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Abstract
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1 INTRODUCTION

1 Introduction

In macroeconomics it is standard to construct dynamic stochastic general equilibrium
(DSGE) models and use them for policy purposes. Until a decade ago, most anal-
yses were performed using parameters formally or informally calibrated. Nowadays,
it is more common to conduct inference using parameters estimated with classical or
Bayesian full information likelihood methods; see Andreasen et al. (2018) for an ex-
ception.

Estimation of DSGE models is however difficult. There are population and sample
identification problems, see e.g., Canova and Sala (2009), Komunjer and Ng (2011), Qu
and Tkachenko (2013); singularity problems (the number of shocks is generally smaller
than number of endogenous variables), see e.g., Guerron Quintana (2010), Canova et
al. (2014), Qu (2015); and informational deficiencies (models are constructed to ex-
plain only a portion of the data), see Boivin and Giannoni (2006), Canova (2014), or
Pagan (2016), that restrict the class of models for which the likelihood can be com-
puted. Computational complications due to the presence of latent variables, requiring
challenging integration of the joint likelihood of the endogenous variables, and numeri-
cal difficulties are also well-known. The latter two problems become particularly acute
when the model is of large scale or the data short or of poor quality.

Inference in estimated DSGE models is also troublesome. Standard frequentist
asymptotic theory needs regularity conditions, which are often violated in practice.
Bayesian methods help when the sample size is short, but it is tricky to specify joint
priors when the parameter space is large and, as indicated by Del Negro and Schorfheide
(2008), assuming prior independence results in an joint prior that does not fully re-
flect researchers’ priors beliefs. Perhaps more importantly, standard likelihood-based
inference is conditional on the estimated model being correctly specified.

Policymakers are keenly aware of both estimation and inferential problems and,
when choosing policy actions, tend to informally pool results obtained from different
models. Furthermore, when there are structural instabilities in the data-generating
process (DGP), it may be attractive to use more than one model to robustify counter-
factual exercises and improve forecasting performance, see e.g., Aiolfi et al. (2010).

This paper is concerned with the estimation, computational and inferential prob-
lems that researchers working with DSGE models face. We propose a method that helps
to solve these difficulties and provides parameter estimates and policy analyses that
formally combine the information present in different models using a shrinkage-type
procedure. The approach is based on the composite likelihood, a limited information
objective function, well-known in the statistical literature but very sparsely used in
economics (Engle et al., 2008; Qu, 2015; Chan et al., 2017).

In the original formulation of Besag (1974) and Lindsay (1980), the composite like-
lihood combines marginal or conditional likelihoods of the true DGP and it is employed
because the likelihood of the full model is computationally intractable or features un-
manageable integrals. A composite likelihood approach has been used to solve a number
of complicated problems in fields as diverse as spatial statistics, multivariate extremes,
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psycometrics and genetics, see e.g., Varin et al. (2011) and, under regularity conditions,
produces consistent and asymptotically normal estimators and sound inference.

In our setup, the composite likelihood combines the likelihood of distinct structural
or statistical models, which are not necessarily marginal or conditional partitions of
the DGP. While standard composite likelihood properties do not apply, it is never-
theless possible to produce estimators with desirable properties and to conduct formal
inference. Canova and Matthes (2017) indeed show that a composite likelihood con-
structed this way leads to improved outcomes, as measured by the mean square error
of the parameters of interest or the Kullback-Leibler (KL) divergence, whenever the
available models are all misspecified. We describe how to construct and use the com-
posite likelihood in a large class of situations relevant to macroeconomists. We briefly
discuss how such an objective function can be treated as a quasi-likelihood to conduct
Bayesian inference. Kim (2002), Chernozukov and Hong (2003) and Marin (2011) have
used similar ideas in different contexts. To the best of our knowledge, we are the
first to construct composite Bayesian estimators and to use them to analyze structural
macroeconomic models. We provide a sequential, adaptive learning interpretation to
our estimators and discuss differences with other combination devices present in the
literature.

We show how the approach can be used to potentially address the estimation and
inferential problems noted in this introduction. We present examples indicating that a
composite likelihood constructed using the information present in distinct models helps
1) to ameliorate population and sample identification problems, 2) to solve singularity
problems, 3) to produce more stable estimates of the parameters of large scale structural
models, 4) to robustly the estimation of parameters appearing in multiple models and
to rank models with different observables and 5) to combine information coming from
different sources, frequencies, and levels of aggregation.

The rest of the paper is organized as follows. The next section introduces the
composite likelihood idea, presents our setup, and highlights differences with the tra-
ditional setting. Section 3 discusses quasi-Bayesian estimation and inference and an
adaptive learning interpretation of our quasi-posterior estimators. Section 4 presents
examples highlighting how the methodology can address standard estimation and in-
ferential problems. Section 5 concludes. The appendices provide technical details for
arguments discussed in the text and the equations of the models used in the examples.

2 The composite likelihood

The original composite likelihood formulation has been suggested to deal with situa-
tions where the likelihood of a model is either difficult to construct because of latent
variables or hard to manipulate because the covariance matrix of the observables is
nearly singular. In some applications, see Engle et al., (2008), the likelihood is con-
ceptually tractable, but the dimensionality of the parameter space makes maximum
likelihood computations unappealing.

In these situations, it might be preferable to use an objective function which has
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smaller informational content than the likelihood but it is easier to work with. One
such objective function, originally proposed by Besag (1974) and Linsday (1980), is a
weighted average of marginal or conditional distributions of submodels (‘events’ in the
terminology used by this literature).

Formally, suppose a known DGP produces a density F'(y;, ) for an m x 1 vector of
observables y;, where 1) is a ¢ x 1 vector. Partition 1) = [, n] where, by convention, 6 is
the vector of parameters estimated with composite likelihood methods, and 7 is a vector
of model-specific nuisance parameters estimated with other approaches. Let {A;,i =
1,...K} be a set of marginal or conditional events of y;, and let f(y;; € A;,0,1;) be the
subdensities of F(y, 1) corresponding to these events !. Each A; defines a submodel,
with implications for a subvector y;; of length T;, and is associated with the vector
Wi = [0,m;] , where n; are (nuisance) event specific parameters. Let ¢ = (6,71, ... 7x).
Given a vector of weights 0 < w; <1, >, w; = 1, the composite likelihood is

CL(¢’3/1t7 R ?JKT) == Hz[il f(ylt S Aiv 97771)% (1)

The objective function (38) ignores the potential dependence across A;, i.e., sub-
models may feature common equations, and the fact that y; may not be mutually
exclusive, i.e., the same variable may appear in the observables of each submodel 7.

The estimators of 6 constructed maximizing (38) are consistent and asymptotic
normal under the conditions stated in appendix A. Consistency obtains because each
element in (38) is an unbiased estimating function and a weighted avarage of unbiased
estimating functions is unbiased. Asymptotic normality holds because the sampling
distribution of the maximum likelihood estimator of each submodel can be approxi-
mated quadratically around the same mode.

2.1 A composite DSGE setup

Our setup differs from the traditional one in several respects. First, we treat the DGP
as unknown. There are many reasons for treating the DGP as unknown. For example,
we may not have enough information to construct F(y.|i); we could write a VAR
representation for g but not the structural model that generated it; or we do not have
an analytic expression for F'(y|v), but only the first few terms of its Taylor expansion.
Another reason for treating F'(y;|1)) as unknown is that the dimension of y; may be
large and a researcher may have an idea of how portions of 3; could have been generated
but does not know yet how to link them in a coherent way.

Second, f(yi € A;,0,m;) are neither marginal nor conditional representations of the
DGP. Instead, they are the densities produced by a set of theories that researchers wish
to entertain to study an issue of interest. These theories are assumed to provide only
an approximation to the DGP in the sense that for all (6,7;), the Kullback-Leibler di-
vergence of f(y; € A;,0,m;) from F(y|v) is strictly positive for each i. To be concrete,

!'Marginal or conditional integrate out all elements of y; not in g or condition on some y;¢ that are not
in y;;. For ease of reading, the integrals and conditioning sets are left implicit.
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in one leading example we have in mind, A; are different structural macro models,
e.g., a RBC model with financial frictions, a New Keynesian model with sticky price,
a New Keynesian model with labor market frictions, etc.; y;; is the data generated by
these models, and f(yi € A;,0,1n;) are the associated densities. Here 6 is the vector
of the structural parameters common to all models, e.g. the risk-aversion coefficient,
or the Frisch elasticity, while 7; are either other structural parameters specific the
models, e.g. a LTV ratio, a Calvo parameter, or reduced-form mongrels used to ap-
proximate features of the DGP, e.g., the parameter regulating habit in consumption.
In another leading example, we have in mind F(y;|¢) is a large-scale structural model,
for example, a multi-country model of trade interdependencies or a multi-country asset
pricing model, and f(yi: € A;, 0, 1n;) are structural models describing bilateral blocks or
country-specific portfolios. In a third case of interest, f(y; € A;,0,n;) are the densities
generated by different approximate (perturbed or projected) solutions or the densities
of linear solutions, where the k-th component of parameter vector is allowed to be
time varying. Here A; represents either the order of the approximation employed or
an indicator function describing which parameter is allowed to change.

Different models are treated as approximations because they disregard aspects of the
DGP; take short cuts to modeling the complexities of the DGP; or condition on features
which may be present or absent from the DGP. For each of these models, we assume
a researcher could form the likelihood function, which we propose to geometrically
average for estimation and inference, just as the composite likelihood literature has
averaged marginal or conditionals likelihoods of a known DGP.

A final case of interest is one where f(y;; € A;,0,n;) represents different statistical
models. We term models ’statistical’ if they are obtained from the same theoretical
model but feature different observables. For instance, a standard three-equation New-
Keynesian model could be estimated using inflation, the nominal interest rate, and a
measure of output, or inflation, the nominal interest rate, and a measure of consumption
- in the model, consumption and output are equal. By extension, F'(y;, ) could be
the density of an aggregate model and f(y;: € A;, 0, 7;) the densities obtained when 1)
data from cross sectional unit i is used; ii) data at a particular aggregation level (e.g.
firm, industry, regional, etc.) is employed. Alternatively, F'(y;, 1) could be the density
obtained using the full sample of data and f(y;; € A;,0,m;) the densities constructed
using different subsamples (say, pre-WWI, interwar, post-WWII, etc.).

A third important difference with the traditional setup is that the models we con-
sider need not be compatible with each other. Compatibility implies that asymp-
totically, 6; p1, converges to the same value for each i. This is easy to show when
flys € Aj;0,1m;) are marginals or conditionals. Because of this potential incompat-
ibility, the estimators for 8 we construct need not enjoy the standard properties of
composite likelihood estimators. Nevertheless, frequentist inference is possible and
sound. Details are in appendix A.

Note that researchers working with DSGE models are generally free to choose what
goes in # and in n;. This allows substantial flexibility because even though some param-
eters might appear in all models, researchers might prefer not to estimate a common
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value because, for instance, they may have a different interpretation in different models.
More on this issue in section 3.2.

3 Quasi-Bayesian estimation

While one could proceed in a frequentist way estimating 6 from (38), conditional on a
particular choice of the vector w, we take a quasi-Bayesian approach and construct the
joint posterior distributions for 6,w;,n;,¢ = 1,..., K. There are at least two reasons
to prefer such an approach. First, we care about the likelihood shape in small samples
rather than its asymptotic approximation. Second, when one treats w as a random
vector with a prior distribution (with w; to be interpreted as the investigator prior
assessment of the likelihood of model 7), it is possible to use the quasi-posterior of w to
rank the quality of the models entering (38). As shown in Canova and Matthes (2017),
the posterior mode of w enjoys good small sample properties, asymptotically picks the
right model if one of the candidate models is the DGP, produces ranking comparable
to those of Bayesian model averaging (BMA) and it is computable in situations when
BMA can not be obtained, e.g. when the models do not share the same observables.
For each i, the prior for the parameters is of the form

p(0,n:) = p(O)p(n:]0). (2)

In the spirit of Del Negro and Schorfheide (2008), we allow the prior for n; to depend
on @, which is advisable if the composite pools features distinct structural models and,
a priori, we want these models to be on equal ground when matching certain statistics
of the data. If p(w) = p(w1,...wk) is the prior for w, the composite posterior kernel
is:

p(&, M- NK, W1y .- ,UJKD/Ltl, e 7Yk,Tk)
LG, m Y1) p(0,m)“ .. L0,k | Y 1 )X p(0, 1K) K p(w) =
ILL(O, 0| Yar,)* p(n:|0)“ p(0)p(w), (3)

which can be used to obtain posteriors for (¢, w), as in Kim (2002) or Chernozukov and
Hong (2003). Appendix B presents regularity conditions needed for standard MCMC
techniques to apply; discusses how we draw posterior sequences for the parameters;
and the adjustments to the posterior percentiles one may want to implement, along
the lines of Ribatet et al. 2012, Mueller, 2013, Qu 2015, to take into account the fact
y;t may not be mutually exclusive across ¢ and that the models entering the composite
likelihood are approximations to the DGP.

It is important to stress that what we are after with our quasi-Bayesian composite
estimates is different from what Bayesian model average (BMA) exercises or finite mix-
ture models (see e.g., Waggoner and Zha, 2011) do. In BMA, each model is estimated
separately and their predictions combined using posterior weights; in our setup, the
parameters which are common and have the same meaning in all models are estimated
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with the joint information provided by all models and the predictions of the models
can be combined, if that is of interest, using the mode of w as weight. Furthermore,
in BMA y1;; = ... = ygy, while in our setup this is not required. In finite mixture
models, y1; = ... = yg¢ and T1 = ... = Tk and the (time-varying) weight determines
at each t how important is y; for the estimation of the parameters of model . In our
setup, models have different observables and samples may be different and have dif-
ferent frequencies. Furthermore, as shown below, parameter information is adaptively
and sequentially updated as we add models to the composite likelihood.

3.1 A sequential learning interpretation

It is easy to give a sequential, adaptive learning interpretation to the composite pos-
terior kernel (3) and to the quasi-Bayesian estimators for 6 one obtains. For the sake
of illustration, suppose that w; is fixed and K=2. The composite posterior kernel p is

13(97 771.~..772|Y71,Tl ) }/Q,T2) =
L(Y1,1,10,m)* p(m|0)* p(n2|Ya,1,0)*{[p(0Y2,1, ) M L(Ya,1,)]**p(6)“" } (4)

where ML(Yar,) = [ L(Ya1,|¢2)p(12)deps is the marginal likelihood of model 2.

As (4) makes clear, the posterior kernel can be obtained in two stages. In the first
stage, the prior for ¢, and the likelihood for model 2 are used to construct p(6|Ya,).
This conditional posterior, weighted by the marginal likelihood of the model 2, is
geometrically combined with the prior p(6) for the next estimation stage of . Suppose
that M L(Y>1,) is high. Then model 2 fits Yo 7, well. If wq = wy, the prior for model 1
will more heavily reflect p(6|Y2 1,) relative to the initial prior p(¢). On the other hand,
if ML(Y21,) is low, p(0|Y> 1,) has low weight relative to p(f) when setting up the prior
for model 1. In general, the prior that 6 receives in each stage of the learning process
depends on the relative weights assigned to the current and to all previous models
and on their relative fit for 8. Thus, a composite Bayesian approach to estimation
can be interpreted as an adaptive sequential learning process where the information
contained in models whose density poorly relates to the observables is appropriately
downweighted.

Note that the prior for stage 2 is not the posterior for stage 1 as in a standard
Bayesian setup but rather a weighted average of the initial prior and of the posterior at
stage 1, where the latter is discounted by the fit at that stage. This is why the approach
is adaptive. Also, even though only Y5 7, contains information for 7, its posterior may
be updated when using Y7 1, since the posterior of ¢ sequentially changes. Since Y5 1,
does not contain information for 71, p(n1]@) will be unchanged after estimation is
performed with model 2.

Finally, note that with a composite posterior a model is automatically discounted if
does not fit the data well, regardless of whether w; is a parameter or a random variable.
Del Negro et al. (2016) have shown that finite mixtures have this property only if w is
random.
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3.2 Discussion

There are at least two other perspectives which can give some insight about the nature
composite estimators one obtains in our setup. One comes from Bissiri, Holmes, and
Walker (2016). They argue that a valid update of a prior belief distribution to a
posterior can be made for parameters which are connected to observations through a
loss function rather than the traditional likelihood function. In that framework, the
composite likelihood we consider is a special loss function, which falls into the class of
M-open case with proxy models (see page 1111).

A second perspective comes from noticing that a composite likelihood estimator
for 6 solves a weighted average of moment conditions. In fact, taking the first order
conditions of (38) we have that 6cy, solves ), wi%\ = 0. Thus, a composite
likelihood estimator can be interpreted as an over-identified GMM estimator where w
represents a particular weighting matrix used to construct the objective function of
interest.

Some researchers may feel uncomfortable in estimating parameters bearing the
same name but appearing in different models because there may be interpretation
differences. We have already alluded to this issue in section 2. An example may
clarify the issue and give some a constructive way to deal with the problem. Consider
the persistence of the income process p,. When a partial equilibrium perspective is
adopted, such a parameter is well defined since income is exogeneous. However, if a
general equilibrium perspective is employed the persistence of the income process is
regulated by the persistence of Total factor productivity (TFP) and the dynamics of
capital and labor. If partial and general equilibrium models are jointly used in the
composite likelihood, imposing one value for p, across models may be unappealing.
In this situation a researcher may leave p, model specific, but use the same prior
distribution for output persistence across models. This way one can still guarantee
a-priori some similarity across models without imposing that the parameter speaks to
similar economic concepts.

One may wonder what happens to our quasi-posterior estimators of 6 if an ’irrele-
vant’ model is used in the composite likelihood. The sequential learning argument of
section 3.1 already provides the answer: it will be downweighted since it will poorly
fit the data. As it will become clear in section 4.5, a composite likelihood estimators
tries to identify regions of the parameters space that are consistent with the data and
all available models and trades off various models’ information to achieve the best
possible fit in the KL sense. Thus, if a model with no information for 8 is included in
the composite likelihood it will not contribute to the estimation of 6. Our approach is
motivated by the fact that researchers often have a number of models they could use to
explain a phenomena and all of them have some theoretical underpinning (making all
of them relevant). Still, our composite approach is robust to the inclusion of irrelevant
models.

While it is not the case in any of the examples we study in section 4, it may be that
in some applications the posterior weight for some model goes to zero, implying that
the parameters of that model become under-identified when the composite likelihood
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is used in estimation. When this happens, a two-step approach can be used, where
the prior for the nuisance parameters is made data-based using the posterior for each
model estimated on a training sample. This trick effectively avoids under-identification
and makes the priors for the nuisance parameters endogenous.

4 Addressing estimation, computational, and in-
ferential problems

This section shows how the composite likelihood may help to deal with standard prob-
lems encountered in the estimation of DSGE models. While the improvements we
discuss are specific to the models and the parameterization used, the insights they
provide go beyond the model economies we deal with.

The first example discusses how small sample identification problems can be re-
solved by using the composite likelihood constructed using different structural models.
The intuition this example provides applies also to situations when different statistical
models are used in the composite likelihood or when the same model is used with dif-
ferent samples of data. The second example demonstrates how the approach can ame-
liorate population identification problems. The third example deals with singularity
issues; the fourth with the problem of estimating the parameters of a large-scale struc-
tural model. The fifth example demonstrates how one can robustly estimate structural
parameters appearing in different models and rank models with different observables.
The last example shows how the composite likelihood may be used to partially pool
the information contained in panels of data with potentially heterogeneous dynamics.

4.1 Reducing sample identification problems

In macroeconomics it is common to work with relatively small samples of time series.
Long data series are generally unavailable and, when they exist, definitional changes
or structural breaks make it unwise to use the full sample for estimation purposes. In
addition, the phenomena one is interested in (say, the zero lower bound on interest
rates) may be present only in the most recent portion of the sample. In this section,
we show how the composite likelihood could help to reduce the severity of small sample
problems.

Suppose we have two structural models (call them A and B), with parameters
va = (0,n4),Yp = (0,1nB), generating implications for (ya¢, ypt), which could be two
different subvectors of 3;. Assume that ya; and y;p are produced by the decision rules:

YAt = PAYA—1 T 0AC (5)
YBt = PBYBt—1 T OBUt (6)

where e; and u; are both iid (0,I). Suppose that pp = dpa,op = voa, yar and yp; are
scalars, that we have Ty(Tg) observations on y4; ( yp¢) with T4 small, and that we



4 ADDRESSING ESTIMATION, COMPUTATIONAL, AND INFERENTIAL PROBLEMS10

are interested in estimating § = (pa,04). For the sake of the presentation, let d,~ be
known and different from zero.
The (normal) log-likelihood functions of each model are:

Ta
1
logLaox —Talogos — 292 Z(yAt - pAyAt—1)2 (7)
7415
1 &
log Lp «x —Tplog(ca7y) — 2522 Z(th — padypi1)? (8)
S

which can be easily maximized with respect to pa,04. For 0 < w < 1, the log composite
likelihood is
logCL=wlogLs+ (1 —w)logLp 9)
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Figure 1: Likelihood and composite likelihood, small T.

We set pg = 0.7,04 = 1.0, 6§ = 1.2, v = 0.8 T4 = 20,75 = 20 (or T = 60), and
plot in Figure 1 the univariate contours in the (p4,04) dimensions, when (7) and (9)
are used. In the latter case, we set w = 0.7. Figure 1 highlights two facts. First, the
composite likelihood has more curvature then the likelihood constructed using y 4; only,
even when T4 = Tg. Second, the mode of the composite likelihood is closer to the true
vector. Note that, as T increases (T = 60), the composite likelihood becomes more
bell-shaped around the true value and almost symmetric in shape.

As we show in section 4.5, differences between the likelihood constructed using

ya¢+ and the composite likelihood have to do with three quantities (; = 177”%, (=
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177”% =, and £ = (T4 + T 1};"2’)_1. (1 and (3 control the relative shape of the
composite likelihood, while £, the effective sample size, controls both the relative height
and the relative shape of the composite likelihood. Since all three quantities depend
on w,7,d, these parameters regulate the amount of information that yp; provides
for pa,04. For example, if w = 0.5 and v = 1.0, the effective sample size used to
construct the composite likelihood is Ty 4+ T, making this function higher than the
likelihood constructed using T4 alone. In addition, the higher is ~, the less informative
is yp for the estimation of p4,04 - model B provides information that twists the
composite likelihood away from the true value. Similarly, the lower is d, the lower will
be the informational content of yp; for the parameters of interest. Thus, the composite
likelihood gives importance to yp; if it is generated by a model with higher persistence
and lower standard deviation than the model for ya;. Such a scheme is reasonable
since the higher the serial correlation, the more important low frequency information
is; and the lower the standard deviation is, the lower the noise in yp; is.

This discussion highlights an interesting trade-off that the composite likelihood
exploits: yp; may give information for the parameters of interest, but may also twist
its shape away from the true values In this example, better local identification could
be attained if (ya¢, ype) are jointly used in estimation whenever w,~, and T are such
that the effective sample size &€ > Ty and (1, (s are different from zero. If ~ is small,
that is, if y;p is less volatile than g4, or if w is not too large, that is, if the degree of
trust a researcher has in model B is not negligible, the log composite likelihood (9) will
be more peaked around the mode than the likelihood (7).

So far models A and B are different structural models. However, the same argument
is applicable when A and B are two statistical models or when they are the same
structural model and ya; and yp; represent the same time series in different samples.
In the first case, the use of information coming from different time series may make the
composite likelihood more peaked around the true value than the likelihood of each
model, much in the same spirit as a data-rich approach to estimation may provide
better information about structural parameters (see e.g. Boivin and Giannoni, 2006).
In the second case, the use of, say, pre-break data may sharpen structural inference,
even if the pre-break data pulls the composite likelihood away from the current sample
likelihood, as long as the weights are appropriately chosen. Baumeister and Hamilton
(2015) suggested a procedure to reduce the information contained in earlier subsamples
that mimics a composite likelihood estimator.

We also would like to stress that T4 and T may be not only of different lengths
but also recorded at different frequencies (e.g., coming from a quarterly and an an-
nual model). The composite likelihood is a flexible tool that exploits the available
information to reduce small sample (local) identification problems.

4.2 Ameliorating population identification problems

This subsection presents an example where estimation is difficult because some param-
eters are underidentified and others weakly identified in population and shows how the
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use of a composite likelihood can help remedy these problems.
Consider a canonical three-equation New Keynesian model (call it model A)

Ray = 7TEmar1 + e (10)
yar = OEwar1 —o(Rar — Eyma1) + ear (11)
Tar = BEimarp1 +yyar +es (12)

where R 4; is the nominal rate, y 4; the output gap, and 7 4; the inflation rate;(e1y, eat, €3¢)
are mutually uncorrelated structural disturbances, (7,9, 0, 3,7) are structural param-
eters, and F; is the conditional expectations operator. The determinate solution of
(10)-(12) is

RAt 1 0 0 €1t
Yyar | = c 1 0 ey | = Aey. (13)
At oy o 1 est

Clearly, 8 is underidentified - it disappears from (13) - and the slope of the Phillips
curve v may not be well identified from the likelihood of (R, yat, ma¢) if o is small.
In fact, large variations in v may induce small variations in the decision rules (13) if o
is sufficiently small, making the likelihood flat in the v dimension.

Population underidentification of 5 implies, for example, that when (10)-(12) is the
data generating process, applied investigators can not distinguish if the Philips curve
is forward looking or not, nor can they measure the degree of forward lookingness, even
when T — co. Weak population identification of + implies that it is hard to pin down
the effects of the output gap (marginal costs) on inflation, regardless of the magnitude
of the ‘true’ slope of the Phillips curve. Problems of this type are common in DSGE
models (see Canova and Sala, 2009).

Suppose we have available another model (call it, B) usable for inference. For
example, consider a single-equation Phillips curve with exogenous marginal costs:

et = BEmpi1 +7YBe + uat (14)
Ypt = pPYBt—1+ U1 (15)

where p > 0 measures the persistence of the output gap (marginal costs). Note that
(14) has the same format as (12), so that $ and v have the same economic interpretation
but the process generating y; is different. Suppose that model A is considered more
trustworthy and an applied investigator acknowledges this by setting w >> 1 — w.
By repeatedly substituting forward and letting ¢ be the lag operator, the solution to

(14)-(15) is
{ (1= pO)ypt ] _ [ 1 0 ] |:U1t ] (16)
(1 — pl)mpe Jiﬁp 1—pl uy |
Clearly, unless the process for the output gap is iid (p = 0), the log-likelihood of model
B has information about 5. Thus, one would be able to identify (and estimate) § from

the composite likelihood but not from the likelihood of model A, avoiding observational
equivalence problems. In addition, in model B the curvature of the likelihood in the ~
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dimension depends on 1_—15{), which, in general, is greater than one for p # 0. Hence,
small variations v may lead to sufficiently large variations in the decision rule (16) and

thus in the composite likelihood, even when 1 — w is small.
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Figure 2: Likelihood and composite likelihood, weak identification.

We illustrate the argument in Figure 2. We plot the likelihood of model A and
the composite likelihood as function of v when ¢ = 0.5 or ¢ = 0.1. The DGP has
v =0.4, 3 =0.99, p = 0.8, and we present the shape of the composite likelihood when
w = 0.85. As discussed, the likelihood of model A is flat around the true value of
when ¢ is small, and adding information from the second model helps to improve the
identification of . Similarly, when ¢ = 0.5 as the likelihood constructed from y4; is
not quadratic in 7.

It should be clear that the argument we make here is independent of the size of the
effective sample &: since the identification problems we discuss occur in population,
having a large or a small £ is irrelevant. It should also be emphasized that we have
implicitly assumed that the variances of (eg, e3;) and of (uy, ug;) are of the same order
of magnitude (in Figure 2, they are all equal to 1). When this is not the case, two
distinct forces are at play: the relative noise present in the two models is weighted
against the relative information present in the decision rules.

It goes without saying that adding models with Philips curves that are non-comparable
to those of model A is unlikely to reduce population identification problems. In other
words, if the slope in model B has been generated from a mechanism that is different
than the slope of model A or, if the mechanism is the same but the values for 3 are
very different, the biases introduced using model B data may be large relative to the
improved curvature. Hence, population identification improvements can be obtained
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only after carefully examining the shape of the likelihood of the additional model(s)
one may want to consider.

In sum, these two subsection have shown that the composite likelihood may improve
parameter identification when the sample is short or when parameters are weakly
identified in population. This happens when the additional data used in the composite
likelihood adds information to the likelihood of model A for the parameters of interest.
This additional information is easily measurable in practice: it will be reflected in the
height and the curvature of the composite likelihood, which will be more bell shaped
and symmetric than the likelihood of the baseline model. We recommend applied
investigators to plot likelihood and composite likelihoods as we have done in Figures 1
and 2 as a routine practice. This will help them to understand whether a model should
be used in the investigation or not.

4.3 Solving singularity problems

DSGE models are typically singular. That is, since they generally feature more en-
dogenous variables than shocks, the theoretical covariance matrix of the observables
is of reduced rank and the likelihood function can not be constructed and optimized.
There are many approaches to get around this problem. One could select a subvector
of the observables matching the dimension of the shock vector informally (see Guerron
Quintana, 2010) or formally (see Canova et al., 2014) and use the log-likelihood of this
subvector for estimation. Alternatively, one could add measurement errors to some or
all the observables - so as to make the number of shocks (structural and measurement)
larger or equal to the number observables (see Ireland, 2004). One could also artificially
increase the number of structural shocks, for example, by transforming parameters into
disturbances (the discount factor becomes a preference shock, etc.) until shocks and
endogenous variables match.

An alternative way to deal with singularity problems is to construct a composite
likelihood weighting non-singular submodels, see also Qu (2015). To illustrate the
approach, we use a stylized asset pricing example. Suppose that the dividend process
is dy = e, —ae;—1, where e; ~ 7id(0, 02), a < 1, and that stock prices are the discounted
sum of future dividends. The solution for stock is p; = (1 — fa)e; — aer_1, where 5 < 1
is the discount factor. Since e; drives both dividends and stock prices, the covariance
matrix of (dy, p;) has unitary rank. Thus, one has to decide whether d; or p; should be
used to construct the likelihood and to estimate the common parameters 6 = (a, 02).

In this example, adding measurement error is difficult to justify, since neither div-
idends nor stock prices are subject to revisions, and making 8 a random variable is
unappealing because the density of stock prices becomes non-normal, complicating es-
timation. When the composite likelihood is employed, the joint information present in
(d¢, pt) can be used to identify and estimate 6 (and g, if it is of interest). Optimization
makes stock prices and dividends contain different information. Choosing one endoge-
nous variable for estimation, throws away part of the information. By combining all
available model conditions, the composite likelihood may provide sharper estimates of
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the parameters.
Following Hamilton (1994, p. 129), the likelihood functions of d; and p; are

T T s
~ d2

log L(av, 0|d;) = —0.5T log(27) — Z logs: — 0.5 Z g—g (17)
t=1 t=1 "t

where cft and ¢ can be recursively computed as:
. 1+a?+at+... +a2t2 -
di = di—« di— 18
! ! l+a2+at+.. +a2eD"t1 (18)
14+a2+ar+... +ao*

2 2
T T tadt ..+ a2t D (19)

and

T T -9
log L(3, , 02[f) = —0.5T log(2m) — S logvs — 0.5 S " 2L 20
og L(, o, o™ |pr) og(2m) ; 0g Ut ;Utg (20)
where p; and vy can be recursively computed as:

_ N B B R e U

L L (21)
1 2 4 2t
2 o= g Lt 4 (22)

where v = (17“7/&0 and p; = ﬁ—ta. For illustration, set o> = 1, 8 = 0.99, and focus
attention on «. The first-order conditions that a maximum likelihood estimator solves
are al%i(d‘) = 0 and alogii(ﬁt) = (0. For a given w assigned to d;, the composite
likelihood is a weighted sum of (17) and (20). While there are no closed expressions
for either the maximum likelihood or the maximum composite likelihood estimators of
a, we can still infer what (17) and (20) employ to estimate a using simulated data.

Figure 3 plots the likelihood contour in the « dimension, when (17), (20), or the
composite likelihood are used, and the true « is either 0.7 or 0.1. When the true
a = 0.1 (17) and (20) are similar. Thus, when dividends and stock prices are almost
serially uncorrelated, they have the same information and the shape of both likelihood
functions primarily reflects the volatility of the generating shock. When o = 0.7, the
two likelihood functions differ: the likelihood function of stock prices is bell shaped
around the true value, while the likelihood function of dividends is not. Thus, the
likelihood of stock prices contains information about the persistence of the generating
process which is absent from the likelihood of dividends.

The composite likelihood, which, in this case, is constructed equally weighting the
two likelihoods, captures both the serial correlation and the variability properties of the
DGP, it is more bell shaped than each of the likelihoods and is centered around the true
value when o = 0.7. Because when a = 0.1, (17) and (20) have similar information,
neither the shape nor the location improves when the composite likelihood is used.
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Figure 3: Likelihood and composite likelihood, singularity.

Clearly, depending on the value of w, either the serial correlation or the variance
properties of (d, pt) or both will be employed for identification and estimation.

In general, when the equations of a singular model provide different information
regarding the parameters of interest, it is a-priori difficult to choose which ones to
use in estimation. The composite likelihood eliminates the dilemma combining the
information contained in all equations in a meaningful way.

4.4 Dealing with large scale structural models

While in academics models are kept small to enhance intuition, large scale models are
common in policy institutions. Such models can be more detailed and realistic, but
estimating their parameters is computationally a daunting task and estimates obtained
are often unreasonable. We show how the composite likelihood can be used to make
the estimation of the structural parameters of a large scale model more manageable
and stable.

Suppose the decision rules of a model are y; = A(0)y;—1+e, where e; iid N(0,%(0)), 0
is a vector of structural parameters, y; is of large dimension, and, to keep the presen-
tation simple, we let dim(y;) = dim (e;). The likelihood function is

L(Oly) = (2m) " 2120)"? exp{ (g — AO)ye—1)E(O) " (3 — AO)ye—1)'}  (23)

If dim(y;) is large, computation of ¥(#)~! may be demanding. Furthermore, numerical
difficulties may emerge if some of the variables in y; are near collinear or if there are
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near singularities due, for example, to the presence of an expectational link between
long and short term interest rates.

Another case when the computation of (23) is difficult is when there are latent
endogenous variables. If y; = (y1t, y2t), and yo; is non-observable, the likelihood of ¢
is

L(6lone) = [ L(Oluns e (24)

and, when g9, is of large dimension, (24) may be intractable.

Rather than using (23) or (24) as objective functions or as inputs in Bayesian cal-
culation, one can take a limited information point of view and estimate the parameters
using objects that are simpler to construct (see also Pakel et al., 2011).

Suppose we partition y; = (yir, yY2t, - - - Ykt), where y;; and yj; are not necessarily
independent. Then two such objects are:

K

CLi(0ly) = > wilog L(0]yir) (25)
i=1
K

CLy(Oly) = > wilog L(Blyir, J—it) (26)
i=1

where y_;; indicates any combination of the vector g, which excludes the i-th combi-
nation, and the bar indicates a given value.

CL; is obtained by neglecting the correlation structure among y;;. Thus, blocks of
the model are treated as if they provide independent information for 6, even though
this is not necessarily the case. For example, in a multi-country symmetric model,
yit could correspond to the observables of country i; in a closed economy model, it
could correspond to different sectors of the economy. CLs is obtained by conditionally
blocking groups of variables. In the multi-country example, one would construct the
likelihood of each country’s variables y;:, given the vector of the variables of all other
countries y_;, and then compute a weighted average. Which composite likelihood
one uses depends on the problem and the tractability of conditional vs. marginal
likelihoods.

To compare the loss of information one faces with a particular composite likelihood,
we consider a simple consumption-saving problem where there are many countries ¢,
consumers receive income from different countries but are forced to save domestically.
The solution, when preferences are quadratic, #(1 + ) = 1, and the income process in
each i is transitory is

r r
o . . 27

Cit r+1azt+1_p+rwzt ( )
aitr1 = (L+7)(aw + wir — cit) (28)
Yit = PYit—1 + 0i€it (29)

K
wik = Y Gy (30)
j=1
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where 0 < ¢ < 1 and >, = I,Zj Gij = 1, yir is domestic income, wy; is total

income, c¢;¢, is consumption, a; is asset holdings, and e;; iid (0,1), i =1,2,..., K.
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Figure 4: Likelihood and composite likelihood, large scale model.

Suppose that rather than constructing the likelihood using (27)-(30) jointly for the
K countries, one constructs the likelihood of the model of each country (i.e. neglecting
(30) and using y;; in place of wj in the first two equations) and then equally weighs
these K likelihoods to construct a composite likelihood. Three types of distortions are
present in the composite likelihood: consumption and asset holdings are functions of
total income, rather than domestic income; the volatility of domestic income is higher
than the volatility of total income; the w weights should be a function of (;; rather
than constant. Clearly if (;; = ¢; = 1,Vj, and the volatility of the income is the same
in all 7, the information loss relative to the full likelihood is minimal.

Figure 4 plots the shape of the likelihood of the full model and the composite like-
lihood in the p dimension when K = 3,5 =0.99,p = 0.6,0; = [0.1,0.2,0.3],w = 1/K,

0.5 0.25 0.25
r=1/-1,=099¢ = | 025 0.5 0.25 | using consumption data only when
0.25 0.25 0.5

T=1000. The likelihood function is not quadratic in p, as it is clear from inspection -
the marginal propensity to consume out of transitory income increases as p moves from
-1 to 1 - and the composite likelihood inherits this property. Nevertheless, although
the scale is different, the two functions have very similar shapes. Thus, the information
loss one incur using the composite likelihood in this case is small.
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4.5 Estimating a parameter appearing in different models

Likelihood-based estimates are rarely used directly in policy exercises but instead
twisted to reflect a-priori information not included in the estimation (”your boss prior”)
or informally averaged taking the output of many models into account. Such an ap-
proach is consistent with the idea that the available models are approximations to the
DGP, that averaging safeguards against structural breaks, time variations, etc., and
that ”judgement”is important when evaluating the appeal of certain counterfactual
exercises.

In practice, two approaches are common in the literature: i) models are separately
estimated, counterfactuals are constructed in each model, and then averaged using
user-based weights; ii) estimates from different models are informally averaged, and one
counterfactual is constructed using the average estimates in the ”most-likely” model.
This section shows that a composite likelihood approach justifies both procedures. The
composite likelihood provides estimates which are consistent with the structure present
in all models. These estimates can then be used in each model, counterfactuals obtained
and geometrically averaged to robustify inference. Canova and Matthes (2017) show
that when a quasi-Bayesian approach is used, the posterior mode of w provides a
valid model ranking device. Thus, one can construct counterfactuals using composite
estimates of the parameters and the model receiving largest posterior weight.

To see what features composite likelihood estimators constructed using different
models display, suppose K=2, and assume that the decision rules that they generate
are given by (5) and (6). Maximization of (9) with respect to 6 leads to:

Ta T Tha Tp
pPA = (Z Va1 + G Z 3/12315—1)_1(2 yatyar—1 + Q1 Z YBtyBi—1) (31)
t=1 t=1 t=1 t=1
where (1 = 177“%, (= 177“% = (10 and
1 1—w &
o4 = E(Z(?/At — payai-1)® + 7 > (yst — dpayse-1)?) (32)
t=1 t=1

where £ = (T4 + TBL_—‘;)_l. The estimators of p4 and of 0124 obtained using just model
A or model B log-likelihoods are

Ta Ta T Tp
PAA = (Z y,zqt—l)_l(z YAtYai-1);  pAB = 5_1(2 yQBt—l)_l(Z ytypt-1)  (33)
t=1 t=1 t=1 t=1

and
Ty Ty
1 1
2 2. 2 2
== - D% ot =S (s — dpanyse 34
TAA = T ;(yAt PAAYAL-1)"; O4B s t:1(th PABYBt—1) (34)

As (31)-(32) clearly show, 6¢ 1, combines the information coming from y4; and yp,
with model B playing the role of a prior for model A. The formulas in (31) and (32) are
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similar to those i) obtained in least square problems with uncertain linear restrictions
(Canova, 2007, Ch.10), ii) derived using a prior-likelihood approach, see e.g. Lee
and Griffith, 1979, or Edwards, 1969) and iii) implicitly produced by a DSGE-VAR
setup (see Del Negro and Schorfheide, 2004), where T is the number of additional
observations added to the original T4 data points. Note that when (v, J) are unknown
and jointly estimated with p4, 0'124 using the composite likelihood, they will reflect only
the information in yp;.

It is also easy to see that if model B is irrelevant (§ = 0), yp; will not be used in the
estimation of p4 and simply affects the estimate of o 4. Thus, as discussed in section
3.1, the approach automatically discounts models which give a poor information in the
dimensions assumed to be common.

When K models are available, 8¢y will be constrained by the structure present in
all models. For example, equation (31) becomes

Ta K—-1 T; Ta K-1 T;
pA = (z Yar—1 + Z Gi2 Zyi_ﬂ_l(z Yaryat—1 + Z Gi1 Zyityitfl) (35)
t=1 =1 =1 =1 =1 =1

where (1 = 229 (o = (16;. (35) has the same format as Zellner and Hong’s (1989)

WA v;
estimator, and combines unit specific and average information contained in the cross

section of models. Thus, the composite likelihood robustify inference, in the sense that
estimates of # are shrunk to be consistent with the data generated by all available
models.

Note that y4; and yp: may be different series. Thus, the procedure can be used
to estimate common parameters in models featuring different observables or different
levels of aggregation (say, aggregate vs. individual consumption). In general, y4; and
ypt may have common components and some specific ones. The approach works in all
these situations.

We illustrate the ideas discussed in this subsection when a researcher is interested
in estimating the slope of Phillips curve. The conventional wisdom is that the slope of
the New Keynesian Phillips curve is historically small (see Smets and Wouters, 2007,
or Altig et al., 2011). Thus, large changes in firms’ marginal costs imply have small
pass-though to the aggregate inflation rate. In addition, there is evidence that the slope
has further decreased since 2009 (see e.g. Coibon and Gorodnichenko, 2015), perhaps
because financial constraints imply a trade-off between pricing decisions and firms’
market share (see e.g. Gilchrist et al., 2016). However, Schorfheide (2008), surveying
estimates of obtained in DSGE models, documents large cross-study variations and
associates the differences to i) the model specification, ii) the observability of marginal
costs, and iii) the number and type of variables used in estimation.

Here we examine how the composite posterior distribution of the Phillips curve
looks relative to the posterior distribution obtained with i) single models and ii) ex-
post averaging the posteriors of different models. We then construct the responses of
the ex-ante real rate to monetary shocks in a number of situations.

We consider five models: a small scale New Keynesian model with sticky prices but
non-observable marginal costs, where the variables used in estimation are detrended
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Table 1:Percentiles of the posterior of the slope of the Philips curve
5% 50% | 95%
Prior 0.01 0.80 1.40
Basic NK 0.06 | 0.18 | 0.49
Basic NK with nominal wages | 0.05 | 0.06 | 0.07
SW with capital and adj.costs | 0.04 | 0.05 | 0.07

Search 0.44 | 0.62 | 0.86
BGG 0.13 | 0.21 0.35
CL 0.18 0.26 0.40
CL (corrected) 0.18 | 0.28 | 0.44

The table reports posterior percentiles of the slope of the Phillips curve for the prior, for a three variable New
Keynesian model (Basic NK); for a four variable New Keynesian model (Basic NK with nominal
wage); for a medium scale New Keynesian model with seven observables (SW with capital and adj].
costs), for the four variable search and matching model (Search) and the three variable financial
friction model (BGG). The rows with CL report composite posterior percentiles obtained with
MCMC draws unadjusted or adjusted. The estimation sample is 1960:1-2005:4.

output Y, demeaned inflation 7, and demeaned nominal rate R, as in Rubio and Ra-
banal (2005); a small scale New Keynesian model with sticky prices and sticky wages,
and observable marginal costs, where the variables used in estimation are detrended
Y, demeaned 7, demeaned R and detrended nominal wage W, again as in Rubio and
Rabanal (2005); a medium scale New Keynesian model with sticky prices, sticky wages,
habit in consumption and investment adjustment costs, where the variables used in es-
timation are detrended Y, detrended consumption, detrendend investment, demeaned
7, demeaned R, detrended hours, and detrended W, as in Justiniano et al. (2010);
a New Keynesian model with search and matching labor market frictions, where the
variables used in estimation are detrended Y, demeaned 7, demeaned R and detrended
real wage w, as in Christoffel and Kuester (2008); and a version of the Bernanke,
Gertler, and Gilchrist (1999) model, estimated with detrended Y, demeaned 7, and
demeaned R. In this last model, part of the parameters governing the financial fric-
tions are calibrated, as in Cogley et al (2011), to sidestep the issue of which data series
should be used to match the model-implied spread. In all cases, the estimation sample
is 1960:1-2005:4 and a quadratic trend is used to detrend the data. The series used
are from the Smets and Wouters (2007) database; the equations of each model and the
specifications for the priors are reported in appendix C. Note that the models do not
use the same observables. Thus, Bayesian model averaging is not possible.

Table 1 displays some percentiles of the posterior of the slope of the Phillips curve
obtained either with the likelihood of each model separately or with the composite
likelihood. For the first three models the median value is low and having non-observable
marginal costs increases the location of the posterior distribution. For the other two
models, the posterior median is higher and, for the model with search and matching
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friction, the posterior spread is also larger. In addition, the posteriors of these latter
two models hardly overlap with those of the first three models. Thus, in agreement with
Schorfheide, estimation results depend on the model employed, the nuisance features it
includes, the observability of marginal costs, and the variables used in the estimation.

The composite posterior obtained with random weights has a median value of 0.26
and a credible 90 percentile ranging from 0.18 to 0.40, which is smaller than the range
obtained with a number of individual models. Correcting the posterior percentiles
(as suggested by Mueller, 2013) leaves the location and the spread of the composite
posterior distribution unchanged.
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Figure 5: Prior and posterior densities of w

Figure 5 plots the prior and the posterior w for each model. Interestingly, the
location of posterior of w for the models with financial and labor market friction is the
least affected by the estimation process. On the other hand, for the small NK model
with observable marginal costs and the medium scale NK model the posterior median
is lower than the prior median, and the opposite is true for the basic NK model.
Also, posterior spreads are tighter than the prior spread, indicating that the data
are informative about the weights (see Mueller, 2012). Overall, composite posterior
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estimates of the Phillips curve reflect, to a large extent, the information present in the
small scale New Keynesian model and, to a less extent, in the BGG and the search and
matching model.

Some readers may be surprised about the fact that the standard medium scale New
Keynesian model, which is the workhorse used in many policy institutions, has the
lowest posterior probability among our five models. Recall that the posterior for w
reflects the information of each model for the slope of the Phillips curve. Thus, figure
5 indicates that the medium scale NK model does not provide relevant information for
this parameter relative to the information contained in the pool of other models.

Figure 6 presents the composite posterior distribution for the slope of the Phillips
curve we obtain together with two alternative naive posterior combinations: one that
equally weights the posteriors obtained with the five models separately; and one which
weights the posteriors obtained with the five models by the mode of w. Clearly, com-
bining ex-post estimates generate distributions whose locations are generally lower. In
addition, ex-post combinations produce multimodal posteriors: there is a sharp peak
at 0.05, and a secondary, more round, one at 0.15.
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Figure 6: Composite posterior and two naive posterior mixtures

Figure 7 reports the responses of the ex-ante real rate to a 25 annualized basis
points monetary policy shock in four situations: using the estimates obtained in the
model with the largest modal value of w (the small NK model); using the two ex-post
combinations previously discussed; and using composite posterior estimates in each
model and then weighting the impulse responses with the posterior mode of w for each
model.

The mean impact is estimated to be 45-50 basis points, and the composite response
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Figure 7: Real rate responses to a monetary shock

is intermediate among the values we present. Uncertainty is substantial, and while the
composite responses are a-posteriori different from zero, the 68% credible set includes
the point estimates obtained with all models. At larger horizons, the composite poste-
rior for the real rate responses becomes tighter and the naive equal weighting responses
fall outside the credible composite posterior intervals. Note also that composite poste-
rior real rate responses are much less persistent relative to other alternatives and, after
four quarters, they are basically zero.

4.6 Exploiting panel information in estimation.

A composite likelihood setup can also easily deal with the situation where there is a
single structural model, for example, an asset pricing model, but the data comes from
either different units (for example, consumers or countries); or from different levels of
aggregation (firm, industry, sector, region).

Earlier work by Chamberlain (1984, p.1272) has used similar ideas to estimate the
parameters of a reduced form model when a panel is available but the cross-sectional
is not necessarily homogeneous. In our setup, we treat time series for different units
(levels of aggregation) as different "models” and combine their information to estimate
common structural parameters.

Let 914, Yot -.-Urt represents the subset of the vector of observables of unit (level of
aggregation) i=1,2...K that is common across units. The composite log-likelihood is

K

CL(Old1e--rctm, - -mk) = > wilog L6|dit, mi) (36)
i=1
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(36) neglects the correlation structure across units, in particular, the presence of com-
mon shocks, but partially pools information about common parameters from all avail-
able units. Thus, it represents an intermediate objective function between complete

K
pooling of cross unit information C'L(0,n|j1¢...9xt) = > wilog L(0,n|yi:) and com-
i=1

K

plete heterogeneity C'L(61,...0k,m1,. .. 0k|Y1¢---Uxt) = Y, wilog L(0;,m:|Yit). Its setup
i=1

is similar, in spirit, to the objective function employed in partial pooling Bayesian lit-

erature (e.g., Zellner and Hong, 1989). The main difference is that in this literature all
parameters are restricted; here only 6 is restricted across units.

Suppose we have available decision rules like (6) for unit ¢ where now d;,; are unit
specific, 61 = 1 = 1, while p4,04 are common. As we have seen, for fixed w, the
composite likelihood estimator for p4 is

T K T; T1 K T;
pa=0 Ui+ Y oY b)) Qv+ G > yayie1) (37)
t=1 =2 t=1 t=1 =2 t=1
where ;1 = :}”—i%, Gi2 = (i160;. Clearly, pa pools unit information if ¢;; = 1, V%, 7, and

corresponds to the ML estimator obtained with unit 1 data if (;; = 0, (6; = 0)Vi, j,.
When w; = 1/K, (;; captures the degree of heterogeneity in the cross section. In
general, cross unit information is not exactly pooled, as for example, in standard panel
estimators and the degree of cross-unit shrinkage depends on the precision of various
sources of information. Thus, when dealing with panels of time series, the composite
likelihood uses at least as much information as the individual likelihoods; stochastically
exploits commonalities in cross section if they exist; and may lead to improved estimates
of the common parameters when similarities are present in the cross sectional data. The
partial pooling approach that the composite likelihood delivers is likely to be preferable
when each y;; is short, when the heterogeneities in the DGP for 6 are unsystematic
(if they are systematic, the partial pooling device could be applied to units whose
variations are unsystematic), and when the volatility of the endogenous variables has
similar magnitude.

To illustrate the use of the composite likelihood in this particular setup, we build on
the exercise of Karabarbounis and Neiman (2014). They notice that the labor share has
dramatically fallen in many countries over the last twenty years and argue that shocks
to the relative price of investment, which also declines over time, may be responsible
for this fall. Their argument hinges on the elasticity of substitution between labor and
capital in production, o, to be greater than one. Using their model specification (the
optimality conditions and details about the priors used are in appendix C) and their
dataset, we first estimate o using data from the US, UK, Canada, Germany and France
separately. We then use the composite likelihood to estimate o using data from all five
countries 2. In this latter case, all other parameters are allowed to be country specific.

2Although we present results when shocks to the price of investment are stationary, we also perform
estimation assuming non-stationary shocks. None of the conclusions we reach depend on this assumption.
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Figure 8: Prior and Posterior distributions for o

Figure 8 presents the prior for o (first row), the posterior obtained with individual
country data (second row) and composite posterior obtained with cross sectional data
when fixed equal weights or random weights are used. The data is informative for all
countries and, except for the UK, the posterior distribution about ¢ is entirely above
one. The two composite posterior distributions are also all above one and tight, despite
the fact that UK data receives a non-negligible weight in both composite estimation
exercise (modal value of the posterior of w for the UK is 0.07). US data appears to be
most informative and the posterior of w for the US has mode equal to 0.45.

Figure 9 shows the responses of the labor share, in log deviation from the steady
state, to a positive shock to the relative price of investment (with mean equal to half
of the estimated US standard deviation) in each of the five countries and with the
panel when random weights are used. Indeed, we find a positive dynamic conditional
correlation between shocks to the relative price of investment and the labor share
whenever the posterior of ¢ is above one. For the UK, shocks to the relative price of
investment have instead negligible dynamic effects on the labor share.

Thus, our analysis confirms by and large Karabarbounis and Neiman’s two main
conclusions: i) the elasticity of substitution between capital and labor is greater than
one, ii) shocks to the relative price of investment can potentially explain the fall in the
labor share observed in many countries. The conclusions we obtain with our composite
approach are, however, more general because we allow for stochastic heterogeneity
across countries, and use likelihood-based estimators that exploit all the information
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Figure 9: Labor share responses to shocks to the relative price of investment

present in the optimality conditions the theory provides.

5 Conclusions

This paper describes a procedure to ameliorate identification, estimation and infer-
ential problems in DSGE models. The method helps in a number of situations and
automatically provides estimates of the parameters that formally combine the infor-
mation present in different models/ different data sets using shrinkage-like approach.
The procedure helps to robustify estimates of the structural parameters in a variety
of interesting economic problems and it is applicable to many empirical situations of
interest.

The approach is based on the composite likelihood, a limited-information objective
function, well known in the statistical literature but very sparsely used in economics.
In our setup, the composite likelihood combines the likelihoods of distinct structural
or statistical models, none of which is necessarily a marginal or conditional partition
of the DGP. Thus, standard composite likelihood properties do not necessarily apply.
Still, the approach we propose has desirable statistical properties, it is easy to use, in
its quasi-Bayesian version, it has an appealing sequential learning interpretation, and
provides a way to rank the quality of the models’ approximation to the DGP.

We present examples indicating that the composite likelihood constructed using the
information present in distinct models helps 1) to ameliorate population and sample
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identification problems, 2) to solve singularity problems, 3) to produce more stable
estimates of the parameters of large-scale structural models, 4) to robustly estimate the
parameters appearing in multiple models and rank models with different observables,
5) to combine information coming from different sources and levels of aggregation. In
Canova and Matthes (2017) we have shown that a composite likelihood approach can
be fruitfully used to deal with model misspecification. This is because it has built-in
features that allows researchers to examine whether the composite model produces
better estimates than any of the components, and closer to the unknown DGP than
the individual components.

We believe the methodology has potential in DSGE settings, and the examples
we describe in the text highlight ways in which the flexibility of the approach can be
exploited in useful economic applications.
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Appendix A

Asymptotic properties of composite estimators Let the DGP produces a
density F'(y, 1) for an m x 1 vector of observables y;, where 1 is a ¢ x 1 vector.
Partition ¢ = [0, 7] and let {A;,i = 1,...K} be a set of marginal or conditional events
of y;, and let f(yix € Ai,6,7;) be the subdensities of F'(y;,1) corresponding to these
events. Each A; defines a submodel, with implications for a subvector y;; of length T;,
and is associated with the vector 1; = [#,7;]" , where 7; are (nuisance) event specific
parameters. Let ¢ = (6,n1,...1x). Given a vector of weights 0 < w; <1, > . w; =1,
the composite likelihood is

CL(¢7 Yity - -+, yKT) = Hllil f(ylt S Ai7 97 771)% (38)

Clearly, CL(¢, y1t, - - - , yicr) is not a likelihood function. Nevertheless, if y 4 =(y1,- - -, yt)
is an independent sample from F'(y, 1) and w; are fixed quantities, ¢, the maximum

composite likelihood estimator of ¢, satisfies ¢, L ¢ and

VI(¢cr - ¢) 5 N(0,G7) (39)
for T going to infinity and K fixed (see e.g., Varin, et al., (2011)) where
G = HJ 'H; Godambe information (40)
J = wargu(e,yny); Variability matrix (41)
H = —FEy[vou(0,m,...,nx,ypny)]; Sensitivity matrix (42)
u(¢, ylwr, ..., wi) = sz’ Vo li(#,y11,7); Composite scores (43)

(2

and /gli(¢,y[1,) denotes the score associated with the log of f(yix € A;,0,m;). Thus,
Oc 1, is constructed using the information present in all submodels, with w; determining
how important each model is.

Note that if T is fixed but the different A; are independent, then (39) still holds
when K — oo ,and a standard Newey-West correction to J(6) can be used if Yy s
not an independent sample.

Note that he asymptotic covariance matrix is HJ ' H and that in general H # J.
Since it differs from the Fisher information matrix, I, ¢y, is not efficient.

The choice of w; is typically left to the investigator, and, for example, one may
choose w; to improve efficiency. Optimal weights can be obtained by minimizing the
distance between G(6) and I(6) or by making sure that the composite likelihood ratio
statistics has an asymptotic x? distribution (Pauli et al., 2011). Alternatively, one
could set w; = %,Vi, to minimize the researcher input; or use a data-based approach

to their selection. For example, one could set w; = HZ’?E—%, where y; is a
1=1 t
function of some statistics of past data x;= fi(Y1 [1:r] -+, Y [1:7))- If these statistics

are updated over time, w; could also be made time varying. There is a large forecasting
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literature (see e.g. Aiolfi et al., 2010) that can be used select training sample-based
estimates of w;.

When K or the number of nuisance parameters 7; is large, joint estimation of
(0,m,...,nK) may be computationally demanding. In this case, a two-step estimation
approach is possible where 7; is separately estimated for each log f(yi € A;,0,m;) and
plugged in the composite likelihood, which is then optimized with respect to 0, see e.g.
Pakel et al. (2011). Consistency of Ocr, is unaffected as long as 7; are consistently
estimated. Asymptotic standard errors for 6o in this case need to be adjusted to
account for the fact that n; is estimated.

Asymptotic properties of composite estimators in our setup Because
the models we consider are approximations to the DGP, likelihood estimators obtained
in each of them will be inconsistent and, thus, the composite likelihood estimator will
be inconsistent. Following White (1982) and Domowitz and White (1982), one can
show, under the same regularity conditions stated in these papers, that ¢; a7, the
likelihood estimator in model A;, converge, as T' — oo to the pseudo-parameter vector,
¢0, which minimizes the Kullback-Leibler (KL) divergence from the true DGP and that
\/T(QZ)LML —¢p) ~ N(0, G;l), where G; is the Godambe information matrix for model
i.

The argument is as follows. Let y; be a sample from the density f(y;) with respect
to some o-measure y. Suppose a model with the density g(y;, 1), where ¢ € ¥ C R™
is a vector of parameters, is used and the log-likelihood is Ly(v)) = >, log g(ys, ).
Here f(y:) # g(yt, ), Vib. Let ¢prr be the maximum likelihood estimator, i.e. ¥y =
supyLg(t). Since T7'Ly(¢)) — E(logg(yt,¥)) by a uniform law of large numbers,
Yz will be consistent for ¢y = argmaxy Elogg(y:, 1), where the expectations are
taken with respect to the density f. If f is absolutely continuous with respect to g

Elogg(yt,v) — Elog f(y:) = —/f(yt)log {y(tyt) du(y) = —KL(¢)  (44)

9y, V)

where K L(v) is the Kullback-Leibler divergence between f and g. Hence v is also
the minimizer of K L(v)).

Let s:(¢) = %ﬁt’w) be the score of observation ¢ and let h:(¢)) = 95t (¥)  Tf the

o
maximum is in the interior ), s;(¢)) = 0, and taking a first order expansion we have
0~ T " si(to) + TS (Y — tho) (45)
t
where ¥ = —E(ht(1)) = a;gaz(;@)]w:%. Then, using a central limit theorem for

correlated observations we have that T7%%(¢nr, — 1) ~ N(0,V) where V = 31355
and Yo = E(s:(¥)s:(v)").

In standard DSGE applications s;(1)) are computed with the Kalman filter and are
functions of martingale difference processes (the shocks of the model). Thus, the con-
dition ), s¢(¢)) = 0 is likely to hold. Further regularity conditions (see, e.g. Mueller,
2013) need to be imposed for the argument to go through.

33
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The weighting scheme that the composite likelihood employs defines a density for
a different approximate model (the geometric average of the K submodels). Let the
density of the composite model be §(y:,¥1,...Yx) = §(yt,0,m,...nx). When the
weights w; are fixed, ¢cr, approaches asymptotically ¢g cr,, the minimizer of the KL
divergence between g and f. Note that ¢g ¢y is not, in general, a geometric average of
®0,i, because models are not necessarily independent.

Under the same regularity conditions stated above, ¢y, convergences to 0y cr, and

its distribution is normal with zero mean and covariance matrix Gor, = ¥1,crX2,c021,0L

) B,
where Yo cr = E(st,cr(0,m1, - 1K)st,cn(y, 0,m1, - . nx)’), L1010 = St’CL(ytag LTI

W, where Gy, is the Godambe information computed using

and sy cp =
the composite likelihood.

Thus, when the submodels are not marginals or conditionals the same results ob-
tained in the standard framework holds with two qualifications: the pivot of the asymp-
totic distribution is the minimizer of the KL divergence between the composite model
and the DGP, rather than the true parameter vector; the Godambe information matrix
is evaluated at the minimizer of the KL divergence, rather than at the true parameter
vector.

Appendix B

The MCMC algorithm Given (yi,T;), suppose that supg . f(vit € Ai,0,m) <
b; < B < 00, a condition generally satisfied for DSGE models; that £(6, n;|y; ;) can be
constructed for each A; and that the composite likelihood £(0, 11, ...nx, w1, ..., Wk |y1,7;, - - - s YKT},)
can be computed for 0 < w; <1, >, w; = 1.

For computational and efficiency reasons, we employ a 2K + 1 block Metropolis-
within-Gibbs algorithm to derive sequences for the parameters. Herbst and Schorfheide
(2015) have also suggested drawing DSGE parameters in blocks. However, while they
randomly split up the parameter vector in different blocks at each iteration, the blocks
here are predetermined by the K submodels of interest.

The algorithm we use has four steps:

1. Start with some [1}...7%, 0% ... %]
For iter = 1 : draws do steps 2-4

2. For i = 1 : K, draw 5} from a symmetric proposal P". Set 5" = n¥ with
probability

iter—1

. . iter—1
L([nz, 0% =1 Yo, ) = plg|giter—1)e" )

(46)

iter—1

i (1’ L([piter=1_giter—1] |y: )w:f”"'*l iter—1 giter—1\w;
([nz ? ] | 4T p(nz | )

3. Draw #* from a symmetric proposal P?. Set #"¢" = §* with probability
C(fnir 6] Vi) L[] [Yie )™ p(67) )

iter—1 iter—1

min | 1, - - - - :
E( [niter, ezterfl] |Y1,T1 )wl . £( [nzlger7 ezterfl} |YK,TK)UJK p(gzterfl)
(47)
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4. For i = 1 : K draw , draw w; from a symmetric proposal P“. Set witer =
*

w* = (wi... wy) with probability

: L([ni'r, 0] [Yir )<t . Lm0 [Yie e )< p(w)
min | 1, ; ; iter—1 . ; iter—1 ; (48)
E( [,r]'iter7 gzter] Yl,Tl )wl o L:( [T];ter7 ezter] |YK,TK )wK p(wzter—l)

Note that in (46) only the likelihood of model i matters because n; only appears
in that likelihood. A few interesting special cases are nested in the algorithm. For
example, when the K submodels feature no nuisance parameters, as in the case when
the composite likelihood is constructed using statistical models, steps 2.-3. can be
combined in a single step. On the other hand, when w;’s are treated as fixed, step
4 disappears. Notice also that when w; = 0,7 # k, wp = 1, the algorithm collapses
into a standard Block Gibbs-Metropolis MCMC. A standard random walk proposal for
(0,m;) seems to work well in practice; a multivariate logistic proposal or an independent
Dirichlet proposal (if only a few models are considered) are natural choices for w;.

Asymptotic adjstment The estimation problem we consider is non-standard since
y;¢ are not necessarily mutually exclusive across ¢ and estimation may be performed
repeatedly using the same time series in the composite likelihood conditioning set.
Naive implementation of the MCMC approach produces marginal posterior percentiles
for 6 which are too concentrated, because the composite likelihood treats y;; as if they
were independent across i. In addition, as we show next as T — oo, the posterior
distribution will approach a normal distribution, but the asymptotic covariance matrix
is the sensitivity matrix H, rather than the Godambe matrix. For all these reasons,
one may want to adjust the percentiles of the posterior to reflect these facts.

Let 6¢cr, be the maximum composite likelihood estimator of § and let ¢, be the mode
of the prior p(#).Let h(0cr) = —ViCL(0cLly) and h(6,) = —v2logp(f,). Taking a
second order expansion of pcr(0]Y) we have

per(0]Y) o {CL(Ocrly) —0.5(0 — bcr) (hber)(0 — bor) + logp(6,) — 0.5(0 — 0,)" (h(bp)(0 — 6)}
~ N(,h(bcr,0,)") (49)

where 0 = h(0cr, 0p) " (h(0cL)0cr + h(8,)8,) and h(0cr,0,) = h(0cr) + h(By).
Under standadrd regularity conditions p(#) will vanish as 7' — co. Then, almost
surely, the strong law of large number implies that

T 'h(0cr,0,) — —E(V?CL(6o]Y)) = H (o) (50)

0 = (T'h(0cr,0,) (T~ h(0cr)0cr + T h(6,)0,) — 6o (51)
and thus pCL(H‘Y) ~ N(Go,T_lﬂ(Qo)_l).
Mueller (2103) has argued that in situations like ours, MCMC percentiles should

be adjusted to obtain asymptotic coverage which is consistent with the amount of
information present in the data. To do so, we follow Ribatet et al. (2012) and Qu
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(2015) and modify the MCMC algorithm adding two steps. The first involves com-
puting the ”sandwich” matrix, H(0)J(0) ' H () where H() = —E(Vap.(0]Y)) and
J(0) = Var[Vp.(0|Y)] via maximization of the composite posterior p.. The second
step involves adjusting the accepted draws using

0 =0+V167 -0 (52)

where @ is the posterior mode, V = CTHC and C = M 1M, is a semi-definite square
matrix; M,ZMA =HJ 'H,MTM = H and M4 and M are obtained via singular value
decompositions.

Note that the adjustment works well only when 6 is well identified from the com-
posite posterior and if the composite posterior has a unique maximum. As Canova and
Sala (2009) have shown, such properties may not hold in a number of DSGE models.
Thus, it may be advisable to report both standard and adjusted percentiles.

Appendix C

We present the optimality conditions for each of the five models considered in section
4.5. In estimation, the priors for the parameters are Gaussian and centered at the
values used (or estimated) in the original papers, with a standard deviation of at
least 25 percent of the mean value. For those parameters that are naturally restricted
to be positive or between 0 and 1, we truncate the Gaussian priors, in which case
the standard deviation refers to the value before truncation. The only parameter
we treat as common across models is the slope of the Phillips curve, for which we
assume a prior mean of 0.2 and a prior standard deviation of 0.5 (thus, a very loose
prior) and truncate the support to be positive. The prior for w is Dirichlet with
parameters 250%[1/4;1/3;1/7;1/4;1/3]. Results obtained using a looser prior (Dirichlet
with parameters 40*%[1/4;1/3;1/7;1/4;1/3]), and fixed equal or unequal weights (set to
the mean of the prior density we use as a benchmark) are similar and available on
request. Posterior moments are computed using 50000 draws, of which we keep one
out of five, after a burn-in phase of 10000 draws.
a) Small scale New Keynesian models
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In the sticky wage model, the wage equation (64) is replaced by:
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¢) Model with search and matching frictions

N o= B {/):t-&-l + R+ - ﬁt+1} (86)
~ o
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d) Model with financial frictions
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(117)

The log-linearized optimality conditions that Karabarbounis and Neiman’s (2014)

model delivers are:
1) Production function

Vi = Yo' D ak( A + k) 4+ (1 — a)ndyy)]

(132)
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2) Labor share

SL . 1 . N R .
HEL fi = (0 —1)(Ags — fu — Ry)

1-— MSLSLt + 1—pust
3) Definition of the return to capital
R 1 . X

Repr = Sl +7)(Z + Fig1) = (1 = 0) Ze]

4) Definition of the real rate

r

1+ T7’t+1 = —’Y(Ct - Ct+1)
5) Markup
N ~ SL ~
Sre+ (1 — St =0
e Sr, + Sk o+ 5L+5k)kt

6) Capital share
Spe=Ri+ Ky — Y,
7) National identity

A~

~ k ~ N N
Y, = gct 0%+ k= (1= 8)h)

8) Real wage

c—1. s R R
At + 9t — ke = 4 + Ry

9) Labor supply
ﬁt == 0

The processes for the three exogenous variables are:

logZ; = pilogZi—1 +uy uig ~ (0,wr)
log Ape = palog Api—1 + uge uze ~ (0,w2)
log Ay = palog A1 +use uge ~ (0,w3)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)
(142)
(143)

We set = 0.10 and 8 = 0.96. We estimate p;,w;,j = 1,2, 3 together with v,o. The
prior for ¢ is truncated normal with mean 1 and standard deviation 0.4; the prior for
is truncated normal with mean 1 and variance 1; the priors for p; are truncated normal
with mean 0.9 and variance 0.4; the prior for w; are truncated normal with mean 1
and variance 1. The only o is assumed to be common across countries. We have also
estimated the model under the assumption that ~ is also common without appreciable
changes in the posterior of ¢. When constructing the composite likelihood, data for
the five countries receives either equal weight (w=0.20) or the prior for w is Dirichlet
with mean 0.20. We use 50000 draws, keeping one out of five, after an initial burn-in

phase of 10000 draws.
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