31441) (2545, 30303) (2582, 33004.83) (2643, 31674.83) 

(2392, 30779) (2597, 30180) (2584, 32930.83) (2644, 31577.83) 

(2399, 30760) (2607, 30177) (2607, 32909.83) (2652, 31294.83) 

dpp16a 10 (2409, 30360) (2607, 30127) 11 (2610, 32426.83) (2657, 31187.83) 1.00 0.00 1 

(2435, 30313) (2865, 30020) (2636, 32159.83) (3552, 31130.83) 

(2642, 32009.83) 

(2237, 29053) (2298, 28626) (2227, 26698.92) (2254, 25651.92) 

(2238, 29033) (2321, 28563) (2229, 26431.92) (2256, 25447.92) 

(2246, 28924) (2327, 28530) (2233, 26428.92) (2276, 25307.92) 

dpp18a 7 (2280, 28722) 16 (2234, 26363.92) (2277, 25190.92) 0.00 1.00 -1 

(2237, 26354.92) (2278, 25123.92) 

(2238, 26135.92) (2280, 24991.92) 

(2251, 26097.92) (2282, 24789.92) 

(2253, 25754.92) (2789, 24078.92) 

(61, 479) (64, 455) (64, 445.46) (67, 390.46) 

mk04 6 (62, 464) (73, 438) 6 (65, 439.46) (69, 388.46) 0 0.50 -1 

(63, 457) (75, 429) (66, 401.46) (74, 386.46) 

(144, 1661) (184, 1618) (143, 1789.49) (150, 1424.49) 

mk07 5 (147, 1660) (198, 1599) 7 (144, 14 92.4 9) (152, 1413.4 9) 0 1.00 -1 

(150, 1629) (146, 1476.49) (154, 1341.18) 

(147, 1465.49) 

(307, 3498) (328, 3342) (307, 3216.1) (403, 3166.1) 

mk09 7 (311, 3454) (332, 3338) 7 (309, 3206.1) (409, 3084.1) 0 1.00 -1 

(325, 3386) (334, 3295) (311, 3191.1) (418, 2993.1) 

(326, 3347) (315, 3190.1) 
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6.5. Analysis of HyperVolume ( HV ) and Mean Ideal Distance ( MID ) 

In this section, we expand the analysis for C B using the HV

and MID measures, which must be maximized and minimized, re-

spectively. Table 13 gives the minimum value ( Min ), the average

value ( Av ) and the maximum value ( Max ) of these measures for
ach instance after running ten times our approach. The value

er(%) = (A v − M in ) /M in for MID and Per(%) = (Max − A v ) /Max for

V . To calculate HV , the coordinates of the reference point is fixed

o 10,0 0 0 for C max and T max , to 10 0,0 0 0 for �T i and to two times

he number of jobs for �U i . For example, the coordinates of the

eference point are (10, 0 0 0; 10, 0 0 0; 10 0, 0 0 0; 20) for instances
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Fig. 4. Set of non-dominated solutions for instance dpp02a and set C A . 
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Fig. 5. Comparison of GMD and MODE using the instance dpp02a . 

(  

l  

w  

t  

a  

d

i  

m  

t  

G

7

 

t  

s  

u  

c  

e  

b  

o  

m  

a  

i  

d  

h

 

p  

n  

d  

T

 

c  

e  

i  

p  

m  

c  

t  

t

A

 

C  
ith 10 jobs. To improve the scale of distance when calculating

ID , the criterion �T i of each solution has been divided by the

umber of jobs. 

It is very difficult to assess the quality of our approach due to

he lack of previous values for HV and MID for the regular criteria

tudied in this paper. However, we can observe that the values of

V tend to 100% for instances mk02 and mk06 with few solutions

nd large flexibility. Our approach is stable since σ is closer to zero

or all instances and Per (%) is lower than 3.4%. The analysis of MID

lso reveals uniformity in the results, which is explained by small

alues of σ and Per (%) except for two instances: mk08 ( σ = 6 . 27 )

nd mk09 ( σ = 5 . 35 ), which could be explained by the number of

obs. 

.6. Comparison with previous approaches 

The performance of our approach is compared against the

ulti-Objective Differential Evolution algorithm ( MODE ) pro-

osed in Wisittipanich and Kachitvichyanukul (2014) to min-

mize the makespan and the total tardiness. In MODE , the

areto front was obtained by evaluating five search strate-

ies (MODE- ms 1, MODE- ms 2, MODE- ms 3, MODE- ms 4 and

ODE- ms 5) and the MOPSO algorithm proposed in Nguyen and

achitvichyanukul (2010) . Note that the solutions of the Pareto

ront are mainly obtained from those determined by MODE- ms 1,

ODE- ms 2, MODE- ms 3 and MODE- ms 5. The comparison is based

n a set of eight problem instances used in Wisittipanich and

achitvichyanukul (2014) , which includes five problem in-

tances from Dauzère-Pérès et al. (1998) ( dpp02a, dpp09a,

pp11a, dpp16a and dpp18a ) and three problem instances from

randimarte (1993) ( mk04, mk07 and mk09 ). The due dates of jobs

ere determined using the expression provided in He et al. (1993) .

ig. 4 shows the non-dominated solutions obtained by N 1 and N 2 

or instance dpp02a with set C A . 
To compare the results of GMD with MODE , the Weak OutPer-

ormance metric (WOP x,o ) and the set coverage metric ( SCM x,o ) are

nalyzed. WOP x,o evaluates the dominance between two sets of

on-dominated solutions s x and s o . SCM x,o is the ratio of solutions

f s o weakly dominated by solutions of s x ( Zitzler, 1999 ). 

Table 14 provides for both GMD and MODE the number of

on-dominated solutions in column NDS , the Pareto set in col-

mn Solutions , the set coverage metric in column SCM 1 and SCM 2 ,

nd the Weak OutPerformance metric in column WOP . For exam-

le in instance dpp09a , our approach finds 12 non-dominated so-

utions when MODE finds 14 non-dominated solutions, and 71%
10 of 14) of the solutions of MODE are weakly dominated by at

east one solution of GMD , and W OP = 0 means that there are

eakly dominated solutions in both sets of non-dominated solu-

ions. Table 14 also shows that the performance of GMD and MODE

re comparable. Our approach is better for three instances ( dpp 02 a,

pp 11 a and dpp 16 a , since WOP and SCM 1 are equal to 1 and SCM 2 

s equal to 0), and MODE is better for three instances ( dpp 18 a,

k 07 and mk 09). Fig. 5 depicts the sets of non-dominated solu-

ions obtained by GMD and MODE for instance dpp02a . Note that

MD was ran with criteria C max and �T i . 

. Conclusions 

In this paper, we proposed a general local search approach

o determine Pareto fronts for the Multi-Objective Flexible Job-

hop Scheduling Problem (MOFJSP) for any combination of reg-

lar scheduling criteria. Regular criteria correspond to various

ustomer service objectives, which are important in a competitive

nvironment. The local search approach is based on two neigh-

orhood structures ( N 1 and N 2 ), that consist in moving a critical

peration in the conjunctive graph, sufficient conditions to deter-

ine the feasibility of a move without transforming the graph, and

n estimation function to select the best move. A hierarchical test

s proposed to quickly update the set of non-dominated solutions

uring the search, and four search strategies ( T 1 , T 2 , T 3 and T 4 )

ave been proposed. 

Three sets of criteria to optimize are considered in our ex-

eriments. The experiments showed that N 2 is the dominant

eighborhood structure and generates the largest number of non-

ominated solutions. Besides, a combination of Strategies T 3 and

 4 is sufficient to solve the MOFJSP with all sets of criteria. 

In future research, we would like to study how our approach

an be improved for specific regular criteria. New dedicated prop-

rties could be used to accelerate the search or avoid being stuck

n local optima for criteria such as �T i or �U i , that are more com-

lex to handle. Another research avenue is the use of sophisticated

etaheuristics that could help to better diversify the search pro-

ess to reach promising regions. We also intend to work on ex-

ending our approach to search for more diverse solutions by bet-

er considering different types of criteria. 
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