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Abstract

We investigate the relationship between world oil markets and China's macroeconomic performance
over the past two decades. Our analysis starts by proposing a simple method for disentangling real
economic activity stemming from China and the rest of the world. We then consider a su�ciently large
set of dynamic VAR models to distinguish between abrupt and gradual changes in the macroeconomic
relationships and volatility clustering in the shocks. A model exercise shows that a Markov-switching
model is preferred to previously used models in the literature. When investigating the role of oil
market shocks on China's output, we �nd that oil supply shocks tend to elicit a positive response,
while the response of oil demand shocks is negative. Next, when analyzing world oil price dynamics,
we �nd that demand shocks have had signi�cant positive impacts over the past two decades. The
average proportion of oil price variation explained by demand from China and rest of world demand
are around 30 percent over the sample period. Importantly, while China speci�c e�ects are relatively
constant, rest of world aggregate demand shocks are found to have larger impact during times of global
macroeconomic downturn. This highlights the importance of our model comparison exercise. Finally,
we �nd that the recent 2014/15 oil price drop was due to a combination of increased oil supply and
decreased demand from China.
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1. Introduction

Over the past three decades China has risen from being the 9th largest economy by world

share of GDP, to the second largest economy in 2017. This rapid expansion of macroeconomic

growth lead the country to be the world's largest energy consumer in 2011 and 2013 it became

the biggest net importer of petroleum and other liquid fuels.2 Despite these facts, there is

surprisingly little research examining the relationship between China's macroeconomic growth

and world oil markets. Moreover, the small existing literature that does exist has provided

contrasting results.

On one side of the literature, researchers have speculated that recent oil price �uctuations

have been predominately driven by growth in emerging markets, including China (Hamilton,

2009; ?; Baumeister and Peersman, 2013). Recent empirical evidence in support of this claim

was provided in Aastveit et al. (2015). Using a factor analysis with 33 countries, they �nd that

approximately 40% of the 1-2 year variation in the oil price is explained by demand shocks from

emerging markets (including China), while demand shocks from developed countries explain

approximately 15%. Despite this result, direct evidence on the role of China speci�cally, has not

been clear. For instance, while Liu et al. (2016) found that China speci�c demand accounted

for 51 percent of the variation between 2000 and 2014, others have suggested that China's oil

demand has little or zero impact on the global oil price (Mu and Ye, 2011; Wu and Zhang, 2014;

Lin and Li, 2015; Cross and Nguyen, 2017). On the other side of the literature, researchers who

have examined the e�ects of oil market shocks on China are yet to reach a consensus on the

general nature of the impacts. For instance, Tang et al. (2010) and Zhao et al. (2016) �nd that

positive oil demand shocks negatively impact China's output. In contrast, Du et al. (2010) and

Herwartz and Plödt (2016) �nd that such shocks elicit positive growth. More recently, Cross

and Nguyen (2017) suggest that such shocks may elicit either positive or negative movements,

depending on the period in which they occurred. In particular, they �nd that such shocks had

negative impacts in the early 1990's to 2000's and positive e�ects after the 2007/08 �nancial

crisis.

A potential shortcoming of the studies that have focused on China is that they do not

explicitly control for aggregate demand e�ects stemming both China and the rest of the world.

This is critical because ? shows that di�erent oil market shocks have very di�erent e�ects

on the real price of oil. For example, increases in precautionary demand for crude oil elicit

2The data source is obtained through the US Energy Information Administration
(EIA) website: https://www.eia.gov/beta/international/analysis.cfm?iso=CHN, and the IMF:
https://www.imf.org/external/pubs/ft/weo/2017/02/weodata/download.aspx
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an immediate, persistent, and large increase in the real price of crude oil, while an increase

in aggregate demand causes a somewhat delayed, but sustained, increase. Moreover, he �nds

that the recent 2003-08 oil price boom was predominantly driven by the cumulative e�ects of

positive global demand shocks.

This paper breaks ground in this area by proposing a simple two step method for modeling

real economic activity (REA) stemming from China and the rest of the world.3 In the �rst

step, we de�ne the rest of world real economic activity as the residuals from a simple (time

varying coe�cients) regression model in which world REA is regressed on China's REA. In the

second step, we estimate a structural vector autoregression (VAR) model with these residuals

as a proxy for rest of the world REA, along with China's REA, and the international price and

production of crude oil, to answer our research question.

In conducting step two we build on the recent analysis of Cross and Nguyen (2017), by

considering a class of non-linear VAR models. In that paper, Cross and Nguyen (2017) inves-

tigate the role of China in world oil markets by employing a class of time varying parameter

VAR models (Primiceri, 2005; Chan and Eisenstat, 2018). The justi�cation for this modeling

approach stems from noting that changes in China's macroeconomic conditions and demand

for oil in particular have been gradually occurring over time. Despite this fact, it is well known

that energy prices tend to exhibit erratic jumps in volatility (as opposed to gradual changes).

Indeed, multiple scholars have shown that world energy market dynamics are well captured

by Markov-switching models (Raymond and Rich, 1997; Clements and Krolzig, 2002; Bjørn-

land et al., 2018a; Holm-Hadulla and Hubrich, 2017; Hou and Nguyen, 2018). With this in

mind, we extend the set of models proposed in Cross and Nguyen (2017) to include a class of

Markov-switching models.

While our methodological contributions are relatively simple, they yield signi�cant insights

into the relationship between China's recent macroeconomic performance and world oil markets.

These results are summarized as follows. First, from a purely statistical perspective we �nd that

a constant coe�cients VAR model with Markov-switching in the covariance matrix provides

better in-sample �t when compared to the time varying VAR in Cross and Nguyen (2017) and

the traditional constant parameter VAR used in other studies (Du et al., 2010; Tang et al., 2010;

Mu and Ye, 2011; Wu and Zhang, 2014; Liu et al., 2016; Herwartz and Plödt, 2016). Using

the same set of sign restrictions in Cross and Nguyen (2017), we �nd that oil supply shocks

tend to elicit a positive response in China's output, while the response of oil demand shocks is

3Following (?) real economic activity is not itself a measure of aggregate demand, however the structural
VAR model introduced in Section 3.1 allow us to identify the demand driven component in real activity.
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negative. Interestingly, the signs of these responses then switch during times of global economic

downturn, highlighting the importance of our modeling choice. Next, when analyzing world

oil price dynamics, we �nd that demand shocks have had signi�cant positive impacts over the

past two decades. To quantify these impacts, we compute a regime-dependent forecast error

variance decomposition. The results show that the proportion of oil price variation explained by

demand from China is around 30 percent over the sample period. Our results therefore provide

empirical support to the conjectured claims in recent studies (Hamilton, 2009; ?; Baumeister and

Peersman, 2013). Importantly, while China speci�c e�ects are relatively constant, rest of world

aggregate demand shocks are found to have larger impact during times of global macroeconomic

downturn. This result highlights the importance of our model selection exercise. In addition

to these insights, we also �nd evidence that the recent 2014/15 oil price drop was due to a

combination of increased oil supply and decreased demand from China.

The rest of this paper is structured as follows. In Section 2 we provide the data sources and

propose a method for disentangling world and China speci�c demand. In Section 3 we outline

the set of VAR models and conduct a formal Bayesian model comparison exercise to select the

best model for the main analysis. In Section 4 we discuss the identi�cation procedure used

to recover the structural shocks. In Section 5, we address the research questions. Finally, we

present some robustness checks in Section 6 and conclude in Section 7.

2. Data

2.1. Data Sources and Transformations

We use quarterly data between 1992Q1 and 2015Q2 on four variables of interest in the

model: The oil price and quantity, real economic activity from China and real activity from

the rest of the world. In line with existing literature we consider two alternative measures

of the oil price: the US re�ners' acquisition cost (RAC) for imported crude oil and the West

Texas Intermediate (WTI) price of crude oil. Since it is generally considered to be the best

proxy for the free global oil price market (Baumeister et al., 2010), we use the former price

for the benchmark model and the latter as a robustness check. The real oil price is obtained

by de�ating the nominal price by the US Consumer Price Index. Next, the quantity of oil is

measured by the amount of world crude oil production (thousand barrels per day) as provided

by the US Energy Information Administration (EIA).

Next, we measure world real economic activity using the global industrial production (IP)

index provided by the Netherlands Bureau of Economic Policy Analysis (CPB).4 There are

4The choice of an appropriate measure of global economic activity has recently received a lot of attention;
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three reasons that we prefer the use of the CPB index over the commonly used OECD + 6

series. First, the CPB series has a more general coverage; containing IP data from 85 countries

worldwide which account for approximately 97% of global IP. Second, unlike the OECD + 6

index, the CPB measure includes data on a range of emerging markets. This is important given

the aforementioned results in Aastveit et al. (2015). Third, the use of the CPB series allows us

to remain consistent with Cross and Nguyen (2017), which provides the benchmark results for

our analysis.

Finally, also consistent with Cross and Nguyen (2017), China's real economic activity is

measured by its real quarterly GDP published by Center of Quantitative Economic Research of

Federal Reserve Bank of Atlanta. The reason for using China's real quarterly GDP, instead of

the IP index, is that this data is unavailable. Instead, China's government o�cials only report

real value added in industry, which is de�ned as gross output in industry minus the costs of

factor inputs; see Kilian and Zhou (2018) for a discussion.

Prior to the analysis we conducted the following data transformations. First, since both

the oil price and production are of monthly frequency, we transform them to non-annualized

quarter-on-quarter growth rates by taking the �rst di�erence of the natural logarithm. Next,

the IP index is converted to non-annualized month-on-month rates of growth by taking the �rst

di�erence of the natural logarithm, seasonally adjusted, and then converted to quarterly values

by taking the appropriate averages. Finally, the real GDP index is converted to quarter-on-

quarter rates of growth by taking the �rst di�erence of the natural logarithm. The resulting

series are plotted in Figure 1. A few features are worth highlighting: the high production

and price volatility around 2000 and 2007, the gradual increase in production since 2012, the

2014/15 volatility in the oil price volatility and the slowdown of China's economy since 2012.

We will return to each of these points when discussing the results in Section 6.

2.2. Disentangling China's demand and World demand for oil

To analyse the impacts of demand shocks stemming from China and the rest of the world

it is �rst necessary to disentangle the real economic activity components. To this end, we

regress the measure of world real economic activity on China speci�c real economic activity

see Kilian and Zhou (2018) for a survey of this literature. By far, the two most commonly used proxies for
this activity are the global real economic activity (REA) index constructed by ? (Kilian's index) and global
industrial production (IP). For our analysis, we prefer latter measure for two reasons: First, recent evidence
reported in Kalouptsidi (2017) shows that China has intervened and reduced shipyard costs by 13-20%. Since
it relies on international shipping costs, the REA index may not fully re�ect the true costs in China. Second,
Hamilton (2018) has recently highlighted that the REA index has not captured well real economic activity in
recent years, while world Industrial Production (IP) does.
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and use the residual as a proxy for demand of oil by the rest of the world. Let yw,t and yc,t

respectively denote the real growth of world and China speci�c demand for oil at date t. Then,

the regression is given by

yw,t = βtyc,t + et, et ∼ N
(
0, σ2

yw

)
, (1)

βt = βt−1 + ut, ut ∼ N
(
0, σ2

β

)
, (2)

where we account for the changing proportion of world demand explained by China through

the use of time varying regression coe�cients. To facilitate the readability of our paper, we

defer speci�c details of the sampler to Appendix A.1.

The resulting posterior mean of the time varying coe�cients and associated 16th and 84th

percentiles of the posterior distribution are provided in Figure 2. To provide a benchmark, we

also plot the associated least squares estimates for a constant coe�cient regression. The primary

takeaway is that the proportion of total world activity explained by China has substantially

changed over the past two decades, with the average contribution ranging from 10 to 40 percent.

The fact that this is a relatively large proportion highlights the importance of disentangling the

two series before any econometric analysis. Also note that the least squares estimate is 33%.

Thus, the least squares estimate would over-predict the contribution at the start of the sample,

and under-predict it towards the end.

[Insert Figure 2 here]

3. Model Selection

3.1. Models

We consider two classes of time varying VARs. The �rst class models time variation in

the parameters through a Markov-switching process, while the second class assumes that the

parameters evolve according to an autoregressive process. Despite both classes of VARs being

time varying parameter models, in what follows we adopt the convention of referring to the

�rst class as Markov-switching VARs and the second class as time varying VARs. From an

economic perspective, Markov-switching models are useful because they can capture abrupt

changes in the endogenous relationship between the variables of interest or volatility clustering

in the shocks. In contrast, time varying VARs are useful because they can capture gradual

changes in these phenomena. Since there are many permutations of each model, we facilitate

the presentation by �rst discussing the most general model and then noting how other models
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are speci�ed as restricted versions of this general model. In both cases we let yt denote an n×1

vector of time series of interest and p denote the number of lags. Since we wish to compare our

results directly with the existing literature, we follow Cross and Nguyen (2017) and set p = 4.

3.1.1. Time varying VARs

The structural version of the time varying parameter VAR with stochastic volatility (TVP-

VAR-SV) model, with n variables and p lags, has a state space representation with observation

equation de�ned by:

B0,tyt = bt + B1,tyt−1 + · · ·+ Bp,tyt−p + εt, εt ∼ N (0,Σt) , (3)

where bt is an n × 1 vector of time varying intercepts, Bj,t, j = 1, . . . , p, are n × n matrices

of time varying VAR coe�cients, B0,t is a lower triangular n × n matrix with ones along the

main diagonal and Σt = diag
(
eh1,t , . . . , ehn,t

)
in which ehi,t , i = 1, . . . , n are latent time varying

volatilities. We highlight the fact that (3) presents the structural form of the TVP-VAR-SV

model and is therefore di�erent from the reduced form representation in Primiceri (2005), which

was utilized in Cross and Nguyen (2017). The reason that we prefer this representation is that

it allows for more e�cient posterior simulation (Eisenstat et al., 2016). Of course, prior to

model comparison, the reduced-form coe�cients can be easily recovered from the structural-

form coe�cients.

For estimation purposes (3) can be written as:

yt = X̃tβt + Wtγt + εt, εt ∼ N (0,Σt) (4)

where X̃t = In ⊗ [1 y′t−1 . . . y′t−1] is a n × kβ matrix, βt = vec([bt B1,t . . .Bp,t]
′) is a

kβ × 1 vector with kβ = n (1 + np), γt is a kγ × 1 vector of the contemporaneous time varying

coe�cients in B0,t (collected by rows) with kγ = n(n−1)
2

, and Wt is an n × kγ matrix that

contains appropriate elements of −yt. For example, when n = 4 it follows that kγ = 6, i.e.

γt = (b0,21,t, b0,31,t, b0,32,t, b0,41,t, b0,42,t, b0,43,t)
′ and Wt has the form:

Wt =


0 0 0 0 0 0

−y1,t 0 0 0 0 0

0 −y1,t −y2,t 0 0 0

0 0 0 −y1,t −y2,t −y3,t

 ,

where yi,t is the i-th element of yt, and b0,ji,t is the ji-th element in the matrix B0,t, with
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i = 1, 2, 3 and j = 1, 2, 3, 4.

Finally, (4) can be written more compactly as:

yt = Xtθt + εt, εt ∼ N (0,Σt) , (5)

where Xt =
(
X̃t,Wt

)
is an n×kθ matrix and θt = (β′t,γ

′
t)
′ is a kθ×1 vector where kθ = kβ+kγ.

Following Cross and Nguyen (2017), the state equations for the latent parameters and log

volatilities are assumed to follow the subsequent independent random walk processes:

θt = θt−1 + νt, νt ∼ N (0,Ωθ) , (6)

ht = ht−1 + ηt, ηt ∼ N (0,Ωh) , (7)

where Ωθ = diag (ω2
θ1, . . . , ω

2
θk), Ωh = diag (ω2

h1, . . . , ω
2
hn) and we treat the initial conditions θ0

and h0 as values to be estimated.

The model speci�cation is completed by selecting priors for the state variances and the

initial states. The priors for θ0 and h0 are both multivariate Gaussian distributions: θ0 ∼

N (aθ,Vθ) ,h0 ∼ N (ah,Vh), while the diagonal elements of the covariance matrices Ωh and Ωθ

are independently distributed as: ω2
θi ∼ IG (νθi, Sθi) and ω2

hj ∼ IG (νhj, Shj), with i = 1, . . . , kθ

and j = 1, . . . , n. The hyperparamters for these distributions are set as follows: aθ = 0,

Vθ = 10 · Ikθ , ah = 0, Vh = 10 · In and νθi = νhj = 5. The scale parameters for the volatilities,

i.e. Shj, are then chosen so that the prior means are 0.12 respectively. Finally, we distinguish

between VAR coe�cients and intercept terms, by choosing the scale parameters so that the

prior means are set to 0.012 for the former and 0.12 for the latter.

3.1.2. Markov-switching VARs

Let st ∈ {1, . . . ,M} denote a regime indicator variable at date t, where M denote the

number of regimes. Then, the structural M -state Markov-Switching VAR (MS-VAR) can be

expressed as:

B0,styt = bst + B1,styt−1 + · · ·+ Bp,styt−p + et, et ∼ N (0,Ωst), (8)

where the collection (B0,st ,bst ,B1,st , . . . ,Bp,st) and Ωst are regime-speci�c VAR parameters,

which are of the same dimension and structure as their time varying counterparts in (3). The

regime indicator variable st is assumed to follow a M -state Markov process with transition

probabilities Pr(st = j|st−1 = i) = pij, i, j = 1, . . . ,M . In practice we set M = 2 to allow for
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the natural interpretation of high and low volatility regimes.5

Since there is no computational e�ciency to be gained through direct estimation of this

model, we instead directly estimate the reduced form variant:

yt = cst + A1,styt−1 + · · ·+ Ap,styt−p + εt, εt ∼ N (0,Σst), (9)

where cst = B−10,stbst , Ai,st = B−10,stBi,st , i = 1, . . . , p, εt = B−10,stet and Σst =
(
B′0,stΩ

−1
st B0,st

)−1
.

For estimation purposes, it is useful to rewrite (9) as:

yt = Xtβst + εt, (10)

where βst = vec ((cst ,A1,st , . . . ,Ap,st)
′) is a kβ × 1 vector of VAR coe�cients and Xt = In ⊗

(1,y′t−1, . . . ,y
′
t−p).

To complete the model speci�cation, we assume the following independent priors:

βi ∼ N (β0,V0), Σi ∼ IW(S0, ν0), (pi1, . . . , piM) ∼ D(αi1, . . . , αiM), for i = 1, . . . ,M ,

where IW(S, ν) denotes the Inverse Wishart distribution with scale matrix S and the degree of

freedom ν, and D(a1, . . . , aM) denotes the Dirichlet distribution with concentration parameters

(a1, . . . , aM). Since the time series of interest exhibit high persistence, frequent switching

among regimes over time is empirically implausible. To incorporate this fact, we implement

an informative prior on the regime transition probability in which the concentration matrix is

constrained to be 
α11 α12 . . . α1M

α21 α22 . . . α2M

...
...

. . .
...

αM1 αM2 . . . αMM

 = 1M + ρIM ,

where 1M is a M ×M matrix with its entries all equal to one and ρ > 0 governs the degree

of regime persistence. For instance, it is easily veri�ed that the expected value of probability

for two subsequent periods belonging in the same regime is E(pii) = 1+ρ
ρ+M

, which implies that a

higher value of ρ indicates a high regime persistence.

The hyperparameters for these distributions are set as follows. First, we utilize a Minnesota

5We provide a statistical justi�cation for this assumption in Section 3.2.
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prior for β in which β0 = 0 and V0 = diag(v1, . . . , vkβ), where the entries in (v1, . . . , vk)

correspond to those in vec((c0,A10, , . . . ,Ap0)
′). We distinguish between the intercepts and

VAR coe�cients by setting the vi associated with the former to be 10 and those with the latter

as

vi =


λ21
r2

for coe�cients on own lags,

λ21λ2
r2

σi
σj

for coe�cients on cross lags,

where σj is set equal to the standard deviation of the residual from AR(p) model for the variable

i = 1, . . . , n and r = 1, . . . , p. The remaining hyperparameters are set as λ1 = 0.2 and λ2 = 0.5.

This speci�cation allows us to capture a number of economic ideas. For instance, the fact that

recent lags are more important than older ones is captured by the geometric rate of decay on

the term r2. Also, by setting λ2 < 1 we incorporate the belief that own lags are likely to

be more important than cross lags. Next, for the covariance matrix, we set ν0 = n + 4 and

S0 = (ν0−n− 1)× In. Finally, for the transition probabilities, we set ρ = 10 implying that the

prior probability of transitioning between two states is approximately 0.08.

3.1.3. Competing Models

We identify the relevant modeling features of the observed data by comparing the in-sample

�t of the TVP-VAR-SV as MS-VAR models with various restricted versions. A complete list of

the considered models is provided in Table 1. Note that the C-VAR-SV is a restricted version

of the TVP-VAR-SV model with θt = θ0 for all dates t = 1, . . . , T , while the TVP-VAR-C

makes the restriction that ht = h0. Similarly, the MS-VAR-C is a restricted version of the MS-

VAR model in which the error covariance matrix is restricted to be constant across regimes,

while the C-VAR-MS makes the restriction that the coe�cients are constant across regimes.

Finally, the CVAR can be viewed as either a TVP-VAR-SV or MS-VAR with the appropriate

restrictions on both the VAR coe�cients and the error covariance matrix. We estimate each of

these models using MCMC methods, details of which are provided in Appendix A.2.

Table 1: A list of competing models.

Model Description

CVAR A VAR with constant coe�cients & constant error covariance
C-VAR-SV A VAR with constant coe�cients & time varying error covariance
TVP-VAR-C A VAR with time varying coe�cients & constant error covariance
TVP-VAR-SV A VAR with time varying coe�cients & time varying error covariance
MS-VAR-C A VAR with regime-dependent coe�cients & constant error covariance
C-VAR-MS A VAR with constant coe�cients & regime-dependent error covariance
MS-VAR A VAR with joint regime-dependence in both coe�cients & error covariance

10



3.2. Model Comparison

Suppose we are interested in comparing the in-sample �t of two distinct models Mi and

Mj. In a Bayesian framework, each model is formally de�ned by a likelihood function, denoted

by p (y|θk,Mk), k = i, j, and a prior probability distribution on the model-speci�c parameter

vector θk, denoted by p (θk|Mk). Given this information, a formal method of model comparison

is the Bayes factor of Mi against Mj, which is de�ned as:

BFij =
p (y|Mi)

p (y|Mj)
, (11)

where

p (y|Mk) =

∫
p (y|Mk,θk) p (θk|Mk) dθk, (12)

is the marginal likelihood of Mk , k = i, j.

As discussed in Geweke and Amisano (2011), the marginal likelihood can be interpreted

as a density forecast of the observed data y under the Mk. This implies that the marginal

likelihood value will be relatively large for models in which the observed data are more likely.

Thus, if the observed data are more likely under Mi as compared to Mj, then BFij > 1. In this

case, posterior inference would then be conducted with Mi. More generally, given a set of m

models,M = {M1, . . . ,Mm}, the model with the largest marginal likelihood value will be used

to generate posterior inference. The model comparison results for the set of models presented

in Table 1 is reported in Table 2.6

Table 2: Log marginal likelihoods for the set of VAR models

CVAR C-VAR-SV TVP-VAR-C TVP-VAR-SV C-VAR-MS MS-VAR-C MS-VAR

-706.446 -834.10 -2518.80 -987.56 -696.43 -699.17 -702.71

Note: Log marginal likelihood for the best model is in bold.

Three points are worth noting. First, in contrast to Cross and Nguyen (2017) we �nd that the

CVAR model provides superior in-sample �t compared to the class of time varying parameter

6These (log-) marginal likelihood values are computed with a recently developed importance sampling based
algorithm proposed in Chan and Eisenstat (2017). We use this algorithm because recent work has shown
traditional methods such as the (modi�ed) harmonic mean of Gelfand and Dey (1994) or the method in Chib
(1995) to be extremely inaccurate. Speci�cally, see Chan and Grant (2015) for a discussion of the former and
Frühwirth-Schnatter and Wagner (2010) for a similar discussion regarding the latter. Since it would lead us
too far astray, we do not list the algorithm here, but instead refer the interested reader to Chan and Eisenstat
(2017) for details.
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models. The reason for this discrepancy is that in this paper we have explicitly disentangled the

real GDP components between China and the rest of the world. This highlights the importance

of this step in our estimation procedure. Second, the class of MS-VAR models outperforms both

the CVAR and the class of time varying parameter models. Third, the C-VAR-MS is the best

model. Statistically speaking, this suggests that allowing for regime dependence in the error

covariance matrix is a signi�cant modeling feature of the data. Economically, this means that

volatility clustering at high and low levels is a key feature regarding the relationship between

China's economy and world oil markets. Moreover, the use of alternative models may lead to

biased estimates of the underlying shocks. For instance, the use of a traditional (homoscedastic)

VAR models would erroneously average the shocks in both regimes, resulting in a positive bias

during the low volatility regime and a negative bias during the high volatility regime. While

concrete evidence of this claim requires the identi�cation of the underlying structural shocks,

suggestive evidence can be found in Figure 3, which presents the posterior means and 68 percent

credible sets for the respective elements in the reduced form covariance matrix.7

[Insert Figure 3 here]

Since the credible sets of the variance terms (those elements on the main diagonal) do not

contain zero, they are each statistically signi�cant over the sample period. Hence the above

claim seems to hold. Interestingly, the same can not be said for the covariance terms. In

those cases, the credible sets contain zero in the low volatility regime (i.e., the entire sample

excluding the periods 2000-04 and 2007-09). While this suggests that contemporaneous shocks

may not be important during normal economic conditions, it does not imply that they are

never important over the entire sample. This is because the credible sets do not contain zero

in the high volatility regime, and are therefore statistically signi�cant. Taken together, these

result suggests that while own shocks are likely to be of primary importance in periods of low

volatility, contemporaneous interactions seem to become important in high volatility regimes.

Moreover, the periods of high volatility coincide with the US recessions. We return to this

point when discussing the main results in Section 5.

Finally, before moving on to the structural analysis, it is worth investigating whether the

assumption of two regimes is a reasonable one. To this end, we follow Koop and Potter (1999)

and compute the marginal likelihood for various C-VAR-MS models which di�er in the number

7Under the assumption of normality, a 68 percent credible interval shows the set of values within one standard
deviation of the mean.
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of possible regimes. The results contained in Table 3 show that the two regime C-VAR-MS is

the best model.

Table 3: Log marginal likelihoods for C-VAR-MS with various regimes

No. of regimes 2 3 4 5

Log-ML -696.43 -701.17 -708.01 -706.50

Note: Log marginal likelihood for the best model is in bold.

4. Identi�cation

It is well known that the identi�cation of a structural VAR model is a subject of ongoing

research.8 Since a key objective of our paper is to provide a set of results that are comparable

with the existing literature, we adopt the same set of agnostic sign restrictions used in Cross

and Nguyen (2017).9 These restrictions are based on the comparative statics of a simple supply

and demand model for the global oil market, in which the quantity is measured by world oil

production and the price is given by the real international price of crude oil.

The �rst type of shock are supply shocks, denoted by εQ,t. Such shocks represent an ex-

ogenous disruption of global oil production that may be caused by, for example, geopolitical

turmoil. Under this interpretation, positive oil supply shocks simultaneously cause positive

responses of global oil production and world economic activities but reduces the real oil price.

The second type of shock arises from the fact that increases in aggregate global economic ac-

tivity, after excluding the China factor, tend to generate higher commodity prices, and are

therefore called global oil demand shocks, εYW ,t. These shocks are associated with increases in

both global oil production and the real price of oil. The third type of shocks originates from

speci�c factor generated demand and are therefore called oil speci�c demand shocks, εP,t. This

idea comes from ? who �nds that increased in precautionary demand for crude oil which are as-

sociated with changes in market expectations about the availability of future oil supply relative

8See Kilian (2013) for a general overview of various identi�cation strategies in VAR models; including the
sign restriction method used in this paper. For a critical review of sign restrictions, we refer the reader to Fry
and Pagan (2011).

9In a seminal paper, ? proposed a recursive identi�cation strategy for a trivariate VAR in which the observed
data series are available at monthly frequency. The justi�cation for these restrictions is that the short-run oil
supply curve is perfectly inelastic, thus implying that global oil production does not respond to oil demand
shocks instantaneously, but only with a delay of one month. Since this argument is based on the observation of
a one month lag, such a restriction should not be imposed at the quarterly frequency. Instead, a large number
of studies have sought to relax ?'s identifying assumption and utilized sign restrictions to study the e�ect of
oil supply and demand shocks on macroeconomic aggregates. See, for instance, Lippi and Nobili (2012); Kilian
and Murphy (2012); Baumeister and Peersman (2013); Lütkepohl and Net²unajev (2014); Kilian and Murphy
(2014); Cross and Nguyen (2017), among others.
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to demand is an important factor causing oil price shocks. This implies that such shocks induce

a positive correlation between the oil production and its real price but reduces global economic

activity. Notice that we have not speci�ed any directional responses of China's GDP growth

to each of these shocks. This is because a key objective of this paper is to study the e�ects of

global oil market shocks on China's macroeconomic growth. Instead, we remain agnostic and

allow the reactions of these variables to be completely determined by the data.

The �nal type of shock that we consider is a China speci�c demand shock, εYC ,t. Since the

primary purpose of this paper is to study the e�ects of such shocks on the world oil market,

we do not impose any sign restrictions on the market response. By doing this, the direction

and magnitude of the responses are purely determined by the data. The directional signs for

these restrictions of the impact matrix are summarized in Table 4. A practical guide to the

implementation of these restrictions is provided in Appendix B.

Table 4: Sign restrictions

εQ,t εYW ,t εP,t εYC ,t

Oil production + + + ×

World economic growth (excluding China) + + − ×

Real oil price − + + ×

China's GDP growth × × × +

Note: + and − respectively indicate positive and negative responses, while ×

leaves the e�ect unrestricted.

The cost of providing such an agnostic identi�cation procedure is that the structural shocks

may be partially identi�ed. For instance, under the restrictions in Table 4, if China speci�c

demand shocks elicit a positive response in all of the variables in the system, and the aggregate

demand shocks has a positive impact on China speci�c demand, then these two shocks are

indistinguishable. To overcome this issue we add an additional elasticity restriction in which

we assume that own shocks yield a greater responsiveness than contemporaneous interactions.

This assumption has been adopted in a range of papers, e.g. Peersman (2005), Aastveit et al.

(2015) and Cross and Nguyen (2017). For completeness, in Section 6 we provide estimation

results with no elasticity restrictions.
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5. Results

5.1. The E�ect of Oil Market Shocks on China

In this section we investigative the e�ects of oil market shocks on China's output by con-

sidering the propagation of the identi�ed intertemporal structural shocks. The supply shock is

normalized as a negative shock implying a reduction in world oil production that would lead

to increase the oil price, while reducing world economic growth (excluding China). In each

case, the shock size is one standard deviation. The resulting impulse response functions are

displayed in Figure 4. Following Bjørnland et al. (2018b), we use a box plot to illustrate the

cumulative three year ahead impacts of the oil market shocks on China' GDP growth. In what

follows, we discuss two broad conclusions.

First, in normal times, negative oil supply shocks have positive e�ects, while both positive

oil demand and oil speci�c demand shocks have negative e�ects. Interestingly, the signs of these

responses then switch during times of US economic crisis. This is a new result in the oil market

literature which therefore builds on existing results. The �nding that negative oil supply shocks

can have positive e�ects complements those in Zhao et al. (2016), but is in contrast to those in

Herwartz and Plödt (2016) and Cross and Nguyen (2017), who �nd that such shocks tend to

have no impact. Interestingly, during the 2000 recession, we also �nd that such shocks elicit an

almost zero response on China's real GDP growth. The result that positive oil demand shocks

tend to have a negative e�ect on China's growth is also consistent with those in Tang et al.

(2010) and Zhao et al. (2016) but in contrast with those in Du et al. (2010) and Herwartz and

Plödt (2016). The responses are mostly consistent with Cross and Nguyen (2017) who also

provide evidence that demand shocks had negative impacts in the 1990s and positive e�ects in

the 2007/08 GFC, however they �nd no evidence of the earlier switch during the 2000 recession.

Instead, their result is that China had no impact during this period. This suggests that the

Markov-switching model used in this study is better capable of capturing this abrupt event as

compared to the autorgeressive models used in that paper.

Second, the magnitude response of China's output to the oil price shocks are found to

be small and economically insigni�cant. This result is consistent with evidence in Herwartz

and Plödt (2016) and Cross and Nguyen (2017, 2018) who independently observe that the

reaction of Chinese real GDP to di�erent global oil price shocks is relatively �at. As discussed

in Hamilton (2009); Aastveit et al. (2015) and Cross and Nguyen (2018), a likely reason for

these small e�ects is the structure of China's energy expenditure. More speci�cally, Cross and

Nguyen (2018) document that coal provides the dominant proportion of China's total energy
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expenditure share, with oil expenditure contributing between 24% and 35% of this total. The

main takeaway from this point is that despite China being a major player in international oil

markets, oil market shocks have historically had little impact on China's real GDP growth.

5.2. The China Factor in World Oil Markets

In this section we assess the impacts of China speci�c demand shocks on the oil price. To

this end, we construct impulse response functions and counterfactual historical decompositions.

The impulse response functions allow us to investigate how such shocks transmit through the

oil market market, while the historical decompositions allow us to quantify their e�ects over

the sample period.

Figure 5 displays the response of the oil price to one standard deviation shocks in the

remaining three variables. The demand shocks exert increasing positive pressure on the oil

price in times of US macroeconomic crisis, while the supply shock impact decreases. With

respect to our research question, the responses show that the China factor has had a signi�cant

positive impact on the oil price, however this impact is likely substantially less than demand

shocks from the rest of the world. Our �ndings therefore contrasts those in Mu and Ye (2011);

Wu and Zhang (2014) and Cross and Nguyen (2017) who each �nd no evidence to support the

hypothesis that China's demand for oil has impacted the world price.

To further investigate the role of each variable in driving the price of oil, we now construct

counterfactual historical decompositions. Such decompositions were �rst proposed in Kilian

and Lee (2014) as a method of indicating how the variable of interest�in this case the price of

oil�would have evolved, if we replaced all realizations of shock j by zero, while preserving the

remaining structural shocks in the model. Thus, for interpretation purposes, a positive value

indicates that the structural shock increased the real price of oil and vice versa. The results for

each counterfactual are presented in Figure 6. The two panels in the �rst row focus on the oil

market variables, while those in the second row focus on the speci�c demand variables.

The top left panel shows that in the absence of supply shocks. Four observations are worth

noting: the negative e�ects in the lead up to the recession in 2000, the sharp positive e�ects in

the early 2000s, the positive e�ects throughout most of the 2000s, and the noticeable negative

pressure around the time of the recent 2013 and 2015 price drops. To the best of our knowledge,

the last observation is new in the literature. It suggests the recent price drop in the price of oil

was largely due to positive oil supply shocks. Interestingly, a quick glance at the bottom right

panel reveals that decreased demand from China has also played a roughly equivalent role.

The e�ects of the demand shocks more generally are somewhat similar to the supply shocks,
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however key di�erences do exist around the 2000 recession and the 2007/08 GFC. More specif-

ically, China speci�c demand seems to have had a large positive impact on oil price movements

in the year 2000, while each of the demand shocks had a large negative impact on the price of

oil in the 2007/08 GFC. The largest contributor in the latter crisis was the aggregate demand

shocks, whose e�ects are found to be approximately twice as large as those from China. Thus,

while both supply and demand shocks have positively contributed to the oil price since the turn

of the century, our results support ? in the sense that demand shocks are found to be important

causes of oil price movements around the time of the 2007/08 crisis. Finally, to address our key

research question in some more detail, we elaborate on the results in the bottom right panel.

Generally speaking, with the exception of the negative shock around the 2007/08 crisis, the

results clearly suggest that the China factor has had a positive impact on the oil price over the

past two decades.

Finally, to better relate these results to the variance decompositions in Aastveit et al. (2015)

and Liu et al. (2016), in Figure 7 we report the 12-step ahead variance decomposition for the

oil price across.

The results suggests that the proportion of variation explained by aggregate demand hocks

from the rest of the world is around 30 percent during normal times and close to 60 percent

during times of US macroeconomic crisis. In contrast, the proportion of variation explained by

oil speci�c demand and oil supply shocks decreases duirng times of US macroeconomic crisis.

This latter result is consistent with the �ndings in ?. Interestingly, the proportion of variance

explained by China's demand shocks is relatively constant over the sample period, at around

30 percent. Thus, while the China factor certainly explains a non-negligible proportion of the

variance, our result is substantially less than that in Liu et al. (2016) who found such shocks

accounted for 51% of the variation in the oil price between 2000 and 2014. A likely reason for

the discrepant quantitative results is that their study limits the real economic activity variables

in the VAR model to be US industrial production and China value-added. The issue with

this is that any variation from Asia, which have been noted as an essential contributor to the

price of oil , will be captured by the China factor. Evidence for this hypothesis can be found

by comparing the variance decompositions between the two studies (Aastveit et al., 2015).

Speci�cally, Aastveit et al. (2015) �nd that economic activity from developing economies can

explain around 40% of the oil prices two year ahead forecast error variance, which is remarkably

close to the 46% of variation that Liu et al. (2016) attribute to China at the same impulse

horizon. In contrast, the CPB index used in this paper controls for the e�ects of Asia.
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6. Robustness Checks

To assess the necessity of imposing elasticity assumptions on the various model relations

we simply re-estimate the model without them. The results from this exercise are provided in

Figures 8�10. It su�ces to note that they are almost identical to those in our main analysis.

This suggests that partial identi�cation is not an issue in this study.

Next, we test the robustness of the results to the use of the WTI oil price. The results are

provided in Figures 11�13. Again, the results are almost identical. The only di�erence is that

the oil supply shocks now have an even smaller impact on China's real GDP growth during

both the recession of the 2000s and 2007/08. Otherwise, our �ndings are robust across the two

data sets.

7. Conclusion

Our primary objective in this paper was to answer two questions: (1) how demand shocks

from China impact the world oil market; and (2) how shocks from the world oil market a�ect

China's macroeconomic output. To address these questions, we �rst disentangled oil speci�c

demand stemming from China and the rest of the world. We then proposed two classes of

�exible VAR models: Markov-switching and time varying parameter VARs, that are capable of

capturing either gradual or abrupt changes in the relationships among variables of interest and

volatility clustering in the shocks. To distinguish the relevant modeling features of the data,

we conducted a formal Bayesian model comparison exercise, based on the Bayes factor. This

exercise revealed that the constant coe�cient Markov-switching switching VAR with regime

dependent covariance matrix (C-VAR-MS) was preferred to all other models. This model

allowed us to detect key regime changes, which a traditional constant parameter VAR model

would be unable to detect. In particular, we found evidence to support the idea of regime

changes in times of global economic downturns.

Allowing for regime changes was shown to be particularly important when investigating our

research questions. First, we found that oil supply shocks tend to elicit a positive response in

China's output, while the response of oil demand shocks is negative. Importantly, the signs

of these responses then switch during times of global economic downturn, highlighting the

importance of our modeling choice. Next, when analyzing world oil price dynamics, we found

that demand shocks have had signi�cant positive impacts over the past two decades. Using

a regime-dependent forecast error variance decomposition, we showed that the proportion of

oil price variation explained by demand from China is around 30 percent over the sample
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period. Importantly, while China speci�c e�ects are relatively constant, the impact of rest of

world aggregate demand shocks were found to be larger during times of global macroeconomic

downturn. Finally, we also found evidence that the recent 2014/15 oil price drop was due to

a combination of increased oil supply and decreased demand from China. Taken together, our

results provide empirical support to the conjectured claims that China has been in�uential

in driving oil price dynamics over the past two decades (Hamilton, 2009; ?; Baumeister and

Peersman, 2013).

Figures

Figure 1: Historical evolution of the series (1992Q2-2015Q3).

Note: The raw data of crude oil production and prices are collected from EIA. China's GDP is sourced
from Fed of Atlanta. All series are expressed in quarter-on-quarter percent changes. The shaded region
shows recessions as de�ned by the NBER.
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Figure 2: Global demand and ROW demand after excluding China's demand.

Note: βt and ROW demand (et) derived from equation 1-2 and βOLS obtained from the associated
constant coe�cient regression. The shaded region shows the 68% credible intervals.

Figure 3: Reduced Form Covariance Matrix

Note: The �gure plots time-varying reduced form covariance matrix of the C-VAR-MS model along
with the 68% credible intervals. The shaded region shows recessions as de�ned by the NBER.
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Figure 4: China's GDP response to the global oil market shocks.

Note: The boxes report the inter-quantile range of the cumulative three year ahead impacts. The
circles inside each box is the median estimate.

Figure 5: Oil price response to supply and demand shocks.

Note: See Figure 4.
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Figure 6: Historical decomposition of factors contributing to oil price �uctuations.

Note: The �gure shows the di�erence between the actual oil real price and the total contribution of the
structural shocks without the shock of interest. A positive value indicates that the structural shock
contributed to increasing the price of oil, and vice versa.
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Figure 7: FEDVs of the real oil price

Note: The �gure plots 12 step ahead regime conditional variance decomposition for the oil price over
the sample period.
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Figure 8: Robustness: China's GDP response to the global oil market shocks with no elasticity constraints.

Note: See Figure 4.

Figure 9: Robustness: Oil price response to supply and demand shocks with no elasticity constraints.

Note: See Figure 4.
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Figure 10: Robustness: Historical decomposion of factors contributing to oil price �uctuations with no elasticity
constraints.

Note: See Figure 6

Figure 11: Robustness: China's GDP response to the global oil market shocks with WTI oil price data.

Note: See Figure 4.
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Figure 12: Robustness: Oil price response to supply and demand shocks with WTI oil price data.

Note: See Figure 4.
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Figure 13: Robustness: Historical decomposion of factors contributing to oil price �uctuations with WTI oil
price data.

Note: See Figure 6

Appendix A. Bayesian Estimation

In this appendix we outline the estimation details for �tting the TVP-VAR-SV and MS-

VAR models. The remaining speci�cations are all nested versions of these models and can thus
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be estimated with straight forward modi�cations of the proceeding approach. In what follows

we present these steps across two subsections. In each case we obtain 15, 000 posterior draws,

discarding the �rst 5, 000 as a burn-in.

Appendix A.1. Stage 1: Regression Estimation

We start by outlining stage 1 of the Gibbs sampler in which we draw the latent parameters,

variance terms and demand series in the time varying parameter regression model, discussed in

Section 2. The demand series will then be used in the VAR models discussed in the subsequent

sections.

We assume independent priors of the form:

σ2
yw ∼ IG (ν0yw , S0yw) , σ

2
β ∼ IG (ν0β, S0β) ,

where IG (ν, S) denotes the Inverse-Gamma distribution with shape parameter ν and scale

parameter S. To ensure that the prior is non-informative we set a large prior variance. Specif-

ically, we choose relatively small values for the shape parameters, i.e. ν0yw = ν0β = 5, and set

the scale terms so that the (unconditional) expectation of σ2
yw is one and σ2

β is 0.01.10 Finally,

for the initial condition, we let β1 ∼ N
(
β0, σ

2
0β

)
, where the mean is set to zero, i.e. β0 = 0,

and our uncertainty about this parameter the value is re�ected by setting a large variance, i.e.

σ2
0β = 10.

Stage 1 of the posterior simulator can be viewed as a two block sampler that successively

generates draws from the following full conditional distributions:

1. p
(
β | yw,yc, σ2

β, σ
2
yw

)
,

2. p
(
σ2
β, σ

2
yw | yw,yc,β

)
,

where yw = (yw,1, . . . , yw,T )
′, yc = (yc,1, . . . , yc,T )

′, β = (β1, . . . , βT )
′, e = (e1, . . . , eT )

′, u =

(u1, . . . , uT )
′ and Θ is the collection of VAR parameters that we estimate in subsequent blocks

discussed in later sections. For instance, when estimating the TVP-VAR-SV model Θ =

(βt,Σt)
T
t=1. Similarly, when estimating the MS-VAR model Θ = (βi,Σi)

M
i=1.

The conditional distribution in Step 1 is obtained by combining the likelihood from (1) with

the state equation in (2). To that end, �rst write (1) in matrix form to get

yw = Xcβ + e, e ∼ N
(
0, σ2

ywIT
)
, (A.1)

10To be clear, this is attained by setting S0yw = 4 and S0β = 0.04.
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where Xc = diag(yw,1, . . . , yw,T ). Thus, by a change of variable
(
yw|yc,β, σ2

β, σ
2
yw

)
∼ N

(
Xcβ, σ

2
ywIT

)
.

Next, de�ne H to be the T × T �rst di�erence matrix. Then, we can write (2) as

Hββ = α̃β + u, u ∼ N
(
0, σ2

βIT
)
, (A.2)

where α̃β = (β0, 0 . . . , 0)
′ is a T × 1 matrix. Since the �rst di�erence matrix is invertible, (A.2)

can be equivalently expressed as:

β = αβ + H−1β u, (A.3)

where αβ = H−1β α̃β. Thus, by a change of variable
(
β|σ2

β

)
∼ N

(
αβ, σ

2
β

(
H′βHβ

)−1)
. By

multiplying this density with the likelihood it is easy to see that

(
β | yw,yc, σ2

β, σ
2
yw

)
∼ N

(
β̂,K−1β

)
,

where

Kβ =
1

σ2
β

H′βHβ +
1

σ2
yw

X′cXc, β̂ = K−1β

(
1

σ2
β

H′βHβαβ +
1

σ2
yw

X′cyw

)
.

To implement Step 2, �rst note that the variance terms are independent. Thus, we can

sample them one at a time. Using the fact that the Inverse-Gamma prior distribution is

conjugate to the Gaussian likelihood gives

(
σ2
β | yw,yc,β, σ2

yw

)
∼ IG

(
νβ +

T

2
, Sβ +

1

2

T∑
t=1

(βt − βt−1)2
)
,

(
σ2
yw | yw,yc,β, σ

2
β

)
∼ IG

(
νyw +

T

2
, Syw +

1

2

T∑
t=1

(yw,t − yc,t)2
)
.

Appendix A.2. Stage 2a: TVP-VAR-SV Estimation

Let yt denote a 4 × 1 vector containing observations on oil production, real world eco-

nomic activity excluding China, real oil price and real economic activity in China. We then

estimate the TVP-VAR-SV model by successively sampling from the following full conditional

distributions:

4. p (θ|y,h,θ0,h0,Ωθ,Ωh)

5. p (h|y,θ,θ0,h0,Ωθ,Ωh)

6. p (Ωθ,Ωh|y,θ,h,θ0,h0)
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7. p (θ0,h0|y,θ,h,Ωθ,Ωh)

where θ = (θ′1, . . . ,θ
′
T )
′
, y = (y′1, . . . ,y

′
T )
′ and h = (h′1, . . . ,h

′
T )
′. To implement Step 1, we

�rst show that the conditional distribution of θ is multivariate Gaussian. To this end, �rst

write (5) as

y = Xθ + ε ε ∼ N (0,Σ) , (A.4)

where X = diag (X1, . . . ,XT ), ε = (ε′1, . . . , ε
′
T )
′ and Σ = diag (Σ1, . . . ,ΣT ). Thus, by a change

of variable (y|θ,h,θ0,h0,Ωθ,Ωh) ∼ N (Xθ,Σ). Next, de�ne Hθ to be the Tkθ × Tkθ �rst

di�erence matrix. Then, we can write (6) as

Hθθ = α̃θ + ν ν ∼ N (0,Sθ) , (A.5)

where α̃θ = (θ′0,0
′, . . . ,0′)

′
is a Tkθ × 1 vector, ν = (ν ′1, . . . ,ν

′
T )
′ and Sθ = IT ⊗Ωθ. Since the

�rst di�erence matrix is invertible, (A.5) can be equivalently expressed as

θ = αθ + H−1θ ν, (A.6)

where αθ = H−1θ α̃θ. Thus, by a change of variable (θ|θ0,Ωθ) ∼ N
(
αθ,

(
H′θS

−1
θ Hθ

)−1)
.

Using the same type of steps as in the linear regression case, it's possible to show that

(θ|y,h,θ0,h0,Ωθ,Ωh) ∼ N
(
θ̂,K−1θ

)
,

where

Kθ = H′θS
−1
θ Hθ + X′Σ−1X, θ̂ = K−1θ

(
H′θS

−1
θ Hθαθ + X′Σ−1y

)
.

Note that the precision matrix Kθ is a band matrix-i.e., all of the nonzero elements exist

along a narrow band clustered around the main diagonal. Consequently, we use the precision

sampler of Chan and Jeliazkov (2009) to sample from
(
θ̂,K−1θ

)
. The algorithm is based on fast

band and sparse matrix routines and is consequently more e�cient than conventional Kalman

�lter-based algorithms.

To implement Step 2, we apply the auxiliary mixture sampler of Kim et al. (1998) and

precision sampler to sequentially draw elements of hi• = (hi1, . . . ,hiT ), i = 1, · · · , n.
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Steps 3 can be implemented by respectively sampling from

(
ω2
θi|y,θ,h,θ0,h0

)
∼ IG

(
νθi +

T

2
, Sθi +

1

2

T∑
t=1

(θi,t − θi,t−1)2
)
, i = 1, · · · , kθ

(
ω2
hj|y,θ,h,θ0,h0

)
∼ IG

(
νhj +

T

2
, Shj +

1

2

T∑
t=1

(hj,t − hj,t−1)2
)
, j = 1, · · · , n.

Finally, to implement Step 4 apply similar steps as in the linear regression model to get

(θ0|y,θ,h,Ωθ,Ωh) ∼ N
(
θ̂0,K

−1
θ0

)
,

(h0|y,θ,h,Ωθ,Ωh) ∼ N
(
ĥ0,K

−1
h0

)
,

where

Kθ0 = V−1θ + Ω−1θ , θ̂0 = K−1θ0

(
V−1θ aθ + Ω−1θ θ1

)
,

Kh0 = V−1h + Ω−1h , ĥ0 = K−1h0

(
V−1h ah + Ω−1h h1

)
.

Appendix A.3. Stage 2b: MS-VAR Estimation

We estimate the MS-VAR model by successively sampling from the following full conditional

distributions:

4. p(s|Θ,y),

5. p(Θ|s,y),

6. p(P|s),

where s = (s1, . . . , sT )
′ is a vector of regime indicators, Θ = {(βi,Σi)}Mi=1 denotes the collection

of model parameters across the M regimes, and P be the M ×M Markov transition matrix,

i.e., Pij = pij. To simplify the notation, in what follows we de�ne xt1:t2 = (xt1 , . . . , xt2) for a

general variable x.

To implement Step 1 we apply the forward-backward algorithm of Chib (1996). To be

speci�c, given p(st−1|y1:t−1, θ) we compute p(st|y1:t) by

p(st|y1:t, θ) =
p(yt|st,Θ)p(st|y1:t−1,Θ)∑
st
p(yt|st,Θ)p(st|y1:t−1,Θ)

,

=
p(yt|st,Θ)

∑
st−1

p(st, st−1|y1:t−1,Θ)∑
st
p(yt|st,Θ)p(st|y1:t−1,Θ)

,

=
p(yt|st,Θ)

∑
st−1

p(st|st−1)p(st−1|y1:t−1,Θ)∑
st
p(yt|st,Θ)p(st|y1:t−1,Θ)

.
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until we get p(sT |y1:T ,Θ). Then we implement the backward sampling by �rst sample sT from

p(sT |y1:T ,Θ), then we sample st given st+1 from

p(st|st+1:T ,y1:T ,Θ) =
p(st|y1:t,Θ)p(st+1|st)∑
st
p(st|y1:t,Θ)p(st+1|st)

.

To implement Step 2, �rst note that given s1:T we can regroup data intoM distinct regimes.

That is, for i = 1, . . . ,M , the model in a regime i can be written as

yi = Xiβi + εi εi ∼ N (0, ITi ⊗Σi),

where yi and Xi collect the observations belonging to regime i, and Ti is the number of obser-

vations in regime i. Following the standard results for the linear regression model, we have

βi ∼ N (β̂i, K̂
−1
i ), Σi ∼ IW(Ŝi, ν̂i),

where K̂i = Xi
′
(ITi ⊗Σi)

−1 Xi + V−10 , β̂i = K̂−1i

(
Xi
′
(ITi ⊗Σi)

−1 yi + V−10 β0

)
, ν̂i = Ti + ν0

and Ŝi = (yi −Xi) (yi −Xi)
′ + S0.

To implement Step 3, we draw the jth row of P for j = 1, . . . ,M , given s1:T , according to

(pj1, . . . , pjM) ∼ D(αj1 + nj1, . . . , αjM + njM),

where nkl =
∑T−1

j=1 1 ({sj = l, sj+1 = k}) and 1(A) is the indicator function that is equal to one

if statement A is true and zero otherwise.

Appendix B. Identi�cation by sign restrictions

The identi�cation procedure discussed in Section 4 is implemented with the algorithm in

Rubio-Ramirez et al. (2010), which is outlined as follows:

1. Take the eigenvalue-eigenvector decomposition of the reduced form covariance matrix:

Σst , so that Σst = PstDstP
′
st where Dst is a diagonal matrix of eigenvalues and Pst is a

matrix of corresponding (right) eigenvectors.

2. Draw a random n× n matrix K with its entries following standard normal distribution.

3. Take the QR decomposition of K so that K = QR where Q is an orthogonal matrix and

R is an upper triangular matrix.

4. Compute the time varying impact matrix Ast := PstD
1
2
stQ

′.
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5. Check that the proposed matrix satis�es the restrictions outlined in in Section 4. If yes,

keep it. Otherwise, discard it and redraw K.
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