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Abstract 

The purpose of this paper is to estimate patients/doctors response to prices when making a choice 

between a brand name product and its generics. We account for how pharmacies respond to 

government regulation and to prices set by brand name producers. Data is unique in the sense that 

we observe prices set by pharmacies as well as by producers. Our results confirm that estimating 

only the demand side yields biased estimates of consumers’ price responses. We find much 

stronger price responses when demand and supply are jointly estimated.  
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Introduction 
 
One important problem with estimating the demand for pharmaceuticals on microdata is that 

quality attributes of the product, observed and unobserved, may be correlated with the price. The 

reason why is that these quality attributes are most likely priced out in the markets by the 

producers. Since the papers by Berry (1994) and Berry et al (1995) the standard method in 

estimating demand on microdata has been to apply an algorithm proposed in these two papers. 

Basically, the endogeneity problem is controlled for using instrument variables. However, 

identifying suitable instrument is not an easy task. Recent examples in this tradition and related to 

demand for pharmaceuticals are Arcidiacono et al (2013) and Granlund (2010). More recent papers 

using demand data only to estimate how prices affect demand are Yeung et al (2016) who use 

natural experiment data and Skipper and Vejlin (2015) who focus on how prices affect the choice 

between generics and brand-name drugs. 

Below we estimate patients/ doctors responses to prices when making a choice between a 

brand-name product and its generics. We take into account how pharmacies respond to government 

regulation and to prices set by brand-name producers. In contrast to the studies referred to above, 

we use aggregate data which means that demand is represented by market shares derived from 

discrete choices in micro, with prices of all relevant pharmaceutical products as explanatory 

variables. But also when using aggregate data we are facing endogeneity problems. If we do a 

regression of demand against prices, we ignore that prices may depend on demand. A 

straightforward demand analysis may thus bias our estimates of price responses.  

Instead of applying an instrumental variable approach, we estimate jointly the demand side 

and the price equations following from the prices setting of producers of brand-name products and 

pharmacies, given the government regulation of brand-name retail prices. In the modelling of the 

price setting among brand-name producers, we assume that they take into account the responses 

by pharmacies with respect to their sales and price setting of generics versus brand-name products. 

We thus estimate an oligopoly model where market shares are derived from underlying discrete 

choice demand. Example of this theoretical construct is discussed in Anderson et al (1992) and in 

Schweitzer and Lu (2018) who are using the analytical framework of industrial organization in the 

analysis of the pharmaceutical markets.  
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The econometric approach to estimate equilibrium models was first presented in Haavelmo 

(1943, 1944), for which he was awarded the Nobel Prize in economics in 1989. A recent example 

of estimating an equilibrium model on pharmaceutical data is Dalen et al (2014). The new aspect 

in our paper is that we model the pricing behaviour of the producers of pharmaceuticals, not only 

the pricing behaviour of pharmacies. To include this pricing behaviour in the model requires that 

we observe the prices set by manufacturers.  

The two drugs we are analysing are two best-sellers in the Norwegian market: An 

antidepressant drug, Paroxetine. This drug is used to treat major depression, obsessive-compulsive 

disorder, panic disorder, social anxiety, post-traumatic stress and generalized anxiety disorder in 

adult outpatients. The other drug is an anti-hypertensive used in the treatment of angina pectoris. 

It should be noted that since 2001 the pharmacies in Norway are almost entirely owned by 

international firms that also are wholesalers. In the period analysed here, there were three 

pharmacy chains in Norway. The regulatory authority related to the pharmaceutical sector in 

Norway is the Norwegian Ministry of Health and Social Affairs. The Ministry, and its agency 

(Norwegian Medicines Agency), control the entry of new drugs, the wholesale prices, and the retail 

margins. The manufacturer price is not regulated, see Brekke et al (2012) for details of the markets 

structure and regulation in Nordic countries, and Vogler (2012) for an overview of pharmaceutical 

pricing and market regulation in 29 European countries, including Norway. 

During the last decades there have been several policy initiatives by the Norwegian 

government to foster competition after patent expiration. From 1987 doctors were encouraged to 

prescribe the cheapest of the available versions of the drug. In 1991 this light-handed regulation 

was replaced by a law that instructed doctors to prescribe the cheapest available generic drug. 

Doctors could still prescribe a more expensive brand-name version, as long as a medical reason 

for this could be provided. In this period, generic competition was entirely based on the 

prescription-choice of the doctor. The pharmacy was required to dispense the exact product name 

written on the prescription. This changed in March 2001 when pharmacies were allowed to 

substitute a branded drug for a generic, independent of the product name prescribed by the doctor. 

Being permitted to intervene between the physician and the patient, the pharmacies now got an 

active role in the market for generics. The doctor can still guard against substitution, but this 

requires an explicit reservation to be added to the prescription note (“active substitution method”).  
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In Norway, the physicians objected substitution on 5.2 per cent of the prescriptions in 2005, 

and on 4.5 per cent in 2006, Brekke et al (2012). Even without such a reservation by the physician, 

the patient may insist on the branded drug, in which case the pharmacy is obligated to hand out 

the brand-name drug. In this case, the insurance scheme does not cover the price difference 

between the branded drug and the reference price. The difference has to be paid by the patient 

himself. In 2005, the patients refused to substitute on 4.0 per cent of the prescriptions (4.3 per cent 

in 2006). These come in addition to the reservations made by the physicians, bringing total number 

refusals to substitutes close to an average of 10 per cent of all prescriptions. The two drugs we 

analyse here are all approved for reimbursement for part of the expenses by the social insurance 

scheme. For both drugs patents have expired. Thus patients/doctor can freely choose between 

brand-name drugs and generics. 

In the period consider here, there was a price cap on brand name products. Under this 

regulatory scheme, the regulator sets a maximum price level defined by the lowest observed prices 

in a selection of European countries. This price cap is first set when the brand-name drug enters 

the market. After patent expiration, generic drugs are given the exact same price cap, and this cap 

will only fall if generic competition triggers price reductions in the reference countries. However, 

competition from generics (made possible by generic substitution) was supposed to lower prices 

below the price cap.  

In most studies of pharmaceuticals, information about prices at the different levels of the 

market has been lacking. Examples are Coscelli (2000) who was able to reveal the habit behaviour 

claimed by Hellerstein (1998). Lundin (2000) had access to retail prices (only) and found support 

for habit persistence among doctors and patients, but the results indicated that these are affected 

by the price differences, especially the share of price differences covered by the patient. If the price 

differences between generic and brand-name increases, the doctor becomes more inclined to 

prescribe a generic version.  

The data we use here are quarterly register data for the period 2004 -2008. We have access to 

unique price data that give the prices set by the brand-name producers as well as by the 

retailers/wholesalers. Our results indeed clearly indicate that if only the demand side is estimated, 

the estimates of price responses are biased. It should be noted that what we analyse here are 

products which from a medical point of view are perfect substitutes. The chemical substance in 
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the brand-name products and the generics are identical. We should thus expect the demand 

elasticities to be numerically high. 

Demand and pricesetting 
 

The pharmaceuticals can be specified according to chemical substance. One specific substance, 

identified by atc code (Anatomical Therapeutic Chemical Classification System), is one market. 

In each market the patient/doctors can choose between the brand-name product and generics and 

between three pharmacy chains. The model deals therefore with the choice of brand-name products 

vs generic substitution.  

The demand side 
 

 Choice of drugs, given the chain 
 
Let Uncd be the utility for patient/doctor n of using drug d bought in retailer chain c, where d=B,G 

and c=1,2,3. B stands for brand-name product and G for generics, of which there can be many 

different drugs but with the same chemical substance. Let Pcd be the price of the drug d in retailer 

chain c. We will assume that 

  

(1) ncd cd cd ncdU =a +bP +ε  

   
Here acd and b (<0) are constants. ncd  is assumed to be extreme value distributed with zero 

expectation and unit variance. The latter means that the coefficients acd and b are scaled with the 

standard deviation of the extreme value distributed taste shifter. For each chain we get the 

following choice probabilities, denoted Ycd.  

(2) 1 2 3cd
cd

cs
s B ,G

exp( v )
Y ; c , , ;d B,G

exp( v )


  


 

where 
 

(3) cd cd cdv a bP   

 

We note that the deterministic part of the random utility function in (1), cdv , does not depend on 

individual characteristics.  
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The choice of chain 
 
Let Zc denote the probability that the individuals choose chain c, c=1,2,3, and it is given by  

(4) 
3 3

1 1

1 2 3
cj

j B ,Gc
c

r rj
r r j B ,G

exp( v )
exp( I )

Z ; c , ,
exp( I ) exp( v )



  

  


  
 

 

(5) c cj
j B ,G

I ln (exp( v ))


   

 

Ic is the expected value of the maximum of utility related to the choice of drugs in chain c, also 

called inclusive value, see Train (2009). Zc is thus the ratio of the expected value of the maximum 

utility of choosing drugs in chain c to the sum of the expected value of maximum utility across the 

three chains. 

 

The market shares for drugs 
 

The unconditional probability of choosing a generic or a brand-name drug is then given by the 

product of Ycd and Zc, which here will be denoted Xcd:  

(6) 
3

1

1 2 3cd
cd cd c

rj
r j B ,G

exp( v )
X Y Z ;c , , ,d B,G

exp( v )
 

   

 
 

 

Note that when the agents choose between generics/brand and chains, XcG +XcB is not equal to 

one, but 
3

1

1rj
r j B ,G

X
 

  .  

 

The simplification that the deterministic parts of the utility function in (1) do not depend on 

individual characteristics implies that empirical parallels to the aggregate demand probabilities in 

(6) are market shares. Thus, Xcd is the share chain c has in market for drug d. In the empirical part 

we will come back to how we deal with the heterogeneity in the market share equations.   
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The supply side: A non-cooperative game 
 

There are three stages in this game. In the first stage the brand-name producer sets the price. In 

doing so, he takes into account the demand structure and the price setting of the generic producers 

and the retailers. In the second stage the generic producers set their prices and in third stage the 

retailer set his prices, given the prices set by the generic producers and brand-name producer (see 

Figure 1).  

REGULATORY AUTHORITY

BRAND-NAME PRODUCER
 I) set prices taking into account 
demand structure and price setting 
of generic

GENERIC-NAME PRODUCER
 II) set prices 

RETAILORS (chain 1,2,3)
 III)  set prices given prices set 
by generic and brand producers

demand structure
and retailor'price setting 

set the price after 
patent expiration

Set a maximum price level defined 
by lowest observed prices in a 
selection of European countries.

 

Figure 1. Stage representation of the game  

 

As common in these games, we start backwards. The model we employ combines a demand model 

derived from logit probabilities and monopolistic price setting, see Anderson et al (1992, chapter 

7, for a theoretical outline of similar models. 

Pricing decisions of three retailer/wholesalers chains 
 

For expository reason we specify one supplier of generics. The expected profit of the chain c is 

given by 

(7) 1 2 3c cB cB cB cG cG cG( P q )X ( P q )X ; c , ,       

As mentioned above, in the Norwegian market the retailer and the wholesaler are vertically 

integrated. Here qcB is what retailer c thus has to pay the producer for the brand-name product, 

while qcG is what he has to pay the producer for the generic product.  
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In the expression above we have set the number of potential users equal to 1, which is a 

normalisation without any implications for the results. Thus, the two market shares given in eq. 

(6), XcB and XcG , equal the expected volume of brand-name and generics sold by chain c. In 

Norway brand-name prices are regulated with a price-cap:  

(8) cB cBP P  

In accordance with the situation in the Norwegian market, we assume that the price cap is binding.  

We assume that the retailer/wholesaler set a price of the generics that maximize profits. 

Maximizing expected profit with respect to the price of generics yields the following first order 

condition: 

(9) 0 1 2 3cgc cB
cB cB cG cG cG

cG cG cG

XX
( P q ) X ( P q ) for c , ,

P P P

 
      

  
 

Given the structure of the market shares that we assume that the retailer knows, we then get the 

following price setting of generics: 

(10)
1

1 2 3
1 1

cB
cG cG cB cB

cG cG

X
P q ( P q ); c , ,

( b )( X ) X
    

  
 

The first element on the right hand side, qcG, is the direct cost to the retailer chain c of buying 

generics. The second element is the standard mark-up in these types of models (see Anderson et 

al (1992)), while the third element captures the opportunity cost related to the fact that the retailer 

can sell brand-name products instead of generics.  

Pricing decisions of the generic producers 

Without introducing too strong assumptions, we assume that the prices of generics are set equal to 

marginal cost, kG. The marginal cost is not observed but will be estimated together with the other 

unknown parameters of the model. 

(11)  cG Gq k  

Pricing decision of the brand producer 

The expected profit of the brand producer is given by 

  (12)   
1 2 3

B cB B cB
c , ,

( q k )X
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In maximizing expected profit with respect to the price, qcB, the brand-name producer takes into 

account how the retailers set their price of generics in response to an increase in the producers’ 

price of brand-name product. According to (6), XcB depends on PcG. From (6) and (10), and after 

some time-consuming but straight- forward calculations, we find that 

(13) 0cG
cB

cB

P
X

q


  


  

Thus, if the brand-name producer increases his price, the retailer lowers the price of generics in 

order to shift the sale in pharmacies towards more generics. The marginal cost is kB. The first order 

condition becomes: 

(14) 
1

cB B
cG cB

q k
( b )X X

 


 

Most likely, the marginal cost of producing the drug is low and equal across generics and brand-

name producers. Hence, we set kG=kB=k. 

3. The econometric model 

To take the market shares and the pricing equations to data, requires that we specify how 

unobserved variables are coming into the model. First, we let the brand-name product sold by 

chain no 1 to be the reference case. Dividing through the markets shares in (6) by 1BX , we get 

(15) 
1

1 1

1
1 1

2 3

1 2 3

cB cB
cB B

B B

cG cG
cG B

B B

X exp( v )
exp( v v );c ,

X exp( v )

X exp( v )
exp( v v );c , , ,

X exp( v )

   

   
 

Taking logs and applying (3) we get 

(16) 
1 1

1

1 1
1

2 3

1 2 3

cB
cB B cB B

B

cG
cG B cG B

B

X
ln ( a a ) b( P P );c ,

X

X
ln ( a a ) b( P P );c , ,

X

    

    
  

The term to the left, the log of the relative market shares, is the log-odds ratio, with brand-name 

drug sold by chain 1 as the reference case. We observe from 
3

1

1rj
r j B ,G

X
 

   that 

(17) 1
2 3 1 2 3

1B rB rG
r , r , ,

X X X
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We add a stochastic term to the log-odds ratios, denoted εcd. The justification for this is that there 

may be unobserved variables affecting the choices. With a reference to the central limit theorem 

we assume that these stochastic terms are normally distributed with zero expectation and standard 

deviation σcd.  

 The demand model with random parts added is  

(18) 
1 1

1

1 1
1

2 3

1 2 3

cB
cB B cB B cB

B

cG
cG B cG B cG

B

X
ln ( a a ) b( P P ) ;c ,

X

X
ln ( a a ) b( P P ) ;c , ,

X





     

     
 

Altogether there are two equations covering the log-odds ratio for brand-name product, i.e. sold 

by chain 2 and 3 and three equations for the log-odds ratios of generics, i.e. sold by all three chains.  

Now let  

(19) 
1

1

1
1

2 3 1 2

1 2 3 1 2

cBt
cBt cB cBt Bt cBt

Bt

cGt
cGt cG cGt Bt cGt

Bt

X
D ln b( P P ) ;c , ,;t , ,,,T

X

X
D ln b( P P ) ;c , , ,;t , ,,,T

X

 

 

      

      
 

Here we have added the subscript t. The model will be estimated on quarterly data and with a total 

of T quarters. Moreover, αcd= acd-a1B. Note that Dcdt depends on observed markets shares and 

observed prices, as well as on the unknown coefficients αcd and b. The latter coefficient captures 

the effect of price on demand for drugs. Now let  

 

(20) 
1 1 1

1

1 1 1
1

2 3 1 2

1 2 3 1 2

cBt
cBt cBt Bt cdt Bt cB cB cBt Bt

Bt

cGt
cGt cGt Bt cdt Bt cG cG cGt Bt

Bt

X
D ( X ,X ,( P P ); ,b ) ln b( P P ),c , ,;t , ,,,T

X

X
D ( X ,X ,( P P ); ,b ) ln b( P P ),c , , ,;t , ,,,T

X

 

 

      

      
  

Dividing through (19) with the standard deviation σcd, using (20), we get  

 

(21) 

1 1

1 1

2 3 1 2

1 2 3 1 2

cBt cBt Bt cBt Bt cB cBt

cd cB

cGt cGt Bt cGt Bt cG cdt

cd cd

D ( X ,X ,( P P ); ,b )
;c , ,;t , ,,,T

D ( X , X ,( P P ); ,b )
;c , , ,;t , ,,,T

 
 

 
 


  


  

. 
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The random term to the right is then a standard normal distributed random term with zero 

expectation and unit variance. Let f(.) be the standard normal density function. For a given drug, 

we then have the following joint probability function for the sample we observe, based on demand 

data only: 

(22)
3 3

1 1 1 1

1 2 1

1 1T
cBt cBt Bt cBt Bt cB cGt cGt Bt cGt Bt cG

D
t c ccB cB cG cG

D ( X , X ,( P P ); ,b ) D ( X , X ,( P P ); ,b )
L f ( f (

 
     

 
   

LD is the likelihood for the sample (of market shares) we observe and we estimate the unknown 

coefficients (αcd, b, σcd) by maximizing this likelihood, or rather the log of this likelihood, with 

respect to the unknown coefficients. In doing so, we let our theory has the highest possible chance 

to explain data.  This approach we call demand side estimates, DSE. 

We now turn to the specification of the econometric model when the demand side and 

pricing behaviour of retailer/wholesaler and producers of drugs are jointly estimated. Adding error 

terms to the pricing equations, and applying (11), we get 

(23) 
1

1 2 3 1 2
1 1

cBt
cGt cBt cBt cGt

cGt cGt

X
P k ( P q ) ; c , , ,t , ,,,T

( b )( X ) X
      

  
 

Similar to above, we assume cGt to be normally distributed with zero expectation and standard 

deviation τcG. Now let 

(24)
1

1 2 3 1 2
1 1

cBt
cGt cBt cGt cGt cBt cGt cBt cBt

cGt cGt

X
S ( X , X ,P ,q ;k ,b ) P k ( P q ); c , , ,t , , , ,T

( b )( X ) X
      

  
 

From (23) and (24), and dividing through with τcG, we get, 

 

(25) 1 2 3 1 2cGt cBt cGt cGt cBt cGt

cG cG

S ( X ,X ,P ,q ;k ,b )
;c , , ;t , ,,,T


  

 
 

For the prices set by the producers which chain c has to pay, we have 

(26) 
1

cBt cBt
cGt cBt

q k
( b )X X

  


  

Again, we let  

(27) 
1

1 2 3 1 2cBt cGt cBt cBt cBt
cGt cBt

S ( X ,X ,q ;k ,b ) q k ;c , , ;t , ,,,T
( b )X X

    


 

Then from (26) and (27) we get 
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(28) 1 2 3 1 2cBt cGt cBt cBt cBt

cB cB

S ( X ,X ,q ;k ,b )
;c , , ;t , ,,,T


  

 
 

Let LS denote the joint probability covering the pricing decisions: 

(29)
3 3

1 1 1

1 1T
cGt cBt cGt cGt cBt cBt cGt cBt cBt

S
t c ccG cG cBt cB

S ( X , X ,P ,q ;k ,b ) S ( X , X ,q ;k ,b )
L f ( f (

     

   

 

Altogether we have 5 demand equations (in terms of market shares), 3 equations for the prices of 

generics set by the pharmacies and 3 equation for the prices on brand-name products set by the 

producers. We thus have a total of 11 equations. Note that demand depend on all prices in 

pharmacies, on brand-name products as well as on generics. Prices of generics set by pharmacies 

depend on the price-caps on brand and the producer prices of brand-name products.  

 The joint probability covering the demand and pricing decisions observed in our sample is 

given by the product LDLs. Before we proceed to the empirical part of the paper we have to do one 

more thing.  

At any point in, time the observed dependent variables are 

(X2Bt, X3Bt, X1Gt, X2Gt, X3Gt, P1Gt, P2Gt, P3Gt, q1Bt, q2Bt, q3Bt). 

The market share for X1Bt follows from eq. (17). Because there are the following 11unobserved 

normally distributed random variables in the model, 

(ε2Bt, ε3Bt, ε1Gt, ε2Gt, ε3Gt, η1Gt, η2Gt, η3Gt, η1Bt, η2Bt, η3Bt), 

the observed dependent variables will also be random and normally distributed variables. What is 

not so common in econometrics, but common in statistics and also discussed at length in Haavelmo 

(1944), is to apply a Jacobian transformation. This transformation means that we make a bridge 

from the distribution of the unobserved random variables present in the model to the distribution 

of the observed dependent variables.  

To clarify what this transformation is, we give an example. Let F(ε*) be the cumulative 

distribution for the random variable ε, evaluated in the point ε* and let ε =g(x). Then taking the 

differentials we get dεf(ε*)=f(g(x*))g’(x*)dx. Here f(.) is the derivative of F(.), i.e. the probability 

density function, and g’(.) is the derivative of g(.).  

In our case we have 11 equations. In each equation we have one unobserved random 

variables and a varying number of observed dependent variables. For example, in equation number 

1 we have 
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2
2 2 1 2 2 1

2 3 1 2 31

1Bt
c Bt cB Bt Bt Bt rBt rGt cB Bt Bt

r , r , ,Bt

X
ln b( P P ) ln X ln( X X ) b( P P )

X
  

 

             

Taking the derivatives wrt to all 11 observed variables, starting with X2Bt and ending with q3Bt, we 

get the following line of derivatives: 

1 1 1 1 1 1

1 2 1 1 1 1
0 0 0 0 0 0

Bit Bit Bit Bit Bit Bit
X X X , X , X , X , , , , , ,,      . 

Now let, Jt denote the matrix of the derivatives of all 11 equation, and let tJ  denote the numerical 

value of the determinant, called the Jacobian determinant.   

 

(30) 

1 1 1 1 1 1

1 2 1 1 1 1

1 1 1 1 1 1

1 1 3 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 2 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

Bt Bt Bt Bt Bt Bi

Bt Bt Bt Bt Bt Bt

Bt Bi Bt Gi Bt Bt

Bt Bt Bt Bt Gt

t

X X X , X , X , X , , , , , ,

X , X X , X , X , X , , , , , ,

X X X X X X b, , , , ,

X X X X X X

,

, , , , ,

, , , ,

J

     

     

     

    












1 1

1 1

2 2 2

1

1 1 1 1 1 1

1 1 1 1 1 3

2 1 1

1 1

2

2

1

1

1

1

1 0 0 1 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1 0 0 1 0 0

0 0 0 0

0 0 0 0

Bt Bt

Bt Bt G t

Bt

Bt Bt Bt Bt Bt Gt

Gt G t

Gt

( X

( X

(

P q )

( P q ), , , , , , b ( X )

, b, , , ,

X X X X X X , , b, , ,

, , b ) ( , , , , , , b ( X ) , ,

, , , b )

b

,

, , , ,

,

, , , , ,

 



     

  















  



 

  



 1 1

3 3 3

1 1 2 1 2 1

2 2 2 2

2

3

1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 2

1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 0 0 0 1

Bt Bt G t

Gt Bt Gt Bt

Gt

Gt Bt Gt Bt Gt Bt Bt Gt Gt Bt Gt Bt

X ( P q ), , , , , , b ( X )

b X X b X X

)

b X X ,b X X ,b X X ( X X ),b X X ,b X X , , , , , ,
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From an econometric point of view, the importance of accounting for the Jacobian transformation 

is that tJ may depend on the coefficients that we like to estimate. We observe that tJ depends on 

the coefficient b. Without taking into account the Jacobian transformation when estimating the 

model, we may get a biased estimated of b.  The expanded likelihood we will use in estimating the 

unknown coefficients of our model is therefore 

  

(31) t t t D S tL( ; X ,P ,q ) L L J   

where 

 2 3 1 2 3 2 3 1 2 3 2 3 1 2 3B B G G G B B G G G B B G G Gb, , , , , , , , , , , , , , ,                 is the vector of 13 

unknown coefficients that we like to estimate and t t tX ,P ,q are vector of our observed variables at 
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each point in time. The functions D S tL L J and their dependency on coefficients and observed 

variables are given in Eqs. (22), (29) and (30). This approach to estimate price response we call 

market equilibrium estimates, MEE. 

As mentioned above the models outlined above will be estimated on aggregated quarterly 

data. First we estimate the demand side only, DSE estimates. Second we estimate jointly the 

demand side and the pricing equations (i.e. the equilibrium model, MEE), and accounting for 

Jacobian transformation which gives the transformation from the distribution of the unobserved 

random variables to the distribution of the observed endogenous random variables. In both cases 

the unknown coefficients are estimated by maximizing the implied log-likelihood for the observed 

sample. We also report demand elasticities, denoted Ecdt, given by 

 

(32) Ecdt=b(1-Xcdt)Pcdt; c=1,2,3,d=B,G, t=1,2,,,T. 

Data   

Using quarterly data from “National Prescription Data Base” for the period 2004-2008, we 

estimate the model for two important drugs in the Norwegian market: Seroxat/Paroxetin and 

Amlodpin/Norvasc. Seroxat/Paroxetin is an antidepressant drug. It is used to treat major 

depression, obsessive-compulsive disorder, panic disorder, social anxiety, post-traumatic stress 

and generalized anxiety disorder in adult outpatients. Amlodpin/Norvasc is an anti-hypertensive 

drug used in the treatment of angina pectoris. 

 In the Norwegian market there were three pharmacy chains. They were all retailers and 

wholesalers; Apokjeden, Holtung and NMD. Below they are named chain 1-3, not necessarily in 

the order mentioned here5.  

 

Estimates 

Tables 1 and 2 give the estimates. They are based on the maximum likelihood approach outlined 

above. In addition to the estimates we report asymptotically z-test. 

                                                 
5 We give a description of the variables and report summary statistics including market shares in 
http://folk.uio.no/steinast/supplements/An%20Equilibrium%20Model-Sum.stat.pdf 
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We first observe that the coefficient attached to price is negative and highly significant 

both in the demand model and in the equilibrium model. The numerical value of the price 

coefficient is significantly higher when the equilibrium process is accounted for (MEE), relative 

to the result of using the demand side only, i.e. market shares, in estimating price responses (DSE). 

It clearly seems that it is important to account for price formation when demand responses are 

estimated. 

Second, the unobserved heterogeneity, as measured by the estimated standard deviations 

in demand and price equations, is a significant factor in explaining the observed choices. In 

particular, this is the case for the producer price formation for brand-name drugs. The constants, 

αcd, are fixed effects across chains and brand-name and generics. Most of them are significantly 

different from zero and reflects also the heterogeneity in the demand equations. 

The estimates of the marginal cost of producing generics as well as brand (kG=kB=k), here 

assumed to equal the producer price of generics, are considerably lower than the retail prices of 

generics. This indicates a substantial margin for the generics sold by the retailers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Estimates. ATC code NO6AB05: Seroxat, Paroxetin 

Coefficients Demand model (DES) Equlibrium model (MEE) 

Estimates z Estimates z 
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α2B -0.1441 -0.9449 -0.3341 -1.4790 

α3B 0.3148 4.6985 0.3469 5.6224 

α1G -0.4669 -1.5228 -0.9227 -3.1109 

α2G 0.1061 0.5954 -0.3638 -2.1176 

α 3G 0.1498 0.5916 -0.3261 -1.2292 

b -0.5503 -9.3748 -0.7495 -13.7271 

k   2.0257 5.9830 

σB2 0.5309 4.3445 0.8227 4.5833 

σB3 0.2482 4.8955 0.2284 5.2027 

σG1 1.0311 5.2715 1.0062 5.2902 

σG2 0.4191 5.0985 0.4251 5.0789 

σG3 0.7883 5.2729 0.8645 5.2047 

τG1   2.0861 5.2481 

τG2   2.0485 5.2837 

τG3   1.9399 5.2715 

τB1   164.0017 4.9224 

τB2   59.5189 4.9068 

τB3   78.0807 4.9118 

Log-likelihood 8.4541 53.8313 

 

 

 

 

 

 

 

Table 2. Estimates. ATC code C08CA01: Amlodpin, Norvasc 

Coefficients Demand model (DES) Equlibrium model (MEE) 

Estimates z Estimates z 
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α2B 0.1341 7.2097 0.1036 3.6608 

α3B 0.3028 6.9770 0.2579 4.7148 

α1G 0.3066 1.8787 -0.2391 -1.2363 

α2G 0.3029 1.2399 -0.2794 -1.0418 

α 3G 0.8633 5.7248 0.3205 1.7231 

b -0.7148 -10.4503 -1.0683 -11.0820 

k   0.4332 2.4868 

σB2 0.0683 5.4206 0.1046 4.3584 

σB3 0.1648 5.3856 0.2063 5.1191 

σG1 0.4800 5.4157 0.4779 5.3757 

σG2 0.8398 5.4746 0.8367 5.4722 

σG3 0.4195 5.4129 0.4367 5.2299 

τG1   0.9603 5.4254 

τG2   0.7226 5.4660 

τG3   1.0276 5.4313 

τB1   103.3854 4.8192 

τB2   75.9816 4.8869 

τB3   37.7333 4.8618 

Log-likelihood 56.3915 181.7330 

We have tested whether there is autocorrelation in the demand part of the equilibrium 

model, the MEE approach. We have applied a modified Portmanteau statistic suggested by Ljung 

and Box (1978), which has a larger power when the sample is finite. Given the null hypothesis is 

true (there are no autocorrelation), the statistic Q in eq. (33) converges to the Chi-square 

distribution with m degree of freedom. In (33) m is the number of lags specified and  indicates 

convergence in distribution to a 2  distribution with m degrees of freedom. ˆ j   is the estimated 

autocorrelation for lag j. 

(33) 2 2

1

1
ˆ( 2) ( )

m

m
j

Q n n j
n j

 


  
 , 
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If the p-value of Q is less than 0.05 in Table 3 below, then there is significant autocorrelation. As 

seen from the Table, there is no significant autocorrelation in the demand part of the equilibrium 

model. The same is also the case in the DSE approach. 

Table 3. Test of autocorrelation in the estimated log-odds ratio equations in the MEE model. 

 Portmanteau (Q) statistic p-value for Q 

Atc code N06AB05 : Seroxat,Paroxetin 

Chain 1 5.9570 0.1137 

Chain 2 1.3006 0.7290 

Chain 3 1.7386 0.6284 

Atc code C08CA01 : Amlodpin,Norvasc 

Chain 1 4.1967 0.5215 

Chain 2 4.0058 0.54860 

Chain 3 8.4436 0.1334 

 

Own price elasticities 

Table 4 give the elasticities for the two drugs. In both cases the brand-name elasticities tend to be 

higher than the generic elasticities, which follow from the fact that the price of brand-named drugs 

exceeds the price of generics. Moreover, the brand-named market shares are lower than the market 

shares for generics in almost all periods and for all three chains. According to the formula (32) 

higher prices and lower market shares will contribute to higher elasticities. Most important here, 

however, is the result that the elasticities are numerically higher when the equilibrium process is 

accounted for compared to when only a demand model is used in estimating the elasticities.  
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Table 4. Own price elasticities.  

N06AB05: Seroxat and Paroxetin. 

 Demand model Equilibrium model 
 Brand Generic  Brand Generic  

Chain 1 2 3 1 2 3 1 2 3 1 2 3
Mean, 
all 
periods 

-3.29 -2.68 -3.34 -1.95 -1.73 -1.61 -4.48 -3.65 -4.55 -2.65 -2.36 -2.2

Last 
period -1.63 -3.18 -3.05 -1.3 -0.93 -0.89 -2.22 -4.34 -4.16 -1.78 -1.26 -1.21

C08CA01: Amlodpin,Norvasc. 

 Demand model Equilibrium model 
 Brand Generic  Brand Generic  

Chain 1 2 3 1 2 3 1 2 3 1 2 3 
Mean, 
all 
periods 

-2.29 -2.2 -2.16 -1.1 -1.01 -0.92 -3.43 -3.28 -3.23 -1.64 -1.51 -1.37

Last 
period -1.95 -1.96 -1.97 -0.67 -0.64 -0.54 -2.92 -2.94 -2.94 -1.01 -0.95 -0.81

 

Conclusions 

When estimating price response based on the demand model only, the risk is that the estimates of 

price elasticities can be biased. Price responses could be underestimated, as demonstrated above. 

This will be the case if there are unobserved elements in the demand model that correlates with 

price. There are two ways of dealing with this problem: One could either employ an instrument 

variable approach or as done here, modelling the assumed whole data generating approach of 

demand and price setting. The advantage of an instrument variable approach is that it is rather 

straightforward to estimate the model. The disadvantage is that it is hard to find good instruments. 

The advantage of estimating jointly the demand and the price formation is that one avoids the 

search for proper instruments. The disadvantage is that it could be hard to estimate the model. But 

as shown here, with the software and computers available today this joint estimation of demand 

and price setting is manageable.  



 20

 Although the estimation give significant and reliable results, longer time series, covering 

periods with some regulatory shocks, may add some interesting results compared to what is found 

here. Another interesting next step could be to estimate the model on data from countries with a 

different market structure from the Norwegian oligopoly market, for instance a more competitive 

market.  Finally, use of individual register-data will make it possible to model microeconomic 

behavior combined with price setting among pharmacies and producers.   
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