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Abstract

Robust standard errors are of central importance in confirmatory factor models. In

calculating these statistics a central ingredient is the inverse of the asymptotic covariance

matrix of second-order moments calculated under the assumption of normality. Currently,

two ways of estimating this matrix are employed in software packages. One approach uses

the sample covariance matrix, the other the model-implied covariance matrix. Previous

research based on a small confirmatory factor model demonstrated that the latter approach

yielded a slight improvement in standard error performance. The present study argues

theoretically that the discrepancy between the two approaches increases in models where

there are few model parameters relative to p(p+ 1)/2, where p is the number of observed

variables. We present simulation results that support this claim, in both small and large

correctly specified models, across a large variety of non-normal conditions. We recommend

the model-implied covariance matrix for robust standard error computation.
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The choice of normal-theory weight matrix when computing robust standard errors in

confirmatory factor analysis

Confirmatory factor analysis (CFA) is concerned with the modeling of a vector of

observed variables in terms of a system of linear equations relating these observed variables

to unobserved variables. As long as these unobserved variables comprise a vector of jointly

multivariate normal variables, model parameters may be efficiently estimated with

normal-theory maximum likelihood (ML) estimation, and the model tested with the

associated likelihood ratio statistic TML.

However, the normal-theory assumption is seldom met in practice. To take

non-normality into account, the current approach in software packages is to provide robust

standard errors based on a so-called sandwich matrix (Browne, 1984; Huber, 1967). It is

also common to report test statistics that are more robust to non-normality than TML,

with the mean scaling of Satorra and Bentler (1994) as the most well-known example. A

central ingredient in the robust formula for standard errors, and in a variety of robust test

statistics, is an estimate of a matrix here denoted by W , which coincides with the inverse

of the covariance matrix of second-order moments in the case of multivariate normality.

For further discussion of alternative ways to obtain robust standard errors and test

statistics see Falk (2018); Maydeu-Olivares (2017).

As pointed out by Xia, Yung, and Zhang (2016), there are currently two main ways of

estimating W . Both approaches are theoretically correct, and they coincide asymptotically,

provided the model is correctly specified. However, with the exception of Xia et al. (2016),

there are no empirical studies which investigate whether the two approaches lead to

different performance in terms of standard error precision and inference of goodness-of-fit

based on robust test statistics. The Monte Carlo studies reported by Xia et al. (2016) were

based on a single three-factor model with nine indicators that was estimated at various

degrees of misspecification and non-normality. The authors reported on the performance of

robust standard errors calculated from the two ways of estimating W . They also
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investigated how model fit inference was affected by the choice of Ŵ when computing the

mean-scaled statistic (Satorra & Bentler, 1994), and three fit indices based on this statistic.

The results in Xia et al. (2016) revealed a small but consistent performance gap in favor of

one version of Ŵ over the other in terms of standard error precision and model fit. For the

fit indices the authors reported only minor differences between the two versions of Ŵ .

Given the widespread use of robust standard errors and test statistics in confirmatory

factor analysis, our goal is to expand the study by Xia et al. (2016) in several directions.

First we will argue that the modest discrepancy between the two weight matrix approaches

reported by Xia et al. (2016) may not be representative for models of a different type than

the one employed in Xia et al. (2016). We will explain that, holding other model and the

distributional conditions equal, the performance differential in standard error precision and

test statistics between the two versions of Ŵ is likely to become more apparent when the

number of free model parameters decreases. It follows that the performance gap may

become substantial in large models where there are relatively few parameters to estimate

relative to the number of non-redundant elements in the covariance matrix. This explains

why Xia et al. (2016) found only minor differences between the two versions of Ŵ , since

they used a relatively small model in which relatively many parameters were estimated.

We conduct Monte Carlo studies to investigate the degree to which our theoretical analysis

is confirmed in various finite-sample conditions. A second extension is the inclusion of a

larger variety of non-normal distributions than the single family of distributions used by

Xia et al. (2016), in order to study whether the discrepancies between the two weight

matrices may be sensitive to certain types of non-normality. A third extension is the

inclusion of two more robust test statistics, in addition to the single statistic studied by

Xia et al. (2016). In short, our goal is to investigate whether the choice of Ŵ may affect

robust CFA inference to a larger degree than demonstrated in Xia et al. (2016), and to

arrive at recommendations for which version of Ŵ to use.
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Robust standard errors and test statistics

Let X be a random p-dimensional vector, with finite fourth-order moments, and with

population covariance matrix Σ. Furthermore, let Sn be an unbiased estimator of Σ, based

on a random sample of dimension n. The non-duplicated elements of Sn are gathered into

the vector sn = vech(Sn), containing p∗ = 1
2p(p+ 1) elements. Similarly we define

σ = vech(Σ). The asymptotic covariance matrix of
√
nsn is denoted by Γ. The proposed

model contains q parameters and implies a covariance structure σ(θ), where θ is the

parameter vector that we assume is differentiable with a Jacobian p∗ × q matrix ∆ = ∂σ(θ)
∂θ

.

We assume the model is correct, so that σ(θ0) = σ for some θ0, and that an estimate θ̂n of

θ0 is obtained using an estimator based on multivariate normality, like the ML estimator.

Then the asymptotic covariance matrix of
√
nθ̂ is given by

Ω = (∆′W∆)−1(∆′WΓW∆)(∆′W∆)−1. (1)

Here W = 1/2D′p(Σ−1 ⊗ Σ−1)Dp, where Dp is the duplication matrix (Magnus &

Neudecker, 1999). In the present study we investigate two ways of estimating W :

ŴS = 1/2D′p(S−1
n ⊗ S−1

n )Dp

and

ŴΣ = 1/2D′p
(

Σ(θ̂n)−1
⊗ Σ(θ̂n)−1

)
Dp.

Robust standard error estimates are obtained from eq. (1) when replacing ∆ by its

estimate ∆̂, and W by either ŴS or ŴΣ. We refer to such standard errors as SE(S) and

SE(Σ), respectively.

We next discuss three approximations to the distribution of TML under violation of

multivariate normality. The normal-theory ML estimate θ̂n minimizes

FML(θ) = log |Σ(θ)|+ tr
(
SΣ−1(θ)

)
− log |S| − p.

Under the assumptions of normality and a correctly specified model TML = (n− 1) ·FML(θ̂)

is asymptotically distributed as a chi-square with d := p∗ − q degrees of freedom. However,
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for non-normal data, TML is asymptotically distributed as a mixture of chi-squares:

TML
d−→

d∑
j=1

αjχ
2
1, (2)

where the χ2
1 are mutually independent chi-squares with one degree of freedom and d−→

stands for convergence in distribution. The αj are the non-zero eigenvalues of UΓ where

U = W −W∆ {∆′W∆}−1 ∆′W. (3)

Based on eq. 2, Satorra and Bentler (1994) proposed to scale TML by a factor b, yielding

T1 := b−1 · TML,

where b := trace(UΓ)/d. The asymptotic mean of T1 coincides with the mean of the

nominal chi-square distribution, namely d. This statistic is regularly reported when there is

concern with non-normality of the sample, and is therefore of central interest in CFA. The

second statistic, less often reported in the literature, and here denoted by T2, is closely

related to a mean-and-variance-corrected introduced by Satorra and Bentler (1994). T2 was

proposed by Asparouhov and Muthen (2010), and seems to have slightly better

performance than the original mean-and-variance-corrected statistic (Foldnes & Olsson,

2015; Savalei & Rhemtulla, 2013). T2 involves both a scaling and shifting of TML:

T2 = c1 · TML + c2, (4)

where

c1 :=
√

d

tr(UΓUΓ) , c2 := d−

√√√√d · tr(UΓ)2

tr(UΓUΓ) .

Asymptotically, T2 has the same mean and variance as the nominal chi-square distribution

with d degrees of freedom, so T2 is theoretically superior to T1. However, in finite sample

conditions both T1 and T2 are sensitive to increasing levels of kurtosis in the data, with T1

tending to produce higher rejection rates than T2 as kurtosis increases (Foldnes & Olsson,

2015). Note that the parameters b, c1 and c2 must be estimated, where Û is obtained by
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inserting ∆̂, and either ŴS or ŴΣ, into eq. (3). When ŴS is used, we refer to the test

statistics as T1(S) and T2(S). Similarly, with ŴΣ used, the corresponding test statistics are

denoted by T1(Σ) and T2(Σ).

The third test statistic is a member of the newly proposed eigenvalue block averaging

(EBA) class of robust test statistics (Foldnes & Grønneberg, 2018). EBA test statistics

may be seen as refinements of T1 where the eigenvalues α̂j are ordered into two or more

blocks and replaced block-wise by their mean values. In this framework, T1 is the one-block

EBA test statistic. In the present study we include the two-block EBA test, here denoted

by T3. We arrange the eigenvalues α̂j of Û Γ̂ in increasing order, and divide them into two

equal parts. For the smallest half of the eigenvalues we calculate their average value, α1.

Similarly, the average of the largest half of the eigenvalues we denote by α2. Then, the

p-value associated with T3 is calculated as

p = P

 d∑
j=1

α̃jZ
2
j > TML

 ,
where α̃k = α1 for k = 1, . . . , dd/2e, and α̃l = α2 for l = dd/2e+ 1, . . . , d, and where the Zj

are independent standard normal variables. Here, dd/2e is the integer value when d/2 is

rounded up. Similar to T1 and T2, we may calculate T3 using either ŴS or ŴΣ in the

expression for U , in order to obtain Û and consequently the estimated eigenvalues. The

resulting test statistics are denoted by T3(S) and T3(Σ), respectively.

To sum up, in order to estimate standard errors and obtain p-values associated with

the hypothesis of a correctly specified model from T1, T2 and T3, W and the other matrices

that appear in Ω and U must be estimated from sample data and the model specification.

Different software packages by default estimate W in different ways before calculating the

expressions in equations (1) and (3). For instance, standard errors obtained in Mplus

(Muthén & Muthén, 2010) by ESTIMATOR = MLM or MLMV will be based on ŴS in

eq. (1), while EQS (Bentler, 2006), LISREL (Jöreskog & Sörbom, 2015), SAS/STAT 14.1

(“SAS/STAT 14.1 User’s guide”, 2015) and lavaan (Rosseel, 2012) use ŴΣ in eq. (1).

Similarly, the classical Satorra-Bentler test T1 and the scaled-and-shifted test T2 will be
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calculated by Mplus (ESTIMATOR=MLM and MLMV, respectively) using ŴS in eq. (3),

while other software packages like lavaan by default use ŴΣ to obtain an estimate of U .

Distribution of the sample and the model-implied covariance matrices

In this section we discuss how the sampling distributions of the sample covariances sn

and the model-implied covariances σ̂n differ. Distributional differences are likely to be

reflected in the distributions of ŴS and ŴΣ, and ultimately in the sampling distributions of

the estimates Ω̂ and Û Γ̂ that are used to obtain standard errors and robust test statistics.

Although σ̂n and sn are both vectors of dimension p∗, we will show that the sampling

distribution of sn is more scattered or dispersed than the sampling distribution of σ̂n. We

first base our discussion on large sample theory, where it is well known that in large

samples
√
nsn has a distribution which is approximated by a non-degenerate multivariate

normal distribution, whose covariance matrix we denote by Γ. In contrast, the large-sample

distribution of
√
nσ̂n is a degenerate normal distribution with covariance matrix

∆(∆′Γ−1∆)−1∆′, provided the employed estimator is well specified for the data at hand

(e.g., the normal-theory based ML estimator under underlying normality). One way of

quantifying scatter in a random vector is to calculate the determinant of its covariance

matrix (Wilks, 1932). If we take the determinant of the asymptotic covariance matrix of
√
nσ̂n the result is zero, since this matrix has rank q < p∗. This implies that the scatter or

dispersion in σ̂n is reduced, compared to the scatter in sn.

Informally, the p∗-vector sn vary in all directions in the p∗-dimensional space in which

it lives. In contrast, σ̂n = σ(θ̂n) is a function of q < p∗ estimated parameters, and it spans

only a q-dimensional subspace of the p∗-dimensional space in which it resides. It is also

noteworthy that the residual vector
√
n(s− σ̂) is constrained to a subspace: In large

samples this residual vector resides in a subspace of p∗ with p∗ − q dimensions (Foldnes,

Foss, & Olsson, 2011). Hence, sn enjoys all the p∗ degrees of freedom, while σ̂n enjoys only

q degrees of freedom. Note that under correct model specification the population
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covariance vector σ is included in the q-dimensional space where σ̂n may take on values.

This intuitively suggests that σ̂n, provided the model is correct, is a better estimate of σ

than sn, because it has less variation than sn, being constrained to a subspace of p∗ that

already contains the target σ.

Figure 1 . 3d scatterplot of sample covariance vectors (in red) and model-implied covariance

vectors (in grey). Pairs sn and σ̂n estimated from the same sample are joined by a line.

We can visualize this using simulated data from a one-factor analysis model, with

p = 2 indicator variables X1 and X2. In the population model we have unit variances for

the factor and the two measurement errors, and the two factor loadings are equal to 1. The

resulting population covariance vector is σ = (σ11, σ12, σ22) = (2, 1, 2), where σij is the

population covariance between Xi and Xj. The corresponding sample covariance vector is
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sn = (s11, s12, s22). The model we estimate has only q = 2 free parameters, namely the

unique variances associated with the two variables, while all the other parameters are fixed

to their true values. The model-implied covariance vector is then σ̂n = (1 + θ̂1, 1, 1 + θ̂2),

where θ̂1 and θ̂2 are the estimated variances of the X1 and X2 residuals, respectively.

Geometrically, this means that σ̂n is constrained to take on values in a two-dimensional

subspace of the three-dimensional space, since σ̂n can only vary along the s11 and s22 axes,

with a s12-coordinate fixed equal to 1. We drew randomly 20 samples of sample size n = 50

from a bivariate normal distribution with covariance matrix Σ = ( 2 1
1 2 ). We estimated the

factor model and extracted σ̂n in each sample. The results in the form of a 3D scatterplot

are shown in Figure 1. We see that the σ̂n are constrained to lie in the plane defined by

s12 = 1, which is viewed edge-on in the figure, while the sn are scattered in all three

available dimensions.

It follows from the arguments in this section that, keeping the number of observed

variables constant, as the number of estimated model parameters decreases, the difference

in sampling variability between the model-implied and sample covariance matrices

increases. This means that for two nested models, we expect larger differences between

SE(S) and SE(Σ) in the most constrained model, which has fewer freely estimated

parameters. Another consequence is that the discrepancy between SE(S) and SE(Σ) is

expected to increase as model size increases. The reason is that in larger models there are

relatively few freely estimated parameters compared to the large number of non-redundant

elements in the sample covariance matrix.

In the next section we present a simulation study designed to test these hypotheses.

We describe two factor models where one is nested within the other. Our hypothesis then

predicts that the former model will exhibit larger discrepancies between SE(S) and SE(Σ)

compared to the latter. Also, a model which is much larger than these two models will be

presented. Our hypothesis is that for this large model there will be a more pronounced

difference between SE(S) and SE(Σ) than observed for the smaller models. In addition to
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testing these hypotheses, we are also interested in evaluating the extent to which the choice

between SE(S) and SE(Σ) has practical consequence for the quality of parameter inference,

by comparing confidence interval coverage rates under the two approaches.

Method

This section provides a detailed description of the proposed models examined in this

simulation study, the analyzed sample sizes, and the distributional characteristics evaluated

in the simulations in terms of data generation and program implementation. Note that we

limit ourselves to the case of correct model specification in the present study.

Models

Xia et al. (2016) simulated exclusively from a 3-factor model, with a total of 9

indicator variables. This model had q = 21 free parameters and d = 24 degrees of freedom.

In the present study we include this model, and denote it byM21
1 . In the previous section

we argued that the difference between using ŴS and using ŴΣ in formulas for test

statistics and standard errors is more likely to manifest in conditions where q is relatively

small compared to p∗. We therefore modifiedM21
1 by fixing 14 of its free parameters to

their population counterparts. More specifically, we fixed six of the nine factor loadings,

two of the intrafactor correlations, and six of the nine unique variances. The resulting

model has a substantially reduced number of free parameters, with q = 7 free parameters

to be estimated, compared toM21
1 . We refer to this model asM7

1.

ModelsM21
1 andM7

1 are relatively small. Confirmatory factor models employed in

many simulation studies are typically not much larger, and it is rare to encounter models

with more than one hundred degrees of freedom in such studies. Notable exceptions are

found in literature examining the effect of large model sizes on test statistics, see, e.g., Shi,

Lee, and Terry (2018) and references therein. This body of work is important, given that

models with hundreds, or even thousands, degrees of freedom are commonly estimated in

many fields of the behavioral sciences. For instance, in personality research commonly used
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inventories may contain more than one hundred items (Costa & McCrae, 1992). We

therefore included a larger model, referred to asM2, in the present study. This model has

a structure similar to a commonly used measure for the Big Five personality factors, the

60-item NEO Five-Factor Inventory that contains 12 items for each of five factors (Costa &

McCrae, 1989). In modelM2 we have p = 60 indicators and the q = 130 free parameters

consists of factor loadings, intrafactor correlations and unique variances. The model

degrees of freedom ofM2 is d = 1700. In large models, the ratio of the number of free

parameters to the degrees of freedom is low, compared to smaller models. Given the

discussion in the previous section, we therefore expect the discrepancy between using ŴΣ

and using ŴS to be more pronounced as model size increases.

Data generation

We first discuss distributional conditions. The first distribution condition was that of

the multivariate normal distribution. Given the large variety of non-normal distributions,

we deem it important to include other types of non-normality than the default type offered

in many software packages (Vale & Maurelli, 1983). Also Xia et al. (2016) used the

Vale-Maurelli (VM) method for non-normality conditions, but it has its limitations

(Astivia & Zumbo, 2018; Foldnes & Grønneberg, 2015). To extend the scope of

non-normality, we therefore simulated non-normal data using three recently proposed

alternatives to VM, namely the approaches by copula (Mair, Satorra, & Bentler, 2012), by

independent generators (Foldnes & Olsson, 2016) and by regular vines (Bedford & Cooke,

2002; Grønneberg & Foldnes, 2017). We refer to these three simulation methods as COP,

IG and VITA, respectively.

For modelsM21
1 andM7

1 we used the IG and VITA approaches to generate

non-normal data. For the IG distribution, marginal skewness and kurtosis were set to 2

and 7, respectively, values that are often used in simulation studies and considered to

represent moderate non-normality. For the VITA distribution, which allows complete
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specification of marginals, we set all nine marginals to follow a gamma distribution with

shape parameter 6/7 and rate parameter 1. This ensures that the VITA distribution has

marginal skewness close to 2 and excess kurtosis equal to 7, similar to the IG distribution.

However, VITA differs from IG in having a different copula, which was constructed by

employing bivariate Clayton copulas in the regular vine. For modelsM21
1 andM7

1 data

were generated based on setting all factor loadings equal to 0.7, the intrafactor correlations

to 0.3, the factor variances equal to 1 and the unique variances equal to 0.51. Two sample

sizes, n = 100 and n = 500, were included. Samples were simulated from three

distributions. By fully crossing model, sample size and distributional condition we obtain

12 simulation conditions, in each of which 2000 samples were generated.

The distributional conditions forM2 were the multivariate normal, one VM

distribution and two COP distributions. For the VM distribution we specified skewness 2

and excess kurtosis 7 in each of the 60 marginals. In the first COP distribution, we started

with a Gumbel copula with parameter 5, and applied marginal gamma distributions with

shape parameter 6/7. Then the simulated data were linearly transformed to obtain a

correct covariance matrix. We refer to this distribution as COP1. For the second COP

distribution, COP2, the same marginals were employed, but we started with a t-copula

with parameter 0.5. For both COP1 and COP2 the linear transformation was calculated

using a warm-up sample size of n = 6 · 106. The correctness of COP1 and COP2 was

checked using the asymptotically distribution-free test of correct covariance matrix

specification proposed by Mair et al. (2012).

For modelM2, to improve external validity of the simulation results, population

parameters were set to values close to those observed in empirical studies using the NEO

instrument. The big five factors are weakly correlated, so we fixed intrafactor correlations

to 0.3. Also, factor loadings were set to values that ensured that the population coefficient

alpha for each of the five scales equaled 0.7, 0.7, 0.8, 0.8 and 0.9. These alpha coefficients

are in the same range as those observed in empirical studies (McCrae & Costa, 2007). Two
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sample sizes, n = 500 and n = 2000, were included. Samples were simulated from four

distributions. By fully crossing sample size and distributional condition we obtain 8

simulation conditions, in each of which 2000 samples were generated.

Data analysis

Data generation and model estimation were conducted in the R programming

environment, using packages lavaan (Rosseel, 2012), copula (Kojadinovic & Yan, 2010) and

VineCopula (Schepsmeier et al., 2018). Simulations forM2 were conducted on the Abel

computer cluster, owned by the University of Oslo and Uninett/Sigma2.

Each simulated data set was estimated using normal-theory ML estimation. In the

data analysis all 2000 replications were used for all study design cells, because no problems

with estimation convergence occurred. Standard errors and test statistics were then

calculated in two ways, using ŴΣ and ŴS. In each simulation condition we calculated the

following outcome variables:

1. For each estimated parameter, the mean value of the estimated standard errors SE(S)

and SE(Σ). Empirical standard error for each estimated parameter. For each

estimated parameter, the confidence interval coverage rate at the 95 % level of

confidence, based on both SE(S) and SE(Σ).

2. Rejection rate at the α = 0.05 level of significance for the test statistics Ti(S) and

Ti(Σ), for i = 1, 2, 3.

In the next section we report our results. For the presentation of standard error

precision and confidence interval coverage previous related research has used tables, see,

e.g., Falk (2018); Maydeu-Olivares (2017); Xia et al. (2016). Due to large table size, this

only allows the reporting of the results for a few parameters. In the present study, we

instead used graphs to depict our results for standard errors. In our opinion, this leads to

better interpretability of the simulation outcomes, a great advantage being that standard
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errors and coverage rates for all free parameters in the model may be included in the

reporting. Hence, using graphs facilitates the reporting of more data from the simulation

studies, but at the expense of decimal precision within each simulation cell. For test

statistic rejection rates we employ tables.

Results

Models M21
1 and M7
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Figure 2 . ModelsM21
1 andM7

1 at sample size n = 100, in right and left column of panels,

respectively. NORM=Normal distribution. IG=Independent generator distribution.

VITA= Regular vine distribution. Empirical= The empirical standard error. S= Mean of

SE(S). Sigma= Mean of SE(Σ).
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For sample size n = 100 the means of the estimated standard errors and empirical

standard errors are presented in Figure 2. The left column of panels concernM7
1, where

only 7 parameters were estimated. The right column of panels concernsM21
1 , with 21

parameter indices i plotted on the x-axis. The first group of parameters are factor loadings

(1 ≤ i ≤ 9). The next group (10 ≤ i ≤ 12) refers to factor correlations, while the last group

(13 ≤ i ≤ 21) corresponds to the nine unique variances. For all parameters, the empirical

standard error is larger than both SE(S) and SE(Σ). However SE(Σ) consistently

outperforms SE(S) across all parameters, distributions and models. Notably, the superior

performance of SE(Σ) relative to SE(S) is accentuated in the model with only q = 7 free

parameters. As expected, we observe an increase in empirical standard errors under

non-normality. Interestingly, while the factor correlations were estimated with the lowest

precision among the parameters under normality, it was the unique variances that were

least precisely estimated under both non-normal distributions.

For sample size n = 500 the standard error results are given in Figure 3. As expected,

the empirical standard errors are lower than for the n = 100 case. Similar to the n = 100

case, SE(S) and SE(Σ) consistently underestimate the empirical standard error across all

parameters, but the bias is reduced compared to the n = 100 case. We again observe that

SE(Σ) is consistently a better estimator of the empirical standard error than is SE(S). This

performance gap is again larger in the model with the smallest q, namelyM7
1. However,

discrepancy in performance between SE(S) and SE(Σ) is smaller in the n = 500 case

compared to the n = 100 case.

To better interpret the practical significance of these findings, we present for the

n = 100 case a plot of confidence interval coverage rates in Figure 4. The coverage rate is

the proportion of times the confidence interval based on the calculated standard error

contains the true population value. This rate was calculated with a 95 % confidence level,

so ideally the coverage rate should be close to 0.95. As expected, given the underestimation

of standard errors, the coverage rates are all below the nominal 95 % level. However,
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coverage rates are consistently better for SE(Σ) compared to SE(S), across both models, all

three distributions and all 21 parameters. The gap in performance is most marked for the

model with lowest q. For instance, the coverage rate for the first loading parameter inM7
1

under VITA is 0.83 when based on SE(S), compared to 0.89 when based on SE(Σ). In

Figure 5 are presented the coverage rates for n = 500. Here the discrepancy in performance

between SE(S) and SE(Σ) is less pronounced compared to the n = 100 condition, but still

SE(Σ) coverage rates consistently outperform those of SE(S). Although in many conditions

the slight gap in coverage rates may not seem of practical importance, we note that for the

model with smallest q there are some parameters and distributions where the gap is still

notable.

Next we proceed to consider test statistic rejection rates. Table 1 presents rejection

rates of the test statistics T1, T2 and T3, based on both ŴΣ and ŴS. Under the normal and

IG distributions there is overall little difference between the two versions Ti(Σ) and Ti(S)

across all three statistics, i = 1, 2, 3. However, a gap appears in the smallest model (q = 7)

under IG, when n = 100. For the VITA distribution there are larger discrepancies between

Ti(Σ) and Ti(S), especially for T1 and q = 7. Overall, the discrepancies are more

pronounced at the smallest model size. Compared to the clear-cut situation for standard

errors, it is less clear for test statistics whether ŴΣ or ŴS should be preferred. In the case

of the Satorra-Bentler test T1, the tendency to overreject is mitigated with ŴΣ compared

to ŴS, under the non-normal distributions. For T2 the tendency to underreject seems to be

modestly mitigated by using ŴS instead of ŴΣ. For T3 the tendency to overreject seems to

be mitigated by preferring ŴΣ.

Model M2

For sample size n = 500 the means of the estimated standard errors and the empirical

standard error are presented in Figure 6. There are 130 parameters in the model, whose

indices i plotted on the x-axis. The first group of parameters are factor loadings
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(1 ≤ i ≤ 60). The next group (61 ≤ i ≤ 70) refers to factor correlations among the five

factors, while the last group (71 ≤ i ≤ 130) corresponds to the sixty unique variances.

Under multivariate normality, the mean of SE(Σ) closely matches the empirical

standard errors across all parameters. SE(S) does not perform as well, consistently

underestimating the empirical standard errors. As expected, standard errors are larger

under the non-normal distributions. In terms of empirical standard errors, the

non-normality embedded in VM, COP1 and COP2 is increasingly challenging for the ML

estimator.

Of crucial interest is the discrepancy between SE(S) and SE(Σ). An important

observation, visible across all parameters and distributions in Figure 6, is the poor

performance of SE(S) relative to SE(Σ). For the VM distribution the performance gap is

especially prominent for the unique variances, whose empirical standard errors are close to

0.14, while the SE(S) are close to 0.1. The performance gap between SE(S) relative to

SE(Σ) is even more accentuated for COP1 and, especially, for COP2. COP2 represents a

more severe non-normality than VM and COP1, where there are large gaps between SE(S)

and SE(Σ) for both factor loadings and unique variances. The practical implication of this

performance gap is investigated with confidence interval coverage rates plots in Figure 7.

Even under multivariate normality there is a practical difference in coverage rates, for the

unique variances the SE(Σ) coverage rates are close to the 95 % nominal rate, while the

SE(S) coverage rates are typically close to 91 %. This gap widens markedly under the

non-normal distributions, where SE(Σ) coverage rates are consistently maintained at 90 %

or above. In contrast, SE(S) coverage rates are lower, especially under COP2. For COP2

the SE(S) coverage rates fall well below 70% for most parameters.

At the large n = 2000 sample size, standard errors and coverage rates are plotted in

Figures 8 and 9 and reflect the findings for n = 500. As expected, empirical standard errors

are smaller for n = 2000 compared to the n = 500 condition. It is noteworthy that while

SE(Σ) closely approximates the empirical standard errors, again SE(S) exhibits a
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downward bias, especially in the non-normal conditions. This is again most notable for

COP2, where standard errors of factor loadings and unique variances are markedly

underestimated. Interestingly, for VM and COP1, SE(S) for the factor loadings (parameter

index i ≤ 60) are not as bad as SE(S) for the unique variances. We observe, in accordance

with the asymptotical nature of eq.(1), that both SE(S) and SE(Σ) lead to more acceptable

coverage rates for the n = 2000 case compared to the n = 500 case. However, even at this

large sample size, there is a practical difference in performance between SE(S) and SE(Σ)

in all the three non-normal conditions. Under COP2, coverage rates for the unique

variances are close to 85% when based on SE(S), clearly inferior to SE(Σ) coverage rates,

which are close to 93%.

Rejection rates for test statistics with modelM2 are presented in Table 2. Under

multivariate normality the performance differences between Ti(Σ) and Ti(S), for i = 1, 2, 3,

are negligible. Under non-normality rejection rates associated with both versions of T1 are

too high under VM and COP1, although T1(Σ) comes closer to the nominal rejection level

than T1(S). However, this situation is reversed under COP2, where indeed all test statistics

based on ŴΣ nearly always accept the model. This is in stark contrast to basing the same

statistics on ŴS, which leads to rejection in almost all instances for T1 and T3. There are

also marked differences between T1(Σ) and T1(S) for VM and COP1. To summarize, for T1

rejection happens more often when based on T1(S) compared to T1(Σ), and the latter

version is to be preferred. However, note that both T1(Σ) and T1(S) deliver inacceptable

Type I error controls. For T2 the situation is the opposite, rejection happens more often

with T2(Σ) compared to T2(S). Also for T2 the Type I error control is inacceptable, and

there is no clear version to be preferred. For T3 the model is more often rejected with T3(S)

compared to T3(Σ), and the latter version is preferable under VM and COP1, at least for

the largest sample size. Under COP2 both the T3 versions are inacceptable.
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Discussion

The Monte Carlo investigation in Xia et al. (2016) revealed that SE(Σ) consistently

outperformed SE(S), and also that T1(Σ) demonstrated a slightly better performance than

T1(S). However, the differences reported were minor. The purpose of the present study was

to investigate whether this result generalizes to other types of models and underlying

non-normal distributions. We also wanted to confirm our theoretical expectation that with

fewer parameters to be estimated, the discrepancy between SE(Σ) and SE(S) increases, and

that for large models the discrepancy will tend to be more pronounced.

First, our findings were in accordance with Xia et al. (2016) on the preferred way of

calculating robust standard errors, and confirmed that SE(Σ) outperforms SE(S). However,

we also found that the discrepancy between the two alternatives may be far from minor. In

many cases the choice of weight matrix Ŵ has a substantial effect on the quality of robust

CFA inference.

We provided theoretical explanation for the fact that the smaller q is relative to p∗,

the more pronounced the gap in sampling distribution between ŴΣ and on ŴΣ will

become, and this gap may transfer to robust statistics like standard errors. In order to

demonstrate that the ratio q/p∗ is an important predictor of the discrepancy of outcomes

based on ŴS and ŴΣ, we included in our study two models in addition to the modelM21
1

used by Xia et al. (2016). In the smallest model,M7
1, the q/p∗-ratio was 7/45, compared to

21/45 for inM21
1 . In the large model,M2 the q/p∗-ratio was even smaller than inM7

1,

namely 130/1830. Our conjecture was that in modelsM7
1 andM2, the discrepancies

between SE(Σ) over SE(S), would be more pronounced than they were in modelM21
1 . We

also expected larger discrepancies in test statistic performances in these models. This was

confirmed in the simulation studies.

Our findings revealed that the difference between using ŴS and using ŴΣ in robust

standard error calculation may become quite dramatic. Across all models, parameters,

sample sizes and distributional conditions confidence interval coverage rates based on
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SE(Σ) were found to perform better than SE(S). This gap increased with increasing

non-normality, with decreasing sample size, and with a decrease in the ratio q/p∗.

Considering modelsM21
1 andM7

1, the largest discrepancies in coverage rates between

SE(S) and SE(Σ) occurred in the smallest model,M7
1, at the smallest sample size n = 100,

under the VITA distribution. In this condition, across seven estimated parameters, the

mean coverage rates based on SE(S) and SE(Σ) were 79.6% and 85.1%, respectively. For

the larger modelM21
1 in the same n = 100/VITA condition, the respective coverage rates

were 85.5% and 83.8%. So increasing the number of free parameters from q = 7 to q = 21

reduced the discrepancy between SE(Σ) and SE(S), rendering it almost negligible. Our

findings of a consistent but small discrepancy between SE(Σ) and SE(S) for modelM21
1 is

in accordance with the results in Xia et al. (2016). The discrepancy between the two ways

of calculating standard errors was found to be even more pronounced in a large five-factor

model, with 60 indicators. This model,M2, is similar in size to models commonly

estimated in personality research. We calibrated the population values to resemble values

reported in big five research, and found that the superior performance of SE(Σ) over SE(S)

again was most notable at the smallest sample size under a severely non-normal

distribution. Under the COP2 distribution, with n = 500, the mean coverage rate across all

130 parameters was 90.9% for SE(Σ), compared to the unacceptably low mean coverage

rate of 65.7% for SE(S).

We also evaluated rejection rates for three robust test statistics, each of which was

calculated using either ŴS or ŴΣ. We observed that the resulting discrepancies were larger

inM7
1 than inM21

1 , especially at the smallest sample size. For the Satorra-Bentler

mean-scaled statistic, the tendency to overreject under non-normality was reduced by using

ŴΣ instead of ŴS, which echoes findings in Xia et al. (2016). For the scaled-and-shifted

statistic and the eigenvalue block averaging statistic, we found that the choice of weight

matrix had only a minor impact on Type I error control. It is well known that in large

models, the Satorra-Bentler statistic tends to overreject true models, even under normal
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data (Herzog, Boomsma, & Reinecke, 2007). We confirmed these findings under model

M2. Although ŴΣ yielded a better performance of the Satorra-Bentler statistic than ŴS,

the rejection rates were still unsatisfactory. The scaled-and-shifted statistic almost never

rejected the true model when based on ŴΣ, and exhibited better performance when based

on ŴS. For the eigenvalue block-averaging statistic, performance was best under ŴΣ. For

the most severe non-normality condition, COP2, none of the three statistics came close to

acceptable performance. All three statistics showed a large discrepancy, with virtually zero

rejection rate when based on ŴΣ, while rejecting almost all models when based on ŴS. In

sum, we may recommend ŴΣ for the Satorra-Bentler test, ŴS for the scaled-and-shifted

test, and ŴΣ for the EBA test. However, it should be noted that none of these statistics

had adequate performance underM2, across the range of distributions included in the

present study. Better statistics for large models and small n, based on Bartlett or Swain

corrections, are discussed in Shi et al. (2018).

Our study has of course limitations. First, we considered only factor analytical

models. That is, we did not investigate structural equation modeling extensions such as

growth or multilevel models. Secondly, our models were all correctly specified. What

happens in the more realistic scenario of an incorrectly specified model? We conjecture

that the model-implied covariance matrix should still be used as long as the model is

approximately correct. In case of a severely incorrect model the usefulness of standard

error estimation may be limited.

Conclusion

We investigated whether the sample or the model-implied covariance matrix should

serve as basis for calculating the asymptotic covariance matrix under assumed normality.

This matrix is an important ingredient in commonly used formulas for so-called robust

CFA inference. By theoretical arguments, and by simulating from three factor analytical

models, across several kinds of non-normal distributions, we found that standard error
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calculation should be based on the model-implied covariance matrix. This is especially

important at small sample sizes with non-normal data, and when there are few estimated

parameters in the model relative to the number p(p+ 1)/2 of non-redundant elements in

the covariance matrix (e.g., in large models with more than, say, 40 indicator variables).

Three robust test statistics were included, for which we have less clear

recommendations. The scaled and the EBA statistic should be based on the model-implied

matrix, while for the scaled-and-shifted statistic the sample covariance matrix seemed to

offer best performance. However, all three statistics exhibited inadequate Type I error

control in distributional conditions furthest removed from multivariate normality.
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Figure 3 . ModelsM21
1 andM7

1 at sample size n = 500, in right and left-hand columns of

panels, respectively. NORM=Normal distribution. IG=Independent generator distribution.

VITA= Regular vine distribution. Empirical= The empirical standard error. S= Mean of

SE(S). Sigma= Mean of SE(Σ).
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Figure 4 . Confidence interval coverage rates for ModelsM21
1 andM7

1 at sample size

n = 100. NORM=Normal distribution. IG=Independent generator distribution. VITA=

Regular vine distribution. S= Coverage rate based on SE(S). Sigma= Coverage rate based

on SE(Σ).
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Figure 5 . Confidence interval coverage rates for ModelsM21
1 andM7

1 at sample size

n = 500. NORM=Normal distribution. IG=Independent generator distribution. VITA=

Regular vine distribution. S= Coverage rate based on SE(S). Sigma= Coverage rate based

on SE(Σ).
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Dist n q T1(Σ) T1(S) T2(Σ) T2(S) T3(Σ) T3(S)

N
or
m
al 100

7 0.14 0.11 0.07 0.07 0.09 0.08

21 0.08 0.09 0.05 0.06 0.06 0.07

500
7 0.06 0.06 0.05 0.06 0.05 0.06

21 0.06 0.06 0.05 0.05 0.05 0.05

IG

100
7 0.22 0.26 0.10 0.11 0.16 0.18

21 0.09 0.10 0.03 0.05 0.05 0.06

500
7 0.13 0.14 0.06 0.07 0.09 0.11

21 0.06 0.06 0.03 0.03 0.04 0.04

V
IT
A

100
7 0.28 0.34 0.13 0.14 0.21 0.24

21 0.08 0.12 0.01 0.03 0.03 0.05

500
7 0.13 0.15 0.06 0.06 0.10 0.11

21 0.06 0.06 0.03 0.03 0.04 0.04
Table 1

ModelsM21
1 andM7

1 rejection rates calculated at the α = 0.05 level of significance.

Normal= multivariate normal distribution. IG= Independent generator distribution.

VITA= Regular vine distribution. n= sample size. q=Number of free parameters estimated.

T1=Satorra-Bentler test. T2=Scaled-and-shifted test. T3=Eigenvalue block averaging with 2

blocks. For each test results using both ŴΣ and ŴS are presented.
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Figure 6 . ModelM2 at sample size n = 500. NORM=Normal distribution.

VM=Vale-Maurelli distribution. COP1= Gumbel copula distribution. COP2= Student’s t

copula distribution. Empirical= The empirical standard error. S= Mean of SE(S). Sigma=

Mean of SE(Σ).
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Figure 7 . Confidence interval coverage rates for ModelM2 at sample size n = 500.

NORM=Normal distribution. VM=Vale-Maurelli distribution. COP1= Gumbel copula

distribution. COP2= Student’s t copula distribution. S= Coverage rate based on SE(S).

Sigma= Coverage rate based on SE(Σ).



WEIGHT MATRIX 30

COP1 COP2

NORM VM

1 61 71 130 1 61 71 130

0.04

0.06

0.08

0.04

0.06

0.08

Parameter index

se

Empirical

S

Sigma

Figure 8 . ModelM2 at sample size n = 2000. NORM=Normal distribution.

VM=Vale-Maurelli distribution. COP1= Gumbel copula distribution. COP2= Student’s t

copula distribution. Empirical= The empirical standard error. S= Mean of SE(S). Sigma=

Mean of SE(Σ).



WEIGHT MATRIX 31

COP1 COP2

NORM VM

1 61 71 130 1 61 71 130

0.84

0.88

0.92

0.96

0.84

0.88

0.92

0.96

Parameter index

C
ov

er
ag

e 
ra

te

S

Sigma

Figure 9 . Confidence interval coverage rates for ModelM2 at sample size n = 2000.

NORM=Normal distribution. VM=Vale-Maurelli distribution. COP1= Gumbel copula

distribution. COP2= Student’s t copula distribution. S= Coverage rate based on SE(S).

Sigma= Coverage rate based on SE(Σ).
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Distribution n T1(Σ) T1(S) T2(Σ) T2(S) T3(Σ) T3(S)

Normal
500 0.43 0.46 0.02 0.02 0.02 0.03

2000 0.09 0.10 0.02 0.03 0.04 0.04

VM
500 0.39 0.76 0.00 0.03 0.01 0.11

2000 0.09 0.15 0.01 0.02 0.04 0.07

COP1
500 0.59 1.00 0.00 0.24 0.01 0.65

2000 0.11 0.31 0.00 0.02 0.04 0.13

COP2
500 0.01 1.00 0.00 1.00 0.00 1.00

2000 0.00 1.00 0.00 0.27 0.00 0.99
Table 2

ModelM2 rejection rates calculated at the α = 0.05 level of significance. n= sample size.

NORM=Normal distribution. VM=Vale-Maurelli distribution. COP1= Gumbel copula

distribution. COP2= Student’s t copula distribution. T1=Satorra-Bentler test.

T2=Scaled-and-shifted test. T3=Eigenvalue block averaging with 2 blocks. For each Ti

results using both ŴΣ and ŴS are presented.
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