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Abstract

The notion of time-varying risk premia has great implications from
an economic standpoint. We study the predictability of bond risk
premia in the US, Australia, Canada, Switzerland, Germany, UK,
and Japan, and whether predictive models can generate real-time
excess returns. We �nd that Cochrane and Piazzesi's (2005) single
factor is a signi�cant driver of bond risk premia variations, although
its signi�cance has weakened lately. In contrast, Dahlquist and
Hasseltoft's (2013) global single factor has increased in signi�cance,
on average explaining 20% of bond risk premia variations. The
global single factor appears to produce real-time excess returns
when adopting a simple trading setup with direction accuracy as
the objective function.

This thesis is a part of the MSc programme at BI Norwegian
Business School. The school takes no responsibility for the

methods used, results found, or conclusions drawn.
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1 Introduction and Motivation

The notion of time-varying risk premia1 has great implications from an

economic standpoint. For instance, actively managed funds (e.g., sovereign

wealth funds, pension funds, and insurance �rms, etc.) investing in bonds

across the maturity spectrum would bene�t from being able to shift its portfolio

composition to the long end when long-term bond risk premia are expected

to be positive, and vice versa. Similarly, actively managed stock funds would

preferably over-/underweight the stock index depending on expected future

stock risk premia.

The focus of this thesis is whether time-varying government bond risk premia

are predictable and, if so, whether it can be exploited.2 To explore this, we

draw on insights from literature that �nd convincing evidence of time-varying

bond risk premia predictability (e.g., Campbell & Shiller, 1991; Cochrane &

Piazzesi, 2005; Dahlquist & Hasseltoft, 2013; Fama & Bliss, 1987). Cochrane

and Piazzesi (2005) �nd that a single return-forecasting factor explains time-

variation in annual excess returns of all bonds in the US with an R2 up to 44%.

Induced by the integration of world �nancial markets, Dahlquist and Hasseltoft

(2013) form a global single factor and �nd evidence for predictability in annual

excess bond returns in several countries.3 Motivated by these, we de�ne

research question one as follows: Are the results for the single factor and

the global single factor still valid? Particularly, do these factors signi�cantly

explain bond risk premia variations during 1992�2017? Additionally, we assess

1We use risk premia and excess returns, interchangeably, referring to returns in excess of
the risk-free rate.

2Governments bonds in developed nations generally assume negligible default risk (because
of stable currencies, ability to print money, etc). However, changing interest rates make
investing in government bonds risky, and this risk source may be time-varying (unless
adopting a buy-and-hold-to-maturity strategy).

3These countries are USA, Australia, Canada, Switzerland, Germany, UK, Japan, New
Zealand, Norway, and Sweden.

1

09589260925644GRA 19502



whether the single factor and global single factor have forecasting power for

one- to �ve-year stock risk premia, motivated by Fama and French (1989).4

To see if the potential predictability can be exploited by investors we try to

answer research question two, de�ned as follows: Do the single factor or the

global single factor have predictive power in real-time? Our results indicate

that bond risk premia are predictable and that generating real-time excess

returns seems possible. Most interesting, the global single factor has become

more relevant in explaining excess bond return variations, whereas the single

factor's relevance has weakened.

We ask these questions in an international context. Speci�cally, we assess the

predictability of time-varying bond risk premia in the US, Australia, Canada,

Switzerland, Germany, UK, and Japan.5,6 Undeniably, the literature o�er most

insights from U.S. markets, the reason being that the US has the most liquid

capital markets in the world and most data available.7 Therefore, throughout

the thesis we present �ndings, tables and �gures for the US, and include results

for DEU in Section 4.3, regarding the global single factor, to show how the

factor works in an additional country. The tables in the main text are excerpts

from the full tables, which, together with �gures for all countries, are in the

Appendices.

The thesis continues as follows: In Section 2, we present the data we use. In

Section 3 we outline basics of �xed income securities, including how government

bond yield data is constructed, before brie�y reviewing literature on the term

structure of interest rates. In Section 4, we review the �ndings of our main

4They �nd that the term spread of interest rates tracks a component of expected excess
returns that is similar for all risky assets.

5These countries are chosen because they are developed nations and span widely the global
economic market.

6Later in the thesis, country names are abbreviated: Australia (AUS), Canada (CAN),
Germany (DEU), Switzerland (CHE), UK (GBR), and Japan (JPN).

7Data from SIFMA (2018) show that outstanding one- to ten-year maturity government
bonds in the US amount to roughly $9,000 billion, nearly 25% of the total gross domestic
product of the countries we examine. Each day, on average $400 billion are traded, nearly
1% of the total gross domestic product.

2
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sources (Cochrane & Piazzesi, 2005; Dahlquist & Hasseltoft, 2013; Fama &

Bliss, 1987) and answer research question one by replicating their methods

and applying these to extended data samples. We assess research question two

in Section 5 and conclude in Section 6.

3
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2 Data

In this section we outline the data we use. We aim to give a detailed

representation of sources and other prominent features to accurately conceive

the data reliability, as well as its �t for our empirical investigation.

2.1 Gross Domestic Product and Recession Dates

We collect quarterly gross domestic product (GDP) data for the US,

Switzerland, Germany, and UK from OECD (2018). Figure 2.1 shows each

country's GDP-weight from 1980 to 2017. The data is in US dollars and

purchasing power parity-adjusted. We collect recession data for the US from

National Bureau of Economic Research (NBER, 2010) and for the other

countries from Economic Cycle Research Institute (ECRI, 2018).

Figure 2.1: Monthly GDP-weights.
Time-series of monthly purchasing power parity-adjusted GDP weights of USA, CHE, DEU, and UK.
Sample period: 1980-2018. These are the weights in the GCP factor (Dahlquist & Hasseltoft, 2013).

2.2 Government Bond Yields

We use end-of-month zero-coupon government bond yields with one- to �ve-

years to maturity.8 We obtain this data from various sources. Yield data

ending in May 2009 is from Wright (2011). Yield data up to and including

8If the last day of a given month is on weekends or calendar holidays (when bond markets
are closed), yields are from the last opening day.

4
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2017 is from the countries' central banks. For the US, we use two data sets:

the Fama-Bliss Discount Bond Rates from CRSP (2018a) and Treasury yields

estimated by Gürkaynak, Sack, and Wright (2007). The yields are estimated

with various methods.9 Table 2.1 depicts the countries we examine in this

thesis, including the estimation method of each data set as well as start and

end dates.

Country Identi�er Source Start End #Obs. Est. method.

USA USA CRSP (2018a) 1964.01 2017.12 648 Fama-Bliss
USA USA2 Gürkaynak et al. (2007)* 1964.01 2017.12 648 Svensson

Australia AUS RBA (2018) 1992.07 2017.12 306 Spline (MLES)
Australia AUS2 Wright (2011) 1987.02 2009.05 268 Nelson-Siegel
Canada CAN BOC (2018)* 1986.01 2017.12 384 Spline (MLES)

Switzerland CHE SNB (2018) 1988.01 2017.12 360 Ext.Nelson-Siegel
Switzerland CHE2 Wright (2011) 1988.01 2009.05 257 Svensson
Germany DEU Bundesbank (2018)* 1973.01 2017.12 540 Svensson

UK GBR BOE (2018)* 1972.12 2017.12 541 Spline (VRP)
Japan JPN MOF (2018) 1980.08 2017.12 449 Spline (Cubic)
Japan JPN2 Wright (2011) 1985.01 2009.05 293 Svensson

Table 2.1: Bond Data Details.
Details and sources of end-of-month bond yields. CRSP: Center for Research in Security Prices, FED:
Federal Reserve, RBA: Reserve Bank of Australia, BOC: Bank of Canada, SNB: Swiss National Bank,
MOF: Ministry of Finance. *: Updated version of Wright (2011).

2.3 Stock Returns

We gather end-of month value-weighted stock returns for the US from CRSP

(2018b), and for the other countries from French's Data Library.10 U.S. stock

returns are value-weighted returns for �rms listed on AMEX, NYSE, and

NASDAQ. French's data is from Morgan Stanley Capital International for

1975�2006 and from Bloomberg for 2007�2017. Table 2.2 depicts details and

sources of the stock data we use.11

9See Section 3.3 for an outline of estimation methods in general.
10Returns are in local currency unit, that is, no foreign exchange a�ects the portfolio return.
11See Appendix A on how we compute returns and dividend-price ratios.

5
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Country Identi�er Source Start End #Obs. Currency

USA USA CRSP (2018b) 1963.01 2017.12 660 USD

Australia AUS French (2018) 1975.01 2017.12 516 AUD

Canada CAN French (2018) 1977.01 2017.12 492 CAD

Switzerland CHE French (2018) 1975.01 2017.12 516 CHF

Germany DEU French (2018) 1975.01 2017.12 516 EUR

UK GBR French (2018) 1975.01 2017.12 516 GBP

Japan JPN French (2018) 1975.01 2017.12 516 JPY

Table 2.2: Stock Data Details. Details and sources of end-of-month value-weighted local stock returns.

2.4 Descriptive Statistics and Diagnostics

For our sample, average realized excess bond returns are signi�cantly positive

and time-varying, with standard deviation of around double the unconditional

average. Bond yields are signi�cantly positively correlated across maturities

and across countries, as are the realized excess bond returns. This is also the

case for excess stock returns.12

Furthermore, bond yields are non-stationary series that seem to inherit

geometrically decreasing autocorrelations: One-month, one-year, and �ve-year

autocorrelations lies in the intervals of around [0.96�0.99], [0.59�0.86], and

[-0.13�0.33], respectively. As for annual excess bond returns, the respective

autocorrelations lie in the intervals of around [0.90�0.95], [-0.28�0.20], and [-

0.06�0.10], thus showing tendency of stationarity. However, from stationarity

tests of Kwiatkowski, Phillips, Schmidt, and Shin (1992) and Dickey and Fuller

(1979) the results are twofold: Some countries' realized annual excess bond

returns are stationary, while some are not.13 The same is true for realized

annual excess stock returns. We keep this in mind when interpreting parameter

estimates throughout the thesis.14

12Descriptive statistics and correlations of realized excess bond returns during 1992.12�
2017.12 are in Appendix B.1 and B.3, respectively. Correlations of yields during 1992.12�
2017.12 are in Appendix B.3. Descriptive statistics and correlations of realized excess
stock returns and dividend-price ratios during 1992.12�2017.12 are in Appendix B.2 and
Appendix B.3, respectively.

13Bond yield and excess bond and stock return diagnostics are in Appendix B.4.
14Non-stationary regression variables implode statistical inferences, consequentially making
parameter estimates unreliable.

6
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3 Basics of Fixed Income

In this section, we review aspects of �xed income markets relevant to our

investigation. First, we outline how prices, yields, forwards, and returns

of government bonds are computed and related. Second, we outline some

government bond market dynamics and its link to other asset markets. Third,

we describe how the bond yield data we use are constructed, before brie�y

reviewing the literature on term structure of interest rates in Section 3.4.

3.1 Prices, Yields, Forwards, and Returns

The issuer of a zero-coupon bond promises to pay the bond's face value at its

maturity. We denote the price of a time t τ -year maturity zero-coupon bond

as B
(τ)
t .15 By assuming the face value to be one unit of account, B

(0)
t = 1.

B
(τ)
t is the market discount factor and re�ects how the aggregated investor

values the face value at time t. Theoretically, since lenders will demand to

receive a higher amount than they provide, the value of bonds decrease with

time to maturity (i.e., τ ≥ 0 leads to B
(τ)
t ≤ 1 ), ceteris paribus.16 The market

discount function is the bond price, B
(τ)
t , as a function of time to maturity

(τ 7→ B
(τ)
t ). By convention, B

(τ)
t is quoted in annual yields (Brown, 1998,

p. 23). A graph that plots B
(τ)
t as a function of τ is called the term structure

of discount factors.

At time t, a τ -year maturity bond's continuously compounded yield, y
(τ)
t , and

price is related by,

B
(τ)
t = e−y

(τ)
t ·τ ⇔ y

(τ)
t = −1

τ
· lnB(τ)

t . (1)

15The notation we use is inspired by Munk (2011) and Cochrane (2005).
16However, this is can be violated in practice. The impact of unconventional monetary
policy implementations world-wide witnessed after the global �nancial crisis have given
rise to negative yields.

7
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Thus, a spot rate is the annual return an investor would earn on the zero-

coupon bond from t to t + τ . The time t term structure of interest rates17

is a graph that plots spot rates as a function of τ (τ 7→ y
(τ)
t ), and it conveys

the same information as the market discount function. Figure 3.1 shows the

one- to �ve-year yield curve each month from 1964�2017 in the US. Clearly,

the yield curve changes shape and level over time. Forward rates are time

Figure 3.1: U.S. Term Structure of Interest Rates.
Monthly one- to �ve-year term structure of interest rates. Yields are the Fama-Bliss Discount Bond data
from CRSP (2018a). Sample period: 1964.01�2017.12.

t annual interest rates on loans that begins at τ1 and matures at τ2 (≥ τ1).

Continuously compounded forward rates are given by

B
(τ2)
t = B

(τ1)
t e−f

(τ1,τ2)
t ·(τ2−τ1) ⇔ f

(τ1,τ2)
t =

y
(τ2)
t τ2 − y(τ1)

t τ1

τ2 − τ1

.

Here we see the relation between spot and forward rates. Forward rates

re�ect the slope of the yield curve between two maturities. Assuming a fully

17Also referred to as the (zero-coupon) yield curve, or spot rate curve.

8
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di�erentiable yield curve, spot rates equal the average of connecting forward

rates:

y
(τ)
t =

1

τ

τ+t∫
T−τ

f
(T−τ,u)
t du, (2)

where τ = (T − t) is time to maturity and u is the maturity increment on the

yield curve.

Buying a τ -year zero-coupon bond at price B
(τ)
t and selling it at B

(τ)
t+1 yields

the holding period return18

r
(τ)
t+1 = lnB

(τ)
t+1 − lnB

(τ)
t .

The one-year realized excess return (or risk premium) is then

rx
(τ)
t+1 = r

(τ)
t+1 − y

(1)
t .

3.2 Government Bond Markets � Stylized Facts

Nominal yields on short-term bonds19 are believed to be solely a�ected by

central banks' monetary policy implementations. Bernanke (2013) states that

short-term nominal yields are even "controlled" by a central bank's actions.

In contrast, long-term nominal yields are believed to be determined by factors

outside central banks' control.20 Fundamentally, long-term nominal yields are

believed to be composed of the expected real yield (r), expected in�ation (π),

and a risk premium (RP ) (Veronesi, 2016, p. 9).21 In equation form,

Nominal yield = Et[r] + Et[π] + Et[RP ]. (3)

18We use B
(τ)
t+1 to indicate the same bond, although it matures in (τ −1)-years at time t+1.

19Bonds which mature in less than one year.
20However, unconventional monetary policy actions such as quantitative easing attempts to
in�uence factors a�ecting nominal yields on long-term bonds in order to spur economic
activity (Krishnamurthy & Vissing-Jorgensen, 2011, p. 215).

21This is a modi�ed version of the Fisher Equation.
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The shape of the yield curve can be explained by any combination of the three

economic drivers in Equation (3).

Table 3.1 depicts mean, standard deviation, and correlations of end-of-month

nominal yields on one- to �ve-year maturity government bonds in the US

during 1992�2017.22 From row two and three, we see that the yield curve shape

y
(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

Mean 2.76 3.01 3.26 3.49 3.67
S.D. 2.21 2.18 2.10 2.01 1.92

Correlations

y
(1)
t 1.00

y
(2)
t 0.99 1.00

y
(3)
t 0.98 1.00 1.00

y
(4)
t 0.97 0.99 1.00 1.00

y
(5)
t 0.95 0.98 0.99 1.00 1.00

USA 1.00 1.00 1.00 1.00 1.00
AUS 0.75 0.79 0.82 0.84 0.86
CAN 0.91 0.92 0.93 0.94 0.95
CHE 0.76 0.82 0.85 0.87 0.89
DEU 0.79 0.84 0.87 0.89 0.91
GBR 0.91 0.93 0.94 0.94 0.95
JPN 0.44 0.55 0.63 0.70 0.75

Table 3.1: Descriptive Statistics - U.S. Bond Yields.
Mean, standard deviation, and correlation of one- to �ve-year maturity bond yields in the US. Numbers in
the last seven rows are correlations with yields in other countries. The full bond yield correlations table is
in Appendix B.3. Sample period: 1992.12�2017.12.

changes signi�cantly over time but is on average upward sloping. Further,

the correlation between yields on two- to �ve-year maturity bonds are almost

perfectly positively correlated. Figure 3.2, depicts the time series of two- to

�ve-year yield spread in the US for the time period 1964�2017.23 Yield spreads

excerpt part of the term structure of interest rates and give some information

about its shape.24 Minding Equation (3), r is believed to be a�ected by the

general real investment return on assets in the economy (Hamilton, Harris,

Hatzius, & West, 2016); π is what bond investors demand today to avoid

22The full bond yield correlations table is in Appendix B.3.
23Figures for other countries are in Appendix C.1.
24The shape of the function that maps the term structure of interest rates is theoretically
continuous and has in�nitely many function values.

10

09589260925644GRA 19502



Figure 3.2: U.S. Yield Spreads.
Two-, three-, four-, and �ve-year yield spreads (in percent) in the US. Yields are the Fama-Bliss Discount
Bond data from CRSP (2018a). Shaded areas are NBER (2010) recession periods. Sample period
1964.01�2017.12.

reduced purchasing power over the investment horizon, while RP 25 act as

compensation for being exposed to speci�c bond risks, like the risk of changing

interest rates. Interest rate risk depends on the interest rate-sensitivity26 of

longer-maturity bonds, illustrating that the capital gain/loss risk of liquidating

a long-term bond position before maturity can be signi�cant. Even though

bond investors don't expect to liquidate before maturity, situations can arise

where they are forced. For instance, insurance companies may need to

liquidate positions to raise cash if insurance claims become unanticipatedly

high. Furthermore, regulatory restrictions could force insurance companies and

pension funds to o�oad negative mark-to-market positions, consequentially

pushing prices down further.

25Also referred to as the term premium.
26Also referred to as duration.
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Table 3.2 contains descriptive statistics of realized one-year risk premia

on two- to �ve-year maturity bonds in the US for 1992�2017.27 The

Mean I. II. SR I. II. Obs. I. II.

rx
(2)
t+1 0.59∗∗ 1.57∗∗ 0.49∗∗ 0.52 2.19 0.44 289 26 263

rx
(3)
t+1 1.22∗∗ 3.04∗∗ 1.04∗∗ 0.55 2.42 0.47 289 26 263

rx
(4)
t+1 1.81∗∗ 3.96∗∗ 1.59∗∗ 0.57 1.89 0.50 289 26 263

rx
(5)
t+1 2.18∗∗ 4.68∗∗ 1.94∗∗ 0.54 1.91 0.47 289 26 263

Table 3.2: Descriptive Statistics - U.S. Bond Risk Premia.
One-year mean excess bond return, Sharpe ratio (SR) and observations on two- to �ve-year maturity
bonds in the US. Mean, Sharpe ratio and number of observations in columns I and II are conditioned on
buying in recession and non-recession periods (de�ned by NBER (2010)), respectively. **: p-value < 0.01,
*: p-value < 0.05. Sample period: 1992.12�2017.12.

unconditional historical average (in percent) of one-year risk premium on

the two-year maturity bond is 0.59% while the standard deviation is 1.14%,

resulting in a Sharpe ratio of 0.52.28 Both the unconditional mean and the

standard deviation is monotonically increasing with the maturity of the bond,

illustrating the concept of increased duration risk of longer maturity bonds.

Numbers in columns I and II in Table 3.2 are average one-year excess returns

and Sharpe ratios in recession and non-recession periods, respectively. We

see that the ex post one-year average excess returns in recession periods are

between 3 and 5 times higher than the unconditional averages and statistically

signi�cant. Interestingly, the Sharpe ratios are around 4�5 times higher for the

26 monthly recession observations in the US in 1992�2017. Thus, the historical

one-year reward to risk of investing in risky (long-term) bonds is much higher

in recession periods.

In Table 3.3, we see that the one-year bond risk premia on two- to �ve-year

maturity bonds in the US, and across countries, are signi�cantly positively

correlated.29 We see from Figure 3.2 that, historically, bond yield spreads in

recessions in the US have increased almost universally, meaning that the yield

27The table for all countries is in Appendix B.1.
28Sharpe Ratio is de�ned as the excess return as a proportion of the risk measured in
standard deviation (Sharpe, 1994).

29This is consistent for the other countries as well, see Appendix B.3.
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rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

rx
(2)
t+1 1.00

rx
(3)
t+1 0.98 1.00

rx
(4)
t+1 0.94 0.98 1.00

rx
(5)
t+1 0.89 0.95 0.99 1.00

USA 1.00 1.00 1.00 1.00
AUS 0.52 0.57 0.63 0.67
CAN 0.72 0.74 0.76 0.77
CHE 0.66 0.68 0.69 0.69
DEU 0.60 0.63 0.67 0.70
GBR 0.67 0.71 0.75 0.77
JPN 0.29 0.33 0.36 0.40

Table 3.3: Correlation - U.S. Bond Risk Premia.
Bond risk premia correlations for the US. Numbers in right-hand columns are correlations with bond risk
premia in other countries. The full bond risk premia correlation table is in Appendix B.3. Sample period:
1993.12�2017.12.

curve steepens.30 By minding Equation (3) when analyzing Figure 3.2, which

driver can we say is the dominant factor a�ecting nominal yields (prices) to

increase (decrease) during recession and decrease (increase) during expansions?

Cochrane and Piazzesi (2005) document that risk premia are driving nominal

yield variation on long-term bonds in the US. Dahlquist and Hasseltoft (2013)

con�rm that this is also the case for long-term bonds in other markets.31

To spot potential inconclusiveness of our research investigation, we dedicate

Section 3.3 to brie�y outline how the yield data that we use are constructed.

Further, we dedicate the last subsection of 4 to a discussion on how the data

a�ect the predictive regressions in Section 4 and 5.

3.3 Bond Yield Data Construction Methods

In section 3.1, we showed the mathematical relations governing bond prices

and spot and forward rates. It is paramount to understand how zero-coupon

bond data are constructed when pursuing empirical analysis in bond markets.

30This is also the case for long-term bond yields the other countries, see Appendix C.1.
31Lettau and Wachter (2011) argue that upward-sloping yield curves indicate that bond
investors require compensation for holding high-duration assets in the form of a positive
risk premium, and that time-varying preferences for risk are driving bond yield variations.
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The market zero-coupon yield curve connects spot rates on bonds directly read

from the market, either by observing spot rates on traded zero-coupon bonds or

coupon bonds (the former being uncommon in practice because of insu�cient

outstanding zero-coupon bonds). As the market for government coupon bonds

is vast, one can use the prices of these to derive implicit discount rates (and

thus zero-coupon yields) that are consistent with prevailing market prices.

Denote bond payment i (i = 1, . . . ,M) at time t + j (j = 1, . . . , T ) by Ct+j
i .

In a frictionless market, and by no-arbitrage, the simplest pricing equation of

a risk-free coupon bond, Pi,t, is the sum of discounted cash �ows, thus

Pi,t =
T∑
j

C
(t+j)
i ·B(t+j)

t =
T∑
j

C
(t+j)
i · e−y

(t+j)
t ·(t+j). (4)

Given a collection of traded coupon-bonds, Pt = (P1,t, P2,t, . . . , PM,t)
T , that

pays coupons, Ct, at distinct future dates from today, t + j (j = 1, . . . ,M),

by Equation (4), the discount factors, Bt, must satisfy

Pt = CtBt ⇔



P1,t

P2,t

...

PM,t


=



C
(t+1)
1 C

(t+2)
1 · · · C

(t+T )
1

C
(t+1)
2 C

(t+2)
2 · · · C

(t+T )
2

...
...

. . .
...

C
(t+1)
M C

(t+2)
M · · · C

(t+T )
M





B
(t+1)
t

B
(t+2)
t

...

B
(t+T )
t


.

The discount factors are found by solving the linear system,

Bt = C−1
t Pt. (5)

Thus, in deriving the implicit discount rates, the cash �ow matrix of the

traded bonds must be invertible. In practice, this method is impractical.

Finding the necessary traded coupon bonds with distinct coupon dates that are

independent of each other32 is certainly unfeasible. Further, the bootstrapping

coupon procedure33 relies on that there exist at least one traded zero-coupon

32That is, one bond cannot be expressed as a linear combination of the others.
33Which is an iterative procedure using Equation (4) to compute implicit discount factors.
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bond and coupon bonds that matures in a regular interval from the �rst

discount factor and the second (Veronesi, 2010, p. 47). If these do not exist,

the iterative process stops. Consequently, the implied discount function that

is consistent with market prices cannot be inferred from the traded bonds.

By relaxing the assumption of no-arbitrage, we can estimate implied discount

functions, although inconsistent with market prices. Bliss (1996) outlines a

general framework for estimating the term structure of interest rates:

1. A pricing equation that relates the price of a coupon-bond, Pi,t, to the

discount rate function, ȳt(τ) ≡ y
(τ)
t .34

2. A functional form to approximate the discount rate function, ȳt(τ).

3. An econometric method for estimating the parameters of the term

structure function.

In practice, the market is characterized by frictions and other real-world

features. The literature accounts for these features by incorporating an error

term εt into Equation (4), thus

Pt = CtBt + εt. (6)

The error term accounts for in�uences that generate mispricing, such as

illiquidity and other real-life factors (Veronesi, 2010, p. 67).

The term structure of discount rates is given by searching for values of Bt such

that the pricing error, εt, is minimized. To perform this optimisation exercise,

one must decide the functional form acting as an approximate of the discount

rate function and then estimate the parameters that minimize the pricing error

(Bliss, 1996, p. 4).35

34Which is outlined in section 3.1: the discount rate function is a transformation of the
market discount function via: y

(τ)
t = − 1

τ lnB
(τ)
t

35See Appendix D for details on the functional forms that are used to construct the data we
use.
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3.4 Literature Review

Equation (3) depicts three components grounded on macroeconomic

fundamentals believed to a�ect nominal yields on long-term government bonds.

The Expectations Hypothesis (EH) of interest rates is the classic theory that

relates to investors' expectations and preferences.

Expectations Hypothesis

Lutz (1940) postulated that investors, under certain assumptions, for a given

investment horizon are indi�erent to the structure of a government bond

investment (e.g., with a one-year investment horizon they are indi�erent to

buying a 10-year maturity bond and selling it after one year and buying a one-

year maturity bond). This postulation formed the EH, with three equivalent

statements about the pattern of nominal yields (Cochrane, 2005, p. 355):

1. The annual yield on the τ -period maturity zero-coupon bond is equal to

the average expected future one-period yields, plus a risk premium

y
(τ)
t =

1

τ
· Et

(
y

(1)
t + y

(1)
t+1 + y

(1)
t+2 + · · ·+ y

(1)
t+τ−1

)
+RP. (7)

2. The forward rate on a synthetic one-period loan beginning in period τ

equals the expected future one-period yield, plus a risk premium

f
(τ,τ+1)
t = Et

(
y

(1)
t+τ

)
+RP. (8)

3. The expected one-period return on any government bond equals the

current one-period yield, plus a risk premium

Et

(
r

(τ)
t+1

)
= y

(1)
t +RP. (9)

By Equation (7), if the yield curve is upward sloping, the EH predicts

expectation of rising future short-term yields, suggesting shorting short-term
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bonds.36 But by Equation (9), any bond investment is predicted to yield

the same return. Thus, the equalization of bond returns makes any bond

investment equivalent.37

The EH restricts the risk premium to equal zero (Pure EH) or be constant

over time. Hence, investors should not care about the structure of bond

investments (i.e., be indi�erent to roll-over and buy-and-hold strategies)38

because of equal expected returns. However, if investors care about the

structure, a bond's future price may generate time-varying risk premia, thus

invalidating EH predictions. Since risks in di�erent investment strategies may

be time-varying, excess returns can be generated if these risks covary with

the stochastic discount factor (Cochrane, 2005, p. 357). This is clear from

Equation (11).

The Discount Factor Existence Theorem39 states that there exists a stochastic

discount factor m such that for any asset price p the relationship between p

and payo� x of that asset obey

p = E[mx] ⇔ p = E[m] · E[x] + cov(m,x). (10)

Written in the Expected Return-Beta representation,40 with gross return R as

the proportion of x in p, Equation (10) becomes

E[R]− rf = βR,m · λm =

(
cov(R,m)

var(m)

)
·
(
−var(m)

E[m]

)
. (11)

E[R] − rf is the expected asset excess return, λm is the market price of risk

and βR,m is the asset's market risk exposure. Thus, as long as βR,m is non-zero,

so too will the expected excess return of that asset be (if λm 6= 0).

36Because rising yields means falling bond prices. See Section 3.1.
37Note: The RP 's in Equation (7)�(9) are not necessarily equal.
38That is, buying new one-year bonds each year for T years vs. buying and holding T-year
bonds to maturity.

39By Rubinstein (1976), Ross (1978) and Harrison and Kreps (1979). See Cochrane (2005,
Chapter 4) for proof and details.

40See Cochrane (2005, p. 16).
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Several researchers document strong empirical evidence against the EH (e.g.,

Cochrane & Piazzesi, 2005; Dahlquist & Hasseltoft, 2013; Fama & Bliss, 1987),

suggesting modi�cations to Equation (7) to account for time-varying risk

premia:

y
(τ)
t =

1

τ
· Et

(
τ−1∑
i=0

y
(1)
t+i

)
+RPt. (12)

By Equation (12), two components explain the yield curve: The expected path

of short-term nominal yields and risk premia. Rising yield curves can therefore

signal either rising expected future short-term nominal yields, high risk premia,

or a combination of both. Looking back to Figure 3.2 and the steepening of

the historical yield curve during U.S. recessions, which component dominantly

drove nominal yields higher during these times? Was it higher expected

future short-term yields or higher risk premia demands for holding long-term

bonds under uncertain future economic prospects? Considering the recession

following the recent �nancial crisis, it is easy in hindsight to say that higher

risk premia demands probably were the dominant force. This documents

consistency with assumptions about investors' risk aversion in prominent asset

pricing models.41 Hence, risk and expected (excess) returns are positively

related: The risk and expected return trade-o� governing investment decisions

in foresight.

41Asset pricing models featuring habit persistence such as Campbell and Cochrane (1999)
suggest that risk premia move counter-cyclically.
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4 Predictive Regressions of Excess Returns

In this section, we review literature on excess bond return predictability

with emphasis on Fama and Bliss (1987), Cochrane and Piazzesi (2005) and

Dahlquist and Hasseltoft (2013). We replicate their methods and apply them

to updated data to investigate whether risk premia are predictable. If so, we

conclude on research question one that their result are still valid, and further by

Equation (12), that expected bond risk premia are driving the level of nominal

long-term bond yields. Furthermore, we examine whether their predictive

variables explain a signi�cant part of one-year excess bond and one- to �ve-

year excess stock return variations. Finally, we discuss how data construction

methods may a�ect the results.

4.1 Forward-Spot Spread Regressions

Fama and Bliss (1987) test the EH by running predictive regressions on U.S.

Treasury Bonds, regressing one-year excess returns of τ -year maturity bonds

on the spread between one-year forward rates commencing in (τ−1)-years and

the one-year spot interest rate,42

rx
(τ)
c,t+1 = α

(τ)
c,t+1 + b(τ)

c

(
f

(τ−1,τ)
c,t − y(1)

c,t

)
+ ε

(τ)
c,t+1, (R.1)

for τ = 2, 3, 4, 5.

They forecast annual excess returns of τ -year bonds with R2 up to 18%

with signi�cant coe�cient estimates, concluding that expected one-year excess

returns for U.S. Treasury Bonds vary through time. By this, they �nd evidence

against EH. However, they also �nd that the forward-spot spread seems to

forecast short-term yield changes at longer horizons, in line with the EH (see

Equation (8)).

42Also referred to the forward-spot spread.
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Cochrane and Piazzesi (2005) apply their methodology on yields in 1964�2003

with the same conclusion. We apply their methodology on data up to and

including 2017, with di�erent sample periods. Results are in Table 4.1.43 The

(1) (2) (3) (4)

1964.01�2003.12 1964.01�2017.12 1992.12�2009.05 1992.12�2017.12

τ b
(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2

2 0.99** 0.16 0.83** 0.11 -0.09 0.00 0.03 0.00
(4.27) (3.58) (-0.18) (0.07)

3 1.35** 0.17 1.13** 0.13 0.02 -0.01 0.26 0.01
(4.39) (3.83) (0.03) (0.47)

4 1.61** 0.18 1.36** 0.15 0.01 -0.01 0.39 0.01
(4.05) (3.95) (0.01) (0.74)

5 1.27** 0.08 1.12** 0.09 0.11 0.00 0.58 0.03
(2.39) (2.87) (0.16) (1.18)

Table 4.1: Regression Results - Bonds - Forward-Spot Spread - USA.
Estimates of Regression (R.1) in the US for four sample periods. T-statistics in parentheses use Newey
and West (1987) standard error-correction with 18 lags. Adjusted R2. Constant estimates are excluded.
**: p-value < 0.01, *: p-value < 0.05.

results con�rm that forward-spot spreads in the period 1964�2003 statistically

signi�cantly predict one-year excess bond returns on two- to �ve-year maturity

bonds with positive magnitudes (i.e., increases in forward-spot spreads increase

one-year risk premia). However, the results by Fama and Bliss (1987) and

Cochrane and Piazzesi (2005) weakens slightly for (2) and completely vanish

in (3) and (4), showing R2 of around 0% with non-signi�cant estimated

coe�cients.

We conclude that the forward-spot spreads did not statistically signi�cantly

predict one-year bond risk premia in the US during these periods and cannot

reject the constant risk premia predicted by the EH.44

4.2 Single-Factor Regressions

Cochrane and Piazzesi (2005) study variations in expected excess returns of

U.S. Treasury bonds. They �nd that a single return-forecasting factor (CP

43See Appendix E.1 for the other countries' results during 1992�2017.
44Results for the other countries' in 1992.12�2017.12 our conclusion is mixed: forward-spot
spreads did statistically signi�cantly (though, some show low t-stats) in�uence the one-
year bond risk premia on some bonds, see Appendix E.1.
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factor) of forward rates explains variations in annual excess returns on all

bonds, and predicts excess returns with an R2 up to 44%, intensifying the

evidence against the EH.

An important aspect of the CP factor is that it seems to predict annual excess

bond returns of not only a speci�c τ -year maturity bond but of di�erent

maturity bonds. This �nding is complementary to the factors Fama and

Bliss (1987) and Campbell and Shiller (1991) construct, which only predict

annual excess return on a speci�c τ -year bond. Moreover, the CP factor

seems to capture information relevant in predicting annual excess bond returns

unrelated to the factors that capture virtually all variation in excess bond

returns: The level, slope, and curvature factors (Litterman & Scheinkman,

1991). Additionally, Cochrane and Piazzesi (2005) document that the CP

factor has forecasting power for expected excess stock returns. In their sample,

they document an R2 of 15% when regressing excess stock returns on factors

including moving average values of CP factor realizations.

According to Cochrane and Piazzesi (2005), the CP factor in a country

(indicated by c) is formed by estimating the linear combinations of forward

rates:

CP
(c)
t = γ̂ᵀ

cfc,t

where

fc,t =
[
1 y

(1)
c,t f

(1,2)
c,t f

(2,3)
c,t f

(3,4)
c,t f

(4,5)
c,t

]ᵀ
,

γc =
[
γc0 γc1 γc2 γc3 γc4 γc5

]ᵀ
.
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The coe�cient vector γ̂ᵀ
c is estimated by the regression:

1

4

5∑
τ=2

rx
(τ)
c,t+1 = γc0 + γc1y

(1)
c,t + γc2f

(1,2)
c,t + γc3f

(2,3)
c,t + γc4f

(3,4)
c,t + γc5f

(4,5)
c,t + ε̄c,t+1

m

rxc,t+1 = γᵀ
cfc,t + ε̄c,t+1.

They then run the restricted predictive regression of annual excess returns on

two- to �ve-year maturity bonds,

rx
(τ)
c,t+1 = α

(τ)
c,t+1 + b(τ)

c CP
(c)
t + ε

(τ)
c,t+1. (R.2)

According to Cochrane and Piazzesi (2005), the restricted model has

empirically only a minor impact on the forecasting ability of excess bond

returns in the U.S. market compared to the unrestricted model,45 given by

rx
(τ)
c,t+1 = β

(τ)
c,0 + β

(τ)
c,1 y

(1)
c,t + β

(τ)
c,2 f

(1,2)
c,t + β

(τ)
c,3 f

(2,3)
c,t + β

(τ)
c,4 f

(3,4)
c,t + β

(τ)
c,5 f

(4,5)
c,t + ε

(τ)
c,t+1,

or in vector form:

rx
(τ)
c,t+1 = βcfc,t + ε

(τ)
c,t+1. (R.3)

Cochrane and Piazzesi hypothesized that the CP factor is a state variable46

in the stochastic discount factor (i.e., m
(c)
t = gt[ft(. . . , CP

(c)
t , . . .)]). After

a thorough statistical analysis and testing whether bcγ
ᵀ
c = βc they reject

this hypothesis. Furthermore, they document that the estimated coe�cients

unveil a "tent shape", peaking at β
(τ)
c,3 in Regression (R.3). Figure 4.1 plots

the unrestricted and restricted coe�cients for the US in 1964�2003 (a) and

1964�2017 (b).47 There is no distinct coe�cient tent shape for 1964�2017.

Additionally, the di�erence between the unrestricted and restricted coe�cients

45The parameters in Regression (R.3) and (R.2) are related by β̂c = b̂cγ̂
ᵀ
c .

46A variable indicating the state of the economy (e.g., wealth, consumption, etc.),
consequentially a�ecting investors' consumption and portfolio decision (Cochrane, 2005,
p. 165).

47Plots for the other countries are in Appendix E.12.
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are larger.48 This might indicate errors in Regression (R.2), though, comparing

Regression (R.2) and (R.3)'s adjusted R2 in Table 4.2, this seems not to be

the case. We apply Regression (R.2) to data for 1964�2017. The results are in

Table 4.2.49

(a) USA: 1964.01�2003.12 (b) USA: 1964.01�2017.12

Figure 4.1: Unrestricted vs. Restricted Coe�cient Plot - USA.
Unrestricted vs. restricted estimated coe�cients for the US. Coe�cients are estimated from
Regression (R.3) and (R.2) and are related by β̂c = b̂cγ̂

ᵀ
c . Cochrane and Piazzesi (2005) use 1964�2003

data.

(1) (2) (3) (4)

1964.01�2003.12 1964.01�2017.12 1992.12�2009.05 1992.12�2017.12

τ b
(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2

2 0.45** 0.31 0.43** 0.19 0.55 0.11 0.39 0.05
(8.85) [0.31] (5.47) [0.20] (1.88) [0.10] (1.93) [0.07]

3 0.85** 0.34 0.83** 0.21 0.99 0.09 0.80* 0.06
(8.51) [0.33] (5.31) [0.21] (1.80) [0.07] (1.97) [0.06]

4 1.24** 0.37 1.25** 0.25 1.20 0.07 1.17* 0.06
(8.57) [0.36] (5.67) [0.25] (1.61) [0.05] (2.13) [0.05]

5 1.46** 0.34 1.49** 0.23 1.26 0.05 1.64** 0.08
(7.90) [0.34] (5.41) [0.23] (1.37) [0.03] (2.40) [0.07]

Table 4.2: Regression Results - Bonds - CP factor in the US.
Estimates of Regression (R.2) in the US for four sample periods. T-statistics in parentheses use Newey
and West (1987) standard error-correction with 18 lags. Adjusted R2 and adjusted R2 of Regression (R.3)
in square brackets. Constant estimates are excluded.**: p-value < 0.01, *: p-value < 0.05.

Regression outputs for (1) are identical to Cochrane and Piazzesi (2005). The

CP factor statistically signi�cantly predicts one-year excess bond returns on

two- to �ve-year maturity bonds and coe�cients are monotonically increasing

with adjusted R2 up to 37%. Regressing on data for (2) give almost identical

48Although, by construction they are on average equal by the restriction: β̂c = b̂cγ̂
ᵀ
c .

49See Appendix E.2 for the other countries' results during 1992�2017.
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results but with lower R2's and signi�cance. The same regression for (3) and

(4) give signi�cantly lower R2's and t-statistics. Thus, we conclude that the

CP factor's signi�cance in predicting annual bond risk premia the US has

weakened during these time periods, and has marginally been a statistically

signi�cant driver of one-year excess bond returns.50

Further, Cochrane and Piazzesi (2005) add lagged forward rates to

Regression (R.3) and run the following regression,

rxc,t+1 = MA
(
CP

(c)
t , k

)
+ ε̄c,t+1 (R.4)

where

MA
(
CP

(c)
t , k

)
≡ αc,0CP

(c)
t + αc,1CP

(c)

t− 1
12

+ . . .+ αc,kCP
(c)

t− k
12

.

Adding lags increases adjusted R2 to 44%, and thereby also the models

�t of explaining variations in average annual excess bond return. We run

Regression (R.4) on the same subsamples as above. The results are in

Table 4.3.51 The increasing adjusted R2 is also the case for (2), where three

Lags 0 1 2 3 4 5 6

(1) 1964.01�2003.12 0.35 0.41 0.42 0.44 0.44 0.44 0.44
(2) 1964.01�2017.12 0.23 0.25 0.26 0.27 0.27 0.26 0.26
(3) 1992.12�2009.05 0.07 0.06 0.06 0.05 0.05 0.06 0.08
(4) 1992.12�2017.12 0.07 0.06 0.06 0.06 0.07 0.09 0.10

Table 4.3: Regression Results - Bonds - MA(CP, k) in the US.
Adjusted R2 for Regression (R.4) with k lags in the US for four sample periods. Shaded cells indicate
which k that results in maximum R2.

monthly lagged values of the CP factor in Regression (R.4) increase the R2 to

27% (from 23% when zero lags). However, for (3) and (4), the results are not as

50In contrast, results for the other countries show that the CP factor predicts one-year excess
bond returns with statistical signi�cance (although the t-statistics for DEU are borderline
low) for 1992�2017. Particularly noticeable is JPN, where the CP factor predicts one-year
expected risk premia on two-year maturity bonds with R2 of 72%. See Appendix E.2.

51See Appendix E.3 for other countries' results for 1992�2017.
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evident. We conclude that including lags of the CP factor marginally increases

the models �t of explaining average one-year bond risk premia variations.52

Stock Return Predictability

Cochrane and Piazzesi (2005) document that the CP factor has forecasting

power for expected excess stock returns with the regression,

sx
(τ)
c,t = α

(τ)
c,t + b(τ)

c CP
(c)
t + ε

(τ)
c,t . (R.5)

With motivation from Fama and French (1989), we extend their model slightly

to assess the CP factor's in�uence on excess stock returns up to �ve years (i.e.,

we run Regression (R.5) for τ = 1, 2, 3, 4, 5). Results are in Table 4.4.53

(1) (2) (3) (4)

1964.01�2003.12 1964.01�2017.12 1992.12�2009.05 1992.12�2017.12

τ b
(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2

1 1.53 0.05 1.03 0.01 2.52 0.01 -3.36 0.01

(1.85) (1.09) (0.37) (-1.03)

2 2.68** 0.07 2.35 0.03 1.85 0.00 -2.32 0.00

(2.41) (1.71) (0.19) (-0.33)

3 2.84** 0.05 3.23* 0.03 9.51 0.02 10.64 0.03

(2.68) (2.18) (0.75) (0.87)

4 3.53* 0.05 4.89** 0.05 18.11 0.06 22.91 0.09

(2.27) (2.48) (1.05) (1.32)

5 5.63** 0.08 6.73** 0.06 25.92 0.06 25.94 0.07

(2.73) (2.53) (1.16) (1.10)

Table 4.4: Regression Results - Stocks - CP Factor in the US.
Estimates of Regression (R.5) in the US in four sample periods. Estimates for one-year excess returns for
1964�2003 di�er slightly from Cochrane and Piazzesi (2005) because of di�erent stock returns.
T-statistics in parentheses use Hansen-Hodrick standard error-correction with 12 lags. Adjusted R2.
Constant estimates are excluded. **: p-value < 0.01, *: p-value < 0.05.

In (1), we see that the CP factor statistically signi�cantly in�uences the

excess one-year stock return at the 10% level, as documented by Cochrane

and Piazzesi (2005). A 1% change in the CP factor is associated with 1.53%

change in one-year excess stock return in this period. Our extended analysis

52With the exception of JPN.
53See Appendix E.4 for other countries' results for 1992�2017.
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reveals that the CP factor signi�cantly in�uences two- to �ve-year excess stock

returns at the 1% level (except for τ = 4) in (1). In (2), the CP factor in�uences

the three-, four-, and �ve-year excess stock returns at the �ve, one, and 1%

level, respectively. In (3) and (4), the CP factor's signi�cance vanishes.54

Further, assessing the CP factor's forecasting ability of excess stock return,

Cochrane and Piazzesi (2005) run the following regression for one-year excess

return:

sx
(τ)
c,t = α

(τ)
c,t +b

(τ)
c,1MA

(
CP

(c)
t , 3

)
+b

(τ)
c,2

(
d

p

)
c,t

+b
(τ)
c,3

(
y

(5)
c,t − y

(1)
c,t

)
+ε

(τ)
c,t . (R.6)

We extend their model slightly to assess the CP factor's in�uence on excess

stock returns up to �ve years (i.e., we run Regression (R.6) for τ = 1, 2, 3,

4, 5). Correlation among the regressors for sample period 1992.12�2017.12 in

the US are depicted in Table 4.5 while regression results of Regression (R.6)

are in Table 4.6.55

MA(CPt, 3) (D/P )t y
(5)
t − y(1)t

MA(CPt, 3) 1.00 0.06 0.26

(D/P )t 0.06 1.00 0.23

y
(5)
t − y(1)t 0.26 0.23 1.00

Table 4.5: Correlation Table - MA(CP, 3), D/P, and Term Spread in the US.
Correlation among the regressors in Regression (R.6) in the US. Sample period: 1992.12�2017.12.

From the low correlations among the regressors, we are not too concerned

about multicollinearity.

54The same holds for the other countries' in 1992�2017, except for JPN. See Appendix E.4.
55See Appendix E.5 for the other countries' results for 1992�2017.
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(1) (2) (3) (4)

1964.01�2003.12 1964.01�2017.12 1992.12�2009.05 1992.12�2017.12

τ b
(τ)
c,1 R2 b

(τ)
c,1 R2 b

(τ)
c,1 R2 b

(τ)
c,1 R2

1 1.92** 0.11 -0.39 0.05 2.01 0.14 -3.37 0.19

(3.06) [0.00] (-0.31) [0.30] (0.33) [0.34] (-1.60) [0.03]

2 2.90** 0.12 -0.09 0.07 1.13 0.44 -4.43 0.36

(3.30) [0.00] (-0.04) [0.11] (0.22) [0.03] (-1.05) [0.00]

3 1.13 0.09 -2.44 0.16 10.85 0.61 1.04 0.51

(1.17) [0.01] (-1.27) [0.00] (1.83) [0.00] (0.15) [0.00]

4 0.68 0.13 -2.52 0.21 19.85* 0.71 11.24 0.64

(0.43) [0.01] (-0.97) [0.00] (1.97) [0.00] (1.20) [0.00]

5 1.63 0.17 -1.78 0.22 28.58** 0.68 9.09 0.60

(0.66) [0.01] (-0.47) [0.00] (2.78) [0.00] (0.78) [0.00]

Table 4.6: Regression Results Excerpt - Stocks - MA(CP, 3), D/P, and Term Spread in the US.
Estimates of Regression (R.6) in the US for four sample periods. T-statistics in parentheses use
Hansen-Hodrick standard error-correction with 12 lags. Estimates for one-year excess returns for
1964�2003 di�er slightly from Cochrane and Piazzesi (2005) because of di�erent stock returns. P-value of
F-statistics in brackets. Adjusted R2. Constant estimates, coe�cient estimates for D/P and Term Spread
are excluded. Full regression results table is in Appendix E.5. **: p-value < 0.01, *: p-value < 0.05.

In (1), MA(CP, 3) statistically signi�cantly in�uences one-year excess stock

returns at the 1% level, as documented by Cochrane and Piazzesi (2005). For

our updated analysis, this is also the case for the excess two-year stock return.

In (2)�(4), MA(CP, 3) is only signi�cant for four- and �ve-year excess stock

returns in (3), and insigni�cant otherwise.56

Summary

We successfully replicate the work of Cochrane and Piazzesi (2005) and con�rm

their empirical �ndings about the CP factor in the US for our updated data

set. The CP factor is still a statistically signi�cant driver of one-year excess

return variations on two- to �ve-year maturity bonds, although the signi�cance

seems to have weakened. In other bond markets, the CP factor's in�uence is

more convincing.57 For one-year stock excess returns, the signi�cance of the

56The same conclusion holds for the other countries', except for excess one-year stock return
in DEU where MA(CP,3) is signi�cant at the 1% level. See Appendix E.5.

57Although, generally, the estimated coe�cients do not show a distinct tent shape but rather
a 'W' shape, suggesting a greater degree of multicollinearity (Cochrane & Piazzesi, 2008,
p. 13). See Appendix E.12 for the coe�cient plots.
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CP factor for explaining annual stock risk premia variations in the US vanishes

in our more recent sample. For two- to �ve-year horizons, we �nd no statistical

signi�cance.

We conclude on our �rst research question that the �ndings of Cochrane and

Piazzesi (2005) are still valid and that the CP factor is a signi�cant driver of

one-year excess bond return variations and are still valid in the US as well as

in the other countries. Further, by Equation (12), we conclude that expected

bond risk premia are an important determinant of long-term nominal bond

yields.

4.3 Global Single-Factor Regressions

Dahlquist and Hasseltoft (2013) �nd evidence for predictability in annual

excess bond returns in several international bond markets.58 Motivated by

the increasing integration of world �nancial markets, they extend the work of

Cochrane and Piazzesi (2005) by forming a global CP factor (GCP) comprised

of the GDP-weighted average59 of local CP factors in the US, Switzerland,

Germany, and UK:

GCPt =
C∑
c=1

wc,tCP
(c)
t where wc,t =

GDPc,t∑C
c=1GDPc,t

and C = [USA,CHE,DEU,GBR]. They run Regression (R.7) to assess the

extent to which this factor explains variations in time-varying bond risk premia

across international markets:

rx
(τ)
c,t+1 = α(τ)

c + b(τ)
c GCPt + ε

(τ)
c,t+1 (R.7)

They �nd that bond risk premia across international markets are closely

related to U.S. bond risk premia and international business cycles. Both being

58They examine the same countries as we do, including Sweden, Norway and New Zealand.
59Similar to Dahlquist and Hasseltoft (2013), since GDP data is reported quarterly, we
assume constant GDP weight for each month from and up to each reporting.
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signi�cant, the CP factor and the GCP factor have strong forecasting power

for one-year excess bond returns across countries and linked to overall business

conditions. They document that rising global risk premia are associated with

a contemporaneous drop in leading economic indicators.

Before running regressions, we analyze the similarity between the GCPt and

local CP factors in the US and Germany (CP
(USA)
t and CP

(DEU)
t , respectively).

We expect minor di�erences between GCPt and CP
(USA)
t , as the weight of the

US in the GCP is around 70% (see Figure 2.1). However, for DEU, where the

weight is around 20%, we expect a greater di�erence. By analyzing panel (b)

in Figure 4.2 we con�rm our expectation: GCPt and CP
(USA)
t reveal minor

di�erences in the period 1992.12�2017.12 and have a high positive 24-month

rolling correlation. In contrast, signi�cant di�erences can be observed between

GCPt and CP
(DEU)
t . For instance, at the start of the last U.S. recession the

24-month correlation turns negative for about one year before turning positive

in 2009. At the end of 2017, the correlation is slightly negative.

Figure 4.2: CP and GCP 24-month rolling correlation - USA and DEU.
Panel (a) depicts 24-month rolling correlation between CP and GCP factor for the US and DEU. Panel
(b) depicts CP factor realizations in the US and DEU as well as GCP factor realizations. Sample period:
1992.12�2017.12.
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We apply Regression (R.7) to the same data as Dahlquist and Hasseltoft (2013)

and additional data going up to and including 2017. The results for the US

and Germany are in Table 4.7.60 The results con�rm the �ndings of Dahlquist

(1) (2) (3) (4)

1975.01�2009.12 1975.01�2017.12 1992.12�2009.05 1992.12�2017.12

τ b
(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2

USA
2 0.56∗∗ 0.14 0.54∗∗ 0.12 0.59∗∗ 0.13 0.52∗∗ 0.09

(2.78) (3.01) (2.47) (3.10)

3 1.04∗∗ 0.13 1.03∗∗ 0.13 1.07∗∗ 0.11 1.06∗∗ 0.10
(2.60) (2.95) (2.34) (3.21)

4 1.52∗∗ 0.15 1.55∗∗ 0.15 1.43∗ 0.10 1.62∗∗ 0.12
(2.67) (3.13) (2.28) (3.47)

5 1.89∗∗ 0.15 1.99∗∗ 0.16 1.74∗ 0.10 2.33∗∗ 0.15
(2.71) (3.29) (2.20) (3.87)

DEU
2 0.53∗∗ 0.19 0.55∗∗ 0.19 0.65∗∗ 0.24 0.71∗∗ 0.22

(4.70) (5.90) (2.66) (4.32)

3 1.00∗∗ 0.20 1.05∗∗ 0.20 1.39∗∗ 0.27 1.44∗∗ 0.23
(4.88) (6.01) (3.21) (4.37)

4 1.40∗∗ 0.20 1.46∗∗ 0.19 2.02∗∗ 0.27 2.04∗∗ 0.23
(4.87) (5.87) (3.54) (4.36)

5 1.76∗∗ 0.20 1.82∗∗ 0.19 2.51∗∗ 0.26 2.53∗∗ 0.21
(4.87) (5.69) (3.69) (4.28)

Table 4.7: Regression Results - Bonds - GCP Factor in the US and Germany
Estimates of Regression (R.7) in the US and DEU for four sample periods. T-statistics in parentheses use
Newey and West (1987) standard error-correction with 18 lags. Adjusted R2. Constant estimates are
excluded. **: p-value < 0.01, *: p-value < 0.05. Note: Because of lack of data, we make the GCP factor
without CHE for the sample periods starting in 1975 and ending in 2009 and 2017. Hence, our results
di�er slightly from Dahlquist and Hasseltoft (2013).

and Hasseltoft (2013). The GCP factor statistically signi�cantly predicts one-

year excess bond returns in the US on two- to �ve-year maturity bonds and

the coe�cients are monotonically increasing with R2 in the interval 10�15%.

The signi�cance of the GCP factor is relatively stable across (1)-(4) but has

increased, suggesting that global bond risk premia have been increasingly

in�uencing nominal bond yields in the US.61 The pattern repeats for Germany.

Although the signi�cance is not as stable as for the US, being somewhat lower

in (3) and (4) compared to (1) and (2), the coe�cients are still highly signi�cant

60See Appendix E.6 for the other countries' results for 1992�2017.
61Because the signi�cance of the GCP factor is greater than that of the CP factor.
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when extending the data sets. These observations are consistent in the other

countries as well, except for JPN.62

We follow the notion of Cochrane and Piazzesi (2005) that lagged CP factor

(Regression (R.4)) improves the forecasting ability of excess bond returns and

extend their model to assess if it is transferable to a model with lagged GCP

factors. We run the regression,

rxc,t+1 = MA (GCPt, k) + εc,t+1 (R.8)

where

MA (GCPt, k) ≡
C∑
c=1

wc,tMA
(
CP

(c)
t , k

)
and C = [USA,CHE,DEU,GBR]. Results for the US and Germany are in

Table 4.8.63

Lags 0 1 2 3 4 5 6

USA

(1) 1975.01�2009.12 0.19 0.21 0.22 0.22 0.23 0.24 0.24
(2) 1975.01�2017.12 0.18 0.19 0.19 0.20 0.20 0.20 0.20
(3) 1992.12�2009.05 0.24 0.26 0.25 0.20 0.27 0.32 0.36
(4) 1992.12�2017.12 0.20 0.22 0.22 0.21 0.20 0.20 0.21

DEU

(1) 1975.01�2009.12 0.25 0.28 0.29 0.32 0.35 0.37 0.38
(2) 1975.01�2017.12 0.24 0.25 0.26 0.27 0.28 0.28 0.28
(3) 1992.12�2009.05 0.29 0.30 0.32 0.33 0.35 0.33 0.34
(4) 1992.12�2017.12 0.24 0.25 0.25 0.25 0.25 0.26 0.27

Table 4.8: Regression Results - Bonds - MA(GCP, k) in the US and DEU.
Adjusted R2 for Regression (R.8) with k lags in the US and DEU for four sample periods. Shaded cells
indicate which k that results in maximum R2. Note: Because of lack of data, we make the GCP factor
without CHE for the sample periods starting in 1975 and ending in 2009 and 2017.

Adding up to six lags nearly improves the adjusted R2 in all subperiods, thus

adding lags of the GCP factor seems to improve the model's �t and thereby its

explanation of annual bond risk premia variations. Nevertheless, the increases

62One possibility for the GCP factor less signi�cance in JPN might be the low foreign investor
holdings in the Japanese government bond market. Only 9.4% of outstanding bonds were
held by foreign investors (compared to OECD average of 48.8%) as of 2016 (OECD, 2016,
p. 71).

63See Appendix E.7 for the other countries' for 1992�2017.
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in Adjusted R2 are not that convincing and we question whether increasing

the model complexity has value in terms of our investigation in Section 5.

Appendix E.7 depicts Table 4.8 but for the other countries' in 1992�2017. We

conclude that including lags of the GCP factor marginally increases the models

�t of predicting average one-year excess bond returns (except for in JPN).

Stock Return Predictability

As for the CP factor, we asses whether the GCP factor forecasts excess stock

returns. We extend the model of Cochrane and Piazzesi (2005) and run

Regression (R.5) and (R.6) but with the GCP factor as regressor. Thus,

sx
(τ)
c,t = α

(τ)
c,t + b(τ)

c GCPt + ε
(τ)
c,t (R.9)

and,

sx
(τ)
c,t = α

(τ)
c,t +b

(τ)
c,1MA (GCPt, 3)+b

(τ)
c,2

(
d

p

)
c,t

+b
(τ)
c,3

(
y

(5)
c,t − y

(1)
c,t

)
+ε

(τ)
c,t . (R.10)

Regression results for Regression (R.9) and (R.10) for the US and Germany

are in Table 4.9 and Table 4.11.64

From Table 4.9, we see that the GCP factor statistically signi�cantly explains

the three- to �ve-year excess stock return in (2) in the US. Here, a 1% change

in the factor has been associated with an 8.3%, 11.5%, and 14.4% change in

the three-, four-, and �ve-year excess stock return, respectively. As stocks are

exposed to cash �ow shocks in addition to discount rate shocks, this somewhat

con�rms the notion of Dahlquist and Hasseltoft (2013) that high global bond

risk premia, while indicating short-term macroeconomic uncertainty and/or

risk aversion, also signal improved economic activities ahead. However, these

64See Table E.8.1 and E.9.2 in Appendix E.8 and E.9, respectively, for the other countries'
results for 1992�2017.
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(1) (2) (3) (4)

1975.01�2009.12 1975.01�2017.12 1992.12�2009.05 1992.12�2017.12

τ b
(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2

USA
1 2.61 0.04 1.71 0.01 4.17 0.03 0.11 0.00

(1.26) (0.92) (0.77) (0.03)

2 4.53 0.06 4.53 0.04 6.66 0.03 3.34 0.00
(1.42) (1.32) (0.76) (0.37)

3 6.36 0.06 8.33* 0.09 18.37 0.12 18.43 0.09
(1.82) (2.15) (1.53) (1.29)

4 7.44 0.05 11.52* 0.11 29.70 0.18 33.43 0.19
(1.42) (2.27) (1.87) (1.73)

5 11.12 0.07 14.44** 0.11 38.40 0.17 38.52 0.16
(1.95) (2.37) (1.66) (1.48)

DEU
1 2.79 0.02 1.74 0.01 0.30 -0.01 -3.28 0.01

(0.91) (0.62) (0.05) (-0.84)

2 7.36 0.07 6.95 0.05 -0.94 -0.01 -3.49 0.00
(1.54) (1.54) (-0.08) (-0.40)

3 7.68 0.04 9.08 0.05 8.98 0.01 10.60 0.02
(1.21) (1.60) (0.53) (0.76)

4 7.31 0.02 10.64 0.05 22.16 0.06 32.18 0.12
(0.88) (1.64) (1.03) (1.67)

5 4.49 0.00 8.04 0.02 34.38 0.09 37.40 0.12
(0.49) (0.92) (1.12) (1.46)

Table 4.9: Regression Results - Stocks - GCP Factor - USA and DEU.
Estimates of Regression (R.9) in the US and DEU for four sample periods. T-statistics in parentheses use
Hansen-Hodrick standard error-correction with 12 lags. Adjusted R2. Constant estimates are excluded.
**: p-value < 0.01, *: p-value < 0.05.

results are not evident in more recent samples, nor in Germany, where the

GCP factor is insigni�cant.65

Correlation among the regressors in Regression (R.10) for sample period

1992.12�2017.12 in the US are depicted in Table 4.10. From the

MA(GCPt, 3) (D/P )t y
(5)
t − y(1)t

MA(GCPt, 3) 1.00 -0.10 0.13
(D/P )t -0.10 1.00 0.23

y
(5)
t − y(1)t 0.13 0.23 1.00

Table 4.10: Correlation Table - MA(GCP, 3), D/P, and Term Spread in the US.
Correlation among the regressors in Regression (R.10) in the US. Sample period: 1992.12�2017.12.

low correlations among the regressors, we are not too concerned about

multicollinearity.

65The same conclusion holds for the other countries', except for excess one-year stock return
in JPN where MA(CP,3) are signi�cant at the 1% level. See Appendix E.8.
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(1) (2) (3) (4)

1975.01�2009.12 1975.01�2017.12 1992.12�2009.05 1992.12�2017.12

τ b
(τ)
c,1 R2 b

(τ)
c,1 R2 b

(τ)
c,1 R2 b

(τ)
c,1 R2

USA
1 1.35 0.03 -1.12 0.02 -4.28 0.16 -4.45* 0.20

(0.52) [0.69] (-0.48) [0.73] (-1.45) [0.13] (-2.23) [0.01]

2 -0.32 0.07 -2.52 0.08 -8.64* 0.48 -9.69* 0.39
(-0.09) [0.33] (-0.67) [0.16] (-2.11) [0.01] (-2.10) [0.00]

3 -3.22 0.14 -4.00 0.18 -1.05 0.58 -3.95 0.51
(-0.84) [0.03] (-0.82) [0.01] (-0.20) [0.00] (-0.51) [0.00]

4 -4.70 0.16 -3.72 0.21 11.30 0.67 6.55 0.62
(-0.95) [0.15] (-0.66) [0.01] (1.18) [0.00] (0.71) [0.00]

5 0.55 0.17 1.03 0.21 13.70 0.63 5.91 0.59
(0.08) [0.06] (0.15) [0.01] (1.39) [0.00] (0.42) [0.00]

DEU
1 1.20 0.04 0.59 0.04 -6.89 0.24 -9.80** 0.22

(0.38) [0.48] (0.19) [0.50] (-1.34) [0.02] (-2.41) [0.01]

2 4.74 0.11 5.79 0.12 -20.91** 0.59 -12.44 0.33
(1.10) [0.33] (1.31) [0.24] (-2.63) [0.00] (-1.71) [0.02]

3 6.59 0.08 9.84 0.13 -11.77 0.48 -0.79 0.32
(1.17) [0.50] (1.83) [0.14] (-0.86) [0.00] (-0.07) [0.01]

4 8.29 0.11 12.98* 0.16 -13.61 0.62 16.82 0.38
(1.43) [0.40] (2.30) [0.03] (-0.87) [0.00] (1.25) [0.01]

5 10.95* 0.28 15.36** 0.31 12.12 0.68 24.26 0.39
(2.32) [0.01] (2.97) [0.00] (0.57) [0.00] (1.49) [0.01]

Table 4.11: Regression Results Excerpt - Stocks - MA(GCP, 3), D/P, and Term Spread in the US and
DEU.
Estimates of Regression (R.10) in the US and DEU for four sample periods. T-statistics in parentheses
use Hansen-Hodrick standard error-correction with 12 lags. P-value of F-statistics in brackets. Adjusted
R2. Constant estimates, coe�cient estimates for D/P and Term Spread are excluded. Full regression
results table in Appendix E.9. **: p-value < 0.01, *: p-value < 0.05.

When adding the dividend-price ratio and the term spread as control variables

as in Regression (R.10), the results in Table 4.11 reveal that the GCP factor

loses its signi�cance in (2) in the US, but becomes signi�cant for the one- and

two-year horizon in (4), but with a negative sign. Here, a 1% change in the

GCP factor is associated with a -4.5% and -9.7% change in one- and two-year

excess stock returns, respectively. This is also the case for Germany (except

for τ = 2); a 1% change in the GCP factor is associated with a -9.8% change

in one-year excess stock returns.66

Since the CP factor seems to have lost its signi�cance in later sample periods

and the opposite seems to be true for the GCP factor, we conclude, as for

66However, the results for this observation are mixed in the other countries', see
Appendix E.9
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excess bond returns, that the relevance of the GCP factor in predicting excess

stock returns has increased in later periods. However, we remain cautious

about making any absolute conclusion of the GCP factors in�uence on excess

stock returns as the signi�cance may be a consequence of pure chance.67

Summary

We successfully replicate the work of Dahlquist and Hasseltoft (2013) and

con�rm the empirical �ndings about the GCP factor in the US and Germany

for our updated data set. The GCP factor is a statistically signi�cant driver

of one-year excess bond return variations on two- to �ve-year maturity bonds,

and the signi�cance level has increased during recent years, in contrast to the

CP factor. Findings in the US and Germany are consistent across the countries

we examine.68

For one- to �ve-year stock excess returns, the individual signi�cances of the

GCP factor for explaining excess return variations in the US and Germany are

nonexistent. However, when including dividend-price ratio and yield spread as

control variables, monthly lagged realizations of the GCP factor signi�cantly

explain stock risk premia in the US and Germany at one-year horizon with

a negative magnitude (i.e., increase in the GCP factor are associated with a

decrease in one-year stock risk premia). As we �nd no clear-cut signi�cance in

the other markets, we remain cautious in making any absolute conclusion about

the GCP factor's in�uence on stock risk premia, recommended by Harvey et

al. (2015).

We conclude on our �rst research question that the �ndings of Dahlquist and

Hasseltoft (2013) regarding the prediction of one-year excess bond returns are

still valid. The GCP factor is a signi�cant driver of bond risk premia variations

67Harvey, Liu, and Zhu (2015) recommend the literature to have a t-statistic hurdle of 3.0
before claiming signi�cance of factors explaining excess stock returns.

68With the exception of JPN.

35

09589260925644GRA 19502



and has become more relevant for predicting excess bond returns in the US

as well as the other countries in later periods. Further, by Equation (12),

we conclude that global bond risk premia (with relative weights de�ned by

the GCP factor) are important determinants of long-term nominal bond yield

levels, and that it has become more important in recent periods.

These insights are valuable to portfolio managers, especially actively managed

bond funds. If expected excess bond returns are positive, the bond portfolio

composition would preferably tilt towards longer-maturity bonds, and vice

versa. Therefore, in section 5, we examine the extent to which an investor

would generate excess returns using real-time forecasts by the CP factor and

GCP factor.69

4.4 Data Impact on Predictive Regressions

To spot any inconclusiveness in our investigation, we dedicate this subsection

to a brief outline on how the data impact our predictive regressions. See

Appendix F for an outline of the di�erence in yields for di�erent data sets,

including an analytical outline of how data a�ect the estimated parameters in

a regression model.

Cochrane and Piazzesi (2004a) perform several robustness checks to assess

any inconclusiveness in their �ndings. The general message is that results

persist across data sets and are stable across subsamples. We examine the

impact of di�erent yield data on the unrestricted and restricted coe�cient

estimates. Figure 4.3 depicts this di�erence for the US data sets we use

(identi�er: USA & USA2). As we see, when using yield data constructed with

the Svensson method, the tent shape documented by Cochrane and Piazzesi

69As we �nd no clear-cut signi�cance of these factors in predicting excess stock returns, we
do not pursue the same examination for excess stock returns.
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(a) Unsmoothed Fama-Bliss data (b) Svensson data

Figure 4.3: Yield Data Comparison - Unrestricted vs. Restricted Coe�cients in the US.
Unrestricted vs. restricted estimated coe�cients for the US. Coe�cients are estimated from
Regression (R.3) and (R.2) and are related by β̂c = b̂cγ̂

ᵀ
c . Cochrane and Piazzesi (2005) use the data set

from CRSP (2018a) (panel (a)). Panel (b) is data from Gürkaynak et al. (2007).

(2005) disappears, although it seems to shift to the left.70 Our results are

in line with the �ndings of Dai, Singleton, and Yang (2004), who analyze

the coe�cient estimates for four di�erent yield data sets and conclude that

the tent shape is only distinct for unsmoothed Fama-Bliss data. Whereas for

other data, it is characterized by a "wave-shape", suggesting a larger degree

of multicollinearity (Cochrane & Piazzesi, 2008, p. 13).71,72

The upper part in Table 4.12 depicts outputs for the CP factor regressed

on the two US data sets for 1964�2003 and 1964�2017. The di�erence in

estimated coe�cients are minor, but the di�erence in data a�ects the CP

factor's statistical signi�cance and R2 signi�cantly. For 1964�2003, t-statistics

are approximately halved and R2s are about 10 percentage points lower for

the Svensson-estimated data. For 1964�2017, the reductions in signi�cance

and R2 are not that severe, yet noticeable.73 Nevertheless, the CP factor is

70This contrasts Cochrane and Piazzesi (2004a), who conclude that the tent shape is very
similar across Fama-Bliss data and McCulloch-Kwon data over the sample period 1964.01�
1992.12.

71Cochrane and Piazzesi (2004b) emphasize that there still is a single factor driving excess
returns on two- to �ve-year maturity bonds (i.e., the coe�cients for di�erent maturity
bonds have the same shape).

72Figure E.10.1 in Appendix E.10 highlights di�erences in the estimated coe�cients for
di�erent yield data in the US, AUS, CHE, and JPN for 1992�2009.

73The reduction is less severe because the yield data di�erence is less in absolute value in
newer sample. See Figure F.1 in Appendix F.
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Identi�er USA USA2 USA USA2

rhv CP
(c)
t

Sample 1964.01�2003.12 1964.01�2017.12

lhv b
(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2

rx
(2)
t+1

0.45** 0.31 0.43** 0.20 0.43** 0.19 0.41** 0.13
(8.85) [0.31] (4.36) [0.20] (5.47) [0.20] (3.54) [0.13]

rx
(3)
t+1

0.85** 0.34 0.83** 0.23 0.83** 0.21 0.81** 0.15
(8.51) [0.33] (4.6) [0.22] (5.31) [0.21] (3.75) [0.14]

rx
(4)
t+1

1.24** 0.37 1.20** 0.24 1.25** 0.25 1.20** 0.17
(8.57) [0.36] (4.69) [0.24] (5.67) [0.25] (3.96) [0.16]

rx
(5)
t+1

1.46** 0.34 1.53** 0.26 1.49** 0.23 1.58** 0.19
(7.90) [0.34] (4.71) [0.25] (5.41) [0.23] (4.16) [0.18]

rhv GCPt

Sample 1975.01�2009.12 1975.01�2017.12

lhv b
(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2 b

(τ)
c R2

rx
(2)
t+1

0.56** 0.14 0.55** 0.13 0.54** 0.12 0.53** 0.12
(2.78) (2.60) (3.01) (2.87)

rx
(3)
t+1

1.04** 0.13 1.03** 0.14 1.03** 0.13 1.02** 0.13
(2.60) (2.59) (2.95) (2.96)

rx
(4)
t+1

1.52** 0.15 1.46** 0.14 1.55** 0.15 1.50** 0.14
(2.67) (2.61) (3.13) (3.08)

rx
(5)
t+1

1.89** 0.15 1.88** 0.15 1.99** 0.16 1.98** 0.16
(2.71) (2.66) (3.29) (3.22)

Table 4.12: Data Set Comparison - CP and GCP Regression Results for the US.
Estimates of Regression (R.2) and (R.7) in the US for two data sets (USA: CRSP (2018a), USA2:
Gürkaynak et al. (2007)) in two sample periods. T-statistics in parentheses use Newey and West (1987)
standard error-correction with 18 lags. Adjusted R2. Adjusted R2 for Regression (R.3) in brackets.
Constant estimates are excluded. See Appendix E.11 for same table for AUS, CHE, and JPN in the period
1992.12�2009.05. **: p-value < 0.01, *: p-value < 0.05.

statistically signi�cant at the 1% level irrespective of data set. Accordingly, we

keep our conclusion that the CP factor still explains variations in annual bond

risk premia on two- to �ve-year maturity bonds. The lower part in Table 4.12

depicts outputs for the GCP factor regressed on the two US data sets for 1975�

2009 and 1975�2017. Coe�cient estimates, statistical signi�cance and R2 are

similar across data sets and sample periods. With this, we are to some degree

con�dent that the GCP factor's signi�cance is not driven by arti�cial features

of the estimated bond yield data. Thus, we keep our conclusion that the GCP

factor explains variations in annual bond risk premia on bonds with two- to

�ve-years maturity, and that the GCP factor's signi�cance has increased.74

74Appendix E.11 depicts the outputs of Cochrane and Piazzesi (2005) and Dahlquist
and Hasseltoft (2013) predictive regressions for di�erent data sets in the US, Australia,
Switzerland, and Japan in 1992.12�2009.05. The conclusions for these countries are the
same as for the US, strengthening our con�dence in the conclusion of research question
one. Moreover, the data impact on the predictive regressions seems to be greatest between
the US data sets from CRSP (2018a) and Gürkaynak et al. (2007).
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5 Real-Time Predictions

Bond risk premia have been time-varying and predictable during 1992�2017

and the CP and GCP factor explain a signi�cant part of these variations.

But to what extent could an investor have exploited this predictability

and generated real-time excess returns? We test these models' predictive

performance and whether they are superior to the simpler forward-spot

spread model of Fama and Bliss (1987). We get mixed results, in line with

literature on the economic value of forecasting models (e.g., Barillas, 2011;

Gargano, Pettenuzzo, & Timmermann, 2017; Sarno, Schneider, & Wagner,

2016; Thornton & Valente, 2012). The GCP model's performance is better

than the CP model's performance in most countries. Adding lags slightly

improves the CP model results for most countries, but worsen the GCP model

results.

5.1 Trading Setup

To assess whether the CP or GCP factor for expected bond risk premia are

associated with real-time excess returns, we take a Gaussian75 approach and

use the models' forecast direction-accuracy (DA)76 as the objective function.

This method is inspired by Leitch and Tanner (1991), who �nd statistically

signi�cant correlation between trading pro�ts and direction accuracy of models

forecasting interest rates, when assuming constant bets.77 They �nd no such

relationship between pro�ts and conventional error criteria, nor between DA

and di�erent error criteria.78 Others �nd similar results (e.g., Gerlow, Irwin,

75Meaning that variables are assumed to have a normal (Gaussian) distribution.
76DA is the percentage a model forecasts the right direction of the actual value. See
Appendix G.1 for details.

77Constant bet means one unit per trade, regardless preceding periods' pro�t/loss. Hence,
the total return is the sum of returns each period. Ilmanen (1995) compares Sharpe ratios
of proportional bet (bet proportional to expected pro�ts) to constant bet (except negative
forecasts means a zero position) and �nd that they are similar.

78Leitch and Tanner (1991) acknowledge that results might di�er with a proportional bet
strategy, where for instance MAE might have statistically signi�cant correlation with
pro�ts.
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& Liu, 1993). Therefore, we mainly rest our analysis on DA as an indication

of the model's real-time economic value, with its mean absolute error (MAE)

as a supplementary tool to address model estimation accuracy.79

Further, we make the following assumptions: no transaction costs or fees,

no foreign exchange exposure, no liquidity issues, trading at end-of-month

prices,80 and the possibility to enter into short positions in the bond market.

5.2 Estimation Period for Out-of-Sample Forecasts

In real-life, trading decisions rely on information up to and including t.

As such, our models only incorporate information available at time t (Ωt)

necessary for predictions. Thus,

EP[yt+1|Ωt] ≡ ŷt+1.

We use a pseudo-out-of-sample method with an estimation period from

December 1992 to May 2009.81 As we compare the average one-year realized

excess return (rxc,t+1 = 1
4

∑5
τ=2 rx

(τ)
c,t+1) against the forecast (E

P[rxc,t+1|Ωt]),

the �rst forecast is May 2010. Subsequently, the models recursively produce

new predictions with new available information. Forecasts from May 2010 to

December 2017 give 92 trades.

5.3 Out-of-Sample Results

To what extent do the CP or the GCP factor for expected bond risk premia

generate real-time excess returns? Table 5.1 contains DA and MAE for all

79Real-life trading strategies should try to optimize a portfolio maximisation problem
(Cochrane & Piazzesi, 2004a, p. 12), and our objective function for real-time excess returns
does not necessarily maximize pro�ts. Also, pro�ts should entail arithmetic returns.
Calculating real pro�ts with these considerations is di�cult and time-consuming and is
beyond the scope of this thesis.

80Exact prices are di�cult to determine. Yields in our data sets are estimated with
interpolation methods and are not exact (see section 3.3), probably altering the results.

81Dahlquist and Hasseltoft (2013) use this as one of their sample period and May 2009 is
when the initial Wright (2011) data set ends, but for all intents and purposes the period
is arbitrarily chosen.
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models in each country. DA numbers are bolded, and below them are the

corresponding MAE. The best performing models for each country have shaded

cells.

USA USA2 AUS CAN CHE DEUW GBRW JPN

I 79.3% 79.3% 78.3% 79.3% 76.1% 87.0% 78.3% 45.7%
(1.208) (1.201) (1.424) (1.135) (0.790) (0.939) (1.282) (0.460)

II 68.5% 79.3% 21.7% 67.4% 34.8% 44.6% 53.3% 42.4%
(1.306) (1.168) (3.399) (1.173) (1.787) (1.891) (2.564) (0.511)

III 77.2% 76.1% 28.3% 79.3% 42.4% 47.8% 45.7% 44.6%
(1.553) (1.634) (2.602) (1.077) (1.556) (1.699) (2.722) (0.523)

IV 75.0% 75.0% 57.6% 69.6% 69.6% 68.5% 71.7% 57.6%
(1.250) (1.252) (1.981) (1.244) (0.927) (1.501) (1.885) (0.840)

V 64.1% 65.2% 35.9% 72.8% 67.4% 47.8% 68.5% 37.0%
(1.605) (1.605) (2.546) (1.328) (1.118) (1.760) (2.021) (0.997)

Table 5.1: Out-of-Sample Performance.
Pseudo-out-of-sample forecasting performance of each model in each country. Percentages are direction
accuracy, numbers in parentheses are mean absolute errors. For both measures, the best performing model
in each country is highlighted. Regressions - I: FB (R.1); II: CP (R.2); III: MA(CP, 2) (R.4); IV: GCP
(R.7); V: MA(GCP, 2) (R.8). Estimation period: 1992.12�2009.05. Recursively forecasting during
2010.05�2017.12 give 92 forecasts.

The CP factor forecasts the right direction more than 50% of the time only in

the US, CAN, and, slightly, GBR. DA in AUS and CHE are surprisingly low.

Adding lags to the model improves the results slightly for all countries except

the GBR and the US (alternative data set), where performance worsens. Still,

MA(CP, 2) only has positive performance (i.e., DA > 50%) in the US and

CAN.

The GCP factor has a DA above 50% for all countries, yet only slightly for

AUS and JPN. Adding lags to the GCP model reduces the performance in all

countries but CAN, and the DA even drops below 50% for AUS, DEU, and

JPN.

The pattern more or less holds for the MAE as well. The simple FB model has

the lowest average absolute error in six data sets and is only higher by 0.03

and 0.06 in the US (alternative data set) and CAN, respectively. It is perhaps

somewhat surprising that the MAE for FB in JPN is the lowest in the sample,

given that JPN is the only country where the model does not have the highest

forecast direction accuracy. As mentioned, however, Leitch and Tanner (1991)
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�nd no relationship between DA and MAE (conventional error-criteria), and

we assume the same holds in our sample.82

Concluding on the out-of-sample results of forecasting average excess bond

returns with direction accuracy as the objective function for excess returns,

the CP factor produces weak results overall. On the other hand, the GCP

seems to generate real-time excess returns, and more consistently than the CP

factor. Yet, according to DA and MAE, these models falls short to the simpler

forward-spot spread model of Fama and Bliss (1987). But how systematic is

this conclusion?

A Closer Look at the Results

Measured by DA and MAE, the forward-spot spread model ("FB model") is

superior in forecasting average expected excess bond return in the period 2010�

2017, predicting the right direction between 76�87% for every country except

Japan. However, closer examination of forecasts and realized average excess

returns show that sample-speci�c properties seem to be driving the superior

performance.

Figure 5.1 depicts the average one-year realized excess returns (AHPRX ≡

rxc,t+1) in the US and the di�erent models' expected risk premia forecasts.

Table 5.2 holds the correlation between actual and predicted values. The FB

model yields only positive predictions and they are fairly stable between 1

and 2%. Yet, the correlation between predicted and actual values is 0.42.

Although the correlation is statistically signi�cant, the FB model is not that

interesting here since it exclusively forecasts positive expected risk premia. In

contrast, the realized average excess returns �uctuate between positive and

82The correlation between out-of-sample MAE and DoC is around -0.46 for our sample, with
a t-stat of -3.2. However, with only 40 observations (�ve models and eight data sets), we
are cautious in making any inferences.
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negative, so the superior DA performance by the FB model is a consequence

of sample-speci�c properties.

Figure 5.1: Forecasts vs. Actual Mean Excess Bond Returns in the US.
Pseudo-out-of-sample forecasts vs. actual average excess bond returns (in percent) in the US. MA(CP)
and MA(GCP) are with k = 2. AHPRX: Average one-year excess bond returns. Estimation period:
1992.12�2009.05. Recursively forecasting during 2010.05�2017.12 results in 92 forecasts.

I II III IV V

0.42 0.09 -0.60 0.42 0.28
(0.00) (0.38) (0.00) (0.00) (0.01)

Table 5.2: Forecast-Actual Correlations in the US.
Correlation between pseudo-out-of-sample forecasts and actual average one-year excess bond returns in
USA. Regressions - I: FB (R.1); II: CP (R.2); III: MA(CP, 2) (R.4); IV: GCP (R.7); V: MA(GCP, 2)
(R.8). P-values of t-statistics in parentheses. Estimation period: 1992.12�2009.05. Recursively forecasting
during 2010.05�2017.12 results in 92 forecasts.

As we discuss in Section 4.2, the CP factor seems to have lost some of its

predictive power in recent years, and the forecasts correlate weakly with

realized risk premia. More worrisome, when adding lags, the correlation

coe�cient becomes negative and signi�cant, a highly undesirable feature for a

forecasting model. Still, MA(CP,2) has good DA for the US, but as with the
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FB model, this seems to be driven by sample-speci�c properties. Looking at

Figure 5.1, we see that the MA(CP,2) model's forecasts are positive for the

whole sample except for a few in 2010. As realized values are also mostly

positive, this explains why the DA of MA(CP,2) is greater than 50%. Also

discussed in Section 4.3, the GCP factor seems to have increased in signi�cance

recently, and the �gure and performance seem to re�ect this. The GCP

model has the highest average correlation across countries and all of them are

signi�cant.83 For the US, the GCP has the highest correlation of all models

and it seems to follow the dynamics of realized values to a greater degree,

relative to the other models (see Figure 5.1). Furthermore, the MAE is at

1.25, only beaten by the FB model. This makes it the best model overall.

As we saw earlier, adding lags to the GCP model worsens the DA in almost

every country. Furthermore, the correlation falls to about a third of the

standard GCP, even though the model seems to track actual values fairly

well (see Figure 5.1). Also, from the �rst prediction for May 2010 to around

2012, the errors are quite large for the MA(GCP,2) model. The errors are

also large for the GCP model, but the forecasts do not �uctuate as extremely

as the MA(GCP,2) model's, especially around 2012�2014. This behaviour in

risk premia forecasting models is much more desirable, and probably more

valuable (than the FB model predictions), because it means that the model

�ts the �uctuating behaviour of historical realized excess bond returns better.

The corresponding �gures for the other countries show the same pattern with

stable forecasts by FB, and �exible, �uctuating results by CP and GCP, with

and without lags.84

Therefore, while the performance measures and correlation declare the simpler

FB model superior in almost every country, our closer examination tells

a di�erent story of the model's forecasting ability. Since the correlation

83See Appendix G.4 for full correlation table.
84See Appendix G.
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coe�cient is positive and the DA is greater than 50% for the GCP model for

all countries, we conclude, with our assumptions, that this model of expected

bond risk premia is able to produce real-time excess returns and would have

been valuable for a bond investor in the sample period 2010�2017. The results

for CP are more mixed and would only be valuable in certain countries. We also

conclude that extending the models with lags worsens the models' forecasting

�t.

Other Estimation Periods

We have performed our analyses with the estimation period ending at several

dates both before and after the �nancial crisis. While changing the estimation

period alters our results, our conclusion remains. Initially, the FB model

seems to yield superior results but closer analysis reveal this is still because of

sample-speci�c features. For instance, ending the estimation period in January

2008, the FB model has the highest DA in all countries, except Japan, but

its forecasts correlate mostly little or negatively with average realized excess

returns. The GCP model also has high DA in all countries, but show a

relatively higher correlation between forecasted and realized values. This is

the case for other estimation periods as well and we keep our conclusion that

the GCP factor seem to be able to produce real-time excess returns.

45

09589260925644GRA 19502



6 Conclusion

We assess the predictability of annual risk premia on one- to �ve-year maturity

government bonds in several countries and whether the predictability can be

exploited by investors to generate excess returns. Particularly, we ask in

research question one whether the results by Cochrane and Piazzesi (2005)

and Dahlquist and Hasseltoft (2013) are still valid and if the CP factor and

GCP factor signi�cantly explain bond risk premia variations during 1992�2017.

Additionally, we assess whether these factors forecast one- to �ve-year stock

risk premia.

We �nd that the GCP factor has become more relevant for explaining annual

excess bond returns variations in the US compared to earlier periods. Our

results indicate that the factor explains a signi�cant part of bond risk premia

variations with averageR2 around 20%.85 In contrast, the CP factor's relevance

has weakened. Our results support Dahlquist and Hasseltoft's notion that

asset prices globally move with more conformity as a consequence of increased

integration of �nancial markets world wide. For stock risk premia, the CP

factor and the GCP factor are insigni�cant. However, when including the

dividend-price ratio and the one- to �ve-year yield spread as control variables,

monthly lagged realizations of the GCP factor signi�cantly forecasts stock risk

premia at a one-year horizon in the US and Germany with a negative sign.

For the other countries, the results are mixed.

We conclude on our �rst research question that bond risk premia are

predictable and that the CP factor and GCP factor signi�cantly explain bond

risk premia variations in 1992�2017. Given our mixed results, we refrain from

drawing conclusions on the factors' stock risk premia predictability.

85Signi�cant at 1% for all countries, R2 are 11%, 12%, 24%, 25%, 22%, 17%, and 32% for
the US (both data sets), AUS, CAN, CHE, DEU, GBR, and JPN, respectively.

46

09589260925644GRA 19502



Research question two asks whether the CP factor and GCP factor have real-

time predictive power. Since results for both factors in explaining stock risk

premia variations are mixed and weak, we do not examine their real-time

predictive power of excess stock returns. To answer research question two, we

follow insights by Leitch and Tanner (1991) and use a simpli�ed trading setup

with directional accuracy (DA) as the objective function to determine the CP

and GCP factor model's predictive power out of sample. In line with the

literature, we �nd that the models that use the CP factor and GCP factor as

forecast variables fall short to the simpler forward-spot spread model. However,

closer analysis reveal that the correlation between the GCP factor forecasts and

realized excess returns in the US is equal to the forward-spot spread forecasts

at 0.42 and statistically signi�cant in our pseudo sample (2010�2017). The

CP factor model's results, however, are weak with correlation of only 0.09.

By examining forecasted and realized excess returns, we observe that the

seemingly superior results by the forward-spot spread model are driven by

sample-speci�c features, while the GCP factor forecasting model seems to a

greater extent mimic the �uctuating behavior of average bond risk premia.

This �nding is consistent across countries in the pseudo sample.

We conclude on our second research question that the CP factor has weak

real-time predictive power for excess bond returns, while our �ndings are more

convincing for the GCP factor.

We acknowledge that the predictive models we use may lack factors that could

in�uence our results. As we focus on annual holding period returns on one-

to �ve-year maturity bonds, a natural extension would be to test how our

results stand up against other holding periods with other maturity bonds.

Furthermore, will incorporating actual traded bond prices a�ect our results?

Piazzesi and Swanson (2008) document that EH predictions of constant risk

premia also fail to hold empirically for the federal funds futures market. They
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use historical actual traded prices on federal funds future contracts to show that

excess returns on these contracts�with one- to six-month holding periods�

are on average positive, time-varying and signi�cantly predictable both in-

and out-of-sample. Their evidence indicates that market participants even

took advantage of the predictability in real-time.

Moreover, our results indicate that the CP factor's signi�cance in forecasting

annual excess stock return has vanished in later periods. However, Koijen,

Lustig, and Van Nieuwerburgh (2017) �nd an interesting relationship between

the CP factor and U.S. stock returns. They show that the CP factor forecasts

aggregate dividend growth, particularly on value stocks, and that CP factor

innovations are tightly linked to the value-minus-growth portfolio returns.

Further, they document that the CP factor is a leading indicator of business

cycle turning points and postulate that the business cycle is a priced state

variable in the cross section of U.S. stock returns, and that the value premium

re�ects compensation for macroeconomic risks. Thus, bond factors, such as

the CP factor, seem to some extent in�uence non-diversi�able risks in U.S.

stock returns.

Furthermore, when assessing real-time predictive power, we assume a simpli�ed

trading setup in a Gaussian setting that has its limitations. To illustrate,

bond returns are heteroskedastic, but our methods do not incorporate the

conditional variance of returns, although conditional variance is paramount

to reduce parameter uncertainty in a trading model. Gargano et al. (2017)

take a Bayesian approach that incorporates stochastic volatility and time-

varying parameters. They �nd signi�cant out-of-sample economic gains when

forecasting excess bond returns in the US on monthly holding periods. Their

�nding contrasts Thornton and Valente (2012), who do not account for these

features.
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To have any economic value and be useful to investors' portfolio allocation

decisions, a predictive model must produce consistent and accurate results.

The examples of di�ering results highlight the importance of incorporating

more advanced statistical methods when estimating and modelling expected

excess returns, and should encourage future research of bond risk premia

predictability.
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APPENDIX

A Stock Data Calculations

We derive the τ -year value-weighted stock returns at t by monthly

compounding the returns from t− τ to t:

sr
(τ)
t =

 t∏
i=t−τ+ 1

12

(
1 + r

(i− 1
12

)

i

)
− 1


The data is of monthly frequency, thus, di = 1

12
(i.e., t − 11

12
, . . . , t − 2

12
, t).

The realized τ -year excess stock return at t is then the τ -year return less the

t− τ -year zero-coupon yield:

sx
(τ)
t = sr

(τ)
t − y

(τ)
t−τ .

We implicitly derive annual dividend-price ratios for each month by �nding

the ratio of monthly compounded annual returns including dividends to the

corresponding returns excluding dividends and subtracting one:

(
d

p

)
t

=

(
1 + sr

(1)
t [incl.div]

)
(

1 + sr
(1)
t [excl.div]

) − 1.
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B Descriptive Statistics

In this Appendix section we present the relevant descriptive statistics of the

data, including diagnostics. The sample period 1992.12�2017.12 and data

observations is of monthly frequency, recorded last business day.

B.1 Descriptive Statistics: Bond Risk Premia

Country Series Mean I. II. SR1 I. II. Obs. I. II.

USA

rx
(2)
t+1 0.59∗∗ 1.57∗∗ 0.49∗∗ 0.52 2.19 0.44 289 26 263

rx
(3)
t+1 1.22∗∗ 3.04∗∗ 1.04∗∗ 0.55 2.42 0.47 289 26 263

rx
(4)
t+1 1.81∗∗ 3.96∗∗ 1.59∗∗ 0.57 1.89 0.50 289 26 263

rx
(5)
t+1 2.18∗∗ 4.68∗∗ 1.94∗∗ 0.54 1.91 0.47 289 26 263

USA2

rx
(2)
t+1 0.57∗∗ 1.58∗∗ 0.48∗∗ 0.50 2.16 0.42 289 26 263

rx
(3)
t+1 1.17∗∗ 2.94∗∗ 0.99∗∗ 0.53 2.25 0.45 289 26 263

rx
(4)
t+1 1.73∗∗ 4.00∗∗ 1.51∗∗ 0.55 2.17 0.47 289 26 263

rx
(5)
t+1 2.25∗∗ 4.81∗∗ 2.00∗∗ 0.56 2.03 0.49 289 26 263

AUS

rx
(2)
t+1 0.34∗∗ n.a. 0.34∗∗ 0.27 n.a. 0.27 289 0 289

rx
(3)
t+1 0.85∗∗ n.a. 0.85∗∗ 0.35 n.a. 0.35 289 0 289

rx
(4)
t+1 1.33∗∗ n.a. 1.33∗∗ 0.37 n.a. 0.37 289 0 289

rx
(5)
t+1 1.70∗∗ n.a. 1.70∗∗ 0.37 n.a. 0.37 289 0 289

CAN

rx
(2)
t+1 0.75∗∗ 1.64∗∗ 0.69∗∗ 0.65 1.91 0.61 289 18 271

rx
(3)
t+1 1.35∗∗ 2.51∗∗ 1.27∗∗ 0.64 1.68 0.60 289 18 271

rx
(4)
t+1 1.87∗∗ 2.80∗∗ 1.81∗∗ 0.64 1.36 0.62 289 18 271

rx
(5)
t+1 2.36∗∗ 2.93∗∗ 2.32∗∗ 0.65 1.11 0.63 289 18 271

CHE

rx
(2)
t+1 0.42∗∗ 1.55∗∗ 0.21∗∗ 0.47 2.28 0.27 289 46 243

rx
(3)
t+1 0.97∗∗ 2.96∗∗ 0.59∗∗ 0.56 2.35 0.38 289 46 243

rx
(4)
t+1 1.54∗∗ 4.10∗∗ 1.06∗∗ 0.63 2.24 0.47 289 46 243

rx
(5)
t+1 2.06∗∗ 4.97∗∗ 1.51∗∗ 0.66 2.09 0.51 289 46 243

DEU

rx
(2)
t+1 0.66∗∗ 1.18∗∗ 0.55∗∗ 0.65 1.10 0.57 289 49 240

rx
(3)
t+1 1.36∗∗ 2.06∗∗ 1.22∗∗ 0.68 0.97 0.63 289 49 240

rx
(4)
t+1 2.03∗∗ 2.67∗∗ 1.90∗∗ 0.71 0.87 0.68 289 49 240

rx
(5)
t+1 2.64∗∗ 3.08∗∗ 2.55∗∗ 0.72 0.79 0.71 289 49 240

GBR

rx
(2)
t+1 0.59∗∗ 1.96∗∗ 0.49∗∗ 0.55 1.97 0.49 289 21 268

rx
(3)
t+1 1.21∗∗ 3.74∗∗ 1.01∗∗ 0.58 2.74 0.51 289 21 268

rx
(4)
t+1 1.72∗∗ 4.98∗∗ 1.47∗∗ 0.58 3.00 0.51 289 21 268

rx
(5)
t+1 2.18∗∗ 5.81∗∗ 1.89∗∗ 0.57 2.80 0.50 289 21 268

JPN

rx
(2)
t+1 0.38∗∗ 0.26∗∗ 0.44∗∗ 0.63 0.98 0.62 289 102 187

rx
(3)
t+1 0.83∗∗ 0.63∗∗ 0.93∗∗ 0.66 1.02 0.63 289 102 187

rx
(4)
t+1 1.39∗∗ 1.09∗∗ 1.55∗∗ 0.72 1.01 0.69 289 102 187

rx
(5)
t+1 1.82∗∗ 1.42∗∗ 2.05∗∗ 0.73 0.90 0.71 289 102 187

Table B.1.1: Descriptive Statistics - Bond Risk Premia.
One-year mean excess bond returns on two- to �ve-year maturity bonds, Sharpe ratio (SR) and
observations in international markets. Mean, Sharpe ratio and number of observations in columns I and
II are condition on buying in recession and non-recession periods, respectively. 1: For (d/p)t standard
deviation are tabulated. **: p-value < 0.01, *: p-value < 0.05. Sample period: 1992.12�2017.12.
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B.2 Descriptive Statistics: Stock Risk Premia and Dividend-Price

Ratio

Series Mean I. II. SR1 I. II. Obs. I. II.

USA

(d/p)t 2.01∗∗ 1.95∗∗ 2.02∗∗ 0.42 0.56 0.41 301 26 275

sx
(1)
t 7.93∗∗ −4.91 9.20∗∗ 0.45 -0.16 0.61 289 26 263

sx
(2)
t 16.29∗∗ 12.00 16.74∗∗ 0.57 0.31 0.61 277 26 251

sx
(3)
t 24.93∗∗ 20.73∗∗ 25.39∗∗ 0.64 0.62 0.64 265 26 239

sx
(4)
t 33.40∗∗ 32.71∗∗ 33.48∗∗ 0.66 0.77 0.65 253 26 227

sx
(5)
t 40.00∗∗ 56.31∗∗ 38.03∗∗ 0.65 1.01 0.61 241 26 215

AUS

(d/p)t 3.92∗∗ n.a. 3.92∗∗ 0.58 n.a. 0.58 301 0 301

sx
(1)
t 5.65∗∗ n.a. 5.65∗∗ 0.38 n.a. 0.38 289 0 289

sx
(2)
t 10.88∗∗ n.a. 10.88∗∗ 0.51 n.a. 0.51 277 0 277

sx
(3)
t 16.97∗∗ n.a. 16.97∗∗ 0.62 n.a. 0.62 265 0 265

sx
(4)
t 23.54∗∗ n.a. 23.54∗∗ 0.71 n.a. 0.71 253 0 253

sx
(5)
t 29.61∗∗ n.a. 29.61∗∗ 0.84 n.a. 0.84 241 0 241

CAN

(d/p)t 2.34∗∗ 2.83∗∗ 2.31∗∗ 0.58 0.50 0.57 301 18 283

sx
(1)
t 7.77∗∗ 4.38 8.00∗∗ 0.45 0.14 0.50 289 18 271

sx
(2)
t 15.11∗∗ 25.22∗∗ 14.40∗∗ 0.61 0.70 0.60 277 18 259

sx
(3)
t 22.55∗∗ 21.50∗∗ 22.63∗∗ 0.78 0.91 0.77 265 18 247

sx
(4)
t 31.00∗∗ 19.93∗ 31.85∗∗ 0.87 0.64 0.89 253 18 235

sx
(5)
t 38.43∗∗ 35.04∗∗ 38.70∗∗ 0.93 0.88 0.94 241 18 223

CHE

(d/p)t 2.14∗∗ 1.64∗∗ 2.25∗∗ 0.83 0.27 0.87 301 56 245

sx
(1)
t 8.91∗∗ 10.29∗ 8.65∗∗ 0.44 0.38 0.46 289 46 243

sx
(2)
t 17.91∗∗ 36.99∗∗ 14.11∗∗ 0.54 0.77 0.51 277 46 231

sx
(3)
t 28.54∗∗ 62.07∗∗ 21.50∗∗ 0.61 0.97 0.55 265 46 219

sx
(4)
t 38.38∗∗ 80.64∗∗ 28.99∗∗ 0.66 1.41 0.54 253 46 207

sx
(5)
t 44.98∗∗ 92.11∗∗ 33.86∗∗ 0.66 1.72 0.51 241 46 195

DEU

(d/p)t 2.59∗∗ 2.79∗∗ 2.54∗∗ 0.52 0.46 0.52 301 61 240

sx
(1)
t 8.61∗∗ −5.59 11.50∗∗ 0.38 -0.19 0.59 289 49 240

sx
(2)
t 16.81∗∗ 2.96 19.79∗∗ 0.48 0.08 0.59 277 49 228

sx
(3)
t 26.51∗∗ 16.56∗ 28.77∗∗ 0.56 0.36 0.61 265 49 216

sx
(4)
t 35.40∗∗ 41.87∗∗ 33.84∗∗ 0.59 0.70 0.57 253 49 204

sx
(5)
t 40.97∗∗ 60.13∗∗ 36.08∗∗ 0.59 1.08 0.50 241 49 192

GBR

(d/p)t 3.53∗∗ 4.50∗∗ 3.46∗∗ 0.63 0.28 0.58 301 21 280

sx
(1)
t 5.44∗∗ 18.33∗∗ 4.43∗∗ 0.35 0.95 0.30 289 21 268

sx
(2)
t 10.54∗∗ 28.89∗∗ 9.03∗∗ 0.44 1.15 0.39 277 21 256

sx
(3)
t 15.83∗∗ 30.53∗∗ 14.57∗∗ 0.51 1.65 0.46 265 21 244

sx
(4)
t 20.74∗∗ 47.18∗∗ 18.34∗∗ 0.55 1.86 0.48 253 21 232

sx
(5)
t 24.24∗∗ 60.40∗∗ 20.78∗∗ 0.57 2.20 0.49 241 21 220

JPN

(d/p)t 1.38∗∗ 1.32∗∗ 1.42∗∗ 0.58 0.55 0.60 301 114 187

sx
(1)
t 4.59∗∗ 6.29∗ 3.67∗ 0.20 0.23 0.18 289 102 187

sx
(2)
t 8.04∗∗ 13.51∗∗ 4.85 0.24 0.43 0.14 277 102 175

sx
(3)
t 12.69∗∗ 21.99∗∗ 6.88∗ 0.29 0.51 0.16 265 102 163

sx
(4)
t 14.13∗∗ 26.29∗∗ 6.69 0.28 0.49 0.14 253 96 157

sx
(5)
t 14.58∗∗ 37.88∗∗ −0.33 0.26 0.68 -0.01 241 94 147

Table B.2.1: Descriptive Statistics - Stock Risk Premia and Dividend-Price Ratios.
One- to �ve-year mean excess stock returns, Sharpe ratio (SR) and observations in international markets.
Mean, Sharpe ratio and number of observations in columns I and II are condition on buying in recession
and non-recession periods, respectively. 1: For (d/p)t standard deviation are tabulated. **: p-value <
0.01, *: p-value < 0.05. Sample period: 1992.12�2017.12. Note: two- to �ve-year excess returns are not
stated in annualized terms.
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B.3 Correlations

Correlations: Bond Yields

y
(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t I. II. III. IV. V. VI. VII. VIII.

y
(1)
t 1.00 1.00 1.00 0.75 0.91 0.76 0.79 0.91 0.44

y
(2)
t 0.99 1.00 1.00 1.00 0.79 0.92 0.82 0.84 0.93 0.55

y
(3)
t 0.98 1.00 1.00 1.00 1.00 0.82 0.93 0.85 0.87 0.94 0.63

y
(4)
t 0.97 0.99 1.00 1.00 1.00 1.00 0.84 0.94 0.87 0.89 0.94 0.70

I. USA

y
(5)
t 0.95 0.98 0.99 1.00 1.00 1.00 1.00 0.86 0.95 0.89 0.91 0.95 0.75

y
(1)
t 1.00 1.00 1.00 0.74 0.91 0.76 0.79 0.91 0.44

y
(2)
t 0.99 1.00 1.00 1.00 0.79 0.92 0.82 0.84 0.93 0.55

y
(3)
t 0.98 1.00 1.00 1.00 1.00 0.82 0.93 0.85 0.87 0.94 0.63

y
(4)
t 0.97 0.99 1.00 1.00 1.00 1.00 0.84 0.94 0.87 0.89 0.95 0.70

II. USA2

y
(5)
t 0.95 0.98 0.99 1.00 1.00 1.00 1.00 0.86 0.95 0.89 0.91 0.95 0.75

y
(1)
t 1.00 0.75 0.74 1.00 0.80 0.77 0.81 0.83 0.48

y
(2)
t 0.98 1.00 0.79 0.79 1.00 0.87 0.86 0.88 0.88 0.64

y
(3)
t 0.96 1.00 1.00 0.82 0.82 1.00 0.90 0.90 0.92 0.91 0.72

y
(4)
t 0.95 0.99 1.00 1.00 0.84 0.84 1.00 0.92 0.92 0.93 0.92 0.78

III. AUS

y
(5)
t 0.94 0.98 1.00 1.00 1.00 0.86 0.86 1.00 0.93 0.94 0.94 0.94 0.82

y
(1)
t 1.00 0.91 0.91 0.80 1.00 0.88 0.90 0.91 0.64

y
(2)
t 0.99 1.00 0.92 0.92 0.87 1.00 0.93 0.93 0.94 0.71

y
(3)
t 0.98 1.00 1.00 0.93 0.93 0.90 1.00 0.94 0.95 0.96 0.76

y
(4)
t 0.96 0.99 1.00 1.00 0.94 0.94 0.92 1.00 0.95 0.96 0.97 0.80

IV. CAN

y
(5)
t 0.95 0.98 0.99 1.00 1.00 0.95 0.95 0.93 1.00 0.95 0.96 0.97 0.83

y
(1)
t 1.00 0.76 0.76 0.77 0.88 1.00 0.96 0.81 0.78

y
(2)
t 0.99 1.00 0.82 0.82 0.86 0.93 1.00 0.97 0.88 0.78

y
(3)
t 0.97 1.00 1.00 0.85 0.85 0.90 0.94 1.00 0.98 0.92 0.80

y
(4)
t 0.96 0.99 1.00 1.00 0.87 0.87 0.92 0.95 1.00 0.98 0.94 0.82

V. CHE

y
(5)
t 0.95 0.98 0.99 1.00 1.00 0.89 0.89 0.94 0.95 1.00 0.99 0.95 0.84

y
(1)
t 1.00 0.79 0.79 0.81 0.90 0.96 1.00 0.91 0.71

y
(2)
t 0.99 1.00 0.84 0.84 0.88 0.93 0.97 1.00 0.94 0.73

y
(3)
t 0.98 1.00 1.00 0.87 0.87 0.92 0.95 0.98 1.00 0.96 0.76

y
(4)
t 0.97 0.99 1.00 1.00 0.89 0.89 0.93 0.96 0.98 1.00 0.97 0.79

VI. DEU

y
(5)
t 0.96 0.98 0.99 1.00 1.00 0.91 0.91 0.94 0.96 0.99 1.00 0.97 0.82

y
(1)
t 1.00 0.91 0.91 0.83 0.91 0.81 0.91 1.00 0.49

y
(2)
t 0.99 1.00 0.93 0.93 0.88 0.94 0.88 0.94 1.00 0.61

y
(3)
t 0.98 1.00 1.00 0.94 0.94 0.91 0.96 0.92 0.96 1.00 0.70

y
(4)
t 0.96 0.99 1.00 1.00 0.94 0.95 0.92 0.97 0.94 0.97 1.00 0.77

VII. GBR

y
(5)
t 0.95 0.98 0.99 1.00 1.00 0.95 0.95 0.94 0.97 0.95 0.97 1.00 0.82

y
(1)
t 1.00 0.44 0.44 0.48 0.64 0.78 0.71 0.49 1.00

y
(2)
t 0.99 1.00 0.55 0.55 0.64 0.71 0.78 0.73 0.61 1.00

y
(3)
t 0.97 0.99 1.00 0.63 0.63 0.72 0.76 0.80 0.76 0.70 1.00

y
(4)
t 0.95 0.98 1.00 1.00 0.70 0.70 0.78 0.80 0.82 0.79 0.77 1.00

VIII. JPN

y
(5)
t 0.93 0.97 0.99 1.00 1.00 0.75 0.75 0.82 0.83 0.84 0.82 0.82 1.00

Table B.3.1: Correlations - Yields.
Correlation of one- to �ve-year maturity bond yields in international markets. Numbers in columns
I.�VIII. are correlations with yields in other countries. Sample period: 1992.12�2017.12.
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Correlations: Bond Risk Premia

rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1 I. II. III. IV. V. VI. VII. VIII.

rx
(2)
t+1 1.00 1.00 1.00 0.52 0.72 0.66 0.60 0.67 0.29

rx
(3)
t+1 0.98 1.00 1.00 1.00 0.57 0.74 0.68 0.63 0.71 0.33

rx
(4)
t+1 0.94 0.98 1.00 1.00 1.00 0.63 0.76 0.69 0.67 0.75 0.36

I. USA

rx
(5)
t+1 0.89 0.95 0.99 1.00 1.00 1.00 0.67 0.77 0.69 0.70 0.77 0.40

rx
(2)
t+1 1.00 1.00 1.00 0.50 0.72 0.65 0.59 0.66 0.28

rx
(3)
t+1 0.98 1.00 1.00 1.00 0.58 0.75 0.68 0.63 0.72 0.32

rx
(4)
t+1 0.94 0.99 1.00 1.00 1.00 0.63 0.76 0.69 0.67 0.76 0.36

II. USA2

rx
(5)
t+1 0.89 0.96 0.99 1.00 1.00 1.00 0.67 0.77 0.70 0.70 0.78 0.40

rx
(2)
t+1 1.00 0.52 0.50 1.00 0.69 0.61 0.66 0.68 0.48

rx
(3)
t+1 0.97 1.00 0.57 0.58 1.00 0.76 0.68 0.71 0.73 0.47

rx
(4)
t+1 0.93 0.99 1.00 0.63 0.63 1.00 0.80 0.73 0.75 0.78 0.50

III. AUS

rx
(5)
t+1 0.91 0.98 1.00 1.00 0.67 0.67 1.00 0.83 0.75 0.79 0.81 0.53

rx
(2)
t+1 1.00 0.72 0.72 0.69 1.00 0.78 0.72 0.68 0.50

rx
(3)
t+1 0.97 1.00 0.74 0.75 0.76 1.00 0.82 0.76 0.72 0.51

rx
(4)
t+1 0.92 0.98 1.00 0.76 0.76 0.80 1.00 0.82 0.78 0.74 0.52

IV. CAN

rx
(5)
t+1 0.86 0.95 0.99 1.00 0.77 0.77 0.83 1.00 0.82 0.80 0.76 0.54

rx
(2)
t+1 1.00 0.66 0.65 0.61 0.78 1.00 0.83 0.73 0.54

rx
(3)
t+1 0.97 1.00 0.68 0.68 0.68 0.82 1.00 0.88 0.77 0.55

rx
(4)
t+1 0.93 0.99 1.00 0.69 0.69 0.73 0.82 1.00 0.91 0.79 0.55

V. CHE

rx
(5)
t+1 0.89 0.96 0.99 1.00 0.69 0.70 0.75 0.82 1.00 0.93 0.80 0.56

rx
(2)
t+1 1.00 0.60 0.59 0.66 0.72 0.83 1.00 0.85 0.53

rx
(3)
t+1 0.98 1.00 0.63 0.63 0.71 0.76 0.88 1.00 0.85 0.56

rx
(4)
t+1 0.94 0.99 1.00 0.67 0.67 0.75 0.78 0.91 1.00 0.85 0.55

VI. DEU

rx
(5)
t+1 0.89 0.96 0.99 1.00 0.70 0.70 0.79 0.80 0.93 1.00 0.86 0.56

rx
(2)
t+1 1.00 0.67 0.66 0.68 0.68 0.73 0.85 1.00 0.44

rx
(3)
t+1 0.96 1.00 0.71 0.72 0.73 0.72 0.77 0.85 1.00 0.43

rx
(4)
t+1 0.90 0.98 1.00 0.75 0.76 0.78 0.74 0.79 0.85 1.00 0.43

VII. GBR

rx
(5)
t+1 0.84 0.95 0.99 1.00 0.77 0.78 0.81 0.76 0.80 0.86 1.00 0.45

rx
(2)
t+1 1.00 0.29 0.28 0.48 0.50 0.54 0.53 0.44 1.00

rx
(3)
t+1 0.99 1.00 0.33 0.32 0.47 0.51 0.55 0.56 0.43 1.00

rx
(4)
t+1 0.96 0.99 1.00 0.36 0.36 0.50 0.52 0.55 0.55 0.43 1.00

VIII. JPN

rx
(5)
t+1 0.93 0.97 0.99 1.00 0.40 0.40 0.53 0.54 0.56 0.56 0.45 1.00

Table B.3.2: Correlations - Bond Risk Premia.
Correlation of annual excess bond returns on two- to �ve-year maturity bonds in international markets.
Numbers in columns I.�VIII. are correlations with excess returns in other countries. Sample period:
1992.12�2017.12.
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Correlations: Stock Risk Premia

Country Series I. II. III. IV. V. VI. VII.

sx
(1)
t 1.00 0.74 0.82 0.78 0.83 0.92 0.61

sx
(2)
t 1.00 0.73 0.81 0.82 0.86 0.93 0.60

sx
(3)
t 1.00 0.67 0.80 0.89 0.89 0.95 0.52

sx
(4)
t 1.00 0.63 0.77 0.92 0.91 0.96 0.47

I. USA

sx
(5)
t 1.00 0.61 0.76 0.90 0.91 0.96 0.45

sx
(1)
t 0.74 1.00 0.73 0.75 0.73 0.83 0.61

sx
(2)
t 0.73 1.00 0.83 0.74 0.79 0.81 0.73

sx
(3)
t 0.67 1.00 0.87 0.72 0.76 0.75 0.71

sx
(4)
t 0.63 1.00 0.85 0.68 0.70 0.70 0.62

II. AUS

sx
(5)
t 0.61 1.00 0.84 0.64 0.64 0.65 0.53

sx
(1)
t 0.82 0.73 1.00 0.71 0.83 0.79 0.58

sx
(2)
t 0.81 0.83 1.00 0.73 0.83 0.82 0.62

sx
(3)
t 0.80 0.87 1.00 0.79 0.85 0.85 0.56

sx
(4)
t 0.77 0.85 1.00 0.81 0.86 0.82 0.44

III. CAN

sx
(5)
t 0.76 0.84 1.00 0.81 0.85 0.79 0.36

sx
(1)
t 0.78 0.75 0.71 1.00 0.88 0.87 0.56

sx
(2)
t 0.82 0.74 0.73 1.00 0.92 0.87 0.51

sx
(3)
t 0.89 0.72 0.79 1.00 0.93 0.91 0.45

sx
(4)
t 0.92 0.68 0.81 1.00 0.93 0.92 0.35

IV. CHE

sx
(5)
t 0.90 0.64 0.81 1.00 0.93 0.90 0.25

sx
(1)
t 0.83 0.73 0.83 0.88 1.00 0.86 0.63

sx
(2)
t 0.86 0.79 0.83 0.92 1.00 0.90 0.59

sx
(3)
t 0.89 0.76 0.85 0.93 1.00 0.93 0.56

sx
(4)
t 0.91 0.70 0.86 0.93 1.00 0.93 0.46

V. DEU

sx
(5)
t 0.91 0.64 0.85 0.93 1.00 0.94 0.37

sx
(1)
t 0.92 0.83 0.79 0.87 0.86 1.00 0.60

sx
(2)
t 0.93 0.81 0.82 0.87 0.90 1.00 0.57

sx
(3)
t 0.95 0.75 0.85 0.91 0.93 1.00 0.55

sx
(4)
t 0.96 0.70 0.82 0.92 0.93 1.00 0.48

VI. GBR

sx
(5)
t 0.96 0.65 0.79 0.90 0.94 1.00 0.43

sx
(1)
t 0.61 0.61 0.58 0.56 0.63 0.60 1.00

sx
(2)
t 0.60 0.73 0.62 0.51 0.59 0.57 1.00

sx
(3)
t 0.52 0.71 0.56 0.45 0.56 0.55 1.00

sx
(4)
t 0.47 0.62 0.44 0.35 0.46 0.48 1.00

VII. JPN

sx
(5)
t 0.45 0.53 0.36 0.25 0.37 0.43 1.00

Table B.3.3: Correlations - Stock Risk Premia.
Correlation of one- to �ve-year excess stock returns in international markets. Numbers in columns
I.�VIII. are correlations with respective variable in other countries. Sample period: 1992.12�2017.12.
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B.4 Diagnostics

Diagnostics: Bond Yields

Sample autocorrelation KPSS test ADF test
Country Series ρ̂( 1

12
) ρ̂(1) ρ̂(5) t-stat p-val t-stat p-val

USA

y
(1)
t 0.99 0.84 0.25 20.9 0.01 -0.9 0.32

y
(2)
t 0.99 0.85 -0.01 22.8 0.01 -1.1 0.25

y
(3)
t 0.99 0.86 -0.08 24.1 0.01 -1.2 0.20

y
(4)
t 0.99 0.85 -0.12 24.9 0.01 -1.3 0.17

y
(5)
t 0.99 0.85 -0.12 25.5 0.01 -1.4 0.15

USA2

y
(1)
t 0.99 0.84 0.26 21.1 0.01 -0.9 0.31

y
(2)
t 0.99 0.85 -0.05 22.8 0.01 -1.1 0.25

y
(3)
t 0.99 0.85 -0.10 24.1 0.01 -1.2 0.20

y
(4)
t 0.99 0.85 -0.12 25.0 0.01 -1.3 0.17

y
(5)
t 0.99 0.85 -0.13 25.6 0.01 -1.4 0.15

AUS

y
(1)
t 0.98 0.66 0.11 17.4 0.01 -1.2 0.20

y
(2)
t 0.98 0.71 0.16 19.9 0.01 -1.4 0.15

y
(3)
t 0.98 0.73 0.14 21.0 0.01 -1.5 0.13

y
(4)
t 0.98 0.74 0.13 21.5 0.01 -1.6 0.11

y
(5)
t 0.98 0.75 0.12 21.9 0.01 -1.6 0.10

CAN

y
(1)
t 0.98 0.78 0.40 24.4 0.01 -1.9 0.05

y
(2)
t 0.99 0.82 0.05 26.1 0.01 -1.8 0.07

y
(3)
t 0.99 0.84 0.02 27.0 0.01 -1.8 0.07

y
(4)
t 0.99 0.85 0.00 27.5 0.01 -1.8 0.07

y
(5)
t 0.99 0.86 -0.02 27.8 0.01 -1.8 0.06

CHE

y
(1)
c,t 0.97 0.69 0.20 19.8 0.01 -3.3 0.00

y
(2)
t 0.98 0.74 0.12 22.3 0.01 -3.0 0.00

y
(3)
t 0.98 0.76 0.08 23.6 0.01 -2.8 0.01

y
(4)
t 0.98 0.78 0.04 24.3 0.01 -2.7 0.01

y
(5)
t 0.98 0.79 0.01 24.8 0.01 -2.6 0.01

DEU

y
(1)
t 0.98 0.75 0.29 23.7 0.01 -3.3 0.00

y
(2)
t 0.98 0.78 0.04 24.8 0.01 -2.7 0.01

y
(3)
t 0.98 0.80 0.00 25.7 0.01 -2.4 0.02

y
(4)
t 0.98 0.81 -0.04 26.2 0.01 -2.3 0.02

y
(5)
t 0.99 0.83 -0.08 26.6 0.01 -2.2 0.03

GBR

y
(1)
t 0.99 0.86 0.33 25.7 0.01 -1.7 0.08

y
(2)
t 0.99 0.86 -0.01 26.8 0.01 -1.7 0.08

y
(3)
t 0.99 0.86 -0.08 27.2 0.01 -1.8 0.07

y
(4)
t 0.99 0.85 -0.12 27.3 0.01 -1.8 0.06

y
(5)
t 0.99 0.85 -0.13 27.2 0.01 -1.9 0.06

JPN

y
(1)
t 0.96 0.56 0.00 11.5 0.01 -4.9 0.00

y
(2)
t 0.96 0.61 0.01 13.5 0.01 -4.2 0.00

y
(3)
t 0.96 0.65 0.06 15.3 0.01 -3.6 0.00

y
(4)
t 0.97 0.68 0.11 17.0 0.01 -3.4 0.00

y
(5)
t 0.97 0.72 0.15 18.4 0.01 -3.2 0.00

Table B.4.1: Diagnostics - Yields.
Yield diagnostics on one-to �ve-year maturity bonds, sample period: 1992.12�2017.12. ρ̂( 1

12
), ρ̂(1) and

ρ̂(5) are sample autocorrelation with lags one month, one year and �ve year, respectively. t-stat and p-val
are T-statistics and P-value of the stationarity test by Kwiatkowski et al. (1992) and Dickey and Fuller
(1979). Note: we run the KPSS test with a trend component, thus testing for trend stationarity. MatLab
only reports p-values of the t-statistics between [0.01�0.10] (i.e., values lower than 0.01 shows 0.01, while
values larger than 0.1 shows 0.1.).
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Diagnostics: Bond Risk Premia

Sample autocorrelation KPSS test ADF test
Country Series ρ̂( 1

12 ) ρ̂(1) ρ̂(5) t-stat p-val t-stat p-val

USA

rx
(2)
t+1 0.94 0.13 0.05 0.78 0.01 -2.72 0.01

rx
(3)
t+1 0.93 0.04 0.05 0.80 0.01 -2.86 0.00

rx
(4)
t+1 0.92 -0.05 0.05 0.87 0.01 -3.09 0.00

rx
(5)
t+1 0.92 -0.11 0.05 1.01 0.01 -3.22 0.00

USA2

rx
(2)
t+1 0.95 0.14 0.06 0.80 0.01 -2.58 0.01

rx
(3)
t+1 0.94 0.04 0.06 0.85 0.01 -2.82 0.00

rx
(4)
t+1 0.93 -0.04 0.06 0.96 0.01 -3.03 0.00

rx
(5)
t+1 0.92 -0.11 0.06 0.98 0.01 -3.19 0.00

AUS

rx
(2)
t+1 0.92 -0.19 0.01 1.11 0.01 -3.58 0.00

rx
(3)
t+1 0.92 -0.26 0.01 0.54 0.03 -3.64 0.00

rx
(4)
t+1 0.92 -0.28 0.01 0.42 0.07 -3.59 0.00

rx
(5)
t+1 0.92 -0.28 0.01 0.40 0.08 -3.54 0.00

CAN

rx
(2)
t+1 0.92 0.06 0.10 2.21 0.01 -3.07 0.00

rx
(3)
t+1 0.91 -0.02 0.10 1.12 0.01 -3.25 0.00

rx
(4)
t+1 0.91 -0.08 0.10 0.73 0.01 -3.34 0.00

rx
(5)
t+1 0.90 -0.11 0.10 0.57 0.03 -3.38 0.00

CHE

rx
(2)
t+1 0.94 0.09 -0.06 2.98 0.01 -2.89 0.00

rx
(3)
t+1 0.94 0.02 -0.06 1.59 0.01 -2.84 0.00

rx
(4)
t+1 0.94 -0.05 -0.06 0.88 0.01 -2.78 0.01

rx
(5)
t+1 0.94 -0.10 -0.06 0.58 0.02 -2.74 0.01

DEU

rx
(2)
t+1 0.95 -0.03 -0.04 1.07 0.01 -2.48 0.01

rx
(3)
t+1 0.94 -0.11 -0.04 0.77 0.01 -2.63 0.01

rx
(4)
t+1 0.94 -0.16 -0.04 0.53 0.04 -2.70 0.01

rx
(5)
t+1 0.93 -0.19 -0.04 0.41 0.07 -2.76 0.01

GBR

rx
(2)
t+1 0.94 -0.02 0.01 0.53 0.04 -2.80 0.01

rx
(3)
t+1 0.94 -0.10 0.01 0.75 0.01 -2.92 0.00

rx
(4)
t+1 0.93 -0.14 0.01 1.05 0.01 -3.00 0.00

rx
(5)
t+1 0.93 -0.16 0.01 1.20 0.01 -3.10 0.00

JPN

rx
(2)
t+1 0.92 0.20 -0.02 8.86 0.01 -3.63 0.00

rx
(3)
t+1 0.92 0.10 -0.02 8.04 0.01 -3.51 0.00

rx
(4)
t+1 0.91 0.06 -0.02 7.80 0.01 -3.59 0.00

rx
(5)
t+1 0.91 0.04 -0.02 7.31 0.01 -3.60 0.00

Table B.4.2: Diagnostics - Bond Risk Premia.
Annual excess bond return diagnostics on two-to �ve-year maturity bonds, sample period:
1992.12�2017.12. ρ̂( 1

12
), ρ̂(1) and ρ̂(5) are sample autocorrelation with lags one month, one year and �ve

year, respectively. t-stat and p-val are T-statistics and P-value of the stationarity test by Kwiatkowski et
al. (1992) and Dickey and Fuller (1979). Note: MatLab only reports p-values of the t-statistics between
[0.01�0.10] (i.e., values lower than 0.01 shows 0.01, while values larger than 0.1 shows 0.1.).
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Diagnostics: Stock Risk Premia and Dividend-yield

Sample autocorrelation KPSS test ADF test
Country Series ρ̂( 1

12
) ρ̂(1) ρ̂(5) t-stat p-val t-stat p-val

USA

(d/p)t 0.99 0.75 -0.17 5.43 0.01 -1.42 0.14

sx
(1)
t 0.93 0.05 -0.37 0.87 0.01 -2.85 0.00

sx
(2)
t 0.96 0.45 -0.35 1.59 0.01 -1.87 0.06

sx
(3)
t 0.97 0.64 -0.33 2.60 0.01 -1.60 0.10

sx
(4)
t 0.98 0.68 -0.34 3.21 0.01 -1.41 0.15

sx
(5)
t 0.98 0.62 -0.36 3.42 0.01 -1.39 0.15

AUS

(d/p)t 0.99 0.73 0.29 18.99 0.01 -0.01 0.65

sx
(1)
t 0.92 -0.17 -0.13 0.43 0.06 -3.41 0.00

sx
(2)
t 0.96 0.30 -0.24 0.85 0.01 -2.17 0.03

sx
(3)
t 0.97 0.50 -0.23 1.66 0.01 -1.84 0.06

sx
(4)
t 0.97 0.46 -0.27 2.22 0.01 -1.77 0.07

sx
(5)
t 0.97 0.43 -0.48 3.16 0.01 -1.63 0.10

CAN

(d/p)t 0.99 0.80 0.20 12.52 0.01 -0.89 0.32

sx
(1)
t 0.93 -0.20 -0.28 0.41 0.07 -3.03 0.00

sx
(2)
t 0.95 0.19 -0.23 0.93 0.01 -2.19 0.03

sx
(3)
t 0.96 0.44 -0.17 2.26 0.01 -1.85 0.06

sx
(4)
t 0.96 0.45 -0.25 3.11 0.01 -1.79 0.07

sx
(5)
t 0.97 0.32 -0.47 3.61 0.01 -1.72 0.08

CHE

(d/p)t 0.99 0.87 0.42 24.53 0.01 -0.10 0.61

sx
(1)
t 0.94 0.10 -0.34 1.46 0.01 -2.85 0.00

sx
(2)
t 0.97 0.54 -0.40 2.55 0.01 -1.76 0.07

sx
(3)
t 0.98 0.64 -0.37 4.03 0.01 -1.55 0.11

sx
(4)
t 0.98 0.69 -0.37 5.33 0.01 -1.46 0.14

sx
(5)
t 0.98 0.62 -0.35 5.88 0.01 -2.31 0.02

DEU

(d/p)t 0.95 0.52 0.00 5.57 0.01 -1.25 0.19

sx
(1)
t 0.93 0.01 -0.41 0.67 0.02 -3.05 0.00

sx
(2)
t 0.96 0.45 -0.39 1.16 0.01 -2.11 0.03

sx
(3)
t 0.97 0.58 -0.37 1.92 0.01 -1.71 0.08

sx
(4)
t 0.98 0.61 -0.41 2.71 0.01 -1.58 0.11

sx
(5)
t 0.97 0.52 -0.45 3.10 0.01 -1.73 0.08

GBR

(d/p)t 0.98 0.65 0.06 7.30 0.01 -0.55 0.45

sx
(1)
t 0.93 0.03 -0.29 0.84 0.01 -3.05 0.00

sx
(2)
t 0.96 0.43 -0.28 1.16 0.01 -1.96 0.05

sx
(3)
t 0.97 0.59 -0.30 1.73 0.01 -1.75 0.08

sx
(4)
t 0.98 0.61 -0.38 2.23 0.01 -1.60 0.10

sx
(5)
t 0.97 0.54 -0.46 2.58 0.01 -1.63 0.10

JPN

(d/p)t 0.99 0.88 0.43 25.72 0.01 0.86 0.89

sx
(1)
t 0.94 -0.03 -0.30 1.50 0.01 -2.72 0.01

sx
(2)
t 0.97 0.49 -0.31 3.05 0.01 -1.88 0.06

sx
(3)
t 0.98 0.57 -0.32 4.67 0.01 -1.49 0.13

sx
(4)
t 0.98 0.68 -0.38 6.49 0.01 -1.22 0.20

sx
(5)
t 0.97 0.59 -0.43 7.79 0.01 -0.26 0.56

Table B.4.3: Diagnostics - Stock Risk Premia and Dividend-Price Ratios.
One- to �ve-year excess stock return and dividend-price ratio diagnostics, sample period:
1992.12�2017.12. ρ̂( 1

12
), ρ̂(1) and ρ̂(5) are sample autocorrelation with lags one month, one year and �ve

year, respectively. t-stat and p-val are T-statistics and P-value of the stationarity test by Kwiatkowski et
al. (1992) and Dickey and Fuller (1979). Note: MatLab only reports p-values of the t-statistics between
[0.01�0.10] (i.e., values lower than 0.01 shows 0.01, while values larger than 0.1 shows 0.1.).
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C Time-Series Graphs

C.1 Bond Yield Spreads

(a) USA (1964.01�2017.12) (b) USA2 (1964.01�2017.12)

(c) AUS2 (1992.07�2017.12) (d) CAN (1986.01�2017.12)

(e) CHE2 (1988.01�2017.12) (f) DEU (1973.01�2017.12)

(g) GBR (1972.12�2017.12) (h) JPN (1980.08�2017.12)

Figure C.1.1: Yield Spreads.
Two-, three-, four-, and �ve-year yield spreads (in percent). Shaded areas are recession periods de�ned by
ECRI (2018) (NBER (2010) for the US). Sample period in subcaption. For data source, see Table 2.1.
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C.2 One-Year Bond Risk Premia

(a) USA (1964.01�2017.12) (b) USA2 (1964.01�2017.12)

(c) AUS2 (1992.07�2017.12) (d) CAN (1986.01�2017.12)

(e) CHE2 (1988.01�2017.12) (f) DEU (1973.01�2017.12)

(g) GBR (1972.12�2017.12) (h) JPN (1980.08�2017.12)

Figure C.2.1: Bond Risk Premia.
Annual excess bond returns (in percent) on two- to �ve-year maturity bonds. Shaded areas are recession
periods de�ned by ECRI (2018) (NBER (2010) for the US). Sample period in subcaption. For data source,
see Table 2.1.
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C.3 One- to Five-Year Stock Risk Premia

(a) USA (1964.01�2017.12) (b) USA2 (1964.01�2017.12)

(c) AUS2 (1992.07�2017.12) (d) CAN (1986.01�2017.12)

(e) CHE2 (1988.01�2017.12) (f) DEU (1973.01�2017.12)

(g) GBR (1972.12�2017.12) (h) JPN (1980.08�2017.12)

Figure C.3.1: Stock Risk Premia.
One- to �ve-year excess stock returns (in percent). Shaded areas are recession periods de�ned by ECRI
(2018) (NBER (2010) for the US). Sample period in subcaption. For data source, see Table 2.2. Note:
two- to �ve-year excess returns are not stated in annualized terms.
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C.4 Dividend-Price Ratio

(a) USA (1964.01�2017.12) (b) USA2 (1964.01�2017.12)

(c) AUS2 (1992.07�2017.12) (d) CAN (1986.01�2017.12)

(e) CHE2 (1988.01�2017.12) (f) DEU (1973.01�2017.12)

(g) GBR (1972.12�2017.12) (h) JPN (1980.08�2017.12)

Figure C.4.1: Dividend-Price Ratios.
Annual Dividend-price ratio (in percent). Shaded areas are recession periods de�ned by ECRI (2018)
(NBER (2010) for the US). Sample period in subcaption. For data source, see Table 2.2.
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C.5 Yield Di�erences by Estimation Method

(a) AUS (1992�2009): Spline (MLES) vs. Nelson-Siegel

(b) CHE (1988�2009): Ext. Nelson Siegel vs. Svensson

(c) JPN (1985�2009): Spline (Cubic) vs. Svensson

Figure C.5.1: Yield Data Di�erence in AUS, CHE, and JPN.
Percentage point di�erence in yields for AUS (RBA, 2018; Wright, 2011), CHE (SNB, 2018; Wright,
2011), and JPN (MOF, 2018; Wright, 2011).
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D Yield Data Construction Methods

D.1 Unsmoothed Fama-Bliss Method

The bond yield data from CRSP (2018a) that Cochrane and Piazzesi (2005) use

are constructed using the unsmoothed Fama-Bliss method. It is an iterative

method of forward rate extraction generally known as "bootstrapping" (Bliss,

1996, p. 12), and "unsmoothed" refers to the resulting piecewise linear (jagged)

discount rate function. This method constructs yields from estimated forwards

at observed maturities rather than discount functions (Li & Diebold, 2006).

The discount rate function is constructed by iteratively computing forward

rate linking the �tted discount rate values on previous maturity bonds with

successively longer-maturity bonds.

To obtain the approximate discount rate function, one needs as many estimated

parameters as bonds included in the approximation (Bliss, 1996, p. 10). By

this, the resulting discount rates will exactly price the included bonds and

there is no pricing error by construction (i.e., consistent with market prices.

See Equation (4)). According to CRSP (2018a), when selecting which bonds

to include in this method, each bond goes through a series of �lters.86

D.2 Splines

The bond yield data used in Dahlquist and Hasseltoft (2013) for AUS, CAN,

GBR and JPN2 are constructed using a Spline method. 'Spline' refers to

that di�erent functions (of the same type) are used to model the discount

86Refer to the Fama-Bliss Discount Bond Data in "Data File Layout" (Chapter 2) in CRSP
US Treasury Database Guide for exact de�nition of the �lter applied when selecting bonds
to calculate the discount rate function.
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functions on intervals dividing the maturity axis (Munk, 2011, p. 30). A spline

approximation of B̄t(τ) is based on the expression

B̄t(τ) =
k−1∑
j=0

Gj(τ) · Ij(τ)

The maturity subintervals are de�ned by the 'knot' points 0 = τ0 < τ1 <

. . . < τk = TM given by the M traded bonds with time-to-maturities

T1 ≤ T2 ≤ · · · ≤ TM . Ij(τ) is a step function, taking value of 1 if τ ≥ τj and

zero otherwise. Gj(τ) is a basis function. The basis function can be arbitrarily

de�ned and there are several documented types87. The cubic spline is one

method to model the discount function, B̄t(τ). Here, the approximate function

is given by a third-degree polynomial, introduced by McCulloch (1971) and

later modi�ed by McCulloch (1975) and Litzenberger and Rolfo (1984). In

this method,

Gj(τ) = αj + βj(τ − τj) + γj(τ − τj)2 + δj(τ − τj)3.

By imposing certain conditions to ensure a continuous and smooth discount

function, and solving it algebraically88, the cubic spline approximation B̄t(τ)

is

B̄t(τ) = 1 + β0τ + γ0τ
2 + δ0τ

3 +
k−1∑
j=1

δj(τ − τj)3 · Ij(τ).

The parameters β0, γ0, δ0, . . ., δk−1 are estimated by minimizing the sum of

squared errors (OLS) of the pricing relation in Equation (6).

As with all estimation methods, the splines are associated with several

undesirable features although being considered the superior in terms of

�exibility because of the large number of parameters that has to be estimated

87There is a large class of spline based interpolation methods, we only consider the general
framework. The CAN and GBR data set uses the Merrill Lynch Exponential spline
(MLES) and variable roughness penalty method, respectively. See BIS (2005) for more
details.

88For the algebraic computations, see Munk (2011, p. 31).
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(Gürkaynak et al., 2007). For cubic splines, there is no feature of the method

imposing the estimated discount function to have an economically credible

form. Depending on the estimated sign of the third degree terms, as maturity

reaches in�nity, values of the estimated discount function increase or decrease

without bounds (Munk, 2011, p. 33). Another undesirable feature is that

the discount function is sensitive to the number of intervals on the maturity

axis ('knot' points). Small variations in bond input prices may impact the

estimated values signi�cantly, consequentially making forward rate estimates

rather unstable (Svensson, 1994, p. 5).

D.3 The Nelson-Siegel Parametrization

The bond yield data used in Dahlquist and Hasseltoft (2013) for USA2, AUS2,

GBR, JPN2 are constructed using the Nelson-Siegel method. The bond yield

data that we use in this thesis identi�ed by USA2, AUS2, CHE, CHE2, DEU,

and JPY are constructed by using the parameterization method by Nelson and

Siegel (1987) and Svensson (1994).

Instead of estimating discount functions, Nelson and Siegel (1987) introduced

a way to estimate the forward curve, approximated by parameterizing forward

rates:

f
(t,τ)
t ≡ f̄t(τ) = β0 + β1e

− τ
θ + β2

τ

θ
e−

τ
θ

The zero-coupon yields are obtained using Equation (2), thus,

ȳt(τ) =
1

τ

τ+t∫
τ−T

f̄t(u)du = β0 + (β1 + β2)
1− e− τθ

τ
θ

− β2e
− τ
θ .

Equivalently, the discount function B̄t(τ) is

B̄t(τ) = e−ȳt(τ)·τ = e

(
−β0τ−(β1+β2)θ

(
1−e−

τ
θ

)
−β2τe−

τ
θ

)
.
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β0, β1, β2, and θ are constants that are estimated using the technique of

generalized least squares when estimating the parameters of the non-linear

regression equation

Pi,t =
T∑
j

C
(t+j)
i ·B(t+j)

t + εi,t

Motivated by the increase in �exibility and improvement in �tted values,

Svensson (1994) extends the approach by Nelson and Siegel (1987) by

introducing a fourth term to the functional form of forward rates:

f
(t,τ)
t ≡ f̄t(τ) = β0 + β1e

− τ
θ + β2

τ

θ
e−

τ
θ + β3

τ

θ′
e−

τ
θ′

The additional parameters θ′ and β3 need to be estimated and the estimation

procedure is the same as above. Note that if θ′ = β3 = 0, the parameterization

function is that of Nelson and Siegel (1987).

The estimation method of the term structure of interest rate outlined comes

with di�erences in terms of its �exibility (to be able to su�ciently price bonds

at the whole maturity spectrum) and the degree of smoothness to account for

idiosyncratic variances (e.g., hedging demand, demand for deliverability into

futures contracts, etc.) in bond prices at di�erent maturities. Bliss (1996)

performs a comparison of �ve distinct estimation methods and concludes that

the Unsmoothed Fama-Bliss does best overall. Further, the Nelson and Siegel

methods is superior to more �exible methods such as Spline (Gürkaynak et al.,

2007, p. 12) in �tting yields to prices.

BIS (2005, p. 10) notes that estimating nominal yields in the short-maturity

end of the curve is more di�cult than the long-end. We observe that from

the yield di�erence between the two USA data set (see Figure F.1.1 in

Appendix F.1), the most di�ering yield prominently is that of the one-year

maturity bond.
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E Regression Outputs

E.1 Bonds - FB Regression

lhv rx
(2)
c,t+1 rx

(3)
c,t+1 rx

(4)
c,t+1 rx

(5)
c,t+1

rhv f
(1,2)
c,t − y

(1)
c,t f

(2,3)
c,t − y

(1)
c,t f

(3,4)
c,t − y

(1)
c,t f

(4,5)
c,t − y

(1)
t

USA
b

(τ)
c 0.03 (0.07) 0.26 (0.47) 0.39 (0.74) 0.58 (1.18)

R2 0.00 0.01 0.01 0.03

USA2
b

(τ)
c -0.03 (-0.07) 0.17 (0.33) 0.38 (0.74) 0.57 (1.12)

R2 0.00 0.00 0.01 0.03

AUS
b

(τ)
c 0.26 (0.75) 0.23 (0.49) 0.25 (0.37) 0.31 (0.37)

R2 0.02 0.00 0.00 0.00

CAN
b

(τ)
c 0.41 (1.72) 0.56 (1.68) 0.71 (1.59) 0.84 (1.51)

R2 0.04 0.04 0.05 0.06

CHE
b

(τ)
c 0.47 (1.34) 0.82** (2.46) 1.09** (3.35) 1.30** (3.74)

R2 0.05 0.08 0.10 0.10

DEU
b

(τ)
c 0.69 (1.86) 1.02** (2.43) 1.21** (2.85) 1.38** (3.27)

R2 0.10 0.14 0.14 0.15

GBR
b

(τ)
c 0.46 (1.60) 0.63* (2.05) 0.74* (2.15) 0.82* (2.20)

R2 0.07 0.08 0.08 0.08

JPN
b

(τ)
c 1.57** (3.52) 1.85** (4.29) 1.83** (4.97) 1.81** (6.18)

R2 0.51 0.53 0.46 0.39

Table E.1.1: Regression Results - Bonds - Forward-Spot Spread.
Estimates of Regression (R.1) in international markets. T-statistics in parentheses use Newey and West
(1987) standard error-correction with 18 lags. Adjusted R2. Constant estimates are excluded. **: p-value
< 0.01, *: p-value < 0.05.
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E.2 Bonds - CP Regression

lhv rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

rhv CP
(c)
t CP

(c)
t CP

(c)
t CP

(c)
t

USA
b

(τ)
c 0.39 (1.93) 0.80* (1.97) 1.17* (2.13) 1.64** (2.40)

R2 0.05 0.06 0.06 0.08

USA2
b

(τ)
c 0.38 (1.79) 0.74 (1.76) 1.18 (1.94) 1.70* (2.18)

R2 0.05 0.06 0.07 0.09

AUS
b

(τ)
c 0.50** (3.85) 0.86** (3.66) 1.18** (3.46) 1.46** (3.25)

R2 0.17 0.14 0.12 0.11

CAN
b

(τ)
c 0.50** (3.83) 0.89** (4.26) 1.20** (4.23) 1.42** (3.87)

R2 0.17 0.17 0.16 0.14

CHE
b

(τ)
c 0.45** (4.00) 0.87** (4.03) 1.21** (3.82) 1.47** (3.55)

R2 0.23 0.24 0.23 0.21

DEU
b

(τ)
c 0.36** (2.71) 0.82** (3.44) 1.24** (3.95) 1.58** (4.28)

R2 0.17 0.22 0.24 0.25

GBR
b

(τ)
c 0.36 (1.63) 0.81* (2.02) 1.23* (2.25) 1.60** (2.38)

R2 0.07 0.10 0.11 0.11

JPN
b

(τ)
c 0.41** (6.51) 0.83** (6.56) 1.23** (7.41) 1.53** (7.35)

R2 0.72 0.69 0.64 0.58

Table E.2.1: Regression Results - Bonds - CP Factor.
Estimates of Regression (R.2) in international markets, sample period: 1992.12�2017.12. T-statistics in
parentheses use Newey and West (1987) standard error-correction with 18 lags. Adjusted R2. Constant
estimates are excluded.**: p-value < 0.01, *: p-value < 0.05.
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E.3 Bonds - MA(CP) Regression

Lags 0 1 2 3 4 5 6

USA 0.07 0.06 0.06 0.06 0.07 0.09 0.10

USA2 0.08 0.07 0.07 0.07 0.08 0.10 0.12

AUS 0.12 0.13 0.13 0.13 0.13 0.14 0.17

CAN 0.16 0.18 0.20 0.23 0.24 0.25 0.26

CHE 0.23 0.24 0.25 0.25 0.25 0.25 0.25

DEU 0.24 0.25 0.25 0.25 0.25 0.25 0.25

GBR 0.11 0.11 0.12 0.14 0.14 0.16 0.17

JPN 0.65 0.65 0.66 0.65 0.65 0.66 0.66

Table E.3.1: Regression Results - Bonds - MA(CP, k).
Adjusted R2 for Regression (R.4) with k lags in international markets, sample period: 1992.12�2017.12.
Shaded cells indicate which k that results in maximum R2.
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E.4 Stocks - CP Regression

lhv sx
(1)
c,t sx

(2)
c,t sx

(3)
c,t sx

(4)
c,t sx

(5)
c,t

rhv CP
(c)
t CP

(c)
t CP

(c)
t CP

(c)
t CP

(c)
t

USA
b
(τ)
c -3.36 (-1.03) -2.32 (-0.33) 10.64 (0.87) 22.91 (1.32) 25.94 (1.10)

R2 0.01 0.00 0.03 0.09 0.07

USA2
b
(τ)
c -2.34 (-0.85) -1.42 (-0.22) 12.18 (1.1) 25.93 (1.64) 31.70 (1.46)

R2 0.01 0.00 0.05 0.14 0.13

AUS
b
(τ)
c -2.44 (-1.15) -3.70 (-1.09) -2.53 (-0.60) -2.12 (-0.37) -0.17 (-0.02)

R2 0.03 0.03 0.00 0.00 0.00

CAN
b
(τ)
c 0.14 (0.05) -1.28 (-0.33) 1.35 (0.25) 9.32 (1.36) 12.63 (1.85)

R2 0.00 0.00 0.00 0.05 0.07

CHE
b
(τ)
c 1.40 (0.41) 10.81 (1.37) 21.60 (1.72) 35.23∗ (2.08) 39.40∗ (1.98)

R2 0.00 0.09 0.16 0.24 0.20

DEU
b
(τ)
c 0.67 (0.25) 5.03 (0.98) 6.28 (0.78) 7.74 (0.71) 1.56 (0.09)

R2 0.00 0.02 0.02 0.02 0.00

GBR
b
(τ)
c 4.46 (1.18) 9.13 (1.97) 18.08∗∗ (4.86) 29.81∗∗ (10.59) 31.37∗∗ (6.76)

R2 0.05 0.10 0.24 0.45 0.41

JPN
b
(τ)
c -4.60∗ (-2.20) -9.63∗ (-2.16) -15.84∗∗ (-2.69) -20.12∗∗ (-3.03) -22.37∗ (-2.26)

R2 0.06 0.13 0.20 0.24 0.25

Table E.4.1: Regression Results - Stocks - CP Factor.
Estimates of Regression (R.5) in international markets, sample period: 1992.12�2017.12. T-statistics in
parentheses use Hansen-Hodrick standard error-correction with 12 lags. Adjusted R2. Constant estimates
are excluded. **: p-value < 0.01, *: p-value < 0.05.

E.5 Stocks - MA(CP), D/P, and Term Spread Regression

τ 1 2 3 4 5

(1)

b
(τ)
c,1 1.92∗∗ (3.06) 2.90∗∗ (3.30) 1.13 (1.17) 0.68 (0.43) 1.63 (0.66)

b
(τ)
c,2 2.20 (0.88) 3.43 (0.73) 6.01 (0.94) 10.00 (1.26) 14.65 (1.54)

b
(τ)
c,3 -0.69 (-0.27) -1.20 (-0.35) 6.42 (1.31) 12.42 (1.60) 15.97 (1.30)

R2 0.11 [0.00] 0.12 [0.00] 0.09 [0.01] 0.13 [0.01] 0.17 [0.01]

(2)

b
(τ)
c,1 -0.39 (-0.31) -0.09 (-0.04) -2.44 (-1.27) -2.52 (-0.97) -1.78 (-0.47)

b
(τ)
c,2 2.25 (1.03) 3.18 (0.87) 6.34 (1.63) 11.09∗∗ (2.54) 16.47∗∗ (3.76)

b
(τ)
c,3 4.67 (1.67) 7.92 (1.60) 17.47∗∗ (3.40) 22.84∗∗ (3.24) 24.77∗∗ (2.44)

R2 0.05 [0.30] 0.07 [0.11] 0.16 [0.00] 0.21 [0.00] 0.22 [0.00]

(3)

b
(τ)
c,1 2.01 (0.33) 1.13 (0.22) 10.85 (1.83) 19.85∗ (1.97) 28.58∗ (2.78)

b
(τ)
c,2 13.47 (1.45) 34.02∗∗ (2.69) 51.98∗∗ (3.70) 72.56∗∗ (5.57) 78.56∗∗ (5.06)

b
(τ)
c,3 3.72 (0.76) 12.29 (1.69) 22.38∗∗ (2.72) 27.78∗∗ (2.82) 35.30∗∗ (3.60)

R2 0.14 [0.34] 0.44 [0.03] 0.61 [0.00] 0.71 [0.00] 0.68 [0.00]

(4)

b
(τ)
c,1 -3.37 (-1.60) -4.43 (-1.05) 1.04 (0.15) 11.24 (1.20) 9.09 (0.78)

b
(τ)
c,2 15.50∗∗ (2.58) 30.12∗∗ (2.96) 44.86∗∗ (3.24) 69.92∗∗ (4.18) 87.08∗∗ (3.82)

b
(τ)
c,3 2.95 (0.75) 11.48 (1.49) 19.62∗∗ (2.49) 20.30∗∗ (2.30) 20.43 (1.70)

R2 0.19 [0.03] 0.36 [0.00] 0.51 [0.00] 0.64 [0.00] 0.60 [0.00]

Table E.5.1: Full Regression Results - Stocks - MA(CP, 3), D/P, and Term Spread - USA.
Estimates of Regression (R.6) in USA, four sample periods: (1): 1964.01�2003.12, (2): 1964.01�2017.12,
(3): 1992.12�2009.05, (4): 1992.12�2017.12. Estimates for one-year excess returns for 1964�2003 di�er
slightly from Cochrane and Piazzesi (2005) because of di�erent stock returns. T-statistics in parentheses
use Hansen-Hodrick standard error-correction with 12 lags. P-value of F-statistics in brackets. Adjusted
R2. Constant estimates are excluded. **: p-value < 0.01, *: p-value < 0.05.
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lhv sx
(1)
c,t sx

(2)
c,t sx

(3)
c,t sx

(4)
c,t sx

(5)
c,t

rhv MA(CP
(c)
t , 3), (d/p)c,t, y

(5)
c,t − y

(1)
c,t

USA

b
(τ)
c,1 -3.37 (-1.60) -4.43 (-1.05) 1.04 (0.15) 11.24 (1.20) 9.09 (0.78)

b
(τ)
c,2 15.50∗∗ (2.58) 30.12∗∗ (2.96) 44.86∗∗ (3.24) 69.92∗∗ (4.18) 87.08∗∗ (3.82)

b
(τ)
c,3 2.95 (0.75) 11.48 (1.49) 19.62∗∗ (2.49) 20.30∗ (2.30) 20.43 (1.70)

R2 0.19 [0.03] 0.36 [0.00] 0.51 [0.00] 0.64 [0.00] 0.60 [0.00]

USA2

b
(τ)
c,1 -4.57∗∗ (-2.36) -8.25∗∗ (-2.40) -2.11 (-0.36) 7.98 (0.88) 5.69 (0.49)

b
(τ)
c,2 16.43∗∗ (2.76) 31.33∗∗ (3.32) 44.07∗∗ (3.31) 66.11∗∗ (3.87) 83.94∗∗ (3.51)

b
(τ)
c,3 3.30 (0.84) 12.82 (1.70) 20.81∗∗ (2.76) 21.79∗∗ (2.56) 22.09 (1.78)

R2 0.20 [0.01] 0.39 [0.00] 0.51 [0.00] 0.63 [0.00] 0.60 [0.00]

AUS

b
(τ)
c,1 -1.30 (-0.72) -2.56 (-0.81) -2.12 (-0.66) -2.28 (-0.66) -2.80 (-0.66)

b
(τ)
c,2 4.49 (1.56) 4.69 (0.69) 2.78 (0.34) 6.02 (0.76) -0.88 (-0.08)

b
(τ)
c,3 3.06 (0.60) 4.70 (0.59) 9.49 (1.12) 17.94∗ (1.96) 20.94∗ (2.20)

R2 0.05 [0.12] 0.04 [0.49] 0.05 [0.72] 0.13 [0.24] 0.16 [0.16]

CAN

b
(τ)
c,1 -1.26 (-0.48) -7.58∗ (-1.96) -9.72∗∗ (-2.46) -1.26 (-0.18) 2.76 (0.46)

b
(τ)
c,2 3.86 (0.87) 1.58 (0.24) -1.98 (-0.28) 7.59 (0.66) 17.75 (1.04)

b
(τ)
c,3 4.81 (0.84) 15.67∗ (1.96) 32.55∗∗ (5.16) 27.93∗∗ (3.25) 13.54 (0.96)

R2 0.04 [0.72] 0.15 [0.22] 0.43 [0.00] 0.30 [0.00] 0.15 [0.14]

CHE

b
(τ)
c,1 -1.91 (-0.70) 6.39 (1.11) 17.45 (1.29) 34.23 (1.75) 43.19∗ (2.03)

b
(τ)
c,2 4.26 (1.09) 10.78 (1.14) 15.88 (1.34) 17.46 (1.43) 18.35 (1.64)

b
(τ)
c,3 20.15∗∗ (2.46) 33.81∗ (2.31) 32.26 (1.77) 14.90 (0.48) -17.18 (-0.48)

R2 0.18 [0.09] 0.30 [0.08] 0.29 [0.02] 0.31 [0.00] 0.30 [0.01]

DEU

b
(τ)
c,1 -8.61∗∗ (-2.43) -12.48∗∗ (-2.77) -16.51 (-1.70) -8.51 (-0.83) -0.68 (-0.05)

b
(τ)
c,2 -2.64 (-0.47) -0.54 (-0.05) 9.49 (0.63) 39.03 (1.93) 67.32∗∗ (2.80)

b
(τ)
c,3 25.67∗∗ (3.23) 48.03∗∗ (3.94) 65.95∗∗ (4.20) 56.00∗∗ (2.49) 27.33 (1.19)

R2 0.20 [0.01] 0.34 [0.00] 0.39 [0.00] 0.35 [0.01] 0.33 [0.00]

GBR

b
(τ)
c,1 -6.54 (-1.87) -8.19 (-1.50) -2.09 (-0.33) 6.01 (1.34) 7.72 (1.00)

b
(τ)
c,2 5.13 (0.74) 13.99 (1.91) 19.36∗∗ (2.75) 27.21∗∗ (3.72) 33.34∗∗ (4.43)

b
(τ)
c,3 9.87 (1.26) 13.80 (1.26) 16.03 (1.78) 16.05 (1.74) 11.72 (1.00)

R2 0.23 [0.00] 0.37 [0.00] 0.50 [0.00] 0.68 [0.00] 0.61 [0.00]

JPN

b
(τ)
c,1 -1.68 (-0.63) -2.97 (-0.71) -7.13 (-1.34) -9.27∗∗ (-2.46) -8.05 (-1.55)

b
(τ)
c,2 8.88 (0.82) 17.92 (0.96) 25.91 (1.04) 40.74 (1.63) 63.63∗∗ (2.76)

b
(τ)
c,3 -1.85 (-0.14) -7.20 (-0.49) -10.37 (-0.36) -7.73 (-0.21) -10.86 (-0.41)

R2 0.09 [0.08] 0.20 [0.03] 0.29 [0.00] 0.39 [0.00] 0.52 [0.00]

Table E.5.2: Full Regression Results - Stocks - MA(CP, 3), D/P, and Term Spread.
Estimates of Regression (R.6) in international markets, sample period: 1992.12�2017.12. T-statistics in
parentheses use Hansen-Hodrick standard error-correction with 12 lags. P-value of F-statistics in brackets.
Adjusted R2. Constant estimates are excluded. **: p-value < 0.01, *: p-value < 0.05.
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E.6 Bonds - GCP Regression

lhv rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

rhv GCPt GCPt GCPt GCPt

USA
b

(τ)
c 0.52** (3.10) 1.06** (3.21) 1.62** (3.47) 2.33** (3.87)

R2 0.09 0.10 0.12 0.15

USA2
b

(τ)
c 0.49** (2.99) 1.01** (3.08) 1.62** (3.42) 2.30** (3.86)

R2 0.08 0.09 0.12 0.15

AUS
b

(τ)
c 0.64** (3.07) 1.27** (3.48) 1.89** (3.71) 2.49** (3.79)

R2 0.11 0.12 0.13 0.13

CAN
b

(τ)
c 0.84** (4.67) 1.53** (4.72) 2.12** (4.85) 2.66** (5.01)

R2 0.24 0.24 0.24 0.24

CHE
b

(τ)
c 0.70** (4.53) 1.30** (4.74) 1.79** (4.79) 2.23** (4.86)

R2 0.26 0.25 0.24 0.23

DEU
b

(τ)
c 0.71** (4.32) 1.44** (4.37) 2.04** (4.36) 2.53** (4.28)

R2 0.22 0.23 0.23 0.21

GBR
b

(τ)
c 0.68** (4.92) 1.29** (4.48) 1.82** (4.25) 2.31** (4.17)

R2 0.18 0.17 0.17 0.16

JPN
b

(τ)
c 0.50** (2.42) 1.06** (2.64) 1.64** (2.91) 2.13** (3.10)

R2 0.31 0.32 0.33 0.32

Table E.6.1: Regression Results - Bonds - GCP Factor.
Estimates of Regression (R.7) in international markets, sample period: 1992.12�2017.12. T-statistics in
parentheses use Newey and West (1987) standard error-correction with 18 lags. Adjusted R2. Constant
estimates are excluded. **: p-value < 0.01, *: p-value < 0.05.
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E.7 Bonds - MA(GCP) Regression

k 0 1 2 3 4 5 6

USA 0.20 0.22 0.22 0.21 0.20 0.20 0.21

USA2 0.20 0.22 0.22 0.21 0.20 0.20 0.21

AUS 0.16 0.18 0.20 0.20 0.20 0.20 0.19

CAN 0.24 0.25 0.25 0.25 0.25 0.25 0.27

CHE 0.25 0.27 0.27 0.27 0.28 0.28 0.29

DEU 0.24 0.25 0.25 0.25 0.25 0.26 0.27

GBR 0.22 0.24 0.25 0.25 0.25 0.26 0.26

JPN 0.47 0.47 0.47 0.47 0.47 0.47 0.47

Table E.7.1: Regression Results - Bonds - MA(GCP, k).
Adjusted R2 for Regression (R.8) with k lags in international markets, sample period: 1992.12�2017.12.
Shaded cells indicate which k that results in maximum R2.

E.8 Stocks - GCP Regression

lhv sx
(1)
c,t sx

(2)
c,t sx

(3)
c,t sx

(4)
c,t sx

(5)
c,t

rhv GCPt GCPt GCPt GCPt GCPt

USA
b

(τ)
c 0.11 (0.03) 3.34 (0.37) 18.43 (1.29) 33.43 (1.73) 38.52 (1.48)

R2 0.00 0.00 0.09 0.19 0.16

USA2
b

(τ)
c 0.10 (0.03) 3.34 (0.37) 18.44 (1.29) 33.41 (1.73) 38.51 (1.48)

R2 0.00 0.00 0.09 0.19 0.16

AUS
b

(τ)
c -1.58 (-0.58) -3.42 (-0.66) 4.22 (0.62) 14.47 (1.52) 14.95 (1.28)

R2 0.00 0.01 0.01 0.08 0.07

CAN
b

(τ)
c 0.17 (0.07) -1.54 (-0.27) 8.22 (1.24) 18.82* (2.16) 21.25 (1.88)

R2 0.00 0.00 0.03 0.12 0.11

CHE
b

(τ)
c -0.01 (0.00) 2.71 (0.27) 21.46 (1.23) 40.71 (1.86) 46.11 (1.71)

R2 0.00 0.00 0.08 0.21 0.19

DEU
b

(τ)
c -3.28 (-0.84) -3.49 (-0.40) 10.60 (0.76) 32.18 (1.67) 37.40 (1.46)

R2 0.01 0.00 0.02 0.12 0.12

GBR
b

(τ)
c -0.37 (-0.11) 2.15 (0.34) 13.14 (1.43) 23.10 (1.81) 22.18 (1.33)

R2 0.00 0.00 0.07 0.16 0.11

JPN
b

(τ)
c -13.90** (-2.92) -20.00* (-2.14) -19.22 (-1.20) -9.79 (-0.52) -12.74 (-0.50)

R2 0.16 0.15 0.08 0.01 0.02

Table E.8.1: Regression Results - Stocks - GCP Factor.
Estimates of Regression (R.9) in international markets, sample period: 1992.12�2017.12. T-statistics in
parentheses use Hansen-Hodrick standard error-correction with 12 lags. Adjusted R2. Constant estimates
are excluded. **: p-value < 0.01, *: p-value < 0.05.
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E.9 Stocks - MA(GCP,3), D/P, and Term Spread Regression

(1) (2) (3) (4)

τ b
(τ)
c,1 b

(τ)
c,2 b

(τ)
c,3 R2 b

(τ)
c,1 b

(τ)
c,2 b

(τ)
c,3 R2 b

(τ)
c,1 b

(τ)
c,2 b

(τ)
c,3 R2 b

(τ)
c,1 b

(τ)
c,2 b

(τ)
c,3 R2

USA
1 1.35 1.57 1.33 0.03 -1.12 1.79 3.73 0.02 -4.28 14.10 3.58 0.16 -4.45∗ 15.49∗∗ 2.96 0.20

(0.52) (0.64) (0.40) [0.69] (-0.48) (0.72) (1.08) [0.73] (-1.45) (1.82) (0.85) [0.13] (-2.23) (2.52) (0.75) [0.01]

2 -0.32 3.17 7.18 0.07 -2.52 3.44 10.15 0.08 -8.64∗ 34.85∗∗ 12.27 0.48 -9.69∗ 29.60∗∗ 12.43 0.39
(-0.09) (0.72) (1.39) [0.33] (-0.67) (0.85) (1.75) [0.16] (-2.11) (3.00) (1.76) [0.01] (-2.10) (2.94) (1.60) [0.00]

3 -3.22 6.97 14.92∗ 0.14 -4.00 7.06 18.49∗∗ 0.18 -1.05 54.93∗∗ 18.70∗ 0.58 -3.95 44.18∗∗ 20.98∗∗ 0.51
(-0.84) (1.29) (2.22) [0.03] (-0.82) (1.61) (2.52) [0.01] (-0.20) (3.39) (2.26) [0.00] (-0.51) (3.14) (2.58) [0.00]

4 -4.70 11.77 17.94∗ 0.16 -3.72 11.53∗ 21.69∗∗ 0.21 11.30 78.29∗∗ 18.81 0.67 6.55 68.86∗∗ 22.42∗∗ 0.62
(-0.95) (1.87) (2.12) [0.15] (-0.66) (2.30) (2.66) [0.01] (1.18) (4.14) (1.66) [0.00] (0.71) (3.89) (2.50) [0.00]

5 0.55 14.70∗ 14.84 0.17 1.03 15.28∗∗ 17.98 0.21 13.70 86.43∗∗ 23.27 0.63 5.91 86.25∗∗ 22.00 0.59
(0.08) (2.06) (1.17) [0.06] (0.15) (2.78) (1.68) [0.01] (1.39) (3.83) (1.61) [0.00] (0.42) (3.61) (1.77) [0.00]

DEU
1 1.20 1.42 5.17 0.04 0.59 1.34 5.19 0.04 -6.89 5.63 24.42∗∗ 0.24 -9.80∗∗ 5.35 20.54∗∗ 0.22

(0.38) (0.48) (1.21) [0.48] (0.19) (0.48) (1.33) [0.50] (-1.34) (0.37) (2.86) [0.02] (-2.41) (0.99) (2.89) [0.01]

2 4.74 4.71 9.79 0.11 5.79 4.64 9.58 0.12 -20.91∗∗ 61.59∗∗ 61.91∗∗ 0.59 -12.44 10.33 38.70∗∗ 0.33
(1.10) (0.86) (1.30) [0.33] (1.31) (0.93) (1.42) [0.24] (-2.63) (3.16) (5.57) [0.00] (-1.71) (0.87) (3.07) [0.02]

3 6.59 7.74 8.21 0.08 9.84 8.73 8.82 0.13 -11.77 79.04∗ 68.39∗∗ 0.48 -0.79 18.35 43.29∗∗ 0.32
(1.17) (0.97) (0.84) [0.50] (1.83) (1.27) (0.98) [0.14] (-0.86) (2.15) (4.40) [0.00] (-0.07) (0.97) (3.04) [0.01]

4 8.29 15.11 -3.52 0.11 12.98∗ 17.21∗ -0.97 0.16 -13.61 147.46∗∗ 72.85∗∗ 0.62 16.82 37.23 34.04 0.38
(1.43) (1.52) (-0.28) [0.40] (2.30) (2.13) (-0.08) [0.03] (-0.87) (5.14) (4.17) [0.00] (1.25) (1.68) (1.56) [0.01]

5 10.95∗ 24.51∗∗ -17.40 0.28 15.36∗∗ 26.33∗∗ -13.50 0.31 12.12 159.01∗∗ 31.22 0.68 24.26 56.46∗ 12.29 0.39
(2.32) (2.94) (-1.45) [0.01] (2.97) (4.30) (-1.21) [0.00] (0.57) (4.64) (1.75) [0.00] (1.49) (2.28) (0.59) [0.01]

Table E.9.1: Regression Results - Stocks - MA(GCP, 3), D/P, and Term Spread in the US and DEU.
Estimates of Regression (R.10) in the US and DEU for four sample periods: (1): 1975.01�2009.12, (2): 1975.01�2017.12, (3): 1992.12�2009.05, (4): 1992.12�2017.12. T-statistics in parentheses
use Hansen-Hodrick standard error-correction with 12 lags. P-value of F-statistics in brackets. Adjusted R2. Constant estimates are excluded. **: p-value < 0.01, *: p-value < 0.05.
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lhv sx
(1)
c,t sx

(2)
c,t sx

(3)
c,t sx

(4)
c,t sx

(5)
c,t

rhv MA(GCPt, 3), (d/p)c,t, y
(5)
c,t − y

(1)
c,t

USA

b
(τ)
c,1 -4.45∗ (-2.23) -9.69∗ (-2.10) -3.95 (-0.51) 6.55 (0.71) 5.91 (0.42)

b
(τ)
c,2 15.49∗∗ (2.52) 29.60∗∗ (2.94) 44.18∗∗ (3.14) 68.86∗∗ (3.89) 86.25∗∗ (3.61)

b
(τ)
c,3 2.96 (0.75) 12.43 (1.60) 20.98∗∗ (2.58) 22.42∗∗ (2.50) 22.00 (1.77)

R2 0.20 [0.01] 0.39 [0.00] 0.51 [0.00] 0.62 [0.00] 0.59 [0.00]

USA2

b
(τ)
c,1 -4.62∗ (-2.30) -10.23∗ (-2.20) -4.24 (-0.54) 6.72 (0.71) 6.30 (0.44)

b
(τ)
c,2 15.43∗∗ (2.50) 29.12∗∗ (2.91) 43.29∗∗ (3.07) 67.80∗∗ (3.81) 85.22∗∗ (3.53)

b
(τ)
c,3 2.96 (0.77) 12.69 (1.67) 21.17∗∗ (2.66) 22.77∗∗ (2.61) 22.40 (1.82)

R2 0.20 [0.01] 0.40 [0.00] 0.52 [0.00] 0.63 [0.00] 0.60 [0.00]

AUS

b
(τ)
c,1 -0.73 (-0.25) -2.17 (-0.49) -0.43 (-0.07) -2.00 (-0.32) -6.76 (-0.73)

b
(τ)
c,2 5.26∗ (2.04) 6.01 (1.02) 4.04 (0.54) 7.02 (0.91) 0.21 (0.02)

b
(τ)
c,3 3.02 (0.55) 5.15 (0.65) 8.88 (0.97) 18.33∗ (2.03) 24.48∗∗ (2.44)

R2 0.05 [0.18] 0.03 [0.65] 0.04 [0.77] 0.13 [0.18] 0.16 [0.10]

CAN

b
(τ)
c,1 -1.27 (-0.53) -4.93 (-0.91) -0.46 (-0.07) 8.84 (1.22) 14.93 (1.37)

b
(τ)
c,2 3.98 (0.80) 3.24 (0.39) 0.96 (0.10) 9.02 (0.83) 17.37 (1.10)

b
(τ)
c,3 4.53 (0.88) 12.18 (1.51) 25.10∗∗ (3.13) 22.37∗∗ (3.62) 8.75 (0.67)

R2 0.04 [0.70] 0.09 [0.52] 0.32 [0.00] 0.33 [0.00] 0.21 [0.06]

CHE

b
(τ)
c,1 -5.15 (-1.13) -0.88 (-0.09) 21.28 (1.42) 44.48∗∗ (2.62) 54.68∗∗ (3.01)

b
(τ)
c,2 3.34 (0.97) 9.21 (0.98) 18.01 (1.35) 27.33 (1.75) 32.90∗ (2.06)

b
(τ)
c,3 21.92∗∗ (2.95) 39.42∗∗ (2.63) 32.59∗ (2.02) 9.45 (0.39) -24.49 (-0.89)

R2 0.20 [0.03] 0.28 [0.06] 0.30 [0.05] 0.41 [0.01] 0.42 [0.00]

DEU

b
(τ)
c,1 -9.80∗∗ (-2.41) -12.44 (-1.71) -0.79 (-0.07) 16.82 (1.25) 24.26 (1.49)

b
(τ)
c,2 5.35 (0.99) 10.33 (0.87) 18.35 (0.97) 37.23 (1.68) 56.46∗ (2.28)

b
(τ)
c,3 20.54∗∗ (2.89) 38.70∗∗ (3.07) 43.29∗∗ (3.04) 34.04 (1.56) 12.29 (0.59)

R2 0.22 [0.01] 0.33 [0.02] 0.32 [0.01] 0.38 [0.01] 0.39 [0.01]

GBR

b
(τ)
c,1 -2.79 (-1.12) -3.95 (-1.30) -3.18 (-0.62) -4.58 (-1.20) -3.58 (-0.60)

b
(τ)
c,2 7.70 (1.15) 17.29∗∗ (2.56) 19.94∗∗ (3.01) 23.15∗∗ (4.56) 28.76∗∗ (3.98)

b
(τ)
c,3 4.58 (0.70) 7.46 (1.16) 16.07∗∗ (3.58) 26.57∗∗ (7.34) 23.33∗∗ (3.68)

R2 0.19 [0.03] 0.34 [0.00] 0.50 [0.00] 0.68 [0.00] 0.61 [0.00]

JPN

b
(τ)
c,1 -13.78∗∗ (-2.81) -15.00 (-1.53) -20.23 (-1.64) -13.47 (-1.27) -2.47 (-0.24)

b
(τ)
c,2 1.48 (0.14) 10.04 (0.57) 15.64 (0.64) 34.33 (1.25) 63.11∗∗ (2.44)

b
(τ)
c,3 11.91 (1.28) 5.43 (0.38) 0.62 (0.03) -9.18 (-0.29) -23.41 (-0.82)

R2 0.17 [0.01] 0.25 [0.03] 0.33 [0.00] 0.38 [0.00] 0.50 [0.00]

Table E.9.2: Regression Results - Stocks - MA(GCP, 3), D/P, and Term Spread.
Estimates of Regression (R.10) in international markets, sample period: 1992.12�2017.12. T-statistics in
parentheses use Hansen-Hodrick standard error-correction with 12 lags. P-value of F-statistics in brackets.
Adjusted R2. Constant estimates are excluded. **: p-value < 0.01, *: p-value < 0.05.
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E.10 Yield Data Impact - Estimated Coe�cients

(a) USA: CRSP (2018a) (b) USA2: Gürkaynak et al. (2007)

(c) AUS: RBA (2018) (d) AUS2: Wright (2011)

(e) CHE: SNB (2018) (f) CHE2: Wright (2011)

(g) JPN: MOF (2018) (h) JPN2: Wright (2011)

Figure E.10.1: Yield Data Comparison - Unrestricted vs. Restricted Coe�cients in the US, AUS, CHE,
and JPN.
Coe�cients are estimated from Regression (R.3) and (R.2) and are related by β̂c = b̂cγ̂

ᵀ
c . Sample period:

1992.12�2009.05.
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E.11 Yield Data Impact - Predictive Regressions

lhv rx
(2)
c,t+1 rx

(3)
c,t+1 rx

(4)
c,t+1 rx

(5)
c,t+1

rhv CP
(c)
t

USA
b
(τ)
c 0.55 (1.88) 0.99 (1.80) 1.20 (1.61) 1.26 (1.37)

R2 0.11 [0.10] 0.09 [0.07] 0.07 [0.05] 0.05 [0.03]

USA2
b
(τ)
c 0.53 (1.45) 0.88 (1.31) 1.16 (1.30) 1.43 (1.35)

R2 0.06 [0.06] 0.04 [0.03] 0.04 [0.02] 0.04 [0.02]

AUS
b
(τ)
c 0.47** (5.82) 0.86** (5.52) 1.19** (5.47) 1.48** (5.47)

R2 0.44 [0.44] 0.41 [0.39] 0.38 [0.36] 0.35 [0.34]

AUS2
b
(τ)
c 0.46** (6.60) 0.87** (6.14) 1.20** (5.77) 1.47** (5.48)

R2 0.46 [0.45] 0.42 [0.41] 0.39 [0.38] 0.36 [0.34]

CHE
b
(τ)
c 0.40** (5.20) 0.83** (6.01) 1.22** (6.38) 1.55** (6.44)

R2 0.33 [0.34] 0.39 [0.38] 0.41 [0.40] 0.41 [0.41]

CHE2
b
(τ)
c 0.40** (5.13) 0.83** (5.91) 1.22** (6.25) 1.55** (6.31)

R2 0.33 [0.33] 0.38 [0.37] 0.41 [0.39] 0.41 [0.40]

JPN
b
(τ)
c 0.40** (6.43) 0.82** (6.32) 1.23** (7.33) 1.54** (7.59)

R2 0.71 [0.73] 0.68 [0.68] 0.64 [0.63] 0.59 [0.59]

JPN2
b
(τ)
c 0.39** (9.49) 0.84** (12.75) 1.23** (16.30) 1.54** (18.41)

R2 0.81 [0.84] 0.80 [0.80] 0.76 [0.75] 0.70 [0.70]

rhv GCPt

USA
b
(τ)
c 0.59** (2.47) 1.07** (2.34) 1.43* (2.28) 1.74* (2.20)

R2 0.13 0.11 0.10 0.10

USA2
b
(τ)
c 0.55* (2.25) 1.01* (2.18) 1.41* (2.21) 1.80* (2.30)

R2 0.11 0.10 0.10 0.10

AUS
b
(τ)
c 0.91** (3.29) 1.65** (3.33) 2.32** (3.37) 2.98** (3.47)

R2 0.26 0.24 0.22 0.22

AUS2
b
(τ)
c 0.78** (2.83) 1.57** (3.04) 2.26** (3.24) 2.89** (3.37)

R2 0.21 0.21 0.21 0.21

CHE
b
(τ)
c 0.60** (3.31) 1.16** (3.43) 1.65** (3.53) 2.07** (3.64)

R2 0.23 0.23 0.23 0.23

CHE2
b
(τ)
c 0.58** (3.28) 1.12** (3.39) 1.58** (3.48) 1.99** (3.60)

R2 0.23 0.23 0.22 0.22

JPN
b
(τ)
c 0.63** (3.77) 1.32** (4.15) 2.07** (5.13) 2.76** (6.22)

R2 0.55 0.56 0.58 0.61

JPN2
b
(τ)
c 0.59** (3.50) 1.33** (4.30) 2.03** (5.19) 2.65** (6.22)

R2 0.53 0.58 0.60 0.60

Table E.11.1: Data Set Comparison - CP and GCP Regression Results for the US, AUS, CHE, and JPN.
Estimates of Regression (R.2) and (R.7) in the US, AUS, CHE, and JPN for two data sets (USA: CRSP
(2018a), USA2: Gürkaynak et al. (2007), AUS: RBA (2018), AUS2: Wright (2011), CHE: SNB (2018),
CHE2: Wright (2011), JPN: MOF (2018) and JPN2: Wright (2011)). T-statistics in parentheses use
Newey and West (1987) standard error-correction with 18 lags. Adjusted R2. Adjusted R2 for
Regression (R.3) in brackets. Constant estimates are excluded. Sample period: 1992.12�2009.05. **:
p-value < 0.01, *: p-value < 0.05
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E.12 Unrestricted vs. Restricted Coe�cients Plots

(a) USA (b) USA2

(c) AUS (d) CAN

(e) CHE2 (f) DEU

(g) GBR (h) JPN2

Figure E.12.1: Unrestricted vs. Restricted Coe�cient Plot.
Coe�cients are estimated from Regression (R.3) and (R.2) and are related by β̂c = b̂cγ̂

ᵀ
c . Sample period:

1992.12�2017.12.
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F Data Impact

F.1 Yield Di�erence

Figure (F.1.1) depicts percentage point di�erences between yield data

constructed with the Unsmoothed Fama-bliss (CRSP, 2018a) and Svensson

(Gürkaynak et al., 2007) methods in the US for 1964�2017. From 2001

(a) USA (1964�2017): Fama-Bliss vs. Svensson

Figure F.1.1: Yield Data Di�erence in the US.
Percentage point di�erence in yields estimated with the unsmoothed Fama-Bliss- and Svensson-method
(CRSP, 2018a; Gürkaynak et al., 2007) for the US.

onwards, the average yield di�erences are close to zero. However, up to 2001,

the di�erences are more dispersed, particularly in periods of bond market

turmoil (e.g., around 1980, 2000, and 2008). Moreover, as the yield di�erence

of the one-year maturity bond is prominent in Figure (F.1.1), this con�rms

that nominal yields in the short-maturity-end of the curve are more di�cult to

estimate than the long-end, as we outline in section 3.3.89 Appendix C.5

89See BIS (2005, p. 10).
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highlights yield data di�erences in Australia (AUS vs AUS2), Switzerland

(CHE vs CHE2) and Japan (JPN vs JPN2) of other construction methods.

F.2 Analytical Di�erence

Bekaert, Hodrick, and Marshall (1997) document that small-sample bias and

measurement errors of estimated yield data make the coe�cient estimates

biased, and associated statistical tests based on asymptotic distribution theory

unreliable. Backus, Foresi, Mozumdar, and Wu (2001, p. 285) run the

regression

f
(t+1,τ−1)
t+1 − f (t,0)

t = constant+ bτ

(
f

(t,τ)
t − f (t,0)

t

)
+ residual,

and concretize the impact of measurement error on the estimated coe�cient

by supposing that the observations of forward rates f̂ di�er from the "true"

forward rate f in having measurement error η:

f̂
(t,τ)
t = f

(t,τ)
t + η

(t,τ)
t

Where η
(t,τ)
t is assumed to be independent of "true" forward rates, has variance

σ2
t,τ , is uncorrelated with errors at di�erent dates and has arbitrary correlation

with contemporaneous errors
[
Corr

(
η

(t,τ1)
t , η

(t,τ2)
t

)
= ρτ1τ2

]
. They show that

the estimated coe�cient for the true forward rates is given by:

bτ =
cov
(
f

(t+1,τ−1)
t+1 − f (t,0)

t , f
(t,τ)
t − f (t,0)

t

)
var

(
f

(t,τ)
t − f (t,0)

t

)
=
cov
(
f̂

(t+1,τ−1)
t+1 − f̂ (t,0)

t , f̂
(t,τ)
t − f̂ (t,0)

t

)
−
[
σ2

(t,0) − ρ0τσ0στ

]
var

(
f̂

(t,τ)
t − f̂ (t,0)

t

)
−
[
σ2

(t,0) + σ2
(t,τ) − 2ρ0τσ0στ

]
The unsmoothed Fama-Bliss method estimates the discount function with zero

errors (i.e., consistent with market prices).90 Thus, Bekaert et al. (1997)

regard the covariance matrix of bond yield data di�erences estimated by the

90See section 3.3.
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unsmoothed Fama-bliss method and other methods as the upper bound of

plausible measurement errors (Bekaert et al., 1997, p. 339). Hence, they regard

unsmoothed Fama-Bliss yield data as the "true" term structure of interest

rates. Therefore, we interpret the estimates from regressions using unsmoothed

Fama-Bliss yield data as data with no measurement error. Unfortunately, to

our knowledge, this data type is only available for the US.
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G Out-of-Sample Exercise

G.1 Performance Measures

We consider the Direction Accuracy and Mean Absolute Error measure when

assessing model performance, and below are the mathematical derivations.

Direction Accuracy

Direction accuracy (DA, henceforth) measures how often the model predicts

the right direction of the actual outcome, that is, the percentage of trades with

positive returns. Mathematically, the DA-formula is:

DA =
1

N

N∑
j=1

Bj where Bj =


1 if yj · ŷj > 0

0 otherwise

and N is the number of forecasts.

Mean Absolute Error

The mean absolute error (MAE, henceforth) is the mean absolute value of

the error between actual and predicted excess return. Mathematically, the

MAE-formula is:

MAE =
1

N

N∑
j=1

|yj − ŷj|.
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G.2 Performance Results

USA USA2 AUS CAN CHE DEUW GBRW JPN

In-sample

D
O
C

I 79.3% 79.3% 78.3% 79.3% 76.1% 87.0% 78.3% 64.1%
II 83.7% 85.9% 52.2% 78.3% 67.4% 88.0% 78.3% 70.7%
III 81.5% 83.7% 52.2% 76.1% 66.3% 87.0% 78.3% 62.0%
IV 88.0% 88.0% 80.4% 82.6% 84.8% 78.3% 84.8% 81.5%
V 83.7% 83.7% 79.3% 75.0% 87.0% 81.5% 92.4% 66.3%

M
A
E

I +0.34 +0.33 +0.01 +0.24 +0.07 0.92 +0.23 0.28
II +0.12 +0.06 +0.28 +0.17 +0.16 +0.10 +0.23 +0.03
III +0.16 +0.10 +0.29 +0.16 +0.19 +0.10 +0.20 +0.05
IV 0.71 0.72 1.36 0.76 +0.03 +0.14 +0.30 +0.50
V +0.19 +0.17 +0.01 +0.05 0.65 +0.07 0.89 +0.20

Out-of-sample

D
O
C

I 79.3% 79.3% 78.3% 79.3% 76.1% 87.0% 78.3% 45.7%
II 68.5% 79.3% 21.7% 67.4% 34.8% 44.6% 53.3% 42.4%
III 77.2% 76.1% 28.3% 79.3% 42.4% 47.8% 45.7% 44.6%
IV 75.0% 75.0% 57.6% 69.6% 69.6% 68.5% 71.7% 57.6%
V 64.1% 65.2% 35.9% 72.8% 67.4% 47.8% 68.5% 37.0%

M
A
E

I 1.21 +0.03 1.42 +0.06 0.79 0.94 1.28 0.46
II +0.10 1.17 +1.98 +0.10 +1.00 +0.95 +1.28 +0.05
III +0.35 +0.47 +1.18 1.08 +0.77 +0.76 +1.44 +0.06
IV +0.04 +0.08 +0.56 +0.17 +0.14 +0.56 +0.60 +0.38
V +0.40 +0.44 +1.12 +0.25 +0.33 +0.82 +0.74 +0.54

Table G.2.1: Performance Results - In-Sample vs. Out-of-Sample.
In-sample vs. pseudo-out-of-sample forecasting performance of each model in each country. Percentages
are direction accuracy, numbers in parentheses are mean absolute errors. For both measures, the best
performing model in each country is highlighted. For MAE, non-highlighted numbers show the di�erence
from the best performing model in each country. Regressions - I: FB (R.1); II: CP (R.2); III: MA(CP, 2)
(R.4); IV: GCP (R.7); V: MA(GCP, 2) (R.8). Recursively forecasting 2010.05�2017.12 give 92 forecasts.

89

09589260925644GRA 19502



G.3 Average Realized vs. Forecasted Risk Premia

(a) USA (b) USA2

(c) AUS (d) CAN

(e) CHE (f) DEU

(g) GBR (h) JPN

Figure G.3.1: Forecasts vs. Actual Mean Excess Bond Returns in international markets.
Pseudo-out-of-sample forecasts vs. actual average excess bond returns (in percent) in international
markets. MA(CP) and MA(GCP) are with k = 2. AHPRX: Average one-year excess bond returns.
Estimation period: 1992.12�2009.05. Recursively forecasting 2010.05�2017.12 results in 92 forecasts.

90

09589260925644GRA 19502



G.4 Correlations - Average Realized and Forecasted Risk Premia

USA USA2 AUS CAN CHE DEU GBR JPN Mean

In-sample

C
o
r
r
e
la
ti
o
n
&
S
ig
n
i�
c
a
n
e I 0.92 0.91 0.25 0.73 0.63 0.59 0.80 0.68 0.69

(0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

II 0.86 0.84 0.51 0.63 0.53 0.71 0.82 0.66 0.69
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

III 0.81 0.81 0.28 0.64 0.47 0.68 0.76 0.63 0.64
(0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

IV 0.89 0.89 0.58 0.80 0.72 0.62 0.82 0.59 0.74
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

V 0.83 0.83 0.51 0.86 0.76 0.64 0.81 0.54 0.72
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Out-of-sample

C
o
r
r
e
la
ti
o
n
&
S
ig
n
i�
c
a
n
e I 0.42 0.30 -0.16 0.75 0.57 0.57 0.66 0.70 0.48

(0.00) (0.00) (0.13) (0.00) (0.00) (0.00) (0.00) (0.00)

II 0.09 0.34 0.35 0.38 0.40 0.50 -0.57 0.58 0.26
(0.38) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

III -0.60 -0.44 -0.09 0.43 0.32 0.14 -0.55 0.56 -0.03
(0.00) (0.00) (0.41) (0.00) (0.00) (0.18) (0.00) (0.00)

IV 0.42 0.42 0.41 0.46 0.53 0.32 0.49 0.21 0.41
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)

V 0.28 0.27 0.10 0.65 0.61 0.55 0.33 0.34 0.39
(0.01) (0.01) (0.36) (0.00) (0.00) (0.00) (0.00) (0.00)

Table G.4.1: Forecast-Actual Correlations in international markets.
Correlation between pseudo-out-of-sample forecasts and actual average one-year excess bond returns in
international markets. In-sample and out-of-sample. Models - I: FB; II: CP; III: MA(CP, 2); IV: GCP;
V: MA(GCP, 2). P-values of t-statistics in parentheses. Estimation period: 1992.12�2009.05. Recursively
forecasting in 2010.05�2017.12 results in 92 forecasts.
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