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Abstract

Electricity prices are characterised by strong autoregressive persistence, peri-

odicity (e.g. intraday, day-of-the week and month-of-the-year e�ects), large

spikes or jumps, GARCH and { as evidenced by recent �ndings { periodic

volatility. We propose a multivariate model of volatility that decomposes

volatility multiplicatively into a non-stationary (e.g. periodic) part and a sta-

tionary part with log-GARCH dynamics. Since the model belongs to the

log-GARCH class, the model is robust to spikes or jumps, allows for a rich

variety of volatility dynamics without restrictive positivity constraints, can

be estimated equation-by-equation by means of standard methods even in

the presence of feedback, and allows for Dynamic Conditional Correlations

(DCCs) that can { optionally { be estimated subsequent to the volatilities.

We use the model to study the hourly day-ahead system prices at Nord Pool,

and �nd extensive evidence of periodic volatility and volatility feedback. We

also �nd that volatility is characterised by (positive) leverage in half of the

hours, and that a DCC model provides a better �t of the conditional correla-

tions than a Constant Conditional Correlation (CCC) model.
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1 Introduction

Modelling the uncertainty or volatility of electricity prices is of great importance
for energy market participants. On the supply side, producers of electricity need
estimates of the time-varying price volatility in order to determine the risks of future
production levels. On the demand side, consumers of electricity need the same type
of information in order to ascertain the risks associated with decisions about when
and where to produce goods, and in order to hedge against adverse price changes.

It is well known that electricity prices are characterised by autoregressive persist-
ence, periodicity e�ects (e.g. hour-of-the-day, day-of-the-week and month-of-the-year
e�ects) in the conditional mean, see e.g. Bunn (2000), Knittel and Roberts (2005),
Janczura et al. (2013), and Weron (2014). It is also well known that the volatility of
electricity prices is characterised by Autoregressive Conditional Heteroscedasticity
(ARCH) and large spikes or jumps, see e.g. Escribano et al. (2002, 2011), Koop-
man et al. (2007), and Hellstr�om et al. (2012). Since the periodicity e�ects in the
conditional mean usually account for a considerable proportion of the conditional
mean dynamics, it is reasonable to conjecture that the same may also be the case for
volatility. Recently, this line of research has received increasing attention. Bauwens
et al. (2013, Section 4.2), for example, in a three-dimensional multivariate model of
monthly, quarterly and yearly Phelix baseload futures at the European Energy Ex-
change, �nd that volatility depends on the number of days-to-delivery, i.e. that the
volatility increases as the future in question approaches maturity. Sucarrat et al.
(2016, Section 4), in a two-dimensional multivariate model of peak and o�-peak
day-ahead prices in the Oslo region (Nord Pool), �nd that day-of-the-week e�ects
matter for volatility, and that peak volatility dynamics is less persistent than o�-
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peak. Dupuis (2016), in a �fteen-dimensional multivariate model of electricity prices
in the New York area, includes dummies in the volatility equations to accommodate
hour-of-the-day and day-of-the-week e�ects.

There are two main challenges in the multivariate modelling of electricity price
volatility. The �rst is the socalled \curse of dimensionality": As the multivariate di-
mension grows, joint estimation of the full model becomes infeasible in practice due
to the number of parameters that has to be estimated. This problem is not speci�c
to electricity prices, but it is more severe. The reason is that volatility is likely to
depend on additional covariates, e.g. weather and market speci�c stochastic condi-
tioning variables, in addition to periodicity e�ects similar to those that often char-
acterise the conditional mean dynamics. Moreover, if standard or non-exponential
GARCH models are used, then the curse of dimensionality problem is compoun-
ded, since the covariates and/or their parameters need to be restricted in estimation
in order to ensure the positivity of �tted volatility. An example in which such a
parameter restriction is needed in electricity price markets is the socalled \inverse
leverage e�ect", as coined by Knittel and Roberts (2005), whereby negative shocks
in one period leads to a reduction in volatility in the next period.1 Knittel and
Roberts (2005) avoid the need for a restriction by using Nelson's (1991) Exponen-
tial GARCH (EGARCH). However, as is well-known, the EGARCH is not robust
to spikes.2 This leads to the second main challenge in the modelling of electricity
prices: The occurrence of price spikes. It is well-known that the ordinary GARCH
model is not robust to such spikes. This is because the spikes a�ect estimation
and inference inadvertently (Carnero et al. (2007), Gregory and Reeves (2010)),
and because it makes the model propensive to volatility forecast failure subsequent
to the spikes, see e.g. Harvey and Sucarrat (2014, Introduction). One multivari-
ate model speci�cation that has been put forward as being able to accommodate
fat-tailed standardised errors, is the exponential version of the Generalised Autore-
gressive Score (GAS) model, see e.g. Creal et al. (2011). However, even univariate
versions of this model can be very di�cult to estimate due to its nature (see the
section on \Computational challenges" in Sucarrat (2013, p. 142)), and the problem
is compounded even further in the multivariate case.

We propose a multivariate model of electricity price volatility that is robust
to spikes, that sidesteps the curse of dimensionality through equation-by-equation
estimation, and which can include both deterministic and stochastic covariates to
accommodate periodicity e�ects, leverage, the e�ect of weather-related variables,
and so on. The model we propose is a multivariate multiplicative component log-
GARCH-X model that decomposes volatility multiplicatively into a non-stationary

1In stock markets, by contrast, a negative shock is usually followed by an increase. Arguably,
the inverse leverage e�ect should instead be referred to as negative asymmetry, since the e�ect is
not due to leverage in many markets (e.g. electricity and currency markets), and because a negative
parameter value is not obtained as the mathematical inverse of a positive parameter.

2This is the reason why Nelson proposed his model in combination with the Generalised Error
Distribution (GED) rather than with the standardised Student's t, since the unconditional variance
will generally not exist if the standardised error is distributed as the latter, see Nelson (1991, p.
365).
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deterministic part of arbitrary form, and a stationary stochastic part. In order to
enable equation-by-equation estimation, we make use of recent ideas developed form-
ally in Francq and Zako��an (2015), and in Francq and Sucarrat (2015). In particular,
our model allows for feedback volatility e�ects among the equations, and Dynamic
Conditional Correlations (DCCs) that { optionally { can be estimated subsequent to
the volatility equations. As long as the DCC speci�cation is appropriately chosen,
this will ensure positive de�niteness of the conditional covariance matrix. The model
we propose can be viewed as a generalisation of Sucarrat et al. (2016, Section 4) in
two ways. First, the deterministic component is much more general, since it can be
of arbitrary form (i.e. it needs not be a linear combination of non-stochastic covari-
ates). Second, we set up the estimation problem in such a way that the deterministic
and stationary parts can be estimated separately, each by common methods that are
widely available. In particular, in many cases the deterministic part will be estim-
able by an Ordinary Least Squares (OLS) regression, and the stochastic part will be
estimable via an ARMA-regression. The equation-by-equation estimation procedure
that we propose is thus readily implemented in software that is widely available. We
use the model to study the multivariate volatility of hourly day-ahead system prices
at Nord Pool. We �nd extensive evidence of periodicity in the volatility in that it
depends on the day-of-the-week, and in that volatility dynamics varies intradaily.
We also �nd extensive evidence of volatility feedback from adjacent hours. Leverage
(of positive type), however, is only present in about half the instances, and it is
at its strongest from 1am to 6am. In only a single instance { at midnight { does
a plain log-GARCH(1,1) without periodicity provide a better �t of the volatility.
Finally, we also �nd that the corrected DCC (cDCC) of Aielli (2013) provides a
better �t of the conditional correlations than a Constant Conditional Correlation
(CCC) speci�cation. Interestingly, the conditional correlations are found to be at
their strongest among adjacent hours, and that the strength is inversely related to
the degree of adjacency: The further away, the weaker the correlation. This has
implication for risk-management, since it implies that portfolios risk is reduced if
the degree of adjacency among the portfolio components is reduced.

The rest of the paper is organised as follows. The next section, Section 2, outlines
the model and the equation-by-equation estimation procedure. Section 3 contains
our study of hourly day-ahead price volatility at Nord Pool. Section 4 contains the
conclusions, whereas tables and �gures are located at the end after the references.
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2 Model and estimator

2.1 The model

Let rt = (r1t; : : : ; rMt)
0 denote an M -dimensional vector of price returns at t. A

generic model of rt can be written as (see e.g. Engle (2002))

rt = �t + �t; t 2 Z; (1)

�t = (�1t; : : : ; �Mt)
0; H t = Et�1(�t�

0
t); D2

t = diag(H t); (2)

�t = D�1
t �t; Rt = Et�1(�t�

0
t); (3)

where �t is the conditional mean (say, a VARMA-X), �t = (�1t; : : : ; �Mt)
0 is the error

term, H t is an M �M covariance matrix conditional on the past information set
Ft�1, Et�1(�) is shorthand notation for E(�jFt�1), D

2
t is a diagonal M �M matrix

with the conditional variance or volatility �2
t = (�21t; : : : ; �

2
Mt)

0 on the diagonal, �t =
(�1t; : : : ; �Mt)

0 is the standardised error, i.e. E(�t) = 0 and V ar(�t) = 1 where 0 and
1 areM�1 vectors,D�1

t is a diagonalM�M matrix with (1=�1t; : : : ; 1=�Mt)
0 on the

diagonal and Rt is the correlation matrix conditional on the past. The relationships
betweenH t and Rt are given byH t =DtRtDt and Rt =D�1

t H tD
�1
t . The return

vector rt can be replaced with a price vector St = (S1t; : : : ; SMt)
0, albeit { as is well-

known { any vector of prices can be obtained via a straightforward transformation
of rt. For example, if rt is log-return, then St = exp(�t + �t) � St�1, where � is
the elementwise (Hadamard) matrix product.3 Alternatively, if rt is relative return
(this approach is preferable in markets where negative prices are possible), then
St = (rt + 1)� St�1. Finally, to accommodate that our model belongs to the log-
GARCH class of models, and in order to enable equation-by-equation estimation,
we need to add the two assumptions

m = 1; : : : ;M : Pt�1(�mt = 0) = 0; (4)

�mt is independent of Ft�1; (5)

where Pt�1(�) denotes a probability conditional on the past. The �rst assumption is
standard in log-GARCH models, but can be relaxed via the modi�cations suggested
in Sucarrat and Escribano (2013), and in Sucarrat and Gr�nneberg (2016). The
second assumption enables equation-by-equation estimation of �2

t in the case where
the conditional correlations (i.e. the o�-diagonals ofRt) are dynamic and dependent
on the past, i.e. they are DCCs, see Francq and Zako��an (2015), and Francq and
Sucarrat (2015).

Periodic volatility means volatility is not covariance-stationary, since then the
unconditional variance E(�2t ) depends on t. The most common approach to non-
stationary volatility is to decompose �2

t multiplicatively, see (amongst other) Van Bel-
legem and Von Sachs (2004), Engle and Rangel (2008), Mazur and Pipien (2012),
and Amado and Terasvirta (2014a, 2014b). This means

�2
t = gt � ht = (g1th1t; : : : ; gMthMt)

0; (6)

3For example, if a and b are two equally sized M � 1 vectors, say, a = (a1; : : : ; aM )0 and
b = (b1; : : : ; bM )0, then a� b = (a1b1; : : : ; aMbM )0.
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where gt is the non-stationary component and ht is the stationary component (typic-
ally a GARCH-like process). In our model, the non-stationary component is speci�ed
as

ln gt = (ln g1(�1;x1t); : : : ; ln gM(�M ;xMt))
0 ; (7)

where ln g1; : : : ; ln gM are known functions (linear or nonlinear), x1t; : : : ;xMt are
known, non-stochastic regressors, and �1; : : : ;�M are unknown parameters to be
estimated. We do not restrict the xmt's nor the functions ln gm to be equal across
equations, and the ln gm's can assume a variety of shapes. In the simplest case the
ln gm's are linear functions made up of time dummies (calendar e�ects, etc.), but it
can also assume the shape of an exponential spline as in Engle and Rangel (2008),
the Fourier Flexible Form (FFF) as in Mazur and Pipien (2012), or smooth threshold
models as in Amado and Terasvirta (2014a, 2014b). Under appropriate assumptions,
the functions may also be estimated nonparametrically, as in Van Bellegem and
Von Sachs (2004).

The stationary component is speci�ed as

lnht = ! +

pX
i=1

�i lne�2t�i +

qX
j=1

�j lnht�j; (8)

where lnht = (lnh1;t; : : : ; lnhM;t)
0, ! = (!1; : : : ; !M)0, lne�2t = (ln �2t � ln gt) =

(lnh1t�
2
1t; : : : ; lnhMt�

2
Mt)

0,

�i =

0B@ �11:i � � � �1M:i
...

. . .
...

�M1:i � � � �MM:i

1CA and �j = diag(�11:j; : : : ; �MM:j):

The non-diagonality of �i enables feedback among equations, whereas the diagon-
ality of �j enables equation-by-equation estimation. The model is stable (in lnht)
if all eigenvalues of

Pp
i=1(�i + �i) are strictly less than 1 in modulus, and lnht is

invertible if all the eigenvalues of
Pq

j=1 �j are strictly less than 1 in modulus.

2.2 Equation-by-equation estimation

In our model, given by (1)-(8) , the mth. log-volatility equation can be written as

ln�2mt = ln gmt + lnhmt; (9)

ln gmt = ln gm(�m;xmt); (10)

lnhmt = !m +

pX
i=1

�m:i lne�2t�i +

qX
j=1

�mm:j ln�
2
m;t�j; (11)

where �m:i is the mth. row of �i, i.e. �m:i = (�m1:i; : : : ; �mM:i). Estimation of
equation m proceeds in three steps:
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1. Estimate �m by means of the auxiliary regression

ln �2mt = �m0 + ln gm(�m;xmt) + ymt; (12)

where �m0 is the intercept and ymt the error-term. Below, we show that
�m0 = E(lne�2mt) and that ymt is a zero-mean stationary error under standard
assumptions. In the case where �m enters linearly in ln gm the parameters can
be estimated by OLS.

2. Fit an ARMA model to the residuals bymt from the �rst step. Below, we
show that the error-term ymt from Step 1 is in fact governed by a mean-
corrected ARMA representation of lnhmt. Due to the relationships between
the parameters of the log-GARCH model and the parameters of the mean-
corrected ARMA-representation, this provides consistent estimates of all the
log-GARCH parameters apart from the intercept !m. As we will show, how-
ever, an estimate of !m is not needed in order to estimate �2mt. Nevertheless,
!m can { if needed { be estimated subsequently in a fourth step (see below).

3. Estimate the log-moment E(ln �2mt) needed to complete the estimate of �2mt.
As we show below, estimation of E(ln �2mt) is straightforward by means of a
simple formula made up of the residuals from Step 2.

We now provide the details of this three step estimator.
Step 1 consists of estimating an auxiliary regression whose error-term follows

the mean-corrected ARMA-representation of lnhmt. If Ej ln �2mtj < 1, then the
ARMA-representation of lnhmt is

lne�2mt = �m0 +

pX
i=1

�m:i lne�2t�i +

qX
j=1

�mm:jum;t�j + um;t; (13)

where

um;t = ln �2m;t � E(ln �2m;t); um;t � WN(0; �2um); (14)

�m0 = !m + (1�

qX
j=1

�mm:j)E(ln �
2
mt); (15)

�m:i = (�m1:i; : : : ; �mm:i + �mm:i; : : : ; �mM:i) and �mm:j = ��mm:j: (16)

In other words, �m:i is themth. row of �i. If Ej lne�2t j <1, then the mean-corrected
ARMA representation is

ym;t =

pX
i=1

�m:iyt�i +

qX
j=1

�mm:jum;t�j + um;t um;t � WN(0; �2um); (17)

where ym;t = lne�2m;t � E(lne�2m;t) and yt = (y1;t; : : : ; yM;t)
0. To obtain the auxiliary

regression in (18), we simply add ln �2mt to ln �
2
mt in (9), which gives

ln �2mt = ln gmt + lnhmt + ln �2mt

= ln gmt + lne�2mt

= �m0 + ln gmt + ymt; (18)
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where �m0 = E(lne�2mt) and ymt = lne�2mt � E(lne�2mt). In other words, (18) is a
standard regression model in which the error-term follows a zero-mean stationary
error. In particular, if �m enters ln gmt linearly, then �m0 + ln gmt can be estimated
by OLS.

Step 2 consists of estimating (17) using the residuals bymt from Step 1. This
is an ARMA-X estimation problem that provides estimates of all the ARCH and
GARCH parameters { except !m { due to the relationships in (16). An estimate of
!m, however, is not needed if the aim is to estimate �2mt. The reason for this is that
the �tted values from the �rst two steps provide estimates of E(lne�2mt) + ln gmt and
Et�1(ymt), respectively. Adding these gives

E(lne�2mt) + ln gmt + Et�1(ymt) = ln gmt + Et�1(lne�2mt)

= ln gmt + lnht + E(ln �2mt); (19)

since lne�2mt = lnhmt+ln �2mt. So only an estimate of E(ln �2mt) is needed to complete
the estimate of �2mt.

Step 3 thus consists of estimating E(ln �2mt). Sucarrat et al. (2016) noted that, if
Ej ln �2mtj <1 and E(�2mt) = 1, then it follows straightforwardly that� lnE(exp(umt)) =
E(ln �2mt). This suggests

� ln

"
T�1

TX
t=1

exp(bumt)

#
(20)

provides a consistent estimator of E(ln �2mt), where the bumt's are the residuals from
Step 2.4 Sucarrat et al. (2016) provide conditions under which this indeed holds,
whereas Francq and Sucarrat (2015) prove that this holds when the ARMA-X rep-
resentation of equation m in a �rst order multivariate log-GARCH-X model { where
the X-part refers to stochastic conditioning variables { is estimated by Least Squares.

Summarised, then, the estimate of �2mt is given by

b�2mt = exp
� bE(lne�2mt) + ln bgmt + bEt�1(ymt)� bE(ln �2mt)

�
; (21)

where bE(lne�2mt) + ln bgmt is the �tted value of the auxiliary regression in Step 1,bEt�1(ymt) is the �tted value of the mean-corrected ARMA representation in Step 2

and bE(ln �2mt) is the estimate of E(ln �
2
mt) in Step 3.

An estimate of !m requires estimation of the other equations, in addition to
equation m. This is because the expression for E(lne�2mt), which can be written as
E(lne�2mt) = �m0 +

Pp
i=1�m:iE(lne�2t ), depends on the unconditional expectations of

the other equations. Solving for !m in the expression for E(lne�2mt) gives

!m = (1�

qX
j=1

�mm:j)E(lne�2mt)�

pX
i=1

�m:iE(lne�2t )� (1�

qX
j=1

�mm:j)E(ln �
2
mt); (22)

4The expression in square brackets in (20) is the smearing estimate of Duan (1983).
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where we have used the expression for �m0 in (15), and that
Pp

i=1�m:iE(lne�2t ) =Pp
i=1�m:iE(lne�2t )+Pq

j=1 �mm:jE(lne�2mt). It should be noted that only the elements

in E(lne�2t ), apart from the mth. entry, comes from the other equations. In other
words, if there is no feedback e�ects (i.e. all entries in the �m:i's apart from the
mth. entry are zero), then there is no need to estimate the other equations in order
to estimate !m.

2.3 Stochastic covariates (\X")

Electricity price volatility is likely to depend on a range of stochastic factors, e.g.
leverage, weather-related quantities and other market speci�c variables. An ap-
pealing property of the model and associated estimation procedure described above
is therefore that the stationary component ht can straightforwardly be augmented
by stationary stochastic covariates, \X". Let xs

t = (xs1t; x
s
2t; : : :)

0 denote a vec-
tor of covariance-stationary variables, where the superscript s is intended to con-
note \stochastic" (in contrast to the non-stochastic regressors in the non-stationary
component). For notational convenience, but without any loss of generality, we
henceforth assume that xs

t is mean-corrected, so that E(xs
t) = 0. The stationary

component in (8) now becomes

lnh2
t = ! +

pX
i=1

�i lne�2t�i +

qX
j=1

�j lnh
2
t�j + �x

s
t�1; (23)

where � is a parameter-matrix of appropriate size. Contrary to non-exponential
GARCH models, we do not need to impose any non-negativity constraints on �, nor
on the variables in xs

t . The ARMA-representation of lnhmt is now

lne�2mt = �m0 +

pX
i=1

�m:i lne�2t�i +

qX
j=1

�mm:jum;t�j + �mx
s
t�1 + um;t; (24)

where �m is the mth. row of �, and where �m0, �m:i, �mm:j and umt are the same as
before, i.e. they are given by (14)-(16). The mean-corrected ARMA representation
now becomes

ym;t =

pX
i=1

�m:iyt�i +

qX
j=1

�mm:jum;t�j + �mx
s
t�1 + um;t; (25)

where ym;t, yt and umt are de�ned as earlier. The practical consequence of this is that
the three step estimation procedure described above only requires one minor modi-
�cation: Estimate (25) instead of (17) in Step 2. The other steps are unchanged,
and if an estimate of !m is needed, then formula (22) can still be used.

2.4 Dynamic Conditional Correlations (DCCs)

Assumption (5) enables DCCs. The three-step estimation procedure described
above, however, does not provide estimates of the DCCs. Nevertheless, they can {
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if needed { be estimated in a subsequent step. The estimates b�21t; : : : ; b�2Mt from the
three-step procedure above lead to the standardised residuals b�t = (b�1t; : : : ; b�Mt)

0,
where b�mt = �mt=b�mt. These residuals can be used to estimate a DCC speci�cation
of Rt = E(�t�

0
tjFt�1). An example is the DCC of Engle (2002), or alternatively

the corrected version of Aielli (2013), see e.g. the empirical section of Francq and
Sucarrat (2015). Another option is the robust (to spikes) DCC model proposed for
electricity prices by Dupuis (2016).

3 The volatility of hourly day-ahead system prices

at Nord Pool

3.1 Data

Nord Pool Spot AS is one of the largest energy exchanges in the world measured
in traded volume of terrawatts per hour (TWh). Currently 380 members operate
on the exchange, and these include public and private energy producers, energy
intensive industries, large consumers, distributors, funds, investment companies,
banks, brokers, utility companies and �nancial institutions. Arguably, the most
important price at the exchange is the \system price". This is because it constitutes
some sort of aggregate or equilibrium price (it is determined by the intersection of
the aggregate supply and demand curves of all bids and o�ers), and because it is
used as reference in �nancial contracts { used for hedging and risk management {
traded at Nasdaq Commodities.5

Our rawdata consist of the hourly day-ahead system prices in Euros per kw/h
from 1 January 2010 to 20 May 2014. This amounts to T = 1601 daily observations
for each m before di�erencing and lagging. The price at day t in hour m we denote
Smt, where m = 1; : : : ; 24. Note that S1t should be interpreted as the price from
midnight to 1am in day t, S2t is the price from 1am to 2am in day t, and so on.
The daily log-return for hour m, denoted rmt, is de�ned as lnSm;t � lnSm;t�1, i.e.
the daily log-return for hour m. Graphs of Smt and rmt are contained in Figures 1
and 2, whereas the top graph in Figure 3. The prices and returns exhibit the usual
characteristics, i.e. that price variability is substantially larger than those of stocks,
stock indices and exchange rates, and that big spikes or jumps occur relatively
frequently. On average, the price is highest at 9am and lowest at 4am. There are
no negative prices in our data, but �ve spurious zeros due to daylight saving time.6

These zeros we replace by the average of the two adjacent values.

5See https://www.nordpoolspot.com/About-us/, http://www.nordpoolspot.com/

How-does-it-work/Financial-market/ and http://www.nordpoolspot.com/TAS/

Day-ahead-market-Elspot/Price-calculation/. All accessed 14 July 2016.
6The �ve zeros all occurred for m = 3, one in each year: 28 March 2010, 27 March 2011, 25

March 2012, 31 March 2013 and 30 March 2014.
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3.2 Models of the mean and volatility

We start by �tting a conditional mean speci�cation to the vector rt of daily returns.
A restricted Vector Autoregressive (VAR) model is formulated and estimated, where
each equation contains its own AR-lags from 1 to 7 and daily impulse dummies
(Tuesday to Sunday). The total number of estimated parameters in each equation
is thus fourteen: One intercept + seven AR-parameters + six dummy-parameters.
The second column of Table 1 and the second graph in Figure 3 contain the R-
squareds of the twenty-four conditional mean equations. As is clear, predictability
varies substantially across the day, since the R-squareds range from only 5% when
m = 1 to a peak of 50% when m = 9. As a whole, the graph clearly indicates
that the explanatory power is higher in peak hours, i.e. from about m = 7 to about
m = 19.

We �t �ve di�erent multivariate volatility models to the vector of errors �t. The
models we label (a) { (e), and in each of the �ve models equation m is given by

(a) ln�2mt = ! + �mm:1 lne�2m;t�1 + �mm:1 lnhm;t�1;

(b) ln�2mt =
6X

i=1

�midit;

(c) ln�2mt =
6X

i=1

�midit + ! + �mm:1 lne�2m;t�1 + �mm:1 lnhm;t�1;

(d) ln�2mt =
6X

i=1

�midit + ! + �mm:1 lne�2m;t�1 + �mm(1):1 lne�2m(1);t�1

+�mm(2):1 lne�2m(2);t�1 + �mm:1 lnhm;t�1;

(e) ln�2mt =
6X

i=1

�midit + ! + �mm:1 lne�2m;t�1 + �mm(1):1 lne�2m(1);t�1

+�mm(2):1 lne�2m(2);t�1 + �mm:1 lnhm;t�1 + �mxm;t�1:

Model (a) is a plain log-GARCH(1,1) and serves as benchmark. The variables
d1t; : : : ; d6t are dummies for Tuesday to Sunday, respectively. So (b){(e) all contain
periodicity. In (e) and (d), lne�2m(1);t�1 and lne�2m(2);t�1 are the two most adjacent

log-ARCH lags in equation m. For example, if m = 1, then m(1) = 2 and m(2) = 3.
Similarly, if m = 2, then m(1) = m � 1 = 1 and m(2) = m + 1 = 3. And so on.
The idea is to include those log-ARCH terms that are most likely to have a feedback
e�ect on the volatility of equation m. Finally, the variable xm;t�1 is a lagged mean-
corrected asymmetry or \leverage" term, where the lagged asymmetry term is given
by If�m;t�1<0g.

Estimation of the �ve multivariate models all together takes about thirty seconds
on an average laptop, and we experience no numerical issues.7 Both the deterministic
and stationary parts are estimated by Least Squares (LS), and a summary of the

7The computations were undertaken with R code on a Lenovo X250 with an Intel Core i7-
5600U-2.60 Ghz processor running Win7-64bit.
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estimation results are contained in Table 1. For comparison we use the Schwarz
(1978) information criterion (BIC), which favours parsimony. The best model in
hour m according to the BIC is identi�ed with an asterisk (�) to the right of its BIC-
value. In all but one case the best model is either (d) or (e). In other words, in all
but one case the best model contains periodicity and feedback terms. The exception
occurs at midnight, i.e. for m = 24, in which model (a) is the best according to
the BIC. If we only compare (a), (b) and (c) against each other to obtain a more
detailed idea of the importance of periodicity, then we see that either (b) or (c)
performs better in 17 out of the 24 hours. Moreover, the periods in which (a)
performs better are clustered in the evening, since they are m = 17; 18; 19; 20; 21; 22
and 24. Finally, with respect to leverage, equation (e) performs better than (d) in
12 instances, whereas the opposite is the case in 11 instances. In other words, there
is evidence of leverage in about half of the hours. Interestingly, whenever present,
the leverage is always positive { i.e. we �nd no evidence of the socalled inverse (i.e.
negative) leverage e�ect, and most of the instances of leverage occurs at night from
m = 21 to m = 6. Summarised, then, our results provides extensive evidence of
periodicity and feedback e�ects in the volatility, and in about half of the hours there
is leverage. In only a single instance, at midnight, did the plain log-GARCH(1,1)
perform better than the other speci�cations.

The third, fourth and �fth graphs in Figure 3 provide a more detailed picture
of the best speci�cations in each m. The third graph contains the ARCH(1) estim-
ates, i.e. b�mm:1, for m = 1; : : : ; 24. All estimates but one are positive, and most
are between 0 and 0.10. In other words, once periodicity and feedback e�ects are
controlled for, then the (own) ARCH e�ect becomes substantially smaller than com-
monly found in electricity prices, and much closer to those usually found in stock and
currency markets. The fourth graph in the �gure contains the GARCH(1) parameter

estimates, i.e. b�mm:1. Most of the values are in the 0.7 to 0.8 range, and interestingly
the values below 0.7 are clustered around the morning hours, i.e. m = 5; 6 and 7.
Finally, the bottom graph contains the leverage estimates, i.e. b�m. The estimated
value is zero if the best model in hour m does not contain leverage, and it is notable
that the strongest impact is clustered at night, from m = 1 to m = 6. Thereafter,
leverage is either zero or very small.

3.3 Dynamic Conditional Correlations

To obtain estimates of the o�-diagonals of H t, an estimate of Rt = Et�1(�
0
t�t) is

needed. To this end we �t the corrected DCC (cDCC) model of Aielli (2013), which
is a modi�ed version of Engle's (2002) DCC. It should be noted that the cDCC is a
covariance-stationary model of �0

t�t even though �0t�t is not covariance stationary.
The cDCC model is given by

Rt = Q
��1=2
t QtQ

��1=2
t ; Qt = (1�1�2)R+1Q

�1=2
t�1 �t�1�

0
t�1Q

�1=2
t�1 +2Qt�1; (26)

where 1; 2 � 0 are scalars such that 1 + 2 < 1, R is a correlation matrix (which
in general is not equal to E(Rt)), Q

�
t is a diagonal matrix with elements from the
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diagonal of Qt and �t = D�1
t �t. Here, we de�ne the standardised error �t to be

made up of the errors from the best model in each m according to the BIC (see
above). In other words, if m = 1, then b�1t is that of model (e). If m = 8, then b�8t
is that of model (d). And so on.

Recalling that Rt is both the conditional correlation and covariance matrix of
�t, estimation of 1 and 2 by Gaussian Quasi Maximum Likelihood (QML) leads
to the estimator

(b1; b2) = arg max
(b1;b2)

TX
t=1

�
�M ln 2� � ln jbRtj � b�0

t
bR�1

t b�t

�
=2; (27)

where jRtj is the determinant of Rt, b�t are the standardised residuals of the best
models,

bRt = bQ��1=2

t
bQt
bQ��1=2

t ; bQt = (1� b1 � b2)bR+ b1 bQ�1=2

t�1 b�t�1b�0
t�1
bQ�1=2

t�1 + b2 bQt�1

bR =
1

T

TX
t=1

bQ�1=2

t b�tb�0

t
bQ�1=2

t ; bQ�

t = diag(bq11t; : : : ; bqMMt)

bqmmt = (1� b1 � b2) + b1b�2m;t�1 + b2bqmm;t�1 for m = 1; : : : ;M:

The estimates of 1 and 2 are 0.004 and 0.905, respectively, which suggests the
correlations are relatively persistent. An estimate of the unconditional correlation

E(Rt) is obtained as bR��1=2 bRbR��1=2
, where bR�

is a diagonal matrix containing the

diagonal elements of bR. Figure 4 depicts the evolution of the unconditional correla-
tions over the day depending onm. The general tendency is clear: The strongest un-
conditional correlations of bE(�it�mt) are always those closest to hour i. The top left

graph, for example, depicts the evolution of bE(�1t�mt) for m = 1; : : : 24. Naturally,

when m = 1, then bE(�1t�1t) = 1. Next, the unconditional correlations fall gradually
until they reach their lowest point at m = 23, in which the estimate is 0.2. In other
words, almost without exception bE(�it�m+1;t) is stronger than bE(�it�m+2;t), which

is stronger than bE(�it�m+3;t), and so on. Similarly, whenever i > 1, bE(�it�m�1;t) is

stronger than bE(�it�m�2;t), which is stronger than bE(�it�m�3;t), and so on. So just
as in the case of volatility feedback (see above), there is a clear adjacency e�ect
among correlations.

Estimation of the cDCC entails �tting a total of 24 � (24 � 1)=2 = 276 dis-
tinct conditional correlation paths. Figure 5 contains graphs of the �rst 24, i.e.
of bEt�1(�1t�mt) for m = 1; : : : ; 24. Graphically, they appear relatively at around
their unconditional values, so one may ask whether the cDCC provides a better �t
than a Constant Conditional Correlation (CCC) speci�cation. The Gaussian log-
likelihood of the cDCC is given by the formula in (27) at the estimated values b1,b2. Similarly, the log-likelihood of the CCC speci�cation is obtained by replacing bRt

with the sample covariance matrix of b�tb�0
t in the same formula. The two values are

�20725:7 (cDCC) and �20938:0 (CCC), so the former produces a better �t in terms
of the (quasi) log-likelihood. In terms of the BIC, computed in terms of the average
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(quasi) log-likelihood with T = 1592, and de�ning the cDCC to be characterised by
2 parameters and the CCC by 0, then this yields BIC values of 26.05 (cDCC) and
26.30 (CCC), respectively. In other words, the DCC speci�cation is also warranted
according to the BIC.

4 Conclusions

We propose a multivariate model of electricity price volatility that decomposes volat-
ility multiplicatively into a non-stationary part (e.g. periodic) of arbitrary form,
and a stationary part with log-GARCH dynamics. The model is robust to spikes
or jumps, a common characteristic of electricity prices, the model allows for a rich
variety of volatility dynamics without restrictive positivity constraints, it can be
estimated equation-by-equation by means of standard methods in widely available
software, and Dynamic Conditional Correlations (DCCs) can { optionally { be es-
timated subsequent to the volatilities. In a study of the hourly day-ahead system
prices at Nord Pool, we �nd extensive evidence of periodic volatility and volatility
feedback, and that about half of the hours exhibit (positive) leverage. The strength
of the ARCH, GARCH and leverage e�ects depend on the hour of the day. In
only a single instance (at midnight) does the plain log-GARCH(1,1) perform bet-
ter than the other speci�cations. We also �nd that the conditional correlations are
time-varying, and that the conditional correlations are at their strongest in adjacent
hours. This may have implications for risk-management, since it implies that port-
folios risk is reduced if the degree of adjacency among the components of a portfolio
prices is reduced.
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Table 1: Estimation results of multivariate models (a){
(e) for each equation m = 1; : : : ; 24, see Section 3. Only
selected parameter estimates reported

m R2
m Spec: b�mm:1

b�mm:1
b�m LogLm km BICm T

1 0.05 (a) 0.145 0.785 1696.179 3 -2.1157 1593
(b) 1223.525 7 -1.5037 1593
(c) 0.150 0.779 1761.886 9 -2.1704 1593
(d) 0.101 0.752 1863.422 11 -2.2900 1592
(e) 0.100 0.759 0.462 1939.576 12 -2.3811� 1592

2 0.08 (a) 0.142 0.800 1366.772 3 -1.7021 1593
(b) 703.540 7 -0.8509 1593
(c) 0.151 0.787 1443.756 9 -1.7710 1593
(d) 0.048 0.732 1499.741 11 -1.8332 1592
(e) 0.039 0.806 0.517 1613.673 12 -1.9717� 1592

3 0.11 (a) 0.148 0.803 972.495 3 -1.2071 1593
(b) 377.325 7 -0.4413 1593
(c) 0.166 0.780 1169.506 9 -1.4266 1593
(d) 0.095 0.748 1214.471 11 -1.4748 1592
(e) 0.085 0.802 0.436 1304.535 12 -1.5833� 1592

4 0.13 (a) 0.145 0.808 803.453 3 -0.9948 1593
(b) 184.655 7 -0.1994 1593
(c) 0.168 0.778 1016.636 9 -1.2347 1593
(d) 0.034 0.746 1132.164 11 -1.3714 1592
(e) 0.040 0.812 0.374 1198.132 12 -1.4496� 1592

5 0.18 (a) 0.192 0.731 591.917 3 -0.7293 1593
(b) 214.012 7 -0.2363 1593
(c) 0.225 0.690 1068.156 9 -1.2994 1593
(d) 0.161 0.646 1092.515 11 -1.3216 1592
(e) 0.144 0.708 0.253 1136.385 12 -1.3720� 1592

6 0.34 (a) 0.408 0.023 448.025 3 -0.5486 1593
(b) 221.996 7 -0.2463 1593
(c) 0.210 0.695 953.960 9 -1.1560 1593
(d) 0.125 0.612 1105.194 11 -1.3375 1592
(e) 0.116 0.652 0.141 1137.632 12 -1.3736� 1592

7 0.46 (a) 0.342 0.026 536.814 3 -0.6601 1593
(b) 569.559 7 -0.6827 1593
(c) 0.206 0.654 1078.526 9 -1.3124 1593
(d) 0.125 0.621 1118.880 11 -1.3547� 1592
(e) 0.127 0.615 -0.025 1113.663 12 -1.3435 1592

8 0.49 (a) 0.230 0.247 473.888 3 -0.5811 1593
(b) 582.832 7 -0.6993 1593
(c) 0.146 0.705 800.839 9 -0.9638 1593
(d) 0.071 0.644 857.150 11 -1.0259� 1592
Table continues on next page. Explanatory note at the end of table.



m R2
m Spec: b�mm:1

b�mm:1
b�m LogLm km BICm T

(e) 0.069 0.630 -0.190 824.509 12 -0.9802 1592
9 0.50 (a) 0.112 0.795 702.853 3 -0.8685 1593

(b) 636.460 7 -0.7667 1593
(c) 0.120 0.784 841.824 9 -1.0152 1593
(d) 0.080 0.753 877.438 11 -1.0514� 1592
(e) 0.083 0.745 -0.072 862.803 12 -1.0284 1592

10 0.48 (a) 0.106 0.820 1169.681 3 -1.4546 1593
(b) 958.053 7 -1.1704 1593
(c) 0.111 0.813 1218.310 9 -1.4879 1593
(d) 0.061 0.801 1261.253 11 -1.5335� 1592
(e) 0.061 0.800 -0.050 1254.686 12 -1.5207 1592

11 0.44 (a) 0.087 0.848 1436.812 3 -1.7900 1593
(b) 1230.942 7 -1.5130 1593
(c) 0.092 0.840 1478.363 9 -1.8144 1593
(d) -0.061 0.815 1588.854 11 -1.9451� 1592
(e) -0.061 0.815 -0.026 1586.327 12 -1.9373 1592

12 0.40 (a) 0.096 0.837 1652.884 3 -2.0613 1593
(b) 1348.482 7 -1.6606 1593
(c) 0.103 0.827 1675.852 9 -2.0624 1593
(d) 0.090 0.808 1711.472 11 -2.0991� 1592
(e) 0.090 0.808 -0.030 1711.643 12 -2.0947 1592

13 0.39 (a) 0.108 0.817 1750.552 3 -2.1839 1593
(b) 1463.161 7 -1.8046 1593
(c) 0.115 0.805 1786.314 9 -2.2010 1593
(d) 0.026 0.759 1845.398 11 -2.2674 1592
(e) 0.025 0.762 0.066 1850.175 12 -2.2688� 1592

14 0.42 (a) 0.116 0.801 1736.312 3 -2.1660 1593
(b) 1497.177 7 -1.8473 1593
(c) 0.127 0.786 1794.275 9 -2.2110 1593
(d) 0.068 0.757 1836.675 11 -2.2564 1592
(e) 0.069 0.767 0.103 1850.518 12 -2.2692� 1592

15 0.41 (a) 0.104 0.800 1647.765 3 -2.0549 1593
(b) 1448.164 7 -1.7858 1593
(c) 0.114 0.787 1698.284 9 -2.0905 1593
(d) 0.017 0.805 1769.745 11 -2.1724 1592
(e) 0.018 0.804 0.042 1777.901 12 -2.1780� 1592

16 0.40 (a) 0.103 0.819 1655.581 3 -2.0647 1593
(b) 1428.192 7 -1.7607 1593
(c) 0.113 0.804 1734.833 9 -2.1364 1593
(d) 0.045 0.748 1760.855 11 -2.1612� 1592
(e) 0.045 0.744 -0.019 1757.760 12 -2.1527 1592

17 0.35 (a) 0.119 0.792 1574.735 3 -1.9632 1593
(b) 1326.363 7 -1.6328 1593
Table continues on next page. Explanatory note at the end of table.
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m R2
m Spec: b�mm:1

b�mm:1
b�m LogLm km BICm T

(c) 0.127 0.782 1583.191 9 -1.9460 1593
(d) 0.042 0.746 1675.591 11 -2.0541� 1592
(e) 0.041 0.749 0.025 1678.602 12 -2.0532 1592

18 0.30 (a) 0.118 0.833 1649.697 3 -2.0573 1593
(b) 1198.336 7 -1.4721 1593
(c) 0.123 0.827 1663.243 9 -2.0465 1593
(d) 0.069 0.815 1719.584 11 -2.1093� 1592
(e) 0.068 0.814 -0.070 1712.633 12 -2.0960 1592

19 0.23 (a) 0.114 0.830 1784.389 3 -2.2264 1593
(b) 1320.064 7 -1.6249 1593
(c) 0.118 0.825 1783.915 9 -2.1980 1593
(d) 0.026 0.791 1868.741 11 -2.2967� 1592
(e) 0.026 0.791 -0.025 1868.236 12 -2.2915 1592

20 0.20 (a) 0.130 0.778 2051.643 3 -2.5619 1593
(b) 1558.624 7 -1.9244 1593
(c) 0.135 0.770 2057.749 9 -2.5418 1593
(d) 0.071 0.721 2099.335 11 -2.5864� 1592
(e) 0.071 0.721 -0.013 2098.817 12 -2.5811 1592

21 0.16 (a) 0.109 0.807 2260.769 3 -2.8245 1593
(b) 1815.880 7 -2.2474 1593
(c) 0.113 0.801 2269.980 9 -2.8083 1593
(d) 0.018 0.755 2341.591 11 -2.8908 1592
(e) 0.017 0.758 0.059 2347.321 12 -2.8933� 1592

22 0.13 (a) 0.132 0.781 2441.839 3 -3.0518 1593
(b) 2022.447 7 -2.5068 1593
(c) 0.136 0.775 2446.624 9 -3.0301 1593
(d) 0.080 0.750 2489.917 11 -3.0771 1592
(e) 0.079 0.754 0.090 2499.693 12 -3.0847� 1592

23 0.10 (a) 0.137 0.761 2448.579 3 -3.0603 1593
(b) 2014.287 7 -2.4965 1593
(c) 0.141 0.755 2478.169 9 -3.0697 1593
(d) 0.078 0.740 2541.112 11 -3.1414 1592
(e) 0.079 0.742 0.044 2545.099 12 -3.1418� 1592
Table continues on next page. Explanatory note at the end of table.
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m R2
m Spec: b�mm:1

b�mm:1
b�m LogLm km BICm T

24 0.10 (a) 0.131 0.818 2048.593 3 -2.5581� 1593
(b) 1356.737 7 -1.6710 1593
(c) 0.133 0.815 2001.696 9 -2.4715 1593
(d) 0.119 0.796 1967.751 11 -2.4211 1592
(e) 0.113 0.808 0.250 2038.426 12 -2.5053 1592

R2
m, the R-squared of conditional mean equation m. Spec:, the log-GARCH spe-

ci�cation in question, see Section 3. b�mm:1, b�mm:1 and b�m, the ARCH, GARCH and
asymmetry/leverage estimates, respectively. LogLm, the Gaussian log-likelihood of
equation m in question. km, the number of parameters in the log-GARCH speci�c-
ation in question. BICm, the value of the Schwarz (1978) information criterion for
the equation m in question in terms of the average log-likelihood. T , the number of
observations. All computations in R (R Core Team (2014)).
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Figure 1: Hourly (m = 1; : : : ; 24) day-ahead system prices in Euros per kw/h at
Nord Pool from 1 January 2010 to 20 May 2014 (T = 1601 observations before
di�erencing and lagging), see Section 3.1.
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Figure 2: Hourly (m = 1; : : : ; 24) day-ahead log-returns of system prices at Nord
Pool from 1 January 2010 to 20 May 2014, see Section 3.1.
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Figure 3: The average hourly price in Euros (top graph), the R-squared of the condi-
tional mean equations (second graph), and the estimated ARCH(1), GARCH(1) and
leverage parameters of the best speci�cation (according to BIC) in each m (third,
fourth and bottom graphs). The best speci�cation in hour m is identi�ed by means
of an asterisk � to the right of its BIC value in Table 1.

23



0
1

i=
1

0
1

i=
2

0
1

i=
3

0
1

i=
4

0
1

i=
5

0
1

i=
6

0
1

i=
7

0
1

i=
8

0
1

i=
9

0
1

i=
10

0
1

i=
11

0
1

i=
12

1 5 10 15 20 24

Hour(m)

0
1

i=
13

0
1

i=
14

0
1

i=
15

0
1

i=
16

0
1

i=
17

0
1

i=
18

0
1

i=
19

0
1

i=
20

0
1

i=
21

0
1

i=
22

0
1

i=
23

0
1

i=
24

1 5 10 15 20 24

Hour(m)

Figure 4: Estimates of the unconditional correlations E(�it�mt), i = 1; : : : ; 24 and
m = 1; : : : ; 24, see Section 3.3.

24



0
1

m
=

1
0

1
m

=
2

0
1

m
=

3
0

1
m

=
4

0
1

m
=

5
0

1
m

=
6

0
1

m
=

7
0

1
m

=
8

0
1

m
=

9
0

1
m

=
10

0
1

m
=

11
0

1
m

=
12

2010 2011 2012 2013 2014

0
1

m
=

13
0

1
m

=
14

0
1

m
=

15
0

1
m

=
16

0
1

m
=

17
0

1
m

=
18

0
1

m
=

19
0

1
m

=
20

0
1

m
=

21
0

1
m

=
22

0
1

m
=

23
0

1
m

=
24

2010 2011 2012 2013 2014

Figure 5: Estimates of a subset (the �rst 24) of the conditional correlations;bEt�1(�1t�mt) for m = 1; : : : ; 24, see Section 3.3.
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