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Abstract

Previous influential simulation studies investigate the effect of underlying non-normality in

ordinal data using the Vale-Maurelli (VM) simulation method. We show that discretized

data stemming from the VM method with a prescribed target covariance matrix are

usually numerically equal to data stemming from discretizing a multivariate normal vector.

This normal vector has however a different covariance matrix than the target. It follows

that these simulation studies have in fact studied data stemming from normal data with a

possibly misspecified covariance structure. This observation affects the interpretation of

previous simulation studies.

Keywords: polychoric correlation, Vale-Maurelli, non-normal data, structural

equation modeling
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A problem with discretizing Vale-Maurelli in simulation studies

Introduction

In the social and behavioral sciences we often work with variables that are ordinal or

dichotomous rather than continuous. In psychology, for instance, Likert scales are

ubiquitous. In structural equation modeling (SEM) it was originally assumed that the

indicator variables were continuous, but during the last decades ordered categorical

variables have been incorporated into SEM through the intermediate step of estimating

polychoric correlations (e.g., Muthén, 1984; Jöreskog & Moustaki, 2001). Then the matrix

of polychoric correlations is used as input to estimate the model, and the resulting

parameter estimates and fit information are interpreted as referring to the underlying

vector of continuous variables.

The polychoric correlation is the correlation between two hypothesized continuous

variables, each of which underlies an ordinal/dichotomous variable, and was introduced

already by Pearson (1901). In order to identify the polychoric correlation a bivariate

distribution must be assumed for the underlying continuous variables. The natural

candidate for such a distribution is the bivariate normal, for which Olsson (1979) deduced

a two-step maximum-likelihood estimator which has been implemented in most SEM

software packages. It is therefore of practical importance to evaluate by Monte Carlo

simulation the extent to which this estimator is robust to deviations from normality. An

often used simulation method is to discretize a continuos non-normal random vector

generated by the Vale-Maurelli (VM) method (Vale & Maurelli, 1983).

The present article notes a suprising problem with simulating ordinal data by

discretizing a VM vector that originates from identifiability considerations. Namely, we

show that using the VM method for ordinal data simulation is in most cases equivalent to

discretizing normal data. Therefore this method is unsuitable for studying consequences of

deviations from underlying normality. However, many studies have employed discretizing a

VM vector for robustness investigations (e.g. Flora & Curran, 2004; Rhemtulla,
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Brosseau-Liard, & Savalei, 2012; Nestler, 2013; Moshagen & Musch, 2014; Yang & Green,

2015; Natesan, 2015; Li, 2016; Jin, Luo, & Yang-Wallentin, 2016; Monroe, 2018; Wang, Su,

& Weiss, 2018). Especially influential has been the work of Flora and Curran (2004), which

reported that methodology based on polychoric estimation was quite robust to modest

violation of the underlying normality assumption. This claim has since been re-iterated in

the SEM literature, see, e.g., the textbook by Bollen and Curran (2006, p. 233) and the

chapter on SEM in the handbook of psychology by Ullman and Bentler (2012, p. 679).

Also, the highly cited study by Rhemtulla et al. (2012) used a discretized VM approach in

ordinal data simulation to compare normal-theory based maximum likelihood estimation

for continuous variables with estimation based on the polychoric correlations. They found

that the latter estimation method was “more sensitive than robust ML parameter

estimates to violations of the assumption of normality of underlying continuous variables”.

This conclusion may be explained by our finding that the employed simulation technique

amounts to discretizing a normal random vector with a possibly misspecified covariance

matrix.

In the present article we first briefly discuss ordinal data simulation through

discretizing continuous vectors and also give a description of the VM method. Next we

demonstrate that, surprisingly, using the VM method for ordinal data simulation is in most

cases equivalent to normal data simulation. The covariance matrix of this normal vector is

found analytically. Implications of our finding are then discussed, and illustrated with a

detailed analysis of two representative studies that discretized VM. For transparency,

complete R code underlying our analysis is available as supplementary material. We also

illustrate our results with a small simulation study. Implications of our findings for the

evaluation of robustness are briefly discussed in the concluding section.



DISCRETIZING VM 5

Simulating ordinal variables using the VM method

A general technique for simulating ordinal data is to simulate a continuous vector and

then discretize each variable according to given thresholds. In the following we outline this

technique in its generality, before turning into the specifics when the continuous vector

stems from the VM simulation method.

We wish to simulate a d-dimensional ordinal random vector X = (X1, X2, . . . , Xd)′

whose coordinates takes on the K > 1 possible values x1, x2, . . . , xK . A standard method to

achieve this is to first simulate a d-dimensional continuous random vector ξ and then

discretize it. In the following we refer to ξ as the discretized variable. This means that for

i = 1, 2, . . . , d we let

Xi =



x1, if τi,0 < ξi ≤ τi,1

x2, if τi,1 < ξi ≤ τi,2
...

xK , if τi,K−1 < ξi ≤ τi,K

where τi,0 = −∞ < τi,1 ≤ τi,2 ≤ · · · ≤ τi,K−1 ≤ τi,K =∞. A compact representation of X is

given by

Xi =
K∑
j=1

xjI{τi,j−1 < ξi ≤ τi,j} (1)

where I{A} is the indicator function of A, i.e., it is one if A is true and zero otherwise.

The distribution of X is a function of the distribution of ξ and the thresholds

τi,1, . . . , τi,K−1 for i = 1, 2, . . . , d, which are chosen to get desired properties of X.

The simulation technique of Vale and Maurelli (1983) is a popular method to

simulate d-dimensional non-normal continuous random vectors ξ with prescribed covariance

matrix Σ (which we will call the target covariance matrix) and univariate skewness and

kurtosis. The method simulates first a multivariate normal random vector

ζ = (ζ1, ζ2, . . . , ζd)′ ∼ N(0,Σζ) called the generator variable. The generator variable is then

transformed using d third degree polynomials p1(·), p2(·), . . . , pd(·), and the non-normal



DISCRETIZING VM 6

variable ξ is produced using the formula

ξ =



p1(ζ1)

p2(ζ2)
...

pd(ζd)


. (2)

The covariance matrix and marginal skewness and kurtosis of ξ are functions of Σζ and the

coefficients of the polynomials p1(·), p2(·), . . . , pd(·). These are selected through a numerical

optimization procedure to reach the target covariance matrix Σ and the desired marginal

skewness and kurtosis.

The equivalence of discretizing a VM vector and a normal vector in the

monotonous case

We assume that the polynomials p1(·), . . . , pd(·) are monotonous. This case is often

encountered in practice. For instance, monotonous polynomials exist in three of the four

conditions studied by Flora and Curran (2004) and in the single condition employed by

Rhemtulla et al. (2012).

The general case of non-monotonous polynomials may be analyzed with the

techniques used by Foldnes and Grønneberg (2015), who derived the distribution of VM

random vectors. However, this comes at the cost of greatly increased notational

complexity. Also, the common case of monotonicity is sufficient to demontrate the

problems inherent in discretizing VM random vectors for robustness studies. The case of

non-monotonicity still leads to the discretization of a multivariate normal vector, with the

added complication of random thresholds.

We assume that ξ is generated according to eq. (2) with generator variable ζ, and

that X is generated according to eq. (1). We further assume that the VM method is set up

such that X has target covariance matrix Σ. Let 1 ≤ i ≤ d. We have

Xi =
K∑
j=1

xjI{τi,j−1 < pi(ζi) ≤ τi,j}. (3)
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Suppose first that pi is monotonously increasing. Then its inverse function p−1
i is also

increasing, and applying the inverse on all three parts of the inequality above gives

Xi =
K∑
j=1

xjI{p−1
i (τi,j−1) < p−1

i (pi(ζi)) ≤ p−1
i (τi,j)} =

K∑
j=1

xjI{τ̃i,j−1 < ζi ≤ τ̃i,j}.

where τ̃i,j = p−1
i (τj). If all polynomials are increasing, the conclusion is therefore that

X = (X1, X2, . . . , Xd)′ is numerically identical to discretizing the generator variable ζ,

which is exactly normally distributed. The only difference between discretizing the

potentially highly non-normal ξ compared to the exactly normal ζ is to replace the

threshold values (τi,j) by (τ̃i,j).

Now consider the case when a polynomial pi(·) for a 1 ≤ i ≤ d is instead

monotonously decreasing. Then the inverse p−1
i is also monotonically decreasing, and we

have

Xi =
K∑
j=1

xjI{τi,j−1 < pi(ζi) ≤ τi,j} =
K∑
j=1

xjI{p−1
i (τi,j) ≤ p−1

i (pi(ζi)) < p−1
i (τi,j−1)}

=
K∑
j=1

xjI{p−1
i (τi,j) ≤ ζi < p−1

i (τi,j−1)}

=
K∑
j=1

xjI{τ̃i,j−1 < −ζi ≤ τ̃i,j}

where τ̃i,j = −p−1
i (τi,j). We therefore see that for this coordinate of X, it is as if we

discretized not ζi but −ζi.

Let ζ̃ be ζ with signs reversed for those coordinates whose corresponding polynomials

are decreasing. Since ζ is zero mean multivariate normal, so is ζ̃. The covariance matrix of

ζ̃, which we call Σζ̃ is equal to Σζ , the covariance matrix of ζ, but with some signs of the

covariances possibly reversed.

Since the above argument holds for each coordinate of X, and takes into account

both increasing and decreasing polynomials, we see that discretizing the VM simulation

approach is numerically equivalent to simulating directly from the multivariate normal

vector ζ̃. That is, X is numerically equal to having simulated from the exactly multivariate
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normal vector ζ̃. Again the polynomial transformation is ineffectual, except for changes in

the thresholds and possible sign reversals of covariances.

The implications of the equivalence

We have shown that using the discretized VM approach to simulate ordinal data is

numerically equivalent to simulating directly from an exactly multivariate normal random

vector ζ̃ with covariance matrix Σζ̃ . This is the case, even though ξ may be highly

non-normal, with a high degree of univariate skewness and kurtosis. Note also that Σζ̃

differs from the prescribed target covariance matrix Σ, but often in a relatively minor way,

as further discussed at the end of this section.

Since X is numerically equal to a discretized normal vector ζ̃, all consistent statistical

methods based on the normal assumption will estimate features of ζ̃ and not of the

intended vector ξ. For instance, it is important to note that both the one-step

simultaneous estimation of thresholds and polychoric correlations and the two-step

estimation method for polychoric correlations proposed by Olsson (1979) will reach Σζ̃ , and

not the intended Σ. Many simulation studies have aimed to investigate the robustness of

methods based on polychoric correlations to violations of underlying normality in the

discretized vector. A large proportion of such studies have relied on the seemingly

reasonable choice of generating non-normality with the popular VM transform. In fact, we

could only find a few studies employing a different approach than VM, based on

discretizing multivariate t distributions (Maydeu-Olivares, García-Forero, Gallardo-Pujol,

& Renom, 2009; Maydeu-Olivares, 2006). We have demonstrated that studies using VM

discretization could just as well have discretized a multivariate normal vector, whose

covariance matrix might be misspecified for the intended model. Hence, the results

reported in studies based on discretizing VM will reflect the consequences of a misspecified

covariance structure, or a correctly specified covariance structure at slightly different

parameter values than posited by the researcher, and not the claimed robustness with
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respect to proper deviation of normality in the discretized variable.

We next look more closely at select design conditions in two representative and

well-cited studies that discretized VM for data generation, with further details provided as

supplementary materials to this article. Our aim is to inspect how far the intermediate

correlation estimated by the polychoric estimator is from the target correlation. Consider

first Model 1 in Flora and Curran (2004), a one-factor model with five indicators.

Population values of factor loadings and residual variances are 0.7 and 0.51, respectively, so

that that the target Σ is a correlation matrix with all off-diagonal elements equal to 0.49.

In Flora and Curran (2004) the distributional condition furthest removed from normality

has skewness 1.25 and excess kurtosis 3.75, which may be realized by a monotonous

Fleishman polynomial p(ζ) = −0.161 + 0.819ζ + 0.161ζ2 + 0.049ζ3. With an intermediate

correlation between ζ1 and ζ2 approximately equal to 0.5084, the correlation between

between p(ζ1) and p(ζ2) will equal the target value of 0.49 (we return to this condition in

the next section). In other words, data generation based on VM is here indistinguishable

from simulating multivariate normal data whose correlations are all equal to 0.5084.

Moreover, Model 1 fits perfectly to such a correlation structure, since all the off-diagonal

elements of the polychoric correlation matrix are identical. In fact, estimating the

one-factor model to the polychoric correlation matrix results in perfect fit when the factor

loading is 0.712, close to the value 0.7 postulated by the authors. The values here

calculated for the polychoric correlations and factor loadings are in accordance with the

mean values reported in Tables 2 and 8 in Flora and Curran (2004). The conclusion in

Flora and Curran (2004) that “... estimation of polychoric correlations is robust to modest

violations of underlying normality”, may therefore be explained by a data generation

procedure indistinguishable from discretizing a multivariate normal vector that fits perfectly

to the model, in such a way that the parameter estimates are close to those postulated by

the researchers.

In Rhemtulla et al. (2012) the non-normal condition has skewness 2 and excess
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kurtosis 7, generated by a monotonous polynomial

p(ζ) = −0.260 + 0.762ζ + 0.260ζ2 + 0.053ζ3. In contrast to Flora and Curran (2004), the

population factor loadings are not identical across indicator variables, and hence there are

different correlation values contained in Σ. The intermediate correlations in the VM

procedure are therefore also not all equal, and the proposed factor model will not fit

perfectly to the intermediate correlation matrix (i.e. the population value of the polychoric

correlation matrix). However, the intermediate correlations are similar to the

corresponding elements in Σ, which means that the model is only mildly misspecified. In

fact, for Model 1 the population value of the RMSEA fit index is very low: 0.001.

Therefore the reported outcomes, e.g., parameter bias, exhibit mostly acceptable

performance under the Cat-LS and ML estimators studied by Rhemtulla et al. (2012).

We conclude that in commonly used conditions of non-normality (i.e. skewness and

kurtosis) and target correlation, the intermediate correlation in the VM transform is close

to the target correlation. Since the polychoric correlation equals this intermediate

correlation, the correlation matrix that is used to fit the model will tend to be only slightly

misspecified. In fact, in some conditions the model may be correctly specified also for the

polychoric correlation matrix (Flora & Curran, 2004). We believe this is the reason why

bias in parameter estimation and standard errors, and in the performance of fit statistics,

has been repeatedly reported to be overall acceptable in robustness studies that are based

on discretizing the VM transform.

Illustration

We illustrate the above deductions for two previously used conditions in the

psychometric simulation literature. Code written in R (R Core Team, 2018) that rely on

the package lavaaan (Rosseel, 2012) is provided in the supplementary material.

The first condition, C1, is a VM bivariate vector whose skewness and excess kurtosis

equal 1.25 and 3.75, respectively, in both margins. This condition was used by Flora and
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Curran (2004). The second condition, C2, involves more severe non-normality in the

margins, with skewness and excess kurtosis equal 3 and 21, respectively, and was studied

by Curran, West, and Finch (1996). In both conditions the coefficients for a Fleishman

polynomial p(ζ) = a+ bζ + cζ2 + dζ3 are given in Table 1, and yield a monotonously

increasing p(z).

Condition Skewness Kurtosis a b c d

C1 1.75 3.75 -0.1606 0.8189 0.1606 0.0492

C2 3 21 -0.2523 0.4186 0.2523 0.1476
Table 1

Two conditions of non-normality, with corresponding coefficients for Fleishman polynomial

p(ζ) = a+ bζ + cζ2 + dζ3.

Following Flora and Curran (2004), we set the target covariance (which is actually a

correlation, since the Fleishman polynomials in Table 1 have unit variance) equal to

φ = 0.49. The intermediate correlation φζ for the bivariate normal vector (ζ1, ζ2) was then

calculated in C1 and C2 as suggested by Vale and Maurelli (1983). For C1 this correlation

was equal to φζ = 0.5084, while for C2 we have φζ = 0.5715. Note that the intermediate

correlation φζ is closer to the target φ = 0.49 in the distribution which is closest to

normality, i.e., in C1.

To obtain ordinal data we used a five-category condition where the population

proportions for increasing levels are 0.05, 0.2, 0.5, 0.2 and 0.05. The corresponding

thresholds for a standard normal distribution, and for the Fleishman polynomials in C1

and C2 are given in Table 2.

Next, we simulated a large n = 107 sample from both C1 and C2, and applied the

corresponding thresholds in Table 2 to obtained five-category ordinal data. In these ordinal

datasets we estimated the thresholds and the polychoric correlation, following the two-step

procedure suggested by Olsson (1979). The results are given in table 3. In both conditions
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Condition τ1 τ2 τ3 τ4

Normal -1.645 -0.643 0.643 1.645

C1 -1.292 -0.634 0.445 1.840

C2 -0.915 -0.456 0.160 1.776
Table 2

Thresholds that yield relative frequencies of 0.05, 0.2, 0.5, 0.2 and 0.05.

the estimate of the polychoric correlation misses the target correlation, and is instead close

to the intermediate correlation φζ . This confirms the above deductions. As expected, in

both conditions the estimated thresholds are similar and almost identical to the population

values given for the normality condition in Table 2.
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Condition φ φζ ρ̂ τ̂1 τ̂2 τ̂3 τ̂4

C1 0.49 0.5084 0.5087 -1.6454 -0.6433 0.6424 1.6440

C2 0.49 0.5715 0.5717 -1.6454 -0.6432 0.6425 1.6438
Table 3

Estimated thresholds τ̂i and polychoric correlation ρ̂ in a large sample. φ: target

covariance. φζ: covariance of generator variables ζ1 and ζ2.

Conclusion

We have demonstrated that simulating ordinal data by the disretization of a VM

generated non-normal continuous vector is in many cases equivalent to discretizing a

multivariate normal vector. The covariance matrix of this vector is often close to the target

covariance matrix of the VM method. This discrepancy between the target covariance

matrix for the VM method and the possibly misspecified covariance matrix of the normal

vector is therefore hard to separate from small sample variation. We believe that this may

explain why the discrepancy has not been discovered before. We may conclude that the use

of the VM transform for robustness studies in ordinal SEM is therefore of limited value.

The results from such studies may in many cases be interpreted as robustness against very

mild model misspecification for an underlying normal vector.

The analysis offered in this paper points to the importance of considering

non-identifiability issues arising when ordinal data are treated as discretized continuous

data. Starting with the representation in eq. (3), it is clear that we may apply any

monotonic transformation to the three parts of the inequality in this equation and thereby

transforming the marginals of the discretized variable to any desired distribution. Future

simulation studies of robustness to violation of the underlying normality assumption should

therefore carefully analyze how the non-identifiability issue may affect the simulation

technique.
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