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Traditionally, international humanitarian organizations have used on-demand dispatch of 

disaster relief goods from regional logistics units for sudden onset disaster response. This paper 

investigates the improvements in efficiency and resilience of disaster relief operations by 

combining the existing method of on-shore prepositioning of relief items in regional logistics 

units with off-shore prepositioning of relief items on-board vessels and at seaport terminals. 

The model operationalizes certain resilience dimensions, thus contributing to organization 

theory. The problem is formulated as a linear programming model that incorporates different 

logistical costs, including inventory cost, replenishment cost, and transportation cost, to find 

the best combination of disaster relief methods. At the tactical level, the model determines how 

much and where disaster relief items need to be prepositioned. At the operational level, the 

model addresses how much and by which mode of transport the disaster relief items need to be 

transported to disaster points. The model is tested on 16 major disasters in Southeast Asia. The 

main finding is that off-shore prepositioning can contribute to cost reduction and resilience 

without compromising on the speed or the scale of the response. The results also suggest that 

the benefits depend on the duration of the disaster emergency period and the ratio of off-shore 

storage cost to on-shore storage cost. 
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1. Introduction  

Improvements in logistics preparedness are very important for increasing the effectiveness and 

efficiency of disaster relief operations. Both theory and practice suggest prepositioning as a key 

strategy (Van Wassenhove, 2006; Duran et al., 2011; Jahre et al., 2016b; Manopiniwes and Irohara, 

2017). However, prepositioning can be costly, so it is important to find more cost-effective ways 

of delivering aid without compromising on the speed of the response (Ransikarbum and Mason, 

2016). To this end, various alternatives to prepositioning have been suggested, including vendor-

managed inventory (Van Wassenhove and Pedraza-Martinez, 2012), framework agreements 

(Balcik and Ak, 2014), transfer mechanisms between programs (Bhattacharya et. al., 2014), and 

co-location of stocks between organizations (Acimovic and Goentzel, 2016).  

The current practice in prepositioning is on-shore stockpiling in warehouses close to disaster-prone 

areas (e.g. Duran et al., 2011; Jahre et al., 2016a). During the operations, airfreight is commonly 

used as a means of transportation to the affected populations. While transporting relief items by 

air is quick, it is also expensive. Therefore, there is a definite need for finding more cost-effective 

ways of delivering aid without compromising on the speed of the response (Sarkis et al., 2012) 

and prepositioning on-board ships and at seaport terminals has been suggested as a possibly less 

costly solution, either by itself or in combination with prepositioning on-shore. Moreover, access 

to seaports creates extra capacity after disasters, when airports may have insufficient capacity. This 

approach is commonly used in the military context, where it is called sea-basing (Clark, 2002). 

While on-shore prepositioning has received considerable research attention (Caunhye et al., 2012), 

off-shore studies in the HL context are scarce (Tatham et al. 2016). Similarly, the comprehensive 

literature on seaport terminal operations (Gorman et al., 2014; Gharehgozli et al., 2016, 2017) and 
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shipping operations (Lee and Song, 2017; Fransoo and Lee, 2013; Christiansen et al., 2013) do not 

seem to offer much in terms of how vessels and terminals can be utilized for humanitarian purposes.  

The present study aims to fill this gap. By testing various combinations of on- and off-shore 

prepositioning using commercial vessel capacity for transportation and warehousing, we address 

the following research question: To what extent, under what conditions, and in which combinations 

can off-shore prepositioning offer a good alternative to on-shore solutions? This question is 

answered by developing and testing an optimization model for location, prepositioning, and 

distribution (Caunhuye et al. 2012). The combined on- and offshore solution with moving 

warehouses and multiple transport alternatives can be seen as a more resilient prepositioning 

option than the classical options. Accordingly, we discuss the analytical approach and our results 

in relation to the resilience concept, providing avenues for further research. While HL studies 

concerned with resilience are increasingly popular (Day, 2014), our review did not identify such 

studies connected to prepositioning.  

Our study was initiated in a collaborative research project with International Federation Red Cross 

Red Crescent (IFRC) and Wilh. Wilhelmsen, a large Norwegian shipping company, between 2010 

and 2013. The genesis of the model is rooted in extensive consultations between practitioners from 

the humanitarian and commercial sector. The idea was to analyze cost and response time effects 

of using liner vessels as resources in disaster response. We formulate the prepositioning problem 

as an optimization model with the objective function of minimizing total cost, with the goal of 

finding the best combination of on- and off-shore prepositioning. The model was tested using real-

world data regarding demand and cost.  

The results show that using on-shore and off-shore prepositioning simultaneously can reduce the 

total cost, while responding to demand for disaster relief items within comparable lead times. The 
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key contribution of our study is the analytical approach for testing combinations of on- and off-

shore prepositioning solutions with use of real-world data. We tested a new prepositioning model 

and operationalized certain dimensions of resilience, showing that off-shore prepositioning can 

provide solutions that are resilient, fast, and cost-efficient. To our knowledge, this is the first study 

to formulate an off-shore prepositioning model that operationalizes resilience dimensions, thus 

contributing to organization theory. 

The remainder of this paper is organized as follows. Section 2 reviews the literature on off-shore 

prepositioning as well as on resilience in humanitarian operations. In Section 3, the problem and 

the assumptions are discussed and the model is formulated. Section 4 describes the case study and 

the data used to evaluate the model. Section 5 is dedicated to the numerical experiments. Section 

6 concludes the paper. 

2. Literature Review 

This section begins with a brief literature review of mathematical and analytical models for off-

shore prepositioning. It continues with a review of the literature on connections between resilience 

and prepositioning. The section concludes with the contributions of the paper in comparison with 

the literature. 

2.1 Off-shore prepositioning 

When it comes to analytical and mathematical modelling, there is a quite large body of literature 

about on-shore prepositioning in the context of disaster relief and humanitarian logistics (Ukkusuri 

and Yushimito, 2008; Caunhye et al., 2012; Duran et al., 2013; Manopiniwes and Irohara, 2017), 

but the research on off-shore prepositioning is still in its embryonic stages. The present study seeks 

to fill this gap.  
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The concept has been studied in the military context. An important aspect of militaries’ logistical 

strategies since the 1960s has off-shore based prepositioning, known in military parlance as sea-

basing (Lee, 1999; Clark, 2002; Beach, 2010). The issue of humanitarian assistance has also found 

mention (e.g. Beach, 2010; Apte et al., 2012). According to Martinez (2008), the US army 

regularly engages in relief operations in response to natural or man-made disasters. Some notable 

recent examples include Operation Unified Assistance in response to 2004 Indian Ocean tsunami 

and Operation Lifeline in response to the 2005 Kashmir earthquake.    

When it comes to the humanitarian logistics literature, Akkihal’s (2006) discussion of the facility 

location problem explicitly acknowledged that sea-basing is not uncommon in the realm of military 

logistics preparedness. However, that study considered only terrestrial positions while solving the 

facility location problem, asserting that sea-based prepositioning would be unaffordable for 

humanitarian organizations. Tatham and Kovacs (2007) worked on a concept that envisaged a 

‘floating warehouse’ located close to a primary risk area.  An appropriately sized ship is held at 

very short notice to transit to the relevant country with a cargo containing sufficient supplies of 

relief items to meet the immediate needs of a significant number of beneficiaries. Tatham and 

Kovacs concluded that if the sea-basing concept had been implemented during the relief operations 

for the 2005 Pakistan earthquake, this would have resulted in a significant cost savings for the 

humanitarian aid community, at the same time as maintaining or even improving upon the quality 

of logistical services delivered. Bemley et al. (2013) proposed a stochastic facility location model 

for prepositioning of goods and staff to recover aids to navigation (ATONs) on waterways after a 

disaster. The model maximizes the number of ATONs repaired through bi-level optimization. The 

first- and second-level models make the location and distribution decisions, respectively. They run 

the model for a number of demand scenarios and do a sensitivity analysis on the cost. Finally, 
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Ozkapici et al. (2016) proposed a mixed integer programming model for a similar problem. The 

proposed mathematical model utilizes the seaports of Istanbul for maritime transportation and 

allows for the transportation of relief items between Istanbul’s European and Anatolian sides. 

Their model used one land-based warehouse and two ships as floating warehouses for 

prepositioning of relief items. The model minimizes the total transportation time of relief items, 

while also satisfying demand and complying with limitations on transshipment capacity, number 

of daily trips, and supply capacity of sources. 

2.2 Resilience and prepositioning 

Resilience has become a highly important concept in operations management (Ponomarov and 

Holcomb, 2009, Bhamra et al. 2011, Datta and Datta, 2017). The term is often linked with agility 

(e.g. Scholten et al. 2014, Dubey et al. 2014, Dubey and Gunasekaran, 2016) and concerned with 

the development of supply chain strategies to become more resilient (e.g. Gunasekaran et al. 2015).  

Resilience has received increasing attention in HL research, from the supply network perspective 

– that is, those preparing for and responding to disasters (e.g. Day, 2014) – and also from the 

perspective of the local community (e.g. Matopoulos et al., 2014), the infrastructures and supply 

chains that are disrupted by the disaster (e.g. Zobel and Khansa. 2014), as well as how they impact 

each other (Papadopoulos et al. 2017). The term resilience has been mentioned in recent 

prepositioning papers such as Manopiniwes and Irohara, (2017), Tofighi et al. (2016) and 

Ransikarbum and Mason (2016), but not modeled. However, Duhamel et al. (2016) conclude that 

while resilience as a whole may be hard to express mathematically, optimization plays a key role 

through its potential impact on robustness, resourcefulness, and rapidity. They suggested that 

redundancy, which normally contributes to resilience, often contrasts the efficiency criterion in 

optimization models. Similarly, Ivanov et al. (2014) suggested there are trade-offs between 

efficiency, flexibility, and resilience. Day (2014) developed propositions on disaster relief network 
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characteristics that can enhance resilience; three of these are particularly interesting to us. The first 

is adaptive entity capacity, which means that entities can quickly alter their focus or increase 

throughput capacity. The second is redundancy and path length, because multiple ways and more 

direct ways of distribution enhance resilience. The third characteristic is supply base flexibility. 

Singh et al. (2018) have employed ISM and fuzzy MICMAC to specify critical factors for a 

humanitarian supply chain to be resilient. They have listed twelve factors on the basis of literature 

and suggested that three of them are critical, among which strategy and capacity planning is 

relevant to our work. 

Resilience research from the perspective of how companies should develop resilient networks to 

cope with disruptions has come further in terms of modeling; three papers are of particular interest 

to us in this regard. Firstly, Miller-Hooks et al. (2012) proposed a method for assessing and 

maximizing the resilience of an intermodal freight transport network, conceptualizing resilience 

both in terms of the network’s inherent coping capacity and the potential impact of immediate 

recovery action. Secondly, Sokolov et al. (2016) combined a static and a dynamic model to 

quantify supply chain ripple effects, modeling resilience (that is, the ability to continue execution 

despite disruptions) by node and arc connectivity. Thirdly, Liu et al. (2016) showed how supply 

chain resilience can be built through virtual stockpile pooling, where stockpiles are dynamically 

reallocated in accordance with demand. 

In conclusion, considering the opportunities offered by off-shore prepositioning, the number of 

studies focusing on this stream is surprisingly small compared with on-shore prepositioning, let 

alone simultaneous on-shore and off-shore prepositioning. Such studies are even more scarce when 

it comes to analytical/mathematical decision-making models. The present study will contribute to 

filling this gap in the literature, by developing and solving a mathematical model that incorporates 
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off-shore prepositioning and on-demand sea transport for disaster relief operations, in addition to 

other common existing methods such as on-demand air transport and on-shore prepositioning, 

while not sacrificing the speed of the response. Moreover, the model formulates off-shore 

prepositioning on-board moving commercial vessels, while the comparable existing models 

consider off-shore prepositioning only on fixed vessels or locations. Finally, from the perspective 

of organizational theory, as the literature lacks analytical models for resilient disaster relief 

networks (Day, 2014) our study aims to contribute to the literature by employing off-shore 

prepositioning besides other aforementioned methods in disaster relief operations. In addition, as 

Singh et al. (2018) suggest, planning for locations and levels of prepositioned relief items has a 

significant impact on resilience of disaster relief supply chains.  

 

3. The Mathematical model  

This section includes details of the problem description and formulates the problem as a linear 

programming model. Compared with the simulation models that evaluate only specific solutions, 

our proposed model can consider all options for prepositioning of relief items at the same time and 

find the optimal solution in a relatively short time. 

3.1 Problem description 

In response to improving their logistics preparedness to deal with emergencies, a number of IHOs 

have established prepositioning facilities in different parts of the world of varying capacities. For 

example, one of the largest IHOs has established prepositioning facilities, based on its own 

assessment of needs, in strategic locations across the world such as Dubai, Kuala Lumpur, and 

Panama. These prepositioning facilities are designated as regional logistics units (RLUs) and store 
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emergency relief items to meet the needs of 300,000 people for one month.2 These emergency 

supplies include both food items and non-food items and they are usually used to meet initial needs 

in the immediate aftermath of a disaster.  

In the event of a sudden onset disaster, the prepositioned items are typically airfreighted during 

the emergency phase of the disaster relief operations. This is followed by regular follow-up 

replenishments that are shipped via more traditional means of transportation, such as by sea freight, 

as needed (Gatignon et al., 2010). In this context, the cost of air-freighting has been shown to be 

significantly higher than the cost of sea freight (Tatham and Kovacs, 2007). Despite its higher cost, 

this method is still a vast improvement over the earlier more centralized system, in the days prior 

to the establishment of the RLUs, when the disaster relief items were transported in large quantities 

by air through trans-continental flights. Such a system was even more expensive and it took longer 

to deliver the relief items to the disaster-affected areas. 

However, even if the use of air freight is limited to the emergency phase, it means that a vast 

amount of funds is spent in transportation, which leaves less money for provision of actual aid and 

relief to the affected population. IHOs are constantly being pressured to find more cost-effective 

ways of delivering the relief items to the affected populations without compromising on the speed 

of the response (Majewski et al., 2010). In summary, a key question is whether there can be any 

alternative mechanism of delivering relief items that is not significantly slower than airfreight and 

is also cost-effective? For example, is it possible to use sea freight during the emergency phase, 

not just as a mode of transport but also for offshore prepositioning? This question will be discussed 

in greater detail in the next section.  

                                                           

2 http://www.ifrc.org/en/what-we-do/disaster-management/preparing-for-disaster/disaster-preparedness-

tools/logistics-preparedness/  

http://www.ifrc.org/en/what-we-do/disaster-management/preparing-for-disaster/disaster-preparedness-tools/logistics-preparedness/
http://www.ifrc.org/en/what-we-do/disaster-management/preparing-for-disaster/disaster-preparedness-tools/logistics-preparedness/
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3.2 Problem statement and assumptions 

In order to address the problem described in the previous section, we developed a linear 

programming model; some key characteristics and assumptions related to the model are described 

below. 

3.2.1. Prepositioning facilities 

As per the model presented in this paper, the relief items are considered for prepositioning in the 

following four types of facilities (see Figure 1):  

 The Regional Logistics Unit (RLU), which is, as explained earlier, normally used by 

IHOs for prepositioning emergency relief items for responding to disasters in a particular 

region of the world. It is assumed that once the relief items are shipped from the RLU, the 

facility is replenished within a certain lead time.   

 The regional port terminal is operated only by the shipping company and replenishes the 

items that are shipped from the port terminals as well as the inventory on-board the vessels. 

Like the RLU, the regional port terminal is also assumed to be replenished with items 

received directly from the suppliers of relief items within a given amount of lead-time.  

 Port terminals are used for prepositioning limited amount of relief items. They are 

replenished as required with items from the regional port terminal .  

 Vessels can also continuously carry a limited amount of relief items on-board. These 

vessels can deliver the prepositioned items to the ports in case a disaster occurs. The 

inventory on-board each vessel is replenished whenever the vessel visits the regional port 

terminal.  
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3.2.2. Distribution points 

In order to deliver the items to the disaster location, items must first be transferred to the nearest 

distribution point. Each disaster location may have a number of dedicated distribution points. It is 

assumed that the distribution points have no limits when it comes to receiving and storing the 

disaster relief items. This is reasonable since they have a high turnover during the disaster relief 

operations.  

3.2.3. Distribution methods 

Overall, there are four different distribution methods (referred to as channels hereafter) via which 

disaster relief items can be delivered to the disaster locations. They are as follows (see Figure 1): 

i. Channel 1 (by air from the RLU): Items are stored at the RLU, sent on demand by 

air to the closest airport to the disaster location, and delivered to a distribution point 

that corresponds to the disaster location by land. 

ii. Channel 2 (by sea from the RLU): Items are stored at the RLU, sent on demand by 

sea to a port close to the disaster location, and delivered to a distribution point 

corresponding to the disaster location by land. 

iii. Channel 3 (storage on-shore): Items are prepositioned at port terminals and are sent 

on demand by land to a distribution point corresponding to the disaster locations. 

Inventory at port terminals will be replenished by sea from the regional port terminal. 

iv. Channel 4 (storage off-shore): Items are prepositioned on-board vessels, delivered to 

port terminals close to the disaster location and sent further by land to a distribution 

point corresponding to the disaster location. Inventory on-board vessels will be 

replenished whenever the vessels visit the port where the regional port terminal of the 

shipping company is located.   
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Figure 1. An illustration of the distribution network of disaster relief items 

3.2.4. The goals of the model 

In the mathematical model, the goal is to satisfy demand for relief items during the emergency 

period by means of on-shore and off-shore prepositioning without compromising on the speed of 

the response. This is ensured through the constraints of the model. The objective function of the 

model is to minimize the total logistical cost, including inventory-holding costs and 

loading/unloading costs (which are part of replenishment costs) on-board the vessels, at the port 

terminals, and at the RLU, in addition to transport costs. Key inputs needed for the model are 

transportation costs and times for different modes of transport between the nodes of the network, 

including the RLU, regional terminal, port terminals, and distribution points. Transportation times 

can be calculated given the distance between nodes, average speed, and loading/unloading times. 

Inventory-holding rates must be given; these can be calculated based on the value of disaster relief 

items and interest rates. Another important piece of information is the schedule and sequence of 

the ports on liner shipping routes. Specifically, the replenishment lead-time of the inventory on-

board the vessels and at the port terminals can be calculated based on the average speed of the 

vessels, stop times at the ports, and their distance to the regional terminals. As for each disaster, 

the location of the vessels must be known when the disaster occurs. Last but not least, the estimated 



13 

 

demand for the disaster relief items needed during the emergency phase of the disaster relief 

operations is known and uniformly distributed throughout the period. 

It is assumed that the disaster relief items delivered by the vessels on the liner shipping routes to 

the ports will be dispatched to the corresponding distribution points immediately and will not be 

stored at the terminals. There is no limit for such deliveries at the ports. Replenishment costs at 

the RLU, regional terminal, and distribution points are not considered in the model since they are 

not dependent on the decisions made by the model and have to be paid regardless of what source 

is chosen to send disaster relief items to disaster locations. Disaster relief items are either directly 

or indirectly provided from the RLU and regional port terminal. Moreover, the port terminals and 

the RLU will issue a replenishment order as soon as they have dispatched items to the distribution 

points. Finally, transport, replenishment and inventory holding costs and cost of the relief items 

themselves are assumed to remain fixed during the planning period. All input data, including costs, 

demand, and transport times, are given and deterministic. 

3.3 Formulation of the model 

In this section, we formulate the problem as a linear programming model. In general, the model 

comprises three sets of decision variables: the maximum inventory to be held on-board vessels, at 

seaport terminals, and in RLUs (𝒙 variables); the inventory level on-board vessels, at seaport 

terminals, and in RLUs at the end of each period (𝑰 variables); and the quantity of each disaster 

relief item to be sent to the disaster locations (𝒚 variables). Appendix C provides more details with 

respect to the indices and sets, parameters, and decision variables. 

The objective is to minimize the total cost, including transport cost, inventory holding cost and 

replenishment (loading/unloading) cost. Constraints (2)–(5) are the demand and inventory 

constraints at disaster locations. While some models, as in Hu et al. (2016), safeguard the equity 
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of service among disaster points, by formulating equity as an objective function beside other 

objective functions as cost efficiency, the latter constraints in our model guarantee equity of service 

as well. These constraints also ensure a 100 percent service level. In other words, all of the 

requirements of a distribution point (disaster) at each period must be delivered without any delay. 

In addition, these constraints (Constraints (6)–(8), (9)–(11), (12)–(14), and (15)–(17)) represent the 

inventory constraints at the port terminals, on-board the vessels, at the RLUs, and at the regional 

port terminals, respectively. Constraints (18) ensure that delivery is possible only when a vessel 

visits a port. In these constraints 𝑀 is a very big number. Constrains (19), (20), (21), and (22)  

denote the capacity constraints on vessels, at the port terminals, regional port terminals, and RLUs, 

respectively. Constraints (23) are the constraints to ensure no item is dispatched towards a disaster 

location, before the disaster happens. Finally, constraints (24) are the sign constraints. 

Min  ∑ ∑ ∑ [∑ (𝑘𝑝𝑗
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𝐺𝐹)

𝐺𝐹
𝑔∈𝐺 + ∑ (𝑦

𝑟𝑑𝑗(𝑡−𝜏𝑟𝑑
𝑅𝐹)

𝑅𝐹 +𝑟∈𝑅

𝑦
𝑟𝑑𝑗(𝑡−𝜏𝑟𝑑

𝑅𝑆)
𝑅𝑆 ),   ∀𝑑 ∈ 𝐷, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0  

(2) 

 𝐼𝑑𝑗𝑡
𝐷 ≥ 0,   ∀𝑑 ∈ 𝐷, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0  (3) 

𝐼𝑑𝑗0
𝐷 = 0,   ∀𝑑 ∈ 𝐷, 𝑗 ∈ 𝑆  (4) 
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𝑦𝑔𝑑𝑗𝑡
𝐺𝐹  , 𝑦𝑔𝑝𝑑𝑗𝑡

𝐺𝑆  , 𝑦𝑔𝑑𝑗𝑡
𝑅𝐹  , 𝑦𝑔𝑝𝑑𝑗𝑡

𝑅𝑆  , 𝑦𝑝𝑑𝑗𝑡
𝑃   𝑦𝑖𝑝𝑗𝑡

𝑉  = 0,   ∀𝑗, 𝑖, 𝑝, 𝑔, 𝑟, 𝑑, 𝑡 ≤ 0  (5) 

 𝐼𝑝𝑗𝑡
𝑃 = 𝐼𝑝𝑗(𝑡−1)

𝑃 − ∑ 𝑦𝑝𝑑𝑗𝑡
𝑃

𝑑∈𝐷 + ∑ 𝑦𝑝𝑑𝑗(𝑡−𝜌𝑝)
𝑃

𝑑∈𝐷 ,   ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0   (6) 

 𝐼𝑝𝑗𝑡
𝑃 ≥ 0,   ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0 (7) 

𝐼𝑝𝑗0
𝑃 = 𝑥𝑝𝑗

𝑃 ,   ∀𝑝 ∈ 𝑃, 𝑗 ∈ 𝑆  (8) 

 𝐼𝑖𝑗𝑡
𝑉 = 𝐼𝑖𝑗(𝑡−1)

𝑉 − ∑ ∑ 𝑦𝑖𝑝𝑑𝑗𝑡
𝑉

𝑝∈𝑃𝑑∈𝐷 + 𝑎𝑖𝑔𝑡
𝐺 . (𝑥𝑖𝑗

𝑉 − 𝐼𝑖𝑗(𝑡−1)
𝑉 ), ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0  (9) 

 𝐼𝑖𝑗𝑡
𝑉 ≥ 0,   ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0 (10) 

𝐼𝑖𝑗0
𝑉 = 𝑥𝑖𝑗

𝑉 ,   ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑆  (11) 

 𝐼𝑟𝑗𝑡
𝑅 = 𝐼𝑟𝑗(𝑡−1)

𝑅 − ∑ (𝑦𝑟𝑑𝑗𝑡
𝑅𝐹 + 𝑦𝑟𝑑𝑗𝑡

𝑅𝑆 )𝑑∈𝐷 + ∑ (𝑦
𝑟𝑑𝑗(𝑡−𝜌𝑟

𝑅)
𝑅𝐹 + 𝑦

𝑟𝑑𝑗(𝑡−𝜌𝑟
𝑅)

𝑅𝑆 )𝑑∈𝐷 ,   ∀𝑟 ∈

𝑅, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0 

(12) 

 𝐼𝑟𝑗𝑡
𝑅 ≥ 0,   ∀𝑟 ∈ 𝑅, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0 (13) 

𝐼𝑟𝑗0
𝑅 = 𝑥𝑟𝑗

𝑅 ,   ∀𝑟 ∈ 𝑅, 𝑗 ∈ 𝑆   (14) 

 𝐼𝑔𝑗𝑡
𝐺 = 𝐼𝑔𝑗(𝑡−1)

𝐺 − ∑ (𝑦𝑔𝑑𝑗𝑡
𝐺𝐹 + ∑ 𝑦𝑔𝑝𝑑𝑗𝑡

𝐺𝑆
𝑝∈𝑃 )𝑑∈𝐷 + ∑ (𝑦

𝑔𝑑𝑗(𝑡−𝜌𝑔
𝐺)

𝐺𝐹 +𝑑∈𝐷

∑ 𝑦
𝑔𝑝𝑑𝑗(𝑡−𝜌𝑔

𝐺)
𝐺𝑆

𝑝∈𝑃 ) , ∀𝑔 ∈ 𝐺, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0   

(15) 

 𝐼𝑔𝑗𝑡
𝐺 ≥ 0,   ∀𝑔 ∈ 𝐺, 𝑗 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑡 > 0  (16) 

𝐼𝑔𝑗0
𝐺 = 𝑥𝑔𝑗

𝐺 ,   ∀𝑔 ∈ 𝐺, 𝑗 ∈ 𝑆  (17) 

∑ ∑ 𝑦𝑖𝑝𝑑𝑗𝑡
𝑉

𝑗∈𝑆𝑑∈𝐷 ≤ 𝑀. 𝑎𝑖𝑝𝑡
𝑃 ,   ∀𝑖 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇  (18) 

0 ≤ ∑ 𝑚𝑗 . 𝑥𝑖𝑗
𝑉

𝑗∈𝑆 ≤ 𝑏𝑖
𝑉 ,   ∀𝑖 ∈ 𝑉  (19) 

0 ≤ ∑ 𝑚𝑗 . 𝑥𝑝𝑗
𝑃

𝑗∈𝑆 ≤ 𝑏𝑝
𝑃,   ∀𝑝 ∈ 𝑃  (20) 

0 ≤ ∑ 𝑚𝑗 . 𝑥𝑔𝑗
𝐺

𝑗∈𝑆 ≤ 𝑏𝑔
𝐺 ,   ∀𝑔 ∈ 𝐺  (21) 

0 ≤ ∑ 𝑚𝑗 . 𝑥𝑟𝑗
𝑅

𝑗∈𝑆 ≤ 𝑏𝑟
𝑅 ,   𝑟 ∈ 𝑅  (22) 

𝑦𝑖𝑝𝑑𝑗𝑡
𝑉 = 𝑦𝑝𝑑𝑗𝑡

𝑃 = 𝑦𝑔𝑑𝑗𝑡
𝐺𝐹 =  𝑦𝑔𝑝𝑑𝑗𝑡

𝐺𝑆  =  𝑦𝑔𝑑𝑗𝑡
𝑅𝑆  = 0,    (23) 
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∀𝑖 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑆, 𝑔 ∈ 𝐺, 𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇, 𝑡 < 𝜃𝑑  

𝑦𝑖𝑝𝑑𝑗𝑡
𝑉 , 𝑦𝑝𝑑𝑗𝑡

𝑃 , 𝑦𝑔𝑑𝑗𝑡
𝐺𝐹  , 𝑦𝑔𝑝𝑑𝑗𝑡

𝐺𝑆  , 𝑦𝑔𝑑𝑗𝑡
𝑅𝐹  , 𝑦𝑔𝑑𝑗𝑡

𝑅𝑆  , 𝑥𝑖𝑗
𝑉 , 𝑥𝑝𝑗

𝑃 , 𝑥𝑟𝑗
𝑅 , 𝑥𝑔𝑗

𝐺 ≥ 0,  

 ∀𝑖 ∈ 𝑉, 𝑝 ∈ 𝑃, 𝑗 ∈ 𝑆, 𝑔 ∈ 𝐺, 𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑇 

(24) 

For the sake of readability and to avoid repeating one group of constraints several times for specific 

cases, the inventory constraints at the distribution points, port terminals, RLUs and vessels are 

written such that transport variables – that is, 𝑦𝑖𝑝𝑑𝑗𝑡
𝑉 , 𝑦𝑝𝑑𝑗𝑡

𝑃 , 𝑦𝑔𝑑𝑗𝑡
𝐺𝐹  , 𝑦𝑔𝑝𝑑𝑗𝑡

𝐺𝑆 , 𝑦𝑟𝑑𝑗𝑡
𝑅𝐹  and 𝑦𝑟𝑑𝑗𝑡

𝑅𝑆 , – might 

sometimes take a negative time index that is meaningless. Therefore, in the aforementioned 

constraints, let 𝑦𝑖𝑝𝑑𝑗𝑡
𝑉 , 𝑦𝑝𝑑𝑗𝑡

𝑃 , 𝑦𝑔𝑑𝑗𝑡
𝐺𝐹  , 𝑦𝑔𝑝𝑑𝑗𝑡

𝐺𝑆 , 𝑦𝑟𝑑𝑗𝑡
𝑅𝐹  and 𝑦𝑟𝑑𝑗𝑡

𝑅𝑆  be zero, wherever 𝑡 < 0. 

Although he number of variables and constraints grows at a fast rate when the number of 

prepositioning facilities increases, since the model is linear programming, solution time for real-

world cases will not be a major issue if a powerful solver like CPLEX is used. Another dimension 

of the model’s complexity is that it encompasses two decision-making problems: 

inventory/distribution management (operational) and prepositioning management (tactical). On 

the other hand, the time horizons for tactical and operational uses of the model are years and weeks, 

respectively. Accordingly, obtaining an optimal solution within minutes is not essential for these 

decisions. Thus, CPLEX is used to solve the problem as it can obtain an optimal solution for 

realistically sized instances in a few minutes. Moreover, if the model is used only for operational 

decision making – that is, if prepositioning levels are given – there will be far fewer variables and 

constraints. Therefore, solution time will be much shorter than what we will see in the results. 

4 Case study 

Historical data for 16 disasters that occurred in Southeast Asia between 2005 and 2010 were 

collected from secondary sources. These data include information about the type of disaster, its 
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date of occurrence, and the demand for relief items. Other data, such as cost of logistical activities, 

shipping routes, and transit times, were also collected. 

4.1. Demand data: disasters, locations and response 

An estimated 1 billion persons were affected by 4067 disasters occurring globally from 2005 to 

2010 (Jahre et al., 2011). Of these 4067 disasters, 605 had an international response, from which 

actual response data for a statistically significant sample of 63 disasters was collected (Jahre et al., 

2011; Wilberg and Olafsen, 2012). The model formulated in this paper uses the data related to 16 

of the aforementioned disasters in Asia that were of large scale and required international 

assistance. For each of these disasters, the following information was sourced from Emdat:3 

location, date of occurrence, and type. For ease of understanding, the geographical locations of 

these disasters have been depicted on a map in Figure 4-a in Appendix B. Further, relevant data 

concerning the actual response provided by the key stakeholders in each disaster was sourced from 

Jahre et al. (2011). The key data fields included relief items delivered and their respective cost and 

quantities in terms of the number of pallets. This data was used as ‘demand’ data. More data is 

collected from a global shipping firm in Norway. Table 6 in Appendix A presents more details 

with respect to each disaster.  

4.2. Supply data 

Real-world data about shipping routes in the South East Asian region, the number of vessels 

operating on these routes, transit times, and frequencies of sailing were obtained from the same 

shipping firm.  

                                                           

3 www.emdat.be  

http://www.emdat.be/
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Based on the locations of the disasters (Table 6 in Appendix A and Figure 4-a in Appendix B), the 

shipping company identified two commercial shipping routes: the Intra Asia NE–SE and the SE 

Asia Express (Figure 4-c and Figure 4-d in Appendix B). Only those vessels that serve the routes 

on a regular basis were included in the study. One vessel serves the Intra Asia NE–SE route, while 

four vessels serve the SE Asia Express route. Along with the shipping routes, the key ports in terms 

of their nearness to the disaster locations (Table 6) along these routes were also identified. 

The shipping company has access to a large number of port terminals throughout Asia where relief 

items could be prepositioned. Based on geographical locations of the 16 disasters, six port 

terminals were identified where relief items would be prepositioned: Tianjin (China), Shanghai 

(China), Laem Chabang (Thailand), Singapore (Singapore), Jakarta (Indonesia), and Chennai 

(India) (Figure 4-b in Appendix B). Of these, the Singapore port terminal also served as a 

transshipment terminal used for reloading the vessels. Table 1 summarizes the prepositioning 

facilities in this case study.  

Table 1. Prepositioning facilities 

No Type of facility Location Source of replenishment Operator 

1 Regional Logistics 

Unit 

Kuala Lumpur Directly from the suppliers of relief items Typically, IHOs (for 

example, IFRC) 

2 Regional port 

terminal 

Singapore Directly from the suppliers of relief items Shipping company 

3 Port terminals Tianjin, Shanghai, Laem 

Chabang, Singapore, Jakarta 

and Chennai  

Regional port terminal, Singapore Shipping company 

4 On-board vessels 1 vessel operating on the Intra 

Asia NE – SE route and 

4 vessels operating on the SE 

Asia Express route 

Regional port terminal, Singapore Shipping company 
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Commercial prices and, where relevant, the lead times of relevant logistical services were also 

obtained from the same shipping firm. Data concerning the costs and transit times for air freight 

were obtained from World Freight Rates.4  

5 Numerical experiments 

In this section, we perform extensive numerical experiments to evaluate the prepositioning 

methods and transportation channels. In order to observe the contribution of each of the 

aforementioned delivery channels on the total logistical cost, five settings are compared.  

 In setting 1, which represents today’s situation, the only available channel during 

emergency period is on-demand delivery from the RLU by air; that is, channel 1.  

 In setting 2, in addition to channel 1, on-demand dispatch of disaster relief items from the 

RLU by sea to ports and then by land to distribution points (that is, channel 2) is allowed 

as well.  

 In setting 3, channels 1 and 3 (that is, prepositioning at port terminals) are allowed.  

 In setting 4, in addition to channels 1 and 3, channel 4 (prepositioning on-board vessels) is 

also allowed.  

 Finally, in setting 5, which represents a somehow ideal situation, all of the channels are 

allowed.  

The model is programmed in the AIMMS® environment and solved using the CPLEX® 12.6.1 

solver. The solution time for setting 5, which is the largest setting in terms of the number of 

variables and constraints, is 8 minutes and 38 seconds on a computer with an Intel® CoreTM i5-

3320M processor and a Microsoft Windows® 7 Enterprise 64-bit operating system. That is 

                                                           

4 http://worldfreightrates.com/ 

http://worldfreightrates.com/
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acceptable considering the size of the problem (168,106 variables and 20,253 linear constraints) 

and the frequency of usage. Furthermore, this solution time was achieved without any initial 

solution. 

5.1 Performance of the prepositioning method in different settings 

 Table 2 shows the (maximum) number of pallets to be prepositioned at the RLU, the regional port 

terminal (Singapore), the port terminals, and on-board the vessels. Table 3 shows the logistical 

costs per pallet per week in the optimal solution for different settings. It is interesting that in the 

settings where storage on-board vessels is allowed (settings 4 and 5), there is an inventory on board 

in the optimal solution. Similarly, wherever storage in the terminals of the affiliate shipping 

company is allowed (settings 3, 4 and 5), there is a stock of disaster relief items at both the smaller 

port terminals and the regional port terminal (Singapore). This shows that prepositioning can 

contribute to cost reduction. In addition, the difference between prepositioned inventory at the 

Singapore terminal in settings 4 and 5 shows that if on-demand sea transport from the RLU is not 

possible (setting 4), quite a large amount of inventory must be prepositioned at the regional port 

terminal in order to feed the vessels and avoid high air transport costs. 

Table 2. Number of pallets to be prepositioned at prepositioning facilities 

Setting Prepositioned inventory (pallets) 

RLU Terminals  Singapore Vessels 

1 2694 0 0 0 

2 4041 0 0 0 

3 2419 2990 526 0 

4 2694 58 2694 330 

5 3882 832 275 552 
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A look at the costs shows that, as expected, whenever all of the channels are available (setting 5), 

the total cost will be the lowest. However, among the other settings, it is setting 2 that has a 

significantly lower cost (even close to setting 5). Therefore, in the given example, it is the on-

demand sea transport option that has the greatest effect on cost reduction, even greater than the 

effect of prepositioning. 

Table 3. Optimal logistical costs per pallet per week for different settings 

Planning period (weeks) 1760 Total demand (pallets) 89667 

Per pallet per week costs (US dollars) 
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1 0.812 0.091 0.000 0.721 0.721 0.000 0.000 

2 0.498 0.136 0.000 0.362 0.288 0.075 0.000 

3 0.708 0.171 0.010 0.527 0.500 0.000 0.027 

4 0.811 0.097 0.000 0.715 0.713 0.000 0.002 

5 0.483 0.160 0.004 0.318 0.238 0.064 0.016 

 

5.2 Sensitivity analysis 

In order to reach some general conclusions and to cope with the latent uncertainty in the parameters, 

we conducted a sensitivity analysis on some of the important parameters. The sensitivity analysis 

was conducted on setting 5 where all of the channels are available. 

5.2.1. Sensitivity analysis on the length of the emergency period 

When a disaster occurs, the demand for disaster relief items for the whole emergency period is 

estimated. This demand is then distributed evenly over the emergency period. Therefore, the length 

of the emergency period goes hand in hand with how quickly disaster relief items are required at 
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disaster locations. Specifically, we are interested in the effects of the length of the emergency 

period on the use of different channels. The results are presented in Table 4. 

Table 4. Sensitivity analysis of the length of the emergency period 

Emergency 

period 

(weeks) 

S
et

ti
n

g
 Total cost per 

week per pallet 

Prepositioned inventory (pallets) 

RLU Singapore Terminals Vessels Total 

6 5 0.74 6132 338 1227 0 7696 

7 5 0.73 6310 275 1025 275 7885 

8 5 0.67 5823 275 835 283 7216 

9 5 0.61 5176 275 834 282 6567 

10 5 0.56 4658 275 833 282 6048 

11 5 0.52 4235 275 832 281 5623 

12 5 0.48 3882 275 832 552 5540 

13 5 0.45 3583 275 831 587 5277 

14 5 0.43 3327 275 831 593 5027 

15 5 0.41 3105 275 831 585 4796 

16 5 0.39 2910 275 831 591 4608 

17 5 0.37 2738 275 832 590 4435 

18 5 0.36 2585 275 832 589 4282 

 

The total cost decreases as the length of the emergency period increases because longer periods 

provide greater opportunities to use less costly (but slower) channels. It is also interesting that the 

total prepositioned inventory, including that of the RLU, declines as the emergency period 

becomes longer. This could be due to lower need to keep inventory at storage points when the 

emergency period is longer and, consequently, the lower demand per period. This makes it possible 

to order what is needed instead of keeping it in stock. The only type of prepositioned inventory 

whose level increases as the emergency period is prolonged is the inventory on-board vessels; this 

is because this inventory can serve disasters in multiple locations. Therefore, it can aggregate the 
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demand at one place and, consequently, contributes to cost reduction. However, this channel is 

comparatively slow, since it may take some time to receive the pallet at the ports from which they 

are going to be forwarded to the disaster locations. Therefore, the emergency period must be long 

enough to justify the use of this channel. Furthermore, the level of prepositioned inventory at the 

terminals of the affiliate shipping company (both the Singapore regional port terminal and the port 

terminals) does not change much, partly due to the minimum requirements of prepositioning in the 

proximity of the disaster locations, specifically during the early weeks after disasters. Figure 2 

summarizes the results in one chart, where the total cost and storage levels are normalized; that is, 

divided by the maximum observed value. 

 

Figure 2. Sensitivity analysis of the length of the emergency period 

5.2.2. Sensitivity analysis on the storage costs 

In order to study the effects of storage costs on the preference of different channels, we conducted 

a sensitivity analysis on a parameter; namely, the storage cost ratio. This parameter shows the 

ratio of offshore (on-board the vessels) storage cost to on-shore (port terminals, regional port 

terminal, and the RLU) storage cost per pallet per time unit. Therefore, the greater the storage cost 
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ratio, the costlier offshore prepositioning will be compared to on-shore prepositioning. In the case 

presented in the paper, all of the on-shore storage costs (per pallet per time unit) are equal. Also, 

offshore storage cost is the same for all of the vessels. To calculate offshore storage cost based on 

storage cost ratio, we use the following formulas: 

ℎ𝑖𝑗
𝑉 = 𝑣 + 𝑤 = 𝜔. 𝑠 + 𝑤,       ∀𝑖, 𝑗  (25) 

ℎ𝑝𝑗
𝑃 = ℎ𝑔𝑗

𝐺 = ℎ𝑟𝑗
𝑅 = 𝑠 + 𝑤,       ∀𝑝, 𝑔, 𝑟, 𝑗   (26) 

where 𝜔, 𝑠, 𝑣 and 𝑤 denote storage cost ratio, on-shore storage cost, offshore storage cost, and 

inventory holding cost, respectively (all per pallet per time unit). 

The results are shown in Table 5. Figure 3 shows the optimal prepositioned inventory plotted 

versus storage cost ratio. 

Table 5. Sensitivity analysis of the storage costs 

Storage cost 

factor 

Total cost 

per week 

per pallet 

Prepositioned inventory (pallets) 

RLU Terminals Singapore Vessels 

0 0.467 3882 832 275 1400 

0.1 0.470 3882 832 275 1337 

0.2 0.472 3882 832 275 1337 

0.3 0.474 3882 832 275 1273 

0.4 0.476 3882 832 275 1207 

0.5 0.477 3882 832 275 1025 

0.6 0.479 3882 832 275 998 

0.7 0.480 3882 832 275 998 

0.8 0.481 3882 832 275 998 

0.9 0.482 3882 832 275 668 

1 0.483 3882 832 275 552 

1.1 0.483 3882 832 275 275 

1.2 0.484 3882 832 275 275 



25 

 

1.3 0.484 3882 832 275 275 

1.4 0.484 3882 832 275 275 

1.5 0.484 3882 832 275 275 

1,6 0,484 3882 832 275 275 

1,7 0,485 3870 844 275 0 

1,8 0,485 3870 844 275 0 

1,9 0,485 3870 844 275 0 

2 0,485 3870 844 275 0 

 

  

Figure 3. Sensitivity analysis of the prepositioned inventories versus storage cost ratio 

It is interesting that the storage level at all of the nodes of the network remains almost unchanged 

as the storage cost ratio (hence storage cost on-board) increases. Only the offshore prepositioned 

inventory is affected by storage cost on-board. If storage cost on-board increases, the prepositioned 

inventory on-board decreases, but it is not stored elsewhere in the network. In fact, when storage 

cost on-board increases, prepositioned inventory on-board is replaced with on-demand dispatch 

from on-shore facilities. Note that the level of inventory in on-shore facilities does not increase, 
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since the relief items are replenished if necessary. Therefore, within the given example, 

prepositioning offshore and on-shore are complementary rather than competing methods. 

Finally, the sensitivity analysis shows that if the storage cost on-board is more than 1.7 times the 

storage cost on-shore, prepositioning of inventory on the vessels is no longer reasonable, regardless 

of how much flexibility it adds to the network. 

6 Discussion, conclusions, and further research 

Relief items are essentially one of the core elements in humanitarian relief operations and, 

depending on where they are prepositioned, can determine the cost and speed of the operations. 

This paper presents a linear programming model for simultaneous on-shore and off-shore 

prepositioning of relief items for efficient disaster relief operations. The model can determine the 

optimal level of prepositioned inventory of disaster relief items at given on-shore storage facilities 

as well as on-board vessels, which travel through given commercial liner shipping routes. The 

model can be also used to plan period-to-period flows of disaster relief items between supply, 

storage, and demand points, which are operational decisions. The objective function of the model 

is to minimize costs, including the inventory holding cost, transportation cost, and the part of 

replenishment costs, without compromising on the speed of the response. The model provides 

disaster relief networks with a solution, which, in addition to being effective and effiecient, is 

resilient. Referring to the three characteristics mentioned earlier in the literature review section, 

which enhance resilience in disaster relief networks (Day, 2014), the resilience goal is achieved 

by satisfying demand for relief items by using parallel sources, links and modes of transport that 

contribute to redundancy, flexibility and adaptability. 

Using a real-world case, the results obtained from the model show that prepositioning of disaster 

relief items at land (port) terminals, in combination with prepositioning on-board vessels, does 
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contribute to the reduction of logistical costs while providing disaster locations with the required 

relief items during emergency period. Furthermore, the sensitivity analysis signifies that if the 

emergency period becomes longer but total demand remains the same (that is, if emergency 

demand is distributed over a longer period of time), prepositioning on-board vessels can partly 

replace other channels of delivering disaster relief items such as prepositioning at terminals and 

on demand air transport. Moreover, sensitivity analysis indicates that as inventory holding cost on-

board vessels increases, it mainly affects only the prepositioned inventory on-board vessels (to be 

reduced). Inventory prepositioned in other places will not increase to compensate that; other 

delivery channels will replace it. 

The model is formulated from a very general perspective. That is, it can be used to plan disaster 

relief networks with multiple relief items, multiple RLUs, multiple regional port terminals, and 

multiple port terminals, while storage points can be linked to multiple ports, distribution points, 

and disaster locations. However, the topology of the distribution network in the given case is quite 

specific. For further research, it would be interesting to test the model on cases with a higher 

number of disasters and more complex network topologies. The aspect of environmental impact 

of the disaster relief operations when using on-board prepositioning could also be an interesting 

area of research. Furthermore, in the problem studied in this paper, all parameters are given and 

deterministic. The same sensitivity analysis approach can be used to deal with uncertainty in 

parameters by creating several scenarios or changing values of the parameters. Nonetheless, it 

would be interesting to develop a model for a stochastic scenario in which some of the parameters, 

such as the travel times, costs, or demands, are not deterministic. Last but not least, to enhance the 

advantage of the concept of simultaneous on-shore and off-shore prepositioning, there is a need to 
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study the implications for ‘softer issues’ such as information diffusion, culture, responsibility, and 

collaboration.  
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Appendix A. Case study data  

Table 6. Key data related to disasters (source: www.emdat.be; Jahre et al., 2011; Wilberg and 

Olafsen, 2012) 

Disaster code Country Disaster Type Date of occurrence Demand for relief items (Pallets) 

2007-0311 Bangladesh Flood/Hurricane 21.07.2007 8613 

2009-0414 Cambodia Flood/Hurricane 29.09.2009 12569 

2007-0274 Cambodia Flood/Hurricane 01.07.2007 155 

2005-0475 China Flood/Hurricane 13.08.2005 3926 

2007-0320 India Flood/Hurricane 07.03.2007 32327 

2009-0421 Indonesia Flood/Hurricane 30.09.2009 10763 

2008-0452 Laos Flood/Hurricane 18.08.2008 3014 

2007-0021 Malaysia Flood/Hurricane 01.11.2007 699 

2009-0632 Mongolia Flood/Hurricane 01.12.2009 1869 

2006-0241 Myanmar Flood/Hurricane 03.08.2006 40 

2009-0434 Nepal Flood/Hurricane 10.04.2009 8615 

2007-0557 Papua N.G Flood/Hurricane 11.12.2007 1092 

2010-0120 Solomon Is Flood/Hurricane 15.03.2010 6 

2006-0648 Vietnam Flood/Hurricane 30.11.2006 113 

2009-0611 Vietnam Flood/Hurricane 25.09.2009 5241 

2008-0329 Vietnam Flood/Hurricane 08.08.2008 625 

 

http://www.emdat.be/
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Appendix B. Geographical locations of the disasters and the trade routes in the case study 

 

  

(a) Geographical location of the disasters (b) Geographical locations of the 6 port terminals 

 

 

(c) Intra Asia NE – SE trade route (d) SE – Asia trade route 

Figure 4. Geographical representation of the case study (Wilberg and Olafsen, 2012) 
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Appendix C. indices, parameters and decisions variables of the model 

Sets of indices 

𝑅: Set of RLUs 

𝐺: Set of regional port terminals 

𝑃: Set of port terminals 

𝑉: Set of vessels on liner shipping routes 

𝐷: Set of disasters; if multiple disasters occur in (almost) the same location, each one must be given a 

different index in the set. 

𝑇: Set of time periods 

𝑆: Set of disaster relief items 

 

Parameters 

𝑐𝑝𝑑𝑗
𝑃  : Cost of transporting 1 unit of disaster relief item 𝑗 from port terminal 𝑝 to disaster location 

(corresponding distribution point) 𝑑 on road 

𝑐𝑟𝑑𝑗
𝑅𝐹  : Cost of transporting 1 unit of disaster relief item 𝑗 from RLU 𝑟 to disaster location (or the 

corresponding distribution point) 𝑑 by air (the faster and more expensive mode of transport). This 

includes eventual road transport costs between the RLU and airport, as well as between the airport and 

distribution point. 

𝑐𝑟𝑑𝑗
𝑅𝑆  : Cost of (on-demand) transportation of 1 unit of disaster relief item 𝑗 from RLU 𝑟 to disaster 

location (or the corresponding distribution point) 𝑑 by sea and road (the slower and cheaper mode of 

transport) 

𝑐𝑔𝑝𝑗
𝐺𝑆  : Cost of on-demand shipping directly (not to be mistaken for the stock held on-board vessels on 

liner shipping routes) 1 unit of disaster relief item 𝑗 from regional port terminal 𝑔 to port 𝑝  

𝑐𝑔𝑑𝑗
𝐺𝐹  : Cost of transporting 1 unit of disaster relief item 𝑗 from regional port terminal 𝑔 to disaster 

location (corresponding distribution point) 𝑑 by air; note that cost of land transport from the destination 

airport to the corresponding distribution point is also included in the above “air transport cost”. 

𝜏𝑝𝑑
𝑃  : Transport time of disaster relief items from port terminal 𝑝 to disaster location (corresponding 

distribution point) 𝑑 on road. All transport times are given in terms of the number of periods. 

𝜏𝑟𝑑
𝑅𝐹 : Transport time of disaster relief items from RLU 𝑟 to disaster location (corresponding 

distribution point) 𝑑 by air (the faster and more expensive mode of transport) 

𝜏𝑟𝑑
𝑅𝑆 : Transport time of disaster relief items from RLU 𝑟 to disaster location (corresponding distribution 

point) 𝑑 by sea and road (the slower and cheaper mode of transport) 

𝜏𝑔𝑝
𝐺𝑆 : Direct shipping time of disaster relief items from regional port terminal 𝑔 to port terminal 𝑝  

𝜏𝑔𝑝
𝐺𝐹: Transport time of disaster relief items from regional port terminal 𝑔 to disaster location 

(corresponding distribution point) 𝑑 by air 

𝑏𝑖
𝑉 : Maximum capacity (volume) of vessel 𝑖 that can be assigned to store disaster relief items on board 

𝑏𝑝
𝑃 : Maximum capacity (volume) of port terminal 𝑝 that can be assigned to store disaster relief items 

𝑏𝑟
𝑅 : Maximum capacity (volume) of RLU 𝑟 that can be assigned to store disaster relief items 

𝑏𝑔
𝐺 : Maximum capacity (volume) of regional port terminal 𝑔 that can be assigned to store disaster 

relief items 
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ℎ𝑖𝑗
𝑉  : Cost of holding one unit of disaster relief item 𝑗 on board vessel 𝑖 for one time period 

ℎ𝑝𝑗
𝑃  : Cost of holding one unit of disaster relief item 𝑗 at port terminal 𝑝 for one time period 

ℎ𝑔𝑗
𝐺  : Cost of holding one unit of disaster relief item 𝑗 at regional port terminal 𝑔 for one time period 

ℎ𝑟𝑗
𝑅  : Cost of holding one unit of disaster relief item 𝑗 at RLU 𝑟 for one time period 

𝑘𝑖𝑗
𝑉  : Cost of replenishing one unit of disaster relief item 𝑗 on vessel 𝑖  

𝑘𝑝𝑗
𝑃  : Cost of replenishing one unit of disaster relief item 𝑗 at port terminal 𝑝  

𝑘𝑔𝑗
𝐺  : Cost of replenishing one unit of disaster relief item 𝑗 at regional port terminal 𝑔  

𝑘𝑟𝑗
𝑅  : Cost of replenishing one unit of disaster relief item 𝑗 at RLU 𝑟  

𝑞𝑑𝑗𝑡: Quantity of disaster relief item 𝑗 needed at disaster location 𝑑 at period 𝑡  

Including index 𝑑 in the above parameter as well as some other parameters and variables, ensures that 

no emergency action (such as dispatching of disaster relief items to disaster locations) will be taken 

before the corresponding disaster happens. However, that is only possible if no two disasters overlap. 

Another parameter, 𝜃𝑑, will be introduced to denote when a disaster happens. Then, constraints are 

added to the model to ensure nothing is done for a disaster before it happens. 

𝑎𝑖𝑝𝑡
𝑃 : It is 1 if vessel 𝑖 visits port terminal 𝑝 at period 𝑡, and 0 otherwise. 

𝑎𝑖𝑔𝑡
𝐺 : It is 1 if vessel 𝑖 visits regional terminal (port) 𝑔 at period 𝑡, and 0 otherwise. 

𝜌𝑝
𝑃: Replenishment lead time for port terminal 𝑝 

𝜌𝑔
𝐺: Replenishment lead time for regional port terminal 𝑔 

𝜌𝑟
𝑅: Replenishment lead time for RLU 𝑟 

𝜃𝑑: Time period when disaster 𝑑 occurs 

𝑚𝑗: Volume of one unit of disaster relief item 𝑗 

 

Decision variables 

𝑥𝑖𝑗
𝑉 : [Maximum] inventory of disaster relief item 𝑗 to be held on board vessel 𝑖 

𝑥𝑝𝑗
𝑃 : [Maximum] inventory of disaster relief item 𝑗 to be held at port terminal 𝑝 

𝑥𝑔𝑗
𝐺 : [Maximum] inventory of disaster relief item 𝑗 to be held at regional port terminal 𝑔 

𝑥𝑟𝑗
𝑅 : [Maximum] inventory of disaster relief item 𝑗 to be held at RLU 𝑟 

𝐼𝑖𝑗𝑡
𝑉 : Inventory level of disaster relief item 𝑗 on board vessel 𝑖 at the end of period 𝑡 

𝐼𝑝𝑗𝑡
𝑃 : Inventory level of disaster relief item 𝑗 at port terminal 𝑝 at the end of period 𝑡 

𝐼𝑔𝑗𝑡
𝐺 : Inventory level of disaster relief item 𝑗 at regional port terminal 𝑔 at the end of period 𝑡 

𝐼𝑟𝑗𝑡
𝑅 : Inventory level of disaster relief item 𝑗 at RLU 𝑟 at the end of period 𝑡 

𝐼𝑑𝑗𝑡
𝐷 : Total inventory level of disaster relief item 𝑗 at the distribution points of disaster location 𝑑 at the 

end of period 𝑡 

𝑦𝑖𝑝𝑑𝑗𝑡
𝑉 : Quantity of disaster relief item 𝑗 delivered from vessel 𝑖 to port terminal 𝑝 at period 𝑡 to be 

immediately dispatched towards the disaster location 𝑑 

Replenishment costs of the vessels can include the cost of unloading items from vessels, loading on 

trucks and other necessary operations done at ports. 
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𝑦𝑝𝑑𝑗𝑡
𝑃 : Quantity of disaster relief item 𝑗 dispatched from the inventory held at port terminal 𝑝 to disaster 

location 𝑑 at period 𝑡  

𝑦𝑟𝑑𝑗𝑡
𝑅𝐹 : Quantity of disaster relief item 𝑗 dispatched from RLU 𝑟 by air (the faster and more expensive 

mode of transport) to disaster location 𝑑 at period 𝑡  

𝑦𝑟𝑑𝑗𝑡
𝑅𝑆 : Quantity of disaster relief item 𝑗 dispatched from RLU 𝑟 by sea and land (the slower and cheaper 

mode of transport) to disaster location 𝑑 at period 𝑡  

𝑦𝑔𝑝𝑑𝑗𝑡
𝐺𝑆 : Quantity of disaster relief item 𝑗 sent by sea from regional port terminal 𝑔 to port 𝑝 at period 𝑡 

to be immediately transferred from the port towards the disaster location 𝑑 

𝑦𝑔𝑑𝑗𝑡
𝐺𝐹 : Quantity of disaster relief item 𝑗 sent by air from regional port terminal 𝑔 to disaster location 𝑑 

at period 𝑡 

 


