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Abstract

Empirical studies of household portfolios show that young households, with little
financial wealth, hold underdiversified portfolios that are concentrated in a small
number of assets, a fact often attributed to behavioral biases. We present a poten-
tial rational alternative: we show that investors with little financial wealth, who
receive labor income, rationally limit the number of assets they invest in when
faced with financial constraints such as margin requirements and restrictions on
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1. Introduction

Portfolio choice has been a topic studied extensively in the literature. Starting at

least as early as Merton (1971) and Cass and Stiglitz (1970), theory suggests that the

equity part of any investor’s portfolio should include all the risky assets available held in

the same proportions, with the mix between bonds and stocks determined by individual

risk aversion. The prescription, often called mutual fund separation theorem, has partly

been the reason for the explosive growth in the size of mutual funds that track the

market portfolio over the last 40 years.

More recently, researchers have been able to empirically study household portfolios

and have found deviations from the theoretical prescription: household portfolios are

underdiversified and concentrated on a small number of stocks. As a sample of the

empirical literature, Kelly (1995) studies the 1983 Survey of Consumer Finances and

finds that diversification increases with portfolio size, investor age, and investor wealth.

Polkovnichenko (2005) uses the 1983, 1989, 1992, 1995, 1998 and 2001 Survey of Con-

sumer Finances and confirms that wealthier households hold more diversified portfolios,

even though not all wealthy households are well diversified. He argues that investors

are aware of the higher risk associated with undiversified portfolios and proposes prefer-

ences with rank dependency as a potential explanation. Ivković, Sialm, and Weisbenner

(2008) use data from trades and monthly portfolio positions of retail investors at a

large U.S. discount brokerage house for the 1991-1996 period and show that the num-

ber of stocks in the portfolio increases with the size of the account balance, and that

concentrated portfolios have higher levels of risk and return and lower Sharpe ratios

than diversified portfolios. Goetzmann and Kumar (2008) study the same data set and

find that diversification increases with age and income, while households with only a

retirement account hold less diversified portfolios than households with additional non-

retirement investment accounts. They examine several potential explanations for the

lack of diversification: small portfolio size and transaction costs; search and learning

costs; investor demographics and financial sophistication; layered portfolio structure;

preference to higher order moments; and behavioral biases such as illusion of control,

investor over-confidence, local bias and trend-following behavior. Kumar (2009), us-

ing the same data set, finds that young investors have a strong preference for riskier

stocks, and argues that the young are more likely to be heavy lottery players, and this
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is reflected in their selection of stocks. Mitton and Vorking (2007), using a data set

of 60,000 individual accounts find that investors hold underdiversified portfolios with

positively skewed returns, a fact they attribute to heterogeneous preferences for skew-

ness. Calvet, Campbell, and Sodini (2008) study a data set of the portfolios of the entire

Swedish population and propose several measures to quantify the underdiversification of

household portfolios. They show that increasing age, wealth and financial sophistication

increase diversification, but also lead to investors taking more aggressive positions.

While behavioral biases have been considered the cause of the discrepancy between

the theory and many of the empirical observations, especially for younger investors, in

this paper we offer a potential rational alternative explanation. We extend the theoretical

literature by considering an investor with constant relative risk aversion preferences who

is able to invest in multiple risky assets and who receives labor income with a stochas-

tic growth rate, and faces financial constraints in the form of margin requirements and

borrowing restrictions: investment needs and margin requirements can be satisfied only

out of the current financial wealth of the investor, effectively rendering future earnings

nontradable.1 Our main theoretical result is that investors facing binding financial con-

straints do not follow the theoretical prescription described earlier: rather than holding

a diversified equity portfolio they optimally choose to concentrate their portfolio in a

few assets. The extent to which investors limit their investments is captured by the

ratio of their financial wealth to their income. We show that once the ratio of financial

wealth to income drops below a threshold and the financial constraints bind, a sequence

of thresholds follows, with the investor holding different combinations of the risky assets

between thresholds. Progressively, as the ratio of financial wealth to income decreases,

the investor tends to concentrate his portfolio into fewer assets. In the limit, when the

financial wealth is negligible compared to human capital, the investor optimally holds a

single risky asset, whose choice is based on the asset’s leveraged expected return and its

covariance with labor income.

While many types of financial frictions can rationally lead to portfolio selection and

equity portfolios that appear underdiversified, it is the combination of financial con-

straints and labor income that is critical in generating dynamics that match the empir-

1Having such restrictions impacts the investor’s choices significantly. The restrictions can be at-
tributed to adverse selection and moral hazard problems, as well as the inalienability of human capital.
The cause for the constraints is beyond the scope of this paper and we will consider the restrictions as
given.
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ical observations. Expressed over the lifetime of an investor who starts out with little

financial wealth, our results suggest that the investor’s portfolio rationally includes only

a few assets and appears underdiversified when the investor is young. As the investor

ages, his financial wealth increases and his remaining labor income decreases, and pro-

gressively more assets are rationally incorporated in the portfolio. Close to retirement,

when the accumulated financial wealth is large and remaining labor income relatively

small, the financial constraints no longer bind and the investor’s portfolio includes all

the risky assets and appears diversified.

Our results can be intuitively understood as the combination of two effects whose

relative contribution varies over the investor’s lifetime: the increased demand for equity

exposure when labor income is large compared to financial wealth; and the limited abil-

ity to satisfy this demand because of the margin requirements and borrowing constraint.

Although our results are derived for the general case of stochastic labor income, it is

simplest to explain the intuition in the case of an investor with deterministic labor in-

come. In this case labor income can be thought of as a fixed investment in a risk-free

bond. As shown in Merton (1971), without a margin requirement, a borrowing con-

straint, and other frictions, to find the optimal allocation in risky assets the investor

should discount his lifetime income at the risk free rate, add it to his financial wealth,

and choose an equity allocation based on the sum. Keeping financial wealth constant

and increasing labor income implies increasing equity investment when measured as a

fraction of financial wealth. In the absence of the margin requirements and the borrow-

ing constraint the investor would borrow against his future income and increase expected

return by leveraging his portfolio while keeping it diversified. Since margin requirements

limit the extent that the portfolio can be leveraged, the only possible way to increase

expected return is through shifting portfolio holdings towards assets with higher ex-

pected returns, sacrificing diversification. We show that as the demand for additional

equity exposure increases; i.e., when the financial wealth to income ratio decreases, the

demand for higher expected returns prevails. When labor income is deterministic, in

the limit of zero financial wealth to income ratio, the investor holds a single risky asset

based entirely on the asset’s expected return. Since the demand for financial leverage is

highest when the investor’s financial wealth is smallest and the investor’s lifetime labor

income is greatest, young investors are most likely to sacrifice diversification and hold
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concentrated portfolios. The demand for leverage eases as the investor ages and leads

to more diversified portfolio choices.

An alternative interpretation of our selection result, where the investor trades diver-

sification for higher expected returns, is that the investor can be thought of as becoming

less risk averse the more the constraints bind. We show that in the limit when the

ratio of his financial wealth to income ratio tends to zero the investor acts as if he were

risk-neutral. Additionally, investor choices can be understood through adjusted asset

characteristics: in the case of deterministic income, using duality, we show that the

behavior of an investor that faces financial constraints corresponds to the behavior of

an unconstrained investor whose opportunity set includes assets with adjusted Sharpe

ratios. As the constraint binds, the adjusted Sharpe ratios of the assets decrease; at the

point where an asset is dropped from the portfolio, its adjusted Sharpe ratio drops to

zero.

We point out that while an investor whose financial wealth is a progressively smaller

part of his lifetime labor income tends to choose progressively more concentrated port-

folios, his overall risk, measured by the variance of returns of his overall portfolio, does

not necessarily increase. Since lower values of the financial wealth to income ratio raise

demand for equity, the unconstrained investor would have chosen a leveraged portfolio,

trading additional variance for additional expected return. Unable to satisfy his risk

appetite through leverage, the investor chooses a portfolio that achieves higher expected

returns by concentrating his portfolio to stocks with high expected returns. Whether

the variance of the returns of the overall portfolio of the constrained investor is greater

or smaller than that of the portfolio of the unconstrained investor hinges on the balance

of the two effects.

In addition to changes in the asset allocation, we show that the financial constraints

induce changes in the investor’s consumption behavior. In the case of an infinitely lived

investor that receives an uninterrupted income stream, when the wealth of the investor

tends to zero the investor’s consumption rate tends to his income rate, preventing wealth

accumulation. While this result depends on the assumption of infinite horizon, it does

suggest that investors with relatively long horizons, little wealth, and large income, have

little incentive to save, a result that we show in our numerical study. Another effect of the

margin requirements and borrowing constraint is that investor consumption decreases,

and, when income is deterministic, the volatility of the investor’s consumption is lower
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than the volatility of consumption for a similar investor that does not face financial

constraints. The intuition behind this result is that the constrained investor leverages

his portfolio less and therefore his overall wealth is less influenced by changes in the

prices of the risky assets.

While the base case for our theoretical results is that of an infinitely lived investor

with constant relative risk aversion preferences, we show that our results are robust.

We show that portfolio concentration and underdiversification persist in the case of an

investor with finite horizon; and also when the investor has general preferences and

receives deterministic income.

We also consider special cases of our results that provide intuition on our asset

selection results and shed light on the rich set of possibilities. Although our framework

is a partial equilibrium one, it corresponds to a single factor Capital Asset Pricing Model

(CAPM), where an unconstrained investor would only hold the market portfolio and the

riskless asset. The behavior of the constrained investor is much more complicated. The

simplest case is when asset returns are independent and uncorrelated with labor income

growth: in that case a strict order exists and assets drop out of the investor’s portfolio

based on their leveraged excess return. A strict order also exists under assumptions other

than independence, for example when the correlation among all asset pairs is the same

and shorting or borrowing are not allowed. In the general case, when shorting is allowed

and asset returns may be negatively correlated, while on average the portfolio becomes

less diversified as the ratio of the investor’s financial wealth to his income decreases,

the behavior is not necessarily monotone and assets can both drop out and reenter the

portfolio. We also show that, perhaps surprisingly, it is possible to have asset selection

among assets with the same expected returns — and betas with the market portfolio

— where the asset with the lowest idiosyncratic volatility is dropped from the portfolio;

and also to have asset selection among assets with the same idiosyncratic volatility and

different expected returns, where for a certain range of the ratio of the investor’s financial

wealth to income, the asset with the highest expected return drops out of the portfolio

while assets with lower expected returns are still held. We also consider a case where,

in addition to individual risky assets, the investor has access to an index fund. When

the investor faces financial constraints asset selection occurs in this case as well, and the

index fund is among the first assets to drop out of the investor’s portfolio.
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To the best of our knowledge, our paper is the first to link the combination of

labor income and financial constraints to underdiversification of investor portfolios. Lit-

erature related to our paper includes the papers by Karatzas, Lehoczky, and Shreve

(1987), and Cox and Huang (1989) who introduce martingale techniques that make it

easier to deal with constraints on the investment strategies. Models with constraints

on the portfolio policies are studied by Karatzas, Lehoczky, Shreve, and Xu (1991),

Cvitanić and Karatzas (1992), Cvitanić and Karatzas (1993), He and Pearson (1991),

Xu and Shreve (1992) and Tepla (2000). Cuoco (1997) is able to demonstrate exis-

tence of optimal strategies for the case of an investor that faces margin constraints

and receives income but does not provide a characterization of the strategies. Koo

(1998) and Koo (1999) solve the optimal investment and consumption problem for

an investor that receives labor income and faces a short-sale constraint and describes

properties of the optimal consumption plan, but does not discuss underdiversifica-

tion. Cuoco and Liu (2000) discuss the case of an investor that is facing margin re-

quirements but does not receive income, and provide a characterization of his opti-

mal investment strategy. He and Pagès (1993), El Karoui and Jeanblanc-Picqué (1998)

and Duffie, Fleming, Soner, and Zariphopoulou (1997) study the optimal asset selection

problem of an investor who receives income and who is constrained to maintain nonneg-

ative levels of current wealth, but do not address margin requirements. Cuoco and Liu

(2004) find underdiversification in a study of the impact of VaR reporting rules in the

portfolio choice of a financial institution that maximizes utility from terminal wealth.

While very different, the setting in Cuoco and Liu (2004) can be shown to be a special

case of our study, corresponding to an infinitely lived investor with constant relative

risk aversion preferences that receives deterministic income.2 Dybvig and Liu (2010)

study the lifetime asset allocation problem with voluntary retirement, for the case of

an investor that receives labor income and who is constrained from borrowing, but who

can only invest in a single risky asset. Underdiversification results similar to the ones

we obtain in this paper are also obtained independently and contemporaneously in the

paper by Liu (2010). Liu (2010), describes a model where investors engage in asset

selection due to the combination of a desire to guarantee a minimum level of wealth and

constraints on their ability to borrow and to short-sell risky assets. The main difference

2Cuoco and Liu (2004) do not study the problem of optimal consumption and asset allocation for an
investor that faces financial constraints and receives labor income — rather they consider the problem
of asset allocation for a financial institution that faces a VaR constraint.
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between the paper by Liu (2010) and our paper is that we consider a dynamic frame-

work that allows us to quantify the degree of underdiversification in investor portfolios

through their lifetime, as well as the impact of approaching retirement to the degree of

portfolio diversification, while the framework in Liu (2010) is static and does not offer

any prediction regarding the age of an investor and the degree of portfolio underdiver-

sification.3 The implication from our paper for empirical studies is that wealth over

lifetime income is a potential explanatory variable for observed underdiversification.

To quantify the magnitude of our theoretical results, we also present numerical re-

sults for the case of an investor that receives income until age 65 and then retires

with an expected remaining lifetime of 20 years. The investor has access to five risky

assets, calibrated to match the risk-return characteristics of five industry portfolios

based on data from 1927-2004. Our calibration implies that the expected return of

the risky assets is proportional to the assets’ covariance with the market portfolio, in

line with the CAPM. To solve the problem, we employ a new numerical algorithm,

originally introduced in Yang (2010), which is an extension of the algorithm developed

by Brandt, Goyal, Santa-Clara, and Stroud (2005).4 The algorithm determines optimal

asset allocations by solving the first order Karush-Kuhn-Tucker conditions using func-

tional approximation of conditional expectations and projection of the value function on

a set of radial basis functions to address the curse of dimensionality problem when facing

a large number of state and choice variables. The extension allows for a more accurate

estimation of conditional expectations by limiting the region where test solutions are

generated iteratively, a process called “Test Region Iterative Contraction (TRIC)”. Our

numerical results are in line with the theoretical intuition: young investors hold concen-

trated portfolios, engage in asset selection, and save a smaller fraction of their income

compared to older investors, who hold portfolios that are close to diversified. It is inter-

esting to note that our results indicate that when investors are severely constrained they

only choose high-tech stocks for their equity portfolio, increasing the expected return

3An additional difference is that Liu (2010) attributes the underdiversification to solvency con-
straints, while we show that it is margin requirements that are fundamental. Indeed, imposing a
solvency constraint without a margin requirement does not lead to underdiversified portfolios as shown,
for example, in He and Pagès (1993), El Karoui and Jeanblanc-Picqué (1998) and Duffie et al. (1997).
Beyond the differences in the setup, our results also differ from the results in Liu (2010) in that we
show that the portfolios held by the investor when the constraint binds are a complicated sequence
depending on asset and labor income characteristics, rather than the simple sequence obtained in Liu
(2010).

4See also Carroll (2006), and Garlappi and Skoulakis (2010).
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of their portfolio but lowering its Sharpe ratio. We provide values for the underdiver-

sification measures developed by Calvet et al. (2008) and show that, in line with our

theoretical result, the investor’s effective risk aversion tends to zero when the value of

the financial wealth to income ratio tends to zero.

The remainder of the paper is organized as follows: in Section 2 we present our

theoretical model and results. Section 3 discusses the numerical algorithm used to

solve the finite horizon problem, and presents the numerical results for the optimal

allocations and diversification measures for our calibrated model of five industry indexes

and associated comparative statics. Section 4 concludes. The proofs and a detailed

description of the numerical algorithm are contained in the Appendix.

2. Theoretical Analysis

For our theoretical results, we consider a continuous time economic setting with

an infinitely lived investor who derives utility from consumption and who is able to

invest in a riskless money-market account and N risky securities that evolve according

to geometric Brownian motion with constant coefficients. We have chosen geometric

Brownian motion for tractability reasons. We assume that the investor’s utility is of the

constant relative risk aversion (CRRA) type. Our results also hold for general preferences

when the labor income received by the investor is deterministic.

2.1. The Economic Setting

The Financial Market and the Labor Income process.

Uncertainty is modeled by a probability space (Ω,F , P ) on which an N + M di-

mensional, standard, Brownian motion (w,wY ) =
(
(w1, w2, . . . , wN), (w

Y
1 , w

Y
2 , . . . , w

Y
M)
)

is defined. A state of nature ω is an element of Ω. F denotes the tribe of subsets of

Ω that are events over which the probability measure P is assigned. At time t, the

investor’s information set is Ft, where Ft is the σ-algebra generated by the observations

of (w,wY ), {(ws, w
Y
s ); 0 ≤ s ≤ t}. The filtration F = {Ft, t ∈ R+} is the information

structure and satisfies the usual conditions (increasing, right-continuous). In our setting
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only a money-market account that pays a constant interest rate and N risky securities

are available. The additional M factors are associated with the growth rate of the labor

income. The market is incomplete: to represent the risk present in the economy an

additional M securities would be required.

The value of the money-market account, B evolves according to

dBt = rBtdt, (1)

where r is the constant interest rate. Let S = (S1, S2, . . . , SN) be the vector stock price

process whose dynamics are given by

dSt = IStµdt+ IStσdwt, (2)

where IS is a diagonal N ×N matrix with diagonal elements S, µ is an N × 1 matrix,

σ = [σij ] is an N × N matrix and dwt is the increment of the N dimensional Wiener

process w, with [dwit, dwjt] = δij where δij = 0, i 6= j and δii = 1. The instantaneous

covariance matrix σσ⊺ is assumed to be nonsingular.

We assume that the investor receives a nonnegative income stream at a rate Yt

dYt = Yt
(
mdt + Σ⊺dwt +Θ⊺dwY

t

)
, (3)

wherem is the growth rate of income, Σ⊺ = (Σ1,Σ2, ..,ΣN) ∈ R
N , Θ⊺ = (Θ1,Θ2, ..,ΘM) ∈

R
M , and dwY

t is the increment of theM-dimensional Wiener process wY , with
[
dwt, dw

Y
t

]
=

0. All the coefficients are assumed to be constant.

Trading Strategies and Margin Requirements.

We assume that consumption c and trading strategies (x, z) are adapted processes

to the filtration F, where x is the dollar amount invested in the money-market account

and z⊺ = (z1, z2, . . . , zN), are the dollar amounts invested in the N risky assets.

To trade in risky assets, U.S. investors must hold sufficient wealth in a margin ac-

count. This wealth can be held in securities or cash. The Federal Reserve Board’s

Regulation T sets the initial margin requirement for stock positions undertaken through
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brokers. The values for the initial margin requirement are 50 percent for a long equity

position, and 150 percent for a short equity position.5

For our model, we impose the following margin constraint on an investor that holds

zi, i = 1, . . . , N dollar amounts in the risky assets

(λ+)⊺z+ + (λ−)⊺z− ≤W, (4)

with λ+i = 1 − κ+i , λ
−
i = κ−i − 1 with κ+i ≤ 1 ≤ κ−i , for i = 1, . . . , N, where, for any

real number x, we have x = x+ − x−, with x+ = max(x, 0) and x− = max(−x, 0).

The regulation T initial margin requirements correspond to κ+i = 0.5 and κ−i = 1.5, for

i = 1, . . . , N .

We define the set of all possible margin coefficients, Λ:

Λ = {λ ∈ R
N , λi ∈ {λ+i ,−λ

−
i }, i = 1, . . . , N}, (5)

and the set of all feasible allocations in the risky assets, Q:

Q = {x ∈ R
N , λ⊺x ≤ 1, λ ∈ Λ}. (6)

Q is a convex set prescribed by 2N linear constraints of which at most N are binding

at the same time. Risky investment z satisfies the margin constraint in Eq. (4) if and

only if z/W is in Q. We note that the margin constraint is more stringent than the

constraint of nonnegative wealth W ≥ 0.

Preferences.

5See Fortune (2000) as well as the Federal Reserve Board’s Regulation T for institutional details. In
addition to initial margin requirements, there are also maintenance margin requirements that correspond
to the level in the margin account at which collateral needs to be added to the account to avoid
liquidation of the position. Including a maintenance margin would make the problem path dependent
and we do not consider it in this paper. Further complications regarding margin accounts include the
fact that 102% of the collateral held in the margin account needs to be held in liquid assets, and that the
collateral does not, in general, earn the risk free rate of interest, see Geczy, Musto, and Reed (2002).
While it would be interesting to consider these additional features, our main results regarding asset
selection and underdiversification of an investor’s portfolio when the investor’s labor income is large
compared to his financial wealth, would not change.
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There is a single perishable good available for consumption, the numéraire. Prefer-

ences are represented by a time additive utility function

U(c) = E

[∫ ∞

0

u(ct)e
−θtdt

]
, (7)

where the time discount factor, θ, is constant. The utility function u is of the CRRA

type, with risk aversion coefficient γ

u(c) =

{
c1−γ

1−γ
, γ 6= 1

ln c, γ = 1
(8)

Optimization Problem. The investor’s problem is to maximize his expected, cu-

mulative, discounted utility of consumption

F (Wt, Yt) = max
(c, z

W
∈Q)

Et

[∫ ∞

t

u(cs)e
−θ(s−t)ds

]
, (9)

under the budget constraint

dWs =
(
rWs − cs + Ys + z⊺s (µ− r1)

)
ds+ σz⊺sdws, (10)

when labor income follows

dYs = Ys
(
mds+ Σ⊺dws +Θ⊺dwY

s

)
, (11)

where Wt > 0, Yt > 0 are the initial conditions for the investor’s wealth and income rate.

Transversality Condition.

The transversality condition for this problem is given by

lim
T→∞

Et

[
F (Wt+T , Yt+T )e

−θ(T+t)
]
= 0. (12)

Properties of the Primal Value Function F .

The value function F satisfies the following propositions whose proof can be found

in Sections A, and B of the Appendix.

Proposition 1. F is homogeneous of degree 1− γ in (W,Y ).
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Proposition 2. F is nondecreasing in W and Y and jointly concave in (W,Y ).

The homogeneity of F allows us to rewrite the value function in terms of the ratio

of wealth over income, as

F (W,Y ) = Y 1−γf(
W

Y
), (13)

for a nondecreasing smooth function f . We will refer to f as the reduced value function.

Below, we denote by v = W/Y the ratio of wealth over income. Notice that the concavity

of F in (W,Y ) implies that f is concave in v.

Conditions on Parameters.

To get a well defined problem, we impose that the following parameters A,B,C

are positive. These parameters appear in the characterization of the value function, the

optimal consumption plan and the optimal investment strategy in both the optimization

problem of an unconstrained as well as that of a constrained investor

A−1 =
θ

γ
+
γ − 1

γ

(
r +

1

2γ
(µ− r1)⊺(σσ⊺)−1(µ− r1)

)
> 0

B−1 = r −m+ (σΣ)⊺(σσ⊺)−1(µ− r1) > 0

C−1 = θ + (γ − 1)

(
m− γ

Σ⊺Σ +Θ⊺Θ

2

)
> 0.

(14)

Under the financial market described above Duffie et al. (1997) study the Merton

problem for a HARA preference investor who receives labor income that follows geo-

metric Brownian motion that is not perfectly correlated with the returns of the risky

assets under the constraint of nonnegative wealth. A formal analysis of the existence

and uniqueness of the solution of this problem under margin requirements requires the

use of viscosity solutions as in Duffie et al. (1997) and is beyond the scope of our paper.

However, a heuristic derivation of the Hamilton-Jacobi-Bellman equation can provide

some insight regarding portfolio selection.
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(
θ + (γ − 1)(m− γ

Σ⊺Σ+Θ⊺Θ

2
)

)
f(v) = max

ω∈Q

γ(f ′(v))
γ−1

γ

1− γ
+ f ′(v)

+ (r −m+ γ (Σ⊺Σ+Θ⊺Θ)) vf ′(v)

+
Σ⊺Σ +Θ⊺Θ

2
v2f ′′(v)

+ ω⊺
(
(µ− r1− γσΣ)vf ′(v)− σΣv2f ′′(v)

)

+ v2f ′′(v)ω⊤σσ
⊺

2
ω,

(15)

where ω = z/W is the vector of the percentage of wealth invested in each of the risky

assets. This problem is equivalent to

max
ω∈Q

[
ω⊺(µ− r1 + (y − γ)σΣ)−

y

2
ω⊺σσ⊺ω

]
, (16)

where y is the investor’s lifetime relative risk aversion,

y = −
WF11

F1
. (17)

As shown in Section L of the Appendix, the boundary condition at v = W/Y = 0, is

given by
1

f(0)
= (1− γ)

(
θ + (γ − 1)(m− γ

Σ⊺Σ+ Θ⊺Θ

2
)

)
. (18)

2.2. Benchmark Case: No Margin Requirements, Labor Income Spanned

by the Risky Assets

Following Merton (1971), when the income growth is spanned by the returns of the

risky assets, Θ = 0, and the investor does not face margin requirements, markets are

complete. The optimal asset allocations zf , and optimal consumption cf are given by

zf =
(σσ⊺)−1

(
µ− r1

)

γ
W −B

(σσ⊺)−1η

γ
Y

cf =
W +BY

A
,

(19)
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where

η = µ− r1− γσΣ, (20)

is the vector of expected excess returns adjusted for labor income correlation with the

risky assets.

2.3. Case with Margin Requirements

Cuoco and Liu (2000) characterize the optimal consumption and portfolio choices

for an investor that is subject to margin requirements and that does not receive income;

i.e., Y ≡ 0. The case of an investor that receives an income stream and is subject to

margin requirements is considerably more complicated than the case without income.

Intuitively, from the work of Merton (1971), we know that when income growth is

spanned by the returns of the risky assets and without margin requirements the investor

should discount his future earnings using the market discount factor, add the discounted

value to his current wealth, and make an investment choice based on the sum, provided

he can borrow against his future earnings. Since discounted future earnings may be a

significant portion of the sum, and possibly many times the current wealth, the allocation

may violate the margin constraint. The extent to which the margin constraint binds

depends on the ratio between the current wealth and the discounted value of future

earnings.

Before addressing the general case, we first consider the case where the adjusted

excess return vector η, defined in Eq. (20), is identically equal to zero. In this case, we

show in Section E of the Appendix that labor income has no impact on portfolio holdings

and the fraction of wealth invested in each asset is constant. If (σσ⊺)−1σΣ ∈ Q, the

margin constraint is never binding and z∗/W = (σσ⊺)−1σΣ. Otherwise, the margin

constraint is always binding. Depending on the parameters of the model, the number

of assets in the portfolio can range from N (full diversification) to 1 (full selection). A

condition under which exactly K assets are optimally held in the portfolio is reported

in Section E of the Appendix.

In the remainder of the paper we assume that the adjusted excess return vector

is not equal to zero, η 6= 0. To study the impact of the income stream on the asset

allocations, we choose parameters such that the margin requirement is not binding for
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low income levels. Our motivation behind this assumption is that it generates dynamics

for the investor’s asset allocation that are richer compared to the case when the margin

requirement binds for low, or zero, levels of income. This assumption is satisfied if the

following inequalities hold

max
λ∈Λ

(
λ⊺(σσ⊺)−1(µ− r1̄)

γ

)
< 1,

max
λ∈Λ

(
λ⊺J⊺

K(JKσσ
⊺J⊺

K)
−1JKσΣ

)
< 1,

(21)

where, for every combination of K ≤ N assets among all N available risky assets, we

denote by JK the K ×N matrix whose first line is equal to ek if asset k is among the K

assets chosen and has the smallest index, second line is equal ej if asset j is among the

K assets chosen and has the second smallest index and so on.

2.3.1. Positive correlation, no shorting or borrowing

A setting of practical interest is when the investor’s opportunity set includes assets

whose returns are positively correlated and when the investor is unable to short an

asset or borrow against his future income. We are able to show, under an additional

assumption, that the investor’s portfolio exhibits monotonic asset selection, with assets

dropping out of the portfolio at thresholds in the investor’s financial wealth to income

ratio.

Proposition 3. Assume that labor income growth is uncorrelated with the returns of the

risky assets, i.e., η = µ− r1̄, that (σσ⊺)−1η ∈ R
N
+ , and that the off-diagonal elements of

the inverse covariance matrix, (σσ⊺)−1 are non-positive. Then, if shorting and borrowing

are not allowed, there exist N + 1 regions in the investor’s risky portfolio composition,

separated by N thresholds, in the values of the ratio of financial wealth to income. For

large values of the wealth to income ratio the investor holds all the risky assets. As the

ratio decreases, the margin requirement binds when the first threshold is crossed and, as

each new threshold is crossed, an asset is dropped from the portfolio until only the risky

asset with the highest expected return remains in the portfolio.

The proof of Proposition 3 is provided in Appendix C. We note that the assumption

that (σσ⊺)−1η ∈ R
N
+ ensures that all assets are held long in the portfolio when the margin
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requirement is not binding, or, equivalently, that all the market portfolio weights are

positive. In addition, assuming that (σσ⊺)−1η ∈ R
N
+ implies that the risky assets are

substitute goods. In Appendix C we show that the assumption that all the off-diagonal

entries of the inverse covariance matrix (σσ⊺)−1 are non-positive implies that all the

entries of the covariance matrix σσ⊺ are non-negative, i.e. all the assets are pairwise

positively correlated. The assumption is satisfied for instance when (i) the returns of all

the N assets are independent, or (ii) when the returns of all the assets have pairwise the

same non-negative coefficient of correlation ρ ≥ 0.

Proposition 3 indicates that the investor engages in asset substitution as the margin

constraint becomes binding. Intuitively, the investor tries to improve his return, within

the bounds of the shorting and borrowing constraints imposed on him, and in doing so

shifts his portfolio composition toward fewer assets. In the limit, when the investor’s

current wealth is negligible compared to his future earnings, the investor acts as if he

is risk-neutral: he holds a single risky asset to the maximum extent allowed by the

constraints, chosen based on the asset’s expected excess return.

2.3.2. Special Case: Risky Assets with Independent Returns and Uncorrelated Labor

Income Growth

In the special case where the returns of the risky assets are independent and the

income growth is uncorrelated with the asset returns, we are able to obtain a result

stronger than the result in Proposition 3, and completely characterize the thresholds at

which the risky assets are dropped from the investor’s portfolio, even when shorting and

borrowing are allowed.

Proposition 4. Given the evolution of the price of the risky assets, money-market

account, and income, described by Eqs. (1), (2), and (3), and under the assumptions

on the parameters given by Eq. (14), and assuming that the vector of adjusted excess

returns, η, is not equal to zero, and that returns of the risky assets are independent and

the growth of the labor income is uncorrelated with the returns of the risky assets, Σ = 0,

we have that
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(i) The excess return µk−r of risky asset k, and the corresponding margin requirement

coefficient λ∗k have the same sign, and risky securities can be ranked according to

their leveraged excess expected return

0 <
µN − r

λ∗N
<
µN−1 − r

λ∗N−1

< · · · <
µ1 − r

λ∗1
. (22)

(ii) The optimal asset allocation can be described by N + 1 distinct regions defined by

the values of the lifetime relative risk aversion y, or, equivalently the values of the

current wealth to income ratio v. These regions are characterized in terms of the

thresholds 0 < y∗2,D < · · · < y∗N,D < y∗B, with

y∗B = α⊺ξ

y∗N,D = α⊺(ξ − ξN1)

y∗K,D = (IKα)
⊺
[
IK(ξ − ξK1)

]
, K = 2, . . . , N − 1

(23)

where λ∗, the vector of margin coefficients when the constraint binds, ξk = (µk − r) /λ∗k,

and αk = (λ∗k/σk)
2. As the lifetime relative risk aversion crosses threshold y∗i,D,

i = 2, . . . , N , asset i is dropped from the investor’s portfolio. Between thresholds

y∗i,D and y∗i+1,D the portfolio contains assets 1, . . . , i.

(iii) The optimal asset allocations are given by

ω∗
k =

µk − r

yσ2
k

, for k = 1, . . . , N, y > y∗B

ω∗
k =

αk

yλ∗k

[
y − y∗K,D

]+

(IKα)⊺1
, for k = 1, . . . , N, y∗K,D < y < y∗K+1,D

(24)

where, by convention, we assume that yN+1,D = y∗B.

The proof of the proposition is provided in Section D of the Appendix. The intuition

behind Proposition 4 is illustrated in Fig. 1. The figure considers an investor that has

access to three risky assets. The parameters are chosen such that when financial wealth

is very large relative to income the investor holds a portfolio that includes all three risky

assets. A similar investor with relatively less financial wealth increases his allocation to

the risky assets. The larger income is, relative to financial wealth, the higher a percentage

of financial wealth the investor places in risky assets. As long as the constraint is not

binding the investor maintains the relative proportions of the risky assets in his equity
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portfolio, keeping the portfolio diversified. At some point, for an investor with low

enough financial wealth relative to his income, the size of the equity portfolio is large

enough for the margin constraint to bind. In the figure this happens when the chosen

allocation reaches the shaded plane. For an investor with even lower financial wealth

to income ratio the margin constraint restricts him in choosing portfolios on the shaded

plane in Fig. 1. As long as the allocation does not reach the edge of the shaded plane

the investor maintains all the risky assets in his portfolio but in proportions that vary

with the ratio of financial wealth to income. Once the allocation reaches an edge of the

shaded plane the investor is restricted to choose portfolios along that edge, and is no

longer holding all the risky assets. Further decreases in the financial wealth to income

ratio eventually lead the investor to hold an equity portfolio consisting of a single asset,

represented in the figure by a vertex. Given our results, the asset eventually held is the

one with the highest expected leveraged return, irrespective of the asset’s volatility.

We point out that the geometrical intuition developed in Fig. 1 also applies to other

problems. For example, the framework described in Liu (2010) corresponds to the margin

requirements becoming more stringent as the investor approaches the substinence level

of wealth. In that case it is the shaded plane in Fig. 1 that approaches the origin,

forcing the optimal asset allocation towards a concentrated portfolio, and eventually a

single asset. This intuition makes clear that asset selection is a general feature of margin

requirements.

Relying on duality techniques developed by Cvitanić and Karatzas (1992) and Cuoco

(1997), it is possible to interpret the asset allocation and consumption problem with mar-

gin requirements as an inter-temporal consumption-investment problem for an investor

facing no financial constraints by adjusting the risky assets’ returns and the risk-free

interest rate. This approach can be used to quantify the impact of the margin require-

ments: as the margin constraint becomes more stringent, adjusted Sharpe ratios for the

risky assets shrink (in absolute value), which makes risky assets less attractive to the

investor. We provide further details in Sections H and I of the Appendix.

2.3.3. General Case

When income growth and the returns of the risky assets are correlated to each other,

the returns of the risky assets are negatively correlated, and shorting and borrowing are
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allowed subject to a margin requirement, the general intuition of moving towards more

concentrated portfolios as the ratio of financial wealth to income increases remains the

same but with two caveats: a) in the limit when the ratio tends to zero, the investor

holds a single asset chosen based on its leveraged return, adjusted for correlation with

income; b) it is possible for an asset to reenter the portfolio after it has been dropped.

Proposition 5 below characterizes the optimal portfolio allocations according to the

investor’s lifetime relative risk aversion, y, or, equivalently, in terms of the ratio, v =

W/Y , of current financial wealth to income. To state the proposition, we define e⊺i =

(0, 0, . . . , 1, . . . , 0), where 1 is in the ith position, and IK to be the K × N matrix that

consists of the first K rows of the N ×N identity matrix.

Proposition 5. Given the evolution of the price of the risky assets, money-market

account, and income, described by Eqs. (1), (2), and (3), and under the assumptions

on the parameters given by Eq. (14), and assuming that the vector of adjusted excess

returns, η, is not equal to zero, let

y∗B =
(λ∗B)

⊤(σσ⊤)−1η

1− (λ∗B)
⊤(σσ⊤)−1σΣ

where

λ∗B =argmaxλ∈Λ
λ⊤(σσ⊤)−1η

1− λ⊤(σσ⊤)−1σΣ

(25)

(i) When the current wealth to income ratio v is large enough such that the lifetime

relative risk aversion, y, is greater than y∗B, y > y∗B, the margin constraint is

not binding and the investor holds all N assets in his portfolio. As the ratio v

decreases, y decreases and at y = y∗B, the margin constraint starts binding. The

margin coefficients λi are determined by whether the position in asset i is long

or short at levels of the lifetime relative risk aversion above the level where the

constraint binds.

(ii) For all values of lifetime relative risk aversion y lower than y∗B, y < y∗B, the margin

constraint is binding.

(iii) As the lifetime relative risk aversion y decreases, the portfolio composition changes

at thresholds where risky assets may drop out or reenter the portfolio. Each port-

folio configuration can be encountered at most once, between two thresholds in the

values of the lifetime relative risk aversion.
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(iv) For small enough values of the lifetime relative risk aversion, the investor holds

only one risky asset to the maximum extent allowed by the margin. The ultimately

selected asset i, satisfies

i = argmaxk∈(1,...,N)

ηk
λk
, (26)

where, given a vector x, we use the notation xi to denote the vector’s i-th com-

ponent. The threshold in the lifetime relative risk aversion where the next to last

asset, j, is dropped out of the portfolio is given by y∗j,D

y∗j,D = min
k 6=i

∗{yLk,D, y
S
k,D}, (27)

where, given a set of nonnegative numbers, x1, x2, . . . , xk, where at least one num-

ber is strictly positive, we define min∗(x1, x2, . . . , xk) to be the smallest, nonzero,

number, and where

yLk,D =




ηi
λi

− ηk
λ+

(
σi

λi

)2
− (σΣ)i

λi
− ρik

σi

λi

σk

λ+ + (σΣ)k
λ+




+

ySk,D =




ηi
λi

+ ηk
λ−

(
σi

λi

)2
− (σΣ)i

λi
+ ρik

σi

λi

σk

λ− − (σΣ)k
λ−




+

.

(28)

The proof of Proposition 5 is provided in Section E of the Appendix. Proposition 5

indicates that, even with correlated asset returns and the possibility of shorting and

borrowing, the investor engages in asset substitution as the margin constraint becomes

binding. An alternative intuition can be described in terms of the investor’s lifetime

relative risk aversion y: lifetime relative risk aversion is high when income is relatively

small compared to the investor’s wealth, while it is low when discounted future earn-

ings are much larger than current wealth. When lifetime relative risk aversion is low,

the investor is willing to increase his exposure in risky assets, resulting in the margin

constraint binding and leading the investor to hold fewer assets. Compared to the case

where the inverse covariance matrix has nonpositive entries and shorting and borrowing

are not allowed, in the general case assets can both drop out and reenter the investor’s

portfolio as the ratio of financial wealth to income declines, while, in the limit when

the investor’s current wealth is negligible compared to his future earnings, the investor
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chooses the single risky asset to hold based not only on the asset’s expected excess

return, but the asset’s expected excess return adjusted for covariance with the labor

income µ1 − r − γσ1Σ1. Yet, qualitatively, the behavior is similar. When the financial

constraints are not binding, in both cases all assets are held. As the financial wealth

to income ratio decreases the constraints bind, and a series of thresholds exists, where

portfolio composition changes, with the portfolio becoming less diversified.

In Section E of the Appendix we show that when income is deterministic our results

hold beyond the case of investors with CRRA preferences: asset selection occurs as

the lifetime relative risk aversion varies for preferences represented by any smooth and

concave utility function.6 Moreover, in the nonbinding region the two fund separation

theorem applies with the risky assets being held in the same proportions as in the

unconstrained case. However, the investor’s risky asset allocation is smaller (in absolute

value) than the allocation of an investor with the same wealth and income that does not

face a margin requirement.

2.3.4. Special Case: Two Risky Assets with Uncorrelated Labor Income Growth

The case with two risky assets is simple enough to be tractable, yet rich enough to

illustrate the complexity that may arise as the margin requirements and the borrowing

constraint become binding.

Proposition 6. Under the same assumptions as Proposition 5, when the number of

risky assets available to the investor is two and labor income growth is uncorrelated with

asset returns, and assuming that the first asset has a higher leveraged expected return

compared to the second asset, the following cases are possible:

(i) there is a single threshold, y∗B, in the lifetime relative risk aversion, y, and two

regions in the portfolio composition. In the first region, when y is greater than

the threshold y∗B the margin requirement is not binding, but only the first asset is

6Cuoco and Liu (2004) find risk shifting behavior in the context of a financial institution that needs
to follow VaR reporting rules and that tries to optimize its asset selection. This behavior leads the
financial institution to invest in underdiversified portfolios as the VaR constraint becomes binding.
Through a transformation, their setting can be shown to be a special case of ours, corresponding to the
case of deterministic income. We note that our general result is strikingly different from the result in the
special case studied by Cuoco and Liu (2004), especially regarding the possibility of asset reintegration
after an asset has been dropped from the investor’s portfolio.
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held in the portfolio. In the second region the margin requirement binds at values

of y ≤ y∗B, and the portfolio consists of holding the first asset at the maximum

amount allowed.

(ii) there are two thresholds, y∗B > y∗2,D, in the lifetime relative risk aversion and three

regions in portfolio composition. In the first region, when the lifetime relative risk

aversion, y, is greater than the larger threshold, y∗B, the margin requirement is not

binding and both assets are held in the portfolio. In the second region, for values of

the lifetime relative risk aversion y∗B ≥ y > y∗2,D, the margin requirement binds and

both assets are still held in the portfolio. In the third region, for values y ≤ y∗2,D,

the second asset is dropped from the portfolio, and the portfolio consists of holding

the first asset at the maximum amount allowed.

(iii) there are four thresholds y∗B > y∗1,D > y∗1,R > y∗2,D in the lifetime relative risk

aversion and five regions in portfolio composition. The subscripts D, R, in yi,D, yi,R

indicate whether asset i is dropped from (D), or reenters (R) the portfolio. In the

first region, when y > y∗B, the margin requirement does not bind and both assets

are held in the portfolio, with the first asset held short — note that, given our

assumption that the first asset has a higher leveraged expected return, for small

enough values of lifetime relative risk aversion, y, the first asset is held long —

in the second region, when y∗B ≥ y > y∗1,D, the margin requirement binds and both

assets are held; in the third region, when y∗1,D ≥ y > y∗1,R, only the second asset

is held in the portfolio; in the fourth region, when y∗1,R ≥ y > y∗2,D, the first asset

reenters the portfolio and both assets are held in the portfolio with the first asset

held long; finally, in the fifth region, when y∗2,D ≥ y, the second asset is dropped,

and only the first asset is held long in the portfolio to the maximum amount allowed

by the margin requirement.

The proof of Proposition 6 is provided in Section F of the Appendix. The proposition

illustrates the complications that may arise in selecting a portfolio in the face of con-

straints. In particular, the case with the four thresholds and the five regions indicates

that while the number of assets held in the portfolio tends to decrease as the lifetime

relative risk aversion decreases, it does not decrease monotonically, and there can be

regions where the asset with the highest leveraged expected return is not held in the

portfolio. We note that, by inspection, five regions is the maximum number of regions
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that can be encountered when only two risky assets are available, regardless of the labor

income correlation with the returns of the risky assets.

2.3.5. Special Case: Risky Assets with Equal Betas

An additional case that can be useful to understand our asset selection result is when

leveraged expected asset returns adjusted for income correlation are equal among several

assets. Since our setting corresponds to that of a single factor CAPM, if the risky assets

have the same expected return they also have the same covariance with the market

portfolio and the same beta. The following proposition illustrates that asset selection is

possible even in the simplest case, when all the assets have the same leveraged expected

returns.

Proposition 7. Assume that there exists a vector of margin coefficients λ∗ ∈ Λ, such

that all the leveraged expected returns adjusted for income correlation are equal; i.e.,

ηi
λ∗i

=
ηj
λ∗j

> 0, for all i, j = 1, . . . , N, (29)

Then, it is possible that multiple regions of asset selection exist. In addition, if yK is the

largest value of the lifetime relative risk aversion such that only K assets are held in the

portfolio with the same signs as the signs of the vector of margin coefficients λ∗, then,

for all values of the lifetime relative risk aversion, y, smaller than yK, y ≤ yK, the same

K assets are optimally held in the portfolio in constant proportions that do not depend

on the asset expected returns.

The proof of Proposition 7 is provided in Section G of the Appendix. Proposition 7

indicates that, in addition to multiple regions where asset selection occurs, there exists

a region where the investor’s portfolio is “trapped”, and no further selection is possible.

We point out that, even though the leveraged expected returns of the assets, adjusted

for income correlation, are equal across assets, the assets’ volatility does not determine

whether an asset is ultimately held or dropped.
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2.3.6. Presence of an Index Fund

We consider a case that is of practical interest: the availability, in addition to individ-

ual risky assets, of a diversified index fund that is a combination of the individual risky

assets. We assume that the investor can invest into N securities and into a market index

fund (asset M) spanned by the N securities that corresponds to the market portfolio.

Let π denote the vector of the market portfolio weights

π =
(σσ⊺)−1(µ− r1)

1
⊺

(σσ⊺)−1(µ− r1)
∈ R

N
++. (30)

For convenience, set ̟ =
(
1
⊺

(σσ⊺)−1(µ− r1)
)−1

, so that π = ̟(σσ⊺)−1(µ − r1). In

other words, the index fund is a linear combination of the N securities with market

weights π. The (N + 1) × (N + 1) covariance matrix V of the N securities and the

market index fund is singular with rank N and is given by

V =

[
σσ⊺ (σσ⊺)π

π⊺(σσ⊺) π⊺(σσ⊺)π

]
. (31)

The expected excess return on the index fund is µM − r = π⊺(µ− r1) and the expected

excess return adjusted for labor correlation is ηM = π⊺η.

The following proposition shows that asset selection still occurs in this special case.

The proof of the proposition is provided in Appendix J.

Proposition 8. Consider an investor who faces margin requirements and whose oppor-

tunity set includes a riskless asset, N risky assets and an additional, redundant, market

index fund, and who receives labor income that is uncorrelated with the returns of the

risky assets. We consider two cases:

a) If the margin requirement of the index fund is greater than, or equal to, the weighted

average margin requirement of the individual securities, then the margin constraint

starts binding at the same level of the financial wealth to income ratio as in the

absence of the index fund. We have that:

i) The optimal portfolio is no longer unique and all securities may be included in

the portfolio.
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ii) As the ratio of financial wealth over income declines below the level where the

margin requirement starts binding, there exists a threshold at which the index

fund is dropped from the portfolio and is never reintegrated at lower levels of

the ratio.

b) If the margin requirement for the market index fund is smaller than the weighted

average margin requirement of the individual securities, with weights determined

by the market portfolio, then the margin constraint starts binding at a level of the

wealth over income ratio that is lower compared to the case when no index fund is

available. We have that:

i) When the margin constraint starts binding, the investor holds only the index

fund to the maximum allowed by the margin requirement for the index fund.

ii) If the leveraged expected return of the index fund is greater than the leveraged

expected return of every individual asset, then the index fund is the only asset

held in the investor’s portfolio for all values of the financial wealth to income

ratio once the margin requirement binds. Otherwise, as the wealth to income

ratio declines, some individual securities are reintegrated into the portfolio,

and there exists a threshold in the investor’s financial wealth over income

ratio, such that the index fund is dropped from the portfolio and is never

reintegrated into the portfolio at lower levels of the ratio.

The intuition behind Proposition 8 is that, since the index fund is a linear combi-

nation of the risky assets, it is subject to the same tradeoffs as the risky assets. In

particular, if the margin requirements are the same for both the risky assets and the

index fund, then the existence of the index fund does not influence the aggregate hold-

ings of the investor’s portfolio, implying that the index fund drops from the portfolio

at the same threshold of financial wealth to income ratio as the first risky asset would

in the absence of the index fund. Differences between the case of an opportunity set

with and without the index fund occur only when the margin requirement for the index

fund is lower compared to the margin requirements of individual risky assets. In that

case holding the index fund is preferable compared to holding the individual assets. Yet,

even in that case, unless the leveraged expected return of the index fund is higher than

the leveraged expected return of every risky asset, there is a threshold in the investor’s

financial wealth to income ratio where the index fund drops from the investor’s portfolio,

and is not re-integrated for lower values of the ratio.
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We note that our result of asset selection would also hold in the case where multiple

index funds are available to investor, as long as the funds are weighted linear combina-

tions of assets already in the investor’s opportunity set.

2.3.7. Properties of the Consumption and Investment Plans when Labor Income Growth

is Spanned

In addition to our result on asset selection, in the case when labor income growth

is spanned by the returns of the risky assets, we can characterize optimal consumption

using the following propositions, whose proofs are provided in Sections K, L, and M of

the Appendix.

Proposition 9. The optimal consumption is increasing in current wealth and current

income and is lower than its unconstrained counterpart. Inside the nonbinding region,

z∗k/W the fraction of wealth invested in risky asset k is lower (higher) than its uncon-

strained counterpart zfk/W whenever e⊺k(σσ
⊤)−1η ≥ 0(≤ 0). Under the same condition,

it is increasing (decreasing) in income (wealth).

Proposition 10. In the limit of zero current wealth, the lifetime relative risk aversion

y goes to zero and the optimal consumption rate is equal to the income rate.

We note that Proposition 10 implies that an investor with zero current wealth will

never be able to accumulate wealth and will always consume his income. This result

indicates the extent to which the margin constraint renders holding risky assets unattrac-

tive. While the result holds for the infinite horizon setting, in the numerical section we

also consider the life-cycle problem, where the investor receives income for only part of

his life and then retires and consumes his accumulated wealth.

Proposition 11. When income is deterministic, for any level of consumption c, the

optimal consumption process has a lower volatility than its unconstrained counterpart.

These results hold for every strictly concave utility function.

The intuition behind Proposition 11 is that a margin-constrained investor that re-

ceives deterministic income faces less uncertainty than a similar investor that does not

face a margin requirement: even though the constrained investor holds an underdiversi-

fied portfolio, the magnitude of the portfolio is relatively small compared to the portfolio
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of the unconstrained investor. Given the smaller portfolio size, random fluctuations in

the stock prices have a smaller impact on the sum of the investor’s wealth and discounted

future earnings, resulting in a smoother consumption pattern. We point out the result

does not necessarily hold in the case of stochastic income growth: if the stochastic in-

come growth is highly correlated with the risky assets, investment in the risky assets

can act as a hedge, smoothing out income shocks, rather than magnifying asset price

shocks due to the larger size of the investment portfolio.

2.3.8. Finite Horizon

Our analysis has focused so far on the infinite horizon case. To accommodate the

case of life-cycle consumption and investment we now consider a case where the investor

receives an income stream Y only over the period [0, T ] with T > 0. At time T , the

investor retires and no longer receives any income. After date T , death occurs after an

additional τ years. We assume that the investor does not have a bequest motive. Since

we assume that the margin constraint is not binding when there is no income, after

time T the margin constraint can be ignored — the investor is still subject to margin

requirements after retirement, but given the range of parameters we study, the margin

requirements do not bind when income is equal to zero. At time T the value function

B is given by

B(WT , τ) =
Aγ
(
1− e−τ/A

)γ

1− γ
W 1−γ

T , (32)

where A is defined in Eq. (14).

For time t ≤ T the value function F satisfies

F (Wt, Yt, t) = max
(c, z

W
∈Q)

Et

[∫ T

t

c1−γ
s

1− γ
e−θ(s−t)ds+B(WT , τ)e

−θ(T−t)

]
, (33)

under the budget constraint

dWs =
(
rWs − cs + Ys + z⊺s (µ− r1)

)
ds+ σz⊺sdws, (34)

when labor income follows

dYs = Ys
(
mds+ Σ⊺dws +Θ⊺dwY

s

)
, (35)
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with Wt > 0, Yt > 0 given. Note that F is still homogeneous of degree 1− γ and can be

written as F (Wt, Yt, t) = Y 1−γ
t f(vt, t), with v = W/Y . Over [0, T ] , the reduced value

function f satisfies the following Hamilton-Jacobi-Bellman equation

(
θ + (γ − 1)(m− γ

Σ⊺Σ+Θ⊺Θ

2
)

)
f(v, t) = f2(v, t) +

γ (f1(v, t))
γ−1

γ

1− γ
+ f1(v, t)

+ (r −m+ γ (Σ⊺Σ +Θ⊺Θ)) vf1(v, t) +
Σ⊺Σ+Θ⊺Θ

2
v2f11(v, t)

+ max
ω∈Q

[
ω⊺
(
ηvf1(v, t)− σΣY v2f11(v, t)

)
+ v2f11(v, t)ω

⊤σσ
⊺

2
ω

]
,

(36)

with ω = z/W and boundary condition f(vT , T ) = B (vT , τ) . The analysis conducted

in the infinite horizon case still applies, so asset selection still takes place. However,

the lifetime relative risk aversion yt = −vf11(v, t)/f1(v, t) depends on both the wealth

to income ratio, v, and on time to retirement, which implies that the thresholds in the

wealth to income ratio where the investor changes his portfolio change as the investor

approaches retirement.

3. Numerical Algorithm and Results

To quantitatively illustrate our theoretical results we consider a discrete-time exam-

ple of an investor who receives income over his working life and retires at a prespecified

age. The investor has access to a set of risky assets that we calibrate to U.S. industry

portfolios. To numerically solve this optimal asset allocation and consumption prob-

lem we extend the numerical algorithm proposed by Brandt et al. (2005) to allow for

endogenous state variables and margin constraints. The algorithm is designed to solve

optimal control problems using a functional approximation of conditional expectations

and is particularly suitable for problems with a large number of state and choice vari-

ables. The algorithm proceeds in a dynamic programming fashion, solving the optimal

consumption and asset allocation problem backward in time. At each time step the

value function is approximated using functional interpolation. The optimal allocation

and consumption are computed as solutions of the first order conditions for the prob-
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lem’s value function, augmented by the constraints multiplied by Lagrange multipliers.

One key difference in the algorithm, compared to the algorithm by Brandt et al. (2005),

is the introduction of an iterative step to solve the first order conditions: rather than

relying on approximating the first order conditions over a large region, we focus our ap-

proximation in a neighborhood of a potential solution. Once the solution is computed,

we further restrict the neighborhood of approximation and refine the solution, until a

desired accuracy is achieved. This improvement in the algorithm by Brandt et al. (2005)

was introduced in Yang (2010). We outline the steps of the algorithm below and describe

it in detail in Section N of the Appendix.

Algorithm

Step 1: Dynamic Programming

a. For each time step, starting at the terminal time and working backward,

construct a grid in the state space and compute the value function and optimal

consumption and portfolio decisions for each point in the grid.

b. Approximate the value function on the corresponding grid points. This approx-

imation will be used in earlier time steps to compute conditional expectations

of the value function.

Step 2: Karush-Kuhn-Tucker Conditions

To solve the Bellman equation for each point on the grid perform the following

steps

a. Combine the constraints in the portfolio positions and the evolution of the

state variables with the value function in a Lagrangian function with Lagrange

multipliers.

b. Make a change of variables that allows the consumption optimization problem

to be solved independently of the asset allocation optimization problem.

c. Construct the system of first order conditions (KKT conditions) for the con-

sumption and asset allocation optimization problems.

d. Find the solution of the Karush-Kuhn-Tucker conditions for the asset alloca-

tion optimization problem using an iterative process:

i. Start by choosing a region in the choice space that includes the optimal

portfolio. This choice can be informed by knowledge of the optimal port-
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folio at nearby grid points at the same time step, or for the same grid

point at a later date.

ii. Find an approximately optimal portfolio by solving the system of KKT

conditions. To solve the system of KKT conditions, approximate the con-

ditional expectations in the derivatives of the Lagrangian function using

cross-test-solution regression: choose a quasi-random set of feasible allo-

cations; calculate the required conditional expectations — interpolating

the value of the value function in the following time step from the values

at the grid points, estimated from Step 1 in the algorithm — for each

feasible choice, and project each on a set of basis functions of the choice

variables; solve the resulting system of equations.

iii. Test Region Contraction: Repeat step (ii) until a convergence criterion

is satisfied, using a smaller region in which feasible portfolio choices are

drawn, chosen based on the location of the previously computed approx-

imately optimal portfolio.

iv. Given the optimal portfolio choice, compute the optimal consumption

choice using the appropriate KKT condition.

3.1. Calibration

To apply the numerical algorithm, we consider the case of an investor that receives

income until age 65, at which point he retires. After retirement the investor has an

expected lifetime of 20 years, which matches the data in the 2004 Mortality Table for the

Social Security Administration for a 65-year-old female, see Social Security Administration

(2004). For the base case we assume that income grows stochastically, independently of

the returns of the risky assets, at a growth rate of 3% per year with annualized volatility

of 10%, in line with the assumptions in Viceira (2001). We also assume that the investor

is not able to either borrow, or short any of the assets, corresponding to parameter

values λ+ = 1, λ− = ∞.

The opportunity set available to the investor includes five risky assets corresponding

to the indexes of five industries: Consumer, Manufacturing, High Tech, Health, and

Other. To calculate the covariance matrix for each industry we constructed real returns

for each industry using the inflation data provided in Robert Shiller’s website, see Shiller
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(2003), to deflate the annual returns of the five industry portfolios between 1927 and

2004, provided in Ken French’s website, see French (2008). The expected returns for

each industry are computed using the methodology proposed by Black and Litterman

(1992), by matching the market capitalization weights for each industry in July 2008,

provided in Ken French’s website, to the relative weights that a CRRA investor who

receives no income would allocate to each industry within his equity portfolio. The

risk-free interest rate was computed from the data in Robert Shiller’s website to match

the realized one year real interest rate between 1927 and 2004.

The calibration implies that the asset returns satisfy a single factor CAPM. The

return of each individual asset includes a systematic and an idiosyncratic component,

with the expected return determined by the asset’s beta with respect to the market

portfolio. Any portfolio of the risky assets that is not proportional to the market portfolio

incurs uncompensated idiosyncratic risk.

The calibrated parameters are given in Table 1. The table presents the expected

returns, volatilities, and correlations for the five industry indexes, as well as the values

for their betas with the market portfolio, Sharpe ratios, systematic risk, and idiosyn-

cratic risk for each index. From the table we notice that the High Tech index has the

highest beta and expected return but neither the highest nor the lowest Sharpe ratio or

idiosyncratic volatility. The three indexes with the highest Sharpe ratio are Consumer,

Manufacturing, and Other, while the Health index has the lowest Sharpe ratio. The

Health index has the highest idiosyncratic volatility and the Manufacturing and Other

indexes the lowest.

3.2. Diversification Measures

Calvet et al. (2008) present an empirical analysis of diversification of household port-

folios in Sweden, and describe several measures that quantify the degree that investors

deviate from mean-variance optimal portfolios. We use the same measures to determine

the potential magnitude of the impact of the financial constraints on diversification.

We present the measures below, following the description and notation in Calvet et al.

(2008).
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Denoting by rh,t the returns of the risky asset portfolio of an investor that receives

labor income and who is subject to margin requirements that can only be satisfied

through financial wealth, and by rB,t the returns of the risky portfolio of an investor

that does not receive labor income and who is not subject to margin requirements, we

have the following variance decomposition

rh,t = αh + βhrB,t + ǫh,t, (37)

Notice that, given our calibration, the assumptions underlying the CAPM are satisfied

for the unconstrained investor who does not receive labor income. In line with the

CAPM, this investor holds a risky portfolio that includes systematic risk only.

If we denote by σB, σh the standard deviation of the returns of the equity portfolio

of the unconstrained investor that does not receive labor income, and of the constrained

investor that receives labor income, respectively, we have

σ2
h = β2

hσ
2
B + σ2

i,h. (38)

The interpretation of this decomposition is that the portfolio of the constrained investor

that receives labor income has systematic risk |βh|σB and idiosyncratic risk σi,h. The

idiosyncratic variance share is given by

σ2
i,h

σ2
h

=
σ2
i,h

β2
hσ

2
B + σ2

i,h

. (39)

Another measure of portfolio diversification is the Sharpe ratio of the risky portion of

the portfolio. We denote the Sharpe ratio of the portfolio of an investor that does not

receive income and does not face financial constraints SB, and the Sharpe ratio of a

constrained investor that receives labor income Sh. These ratios are defined by the ratio

of the excess return of the respective portfolio to the standard deviation of excess returns

Sh =
µh

σh
, (40)
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where µh, σh, are the excess return and the standard deviation of excess return for the

portfolio of the constrained investor that receives labor income. The relative Sharpe

ratio loss is defined by

RSRLh = 1−
Sh

SB
. (41)

While the relative Sharpe ratio loss is a measure of the diversification loss in the risky

asset portion of the portfolio, it does not necessarily reflect the overall efficiency loss in

the portfolio. To capture this loss, we define the return loss as the average return loss

by the investor for choosing a portfolio other than the one suggested by the CAPM

RLh = wh(SBσh − µh), (42)

where wh is the portion of the portfolio invested in risky assets.

Finally, we define a measure associated with utility losses for the constrained investor

who receives labor income, compared to the unconstrained investor who does not receive

labor income. It is defined as the increase in the risk-free rate that would make the

constrained investor indifferent between being constrained with the higher risk-free rate

and being unconstrained. In the case of a risk-averse investor with CRRA preferences

with risk aversion coefficient γ, Calvet et al. (2008) calculate the utility loss from the

relationship

ULh =
S2
B − S2

h

2γ
. (43)

3.3. Base Case

The optimal asset allocations for the base case parameters, listed in Table 1, are

presented in Fig. 2 for investors 30 and 60 years old over a range of wealth to income

ratios.

From Fig. 2 we notice that as the financial wealth of the investor decreases compared

to his income, the investor allocates a larger proportion of his wealth to the risky assets.

For the younger, 30-year-old, investor the margin constraint binds if the investor’s finan-

cial wealth is smaller than 10.4 times his annual income. While the proportion in which

each risky asset is held within the equity portfolio does not change when the margin

constraint is not binding, once the constraint binds the investor shifts his portfolio to
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increase the portfolio’s expected return, and holds an underdiversified portfolio. When

the financial wealth reaches a level of 6.9, 5.6, 3.4, and 0.98 times the investor’s annual

income, the investor drops the Health, Manufacturing, Consumer, and Other industry

indexes from his portfolio, respectively. For financial wealth levels below 98% of the

investor’s annual income, the investor’s equity portfolio consists only of the index of the

High Tech industry. A similar pattern is observed for the 60-year-old investor. In that

case, since the remaining income spans a smaller number of years; i.e., the discounted

value of future earnings is smaller than that of the younger investor, the constraint binds

at a lower level of the financial wealth equal to 2.3 times annual income. For lower levels

of the financial wealth to income ratio the older investor also shifts his equity portfolio,

and holds an underdiversified portfolio, dropping the Health, Manufacturing, Consumer,

and Other industry indexes at ratios of 1.8, 1.6, 1.1, and 0.4 respectively.

Table 2 presents further details of the optimal allocations for different levels of the

financial wealth to annual income ratio, as well as values for the various diversification

measures and the investor’s lifetime relative risk aversion. From the table we notice

that when the margin constraint is not binding and the ratio of financial wealth to

income decreases, the investor increases the portfolio’s expected return by increasing the

percentage of his wealth invested in risky assets while maintaining a diversified portfolio.

Once the constraint binds, further reductions in the financial wealth to annual income

ratio result in a deterioration of the portfolio diversification measures. As an example,

a younger, 30-year-old, investor whose financial wealth is equal to one year of his labor

income holds a portfolio that has 11.4% idiosyncratic volatility — which corresponds to

11.8% of the portfolio’s variance — Sharpe ratio of 25.8% compared to 27.3% achieved

when the portfolio is diversified, a return loss of 51 basis points per year, and a utility

loss of 14 basis points per year. We point out that the higher idiosyncratic volatility,

lower Sharpe ratio and higher expected return compared to the diversified portfolio,

is in line with the empirical evidence in Ivković et al. (2008). Even though the equity

portfolio of the constrained investor has higher volatility, its size is smaller than the

equity portfolio of the unconstrained investor. Due to the smaller size of the equity

portfolio, shocks to the prices of the risky assets have a smaller effect to the wealth

of the constrained investor, leading to a smoother consumption choice. The lifetime

relative risk aversion of the investor is 0.27, close to that of a risk-neutral investor. We

point out that even though the 30-year-old investor holds a single asset in the portfolio
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only when his financial wealth is below 98% of his annual income, it is much more likely

to observe an underdiversified portfolio, since it corresponds to a ratio of the investor’s

wealth that is less than 10.4 times his annual income.

Panel B of Table 2 presents allocations and diversification measures for the 60-year-

old investor. The results are qualitatively similar to the results in Panel A, with the

main difference being that the margin constraint binds at lower levels of the financial

wealth to annual income ratio.

Table 3 presents results obtained by simulating the evolution of the portfolio of an

investor starting at age 20. From Panel A we notice that the investor whose financial

wealth at age 20 was twice his annual income, holds, at age 30, a portfolio that is, almost

always, underdiversified. At the same time the investor consumes close to his annual

labor income. At age 45 an investor that has done badly starts consuming considerably

less than his annual income and saves the remainder, while a consumer that has done

well consumes more than his annual income. The portfolio is still mostly underdiversified

and the margin requirements bind. At age 60 the investor has accelerated his saving

behavior and is mostly unconstrained in his financial portfolio.7

Panel B of Table 3 presents the simulation results for an investor whose financial

wealth at age 20 is equal to ten times his annual income. Even though this investor is

relatively richer than the investor in Panel A, the margin constraint still largely binds

at age 30, leading to the investor holding an underdiversified equity portfolio. Given his

large financial wealth, this investor saves less, and starts saving later in life, compared

to the investor in Panel A. Overall, the results in both panels indicate that younger

investors, even if they have significant amounts of financial wealth, are holding portfolios

far less diversified than those held by older, unconstrained, investors.

3.4. Comparative Statics

Regulation T Margin Constraints

7Since consumption is measured with respect to current annual labor income and since in this
example income has a 3% annual drift, the reduction in consumption relative to income observed
in the table does not necessarily imply a reduction in the actual amount consumed by the investor.
Nevertheless, consumption to income ratios above 1.0 imply that the investor consumes part of his
financial wealth while ratios below 1.0 imply that the investor saves part of his labor income.
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Fig. 3 presents the optimal asset allocations for an investor facing a margin constraint

in line with the requirements in Regulation T of 50% for long positions and 150% for

short positions. For the calibrated parameter values from Table 1, the investor never

shorts any of the risky assets. Compared to Fig. 2, the investor is unconstrained for a

greater range of his financial wealth to income ratio, with the allocations being identical

when the margin constraint does not bind for either investor. The margin constraint for

the investor that faces the Regulation T margin requirements binds at a level of financial

wealth equal to 2.6 times his annual income at age 30 and 94% of his annual income

at age 60. Below that level, the investor’s portfolio is underdiversified. The order that

assets drop out of the portfolio is the same as in the base case, and the last asset held

in the portfolio is the High Tech industry index, which is exclusively held at levels of

financial wealth below 30% of annual income at age 30 and below 19% of annual income

at age 60.

Deterministic Income

To understand the impact of labor income risk on the investor’s allocation to risky

assets and on the degree of underdiversification, we consider a comparative static where

the investor receives labor income with a deterministic growth rate. Fig. 4 presents the

optimal asset allocations. The volatility of the growth of the labor income is set to zero,

while the remaining parameters are the same as in the base case, given in Table 1. From

the figure we notice that, when labor growth is deterministic, allocations in the industry

indexes are increased compared to the base case of stochastic income for investors of

both age 30 and age 60. This increased allocation to risky assets is intuitively expected

due to the lower risk implied by the deterministic nature of income growth.

In line with our theoretical results, the order in which assets are dropped from the

equity portfolio when the ratio of financial wealth to income decreases is the same as

in the base case, described in Fig. 2. Due to the higher allocations to the risky assets,

compared to the case with stochastic income, the threshold when the margin constraint

binds is higher when income is deterministic. For a 30-year-old investor who receives

income with deterministic growth the margin binds at a financial wealth level equal to

13.0 times his annual income, while for the investor who receives income with stochastic

growth the margin constraint binds at a level of financial wealth equal to 10.4 times

his annual income. An alternative explanation for this difference is that since income

growth is uncorrelated with asset returns, income helps in diversifying the investor’s
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portfolio, implying that the margin requirement is less onerous. Below these levels, the

investor holds an underdiversified portfolio.

Overall, Fig. 4 illustrates that the differences between the case of deterministic and

stochastic income growth are quantitative rather than qualitative: in both cases an in-

vestor with low levels of financial wealth compared to labor income holds underdiversified

portfolios consisting of only a few out of many possible risky assets. However, the range

of financial wealth to annual income ratios where an investor’s portfolio is underdiversi-

fied is greater for an investor whose labor income grows deterministically compared to

an investor whose labor income grows with a stochastic rate that is independent of the

returns of the risky assets.

Nonnegative Wealth

A case of constrained choice previously studied in the literature is the case when the

investor’s wealth is required to remain greater or equal to zero but where the investor

does not face a margin requirement, see He and Pagès (1993), El Karoui and Jeanblanc-Picqué

(1998), Duffie et al. (1997), and Dybvig and Liu (2010). Compared to a requirement of

nonnegative wealth, the margin requirement is a stricter constraint, since it automat-

ically guarantees nonnegative wealth. To quantify the difference in asset allocations,

Fig. 5 presents the optimal asset allocation for an investor facing a nonnegative wealth

constraint, but who is otherwise identical to our base case investor. From the figure we

notice that in both the cases of a nonnegative wealth constraint and of a margin require-

ment, investment in risky assets increases as the wealth to income ratio decreases. On

the other hand, there are significant qualitative differences: unlike the case of a margin

requirement, an investor that faces a nonnegative wealth constraint maintains a diver-

sified portfolio, even when his income is much greater than his wealth; in addition, the

size of the risky asset portfolio of an investor that faces a nonnegative wealth constraint

is much larger than that of an investor that faces a margin requirement. To finance

this larger investment in risky assets, the results in the figure indicate that the investor

that is constrained to maintain nonnegative wealth borrows amounts up to 10 times his

financial wealth or more, using his income as collateral.

Correlated Labor Income

Fig. 6 presents the asset allocations for the case when the growth in the labor income

is correlated with the returns of the High Tech index, keeping overall volatility of labor
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income growth the same as in the base case. The parameters for this case approximate

the labor income received by an employee in a technology firm. From the figure we note

that, although the High Tech index has the highest expected return, it is the first asset

to drop from the portfolio, at a ratio of financial wealth to annual income of 118.9 for

the 30-year-old investor. In addition, the portfolio becomes underdiversified before the

margin requirement binds, at a ratio of financial wealth to annual income of 11.4, with

the proportion of the High Tech index decreasing as labor income increases relative to

financial wealth. These results are expected, since, intuitively, as the investor’s labor

income increases relative to his financial wealth, his labor income creates an implicit

exposure to the shocks in the High Tech index and a corresponding hedging demand,

resulting in a decrease in the portfolio allocation in the High Tech index until it is

dropped from the portfolio. The remaining assets are uncorrelated with the growth

labor income and drop out of the portfolio as the ratio of financial wealth to income

decreases, with the index Other being the last asset held — for the 30-year-old investor

the assets Health, Manufacturing, and Consumer drop at thresholds of financial wealth

to annual income ratios of 4.6, 4.5, and 2.3 respectively. This case illustrates that

correlation between income growth and asset returns alters portfolio composition, while

still resulting in asset selection and concentrated portfolios.

4. Conclusion

The results we have presented indicate that financial constraints can be a significant

determinant of individual portfolios, and can, to some extent, account for empirical find-

ings. The ratio of current wealth to income is instrumental in the determination of the

portfolios, and the extent to which investors deviate from diversified portfolios. For large

values of this ratio the investor is unconstrained, while the constraint has the largest ef-

fect at low values of the ratio. This result, which holds even when fully diversified index

funds are available, implies that young investors are most likely to be affected while older

investors are more likely to hold diversified portfolios. This prediction is in line with

several empirical papers. For example, Goetzmann and Kumar (2008) and Calvet et al.

(2008) report that age is a significant determinant of underdiversification. Kumar (2009)

reports that young investors are more likely to hold stocks with lottery-like payoffs that

seemingly expose them to uncompensated risk. Goetzmann and Kumar (2008) report
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that households that only have a retirement investment account, which presumably in-

cludes households that do not have enough wealth for an additional investment account,

hold more underdiversified portfolios. Our findings also provide a rational explanation

for the empirical finding that investors only hold a small number of stocks in their port-

folio: similar to Black (1972), constrained investors try to increase their expected return

at the cost of holding less diversified portfolios.8 Ivković et al. (2008) show that, while

investors hold relatively few stocks in their portfolios, the number rises with an increase

in account balance, which can be thought of as a proxy of current wealth.

Beyond the existing empirical literature, our theoretical and numerical results also

provide several empirically testable predictions. For example, the calibration predicts

that severely constrained investors; i.e., those with a very low wealth to income ratio, will

hold only the asset with the highest leveraged expected return adjusted for covariance

with labor income, which is not necessarily the one with the highest Sharpe ratio. As we

already mentioned, Ivković et al. (2008) report that concentrated portfolios have lower

Sharpe ratios and higher expected returns. Another example would be to test whether

investors that borrow on margin — a possible indication that the investor is financially

constrained — hold less diversified portfolios than investors that do not.

An additional empirical prediction involves the dynamics of underdiversification:

given that our model predicts that the degree of underdiversification of an investor’s

portfolio depends on the ratio of his labor income to his financial wealth, we would

expect underdiversification to decrease following a negative shock to an investor’s labor

income, such as the loss of a job.

While our findings reveal a clear link between the combination of labor income and

financial constraints and underdiversified portfolios, several hurdles remain before a

rational model can explain all the available empirical findings. One challenge is the

conflict between the theoretical prediction that investors will not hold the riskless asset

and an undiversified equity portfolio simultaneously, and the empirical results reported

in Polkovnichenko (2005) and Calvet et al. (2008). While our model cannot address this

issue, a possible resolution could be a model with an additional cost imposed on trading

8An interesting question is whether the inclusion of put options, with their higher leverage, would
alleviate the financial constraint. While options have not empirically been a significant component of
individual portfolios, the reason why investors shun them is unclear, and can be, for example, due to
their high prices, see Kubler and Willen (2006). This question is outside the scope of our paper.
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risky assets. Such a cost could be due, for example, to transaction costs for buying and

selling assets, the cost of learning about asset characteristics, or capital gain taxes.9

While our framework implies that holding individual stocks in investor portfolios is

optimal even when mutual funds or exchange-traded funds (ETFs) are available, there

may be other, quantitatively different, explanations. Beyond forced holdings, such as

company stock granted to employees, individual stock selection could be predicted in a

rational framework by including competition for scarce local resources, creating a home-

bias effect in areas where local companies grant stocks to their employees they cannot

trade out of — see DeMarzo, Kaniel, and Kremer (2004). Van Nieuwerburgh and Veldkamp

(2010) propose another possible explanation. Assuming that investors have limited re-

sources to learn about individual stocks, they show that it is optimal to focus on a small

subset of stocks, and hold portfolios that simultaneously include a diversified fund and

a concentrated set of assets.

In addition to holding underdiversified portfolios, the empirical literature shows that

investors tend to focus on assets with high idiosyncratic volatilities, a preference often

attributed to behavioral biases. We have shown that rational alternatives exist: the

covariance structure of the risky assets and the asset characteristics affect which stocks

are held and can lead to portfolios concentrated on assets with higher idiosyncratic risk;

another possibility is that labor income growth is positively correlated with assets with

low idiosyncratic volatility. For investors that cannot short a risky asset, with little fi-

nancial wealth, and relatively many years to retirement, the positive correlation between

labor income growth and the returns of a risky asset generates hedging demand leading

to dropping the correlated asset from the investor’s portfolio. Across such investors one

would observe concentrated portfolios on assets whose correlation with labor income

growth is low, which are likely to have high idiosyncratic volatility. A final possibility

is that assets with high betas and expected returns have high idiosyncratic volatilities:

since constrained investors tend to trade excess return for diversification, concentrated

portfolios are likely to include assets with high expected returns and high idiosyncratic

volatility. In our numerical base case, calibrated to five industry portfolios, we have seen

that this relationship is not monotone since the asset with the highest expected return,

the High Tech index, is not the asset with the highest idiosyncratic volatility.

9In Gallmeyer, Kaniel, and Tompaidis (2006) it is shown that capital gain taxation can also induce
an investor to hold an underdiversified portfolio, while simultaneously holding the riskless asset.
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In addition to rational explanations, it is likely that behavioral based explanations

have a significant effect. Our contribution in this paper is to offer the ratio of wealth

over income as a variable that can be used to understand underdiversification in in-

vestor portfolios. It would be important to find additional variables that can distinguish

between the rational and behavioral explanations.

Beyond offering a potential explanation for the empirically observed concentration

and underdiversification of household portfolios, our framework can also be applied to the

case of mutual fund and hedge fund managers that face leverage constraints. Similar

to the investors in our framework, the constraints would lead the managers to trade

diversification for higher excess returns, leading them to hold portfolios concentrated in

a few assets with high expected returns and betas.

An interesting extension of our work would be to consider assets with different margin

requirements. In this case, we expect that the assets that have the highest expected

return, when leveraged to the greatest extent possible, would appear most attractive to

constrained investors. Such behavior would be in line with the preference of individual

investors for residential real estate investments over financial investments, due to the

lower margin requirements for residential real estate.
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Appendix A. Proof of Proposition 1

Assume that (c, (x, z)) is a feasible strategy for initial conditions (Wt, Yt). Then, for

all α > 0, we first show that (αc, (αx, αz)) is a feasible strategy for initial conditions

(αWt, αYt). Consider the dynamics for the wealth process Wα, with initial conditions

(αWt, αYt), following the consumption and investment plan (αc, (αx, αz)). We have

dWαs = αWsds− αcsds+ αYsds+ αz⊺s (µ− r1)ds+ αz⊺sσdws = αdWs, (44)

therefore, Wαs = αWs. Similarly, we have Yαs = αYs. The investment strategy satisfies

the margin requirement since

λ⊺(αz) = αλ⊺z ≤ αW. (45)

It follows that

F (αW,αY ) ≤ α1−γF (W,Y ), (46)

since the utility function in homogeneous of degree 1− γ. In addition

F (W,Y ) = F (α−1αW,α−1αY ) ≤ αγ−1F (αW,αY ), (47)

so given Eq. (46) in fact we have

F (αW,αY ) = α1−γF (W,Y ). (48)

Appendix B. Proof of Proposition 2

To show that F is nondecreasing in (Wt, Yt) is simple, since given an initial endow-

ment (Wt, Yt), it is clear that starting with wealth W ′
t > Wt or income Y ′

t > Yt at time

t, the optimal strategy for the initial condition (Wt, Yt) is still admissible and poten-

tially nonoptimal for the problem with initial conditions (W ′
t , Y

′
t ). This implies that F

is nondecreasing in W and Y. To show concavity, consider two initial conditions (Wt, Yt)
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and (W ′
t , Y

′
t ) and α ∈ (0, 1). Denote (c, (x, z)) and (c′, (x′, z′)) the optimal strategies

respectively for the two initial conditions. Then, the strategy

S : (αc+ (1− α)c′, αx+ (1− α)x′, αz + (1− α)z′), (49)

is admissible for the initial condition

I : (αWt + (1− α)W ′
t , αYt + (1− α)Y ′

t ). (50)

Denoting W α the wealth process associated with strategy S and initial condition I, for

all times s, we have

W α
s = αWs + (1− α)W ′

s, (51)

and similarly for the income process

Y α
s = αYs + (1− α)Y ′

s . (52)

The margin constraint is satisfied since

λ⊺(αz + (1− α)z′) = αλ⊺z + (1− α)λ⊺z′ ≤ αW + (1− α)W ≤W, (53)

as both z and z′ are feasible. Finally, by strict concavity of the utility function u, we

have

Et

[∫ ∞

t

u (αcs + (1− α)c′s) e
−θsds

]
> Et

[∫ ∞

t

(αu(cs) + (1− α)u(c′s)) e
−θsds

]
, (54)

which implies that

F (αWt + (1− α)W ′
t , αYt + (1− α)Y ′

t ) > αF (Wt, Yt) + (1− α)F (W ′
t , Y

′
t ). (55)

Appendix C. Proof of Proposition 3

We note that the assumption that (σσ⊺)−1η ∈ R
N
+ ensures that all assets are held

long in the portfolio when the margin requirement is not binding.
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The assumption that all the entries off the diagonal of the inverse covariance matrix

(σσ⊺)−1 are non-positive implies that (σσ⊺)−1 = αIN − P, where α > 0 and P is a

matrix with non-negative elements. Since (σσ⊺)−1 is positive definite, all its eigenvalues

are positive, which implies that the spectral radius of matrix P/α must be strictly less

than one. In spectral theory, this class of matrices is called Z-matrices (or negated

Metzler matrices). Note that we have

σσ⊺ =
1

α
(IN −

P

α
)−1 =

1

α

∞∑

n=0

(
P

α

)n

<∞ (56)

as the spectral radius of P/α, is strictly less than one. We conclude that all the entries

of the covariance matrix σσ⊺ are non-negative, i.e. all the assets are pairwise positively

correlated. The assumption is satisfied for instance when (i) the returns of all the N

assets are independent, or (ii) when the returns of all the assets have pairwise the same

non-negative coefficient of correlation ρ ≥ 0.

To see this last point, consider the case where all pairwise correlations are positive

and equal to ρ > 0. Let M = (σσ⊺)−1 = [mij ]. It is easy to check that

mii =
1 + (N − 2)ρ

(1− ρ)(1 + (N − 1)ρ)

1

σ2
i

> 0

mij = −
ρ

(1− ρ)(1 + (N − 1)ρ)

1

σiσj
< 0, i 6= j.

(57)

We proceed with the proof of Proposition 3 in three steps.

Step 1: Normalization of the Program.

First, we rewrite the optimization problem. When labor income is uncorrelated with

the market, we have

max
ω∈RN

+

ω⊺η −
y

2
ω⊺(σσ⊺)ω, s.t. ω⊺λ+ ≤ 1, (58)

where η = µ − r1. For k = 1, . . . , N, set ω̂i = ωi/λ
+
i , η̂i = ηi/λ

+
i and σ̂i = σi/λ

+
i . The

optimization program is equivalent to

max
ω̂∈RN

+

ω̂⊺η̂ −
y

2
(ω̂)⊺(σ̂σ̂⊺)ω̂, s.t. ω̂⊺1 ≤ 1. (59)
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Observe that (σσ⊺)−1η ∈ R
N
+ if and only if (σ̂σ̂⊺)−1η̂ ∈ R

N
+ . Thus, without loss of

generality, we can assume that the margin coefficients are the same for all the assets and

can be normalized to one.

Step 2: Reduced Effective Domain.

In Lemma H.1 in Appendix H, we discuss the dual formulation of the optimization

problem, define the effective domain Na,b and show that

Na,b = {(a, b) ∈ R+ × R
N
+ , (1− λ+i )a ≤ bi ≤ (1 + λ−i )a}. (60)

When short sales are prohibited and margin coefficients are normalized to one, the effec-

tive domain is Na,b reduces to R+ × R
N
+ . The corresponding dual optimization program

is

min
(a,b)∈R+×R

N
+

ay +
1

2
(η + b− a1)⊺(σσ⊺)−1(η + b− a1). (61)

We note that asset i is not included in the portfolio if and only if b∗i > 0, i ∈ {1, . . . , N}.

Step 3: Supermodularity Property.

As shown in Appendix I, the optimal control variable a∗ is a non-increasing function

of the lifetime relative risk aversion, y. For y ≥ y∗B, we know that b∗ ≡ 0. Next, assume

that y < y∗B so that a∗(y) > 0 and observe that

1

2
(η+b−a∗(y)1)⊺(σσ⊺)−1(η+b−a∗(y)1) =

(a∗(y))2

2
(η̂∗(y)+b′−1)⊺(σσ⊺)−1(η̂∗(y)+b′−1),

(62)

where b′ = b/a∗(y) ∈ R
N
+ and η̂∗(y) = η/a∗(y). The dual optimization problem can be

seen as an N player game, where player i chooses quantity b′i ∈ R+ in order to maximize

profit πi where

πi(b
′
i, b

′−1
i ; y) = −

1

2
(η̂∗(y) + b′ − 1)⊺(σσ⊺)−1(η̂∗(y) + b′ − 1). (63)

For all (i, j) ∈ {1, . . . , N}2, i 6= j, we have

∂2πi
∂b′i∂b

′
j

= −e⊺i (σσ
⊺)−1ej ≥ 0

∂2πi
∂bi∂y

=
∂a∗(y)

∂y

1

(a∗(y))2
e⊺i (σσ

⊺)−1η ≤ 0.

(64)
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From Eq. (64), we have that this game satisfies the supermodularity conditions, so

its unique Nash equilibrium (b∗1, b
∗
2, . . . , b

∗
N ) is non-increasing in the lifetime relative risk

aversion, y, see Topkis (1998) and lecture notes by Levin (2006). This implies that,

should asset i not be the asset with the largest expected excess return, if y∗D,i = sup

{y ≥ 0, b∗i (y) = 0}, then for all y > y∗D,i, b
∗
i (y) = 0, i.e., asset i is optimally held in the

portfolio as long as y > y∗D,i, but is not included in the portfolio for all y ≤ y∗D,i. As in

the case of assets with independent returns, there are N + 1 regions.

Appendix D. Proof of Proposition 4

For y > y∗B, optimal allocation in asset k is given by

ω∗
k =

µk − r

yσ2
k

. (65)

For y slightly below y∗B, we have

ω∗
k =

1

yσ2
k

(µk − r − ψN(λ
∗, y)) , (66)

and the Lagrange multiplier ψN(λ
∗, y) is equal to

ψN (λ
∗, y) =

α⊺ξ − y

α⊺1
, (67)

where

ξk =
µk − r

λ∗k
, (68)

and

αk =

(
λ∗k
σk

)2

, k ∈ {1, . . . , N}. (69)

Since for all k ∈ {1, . . . , N}, we must have

ω∗
k

λ∗k
≥ 0, (70)
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it implies that λ∗k and µk − r must have the same sign, so that ξk > 0. It is possible to

rewrite the optimal asset allocation as

ω∗
k =

αk

yλ∗kα
⊺1

(y − α⊺(ξ − ξk1)). (71)

At y = y∗B, we must have

ψN (λ
∗, y∗B) = 0, (72)

which leads to

y∗B = α⊺ξ. (73)

Next, without loss of generality, assume that 0 < ξN < ξN−1 < · · · < ξ1. Since ξ ≥ 0 and

α ≥ 0, it is easy to see that as y decreases, asset allocation ω∗
N is the first allocation to

hit zero at

y∗N,D = α⊺(ξ − ξN1). (74)

More generally, for K ∈ {1, . . . , N} define the dropping cutoff

y∗K,D = (IKα)
⊺
[
IK(ξ − ξK1)

]
, (75)

and by convention, set y∗N+1,D = y∗B; observe that 0 = y∗1,D < y∗2,D < · · · < y∗N+1,D. When

K assets are held in the portfolio, optimal allocation in asset k is given by

ω∗
k =

µk − r − ψK(λ, y)λk
yσ2

k

. (76)

It is easy to see that for
ω∗

k

λk
to be positive, we must have µk−r

λk
positive as ψK(λ, y) > 0.

This implies that the vector of margin coefficients must be the same for all y ≤ y∗B, i.e.

λ = λ∗. Without loss of generality we can assume that the excess return of every asset is

positive, and, by Proposition C, there are exactly N +1 regions: for y∗K,D < y < y∗K+1,D,

only the first K assets are held in the portfolio, K ∈ {1, . . . , N} with

ω∗
k =

αk

yλ∗k

[
y − y∗K,D

]+

(IKα)⊺1
, k = 1, . . . , N. (77)
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Appendix E. Proof of Proposition 5

The margin constraint is equivalent to 2N linear constraints of the form λ⊺z ≤ W,

where λ ∈ Λ. Each linear constraint is defined by its vector λ. Note that at most

N constraints can be binding at the same time. If exactly 2 constraints are binding,

constraints p and q respectively defined by vectors λ(p) and λ(q), are binding, it must

be the case that vectors λ(p) and λ(q) have N − 1 components in common; if the kth

component λpk 6= λqk, then z∗k = 0, i.e. asset k is dropped out of the portfolio. More

generally, if exactly K + 1 constraints are binding, K assets have been dropped out of

the portfolio and, the vectors
{
λ(i)
}K+1

i=1
of the binding constraints must have N − K

components in common. The Hamilton-Jacobi-Bellman (HJB) equation for the primal

value function F is

θF = max
z
W

∈Q

γ(F1)
γ−1

γ

1− γ
+ (rW + Y )F1 +mY F2 +

Σ⊺Σ +Θ⊺Θ

2
Y 2F22

+ z⊺
(
(µ− r1)F1 + σΣY F12

)
+
z⊺σσ⊺z

2
F11.

(78)

Since F (W,Y ) = Y 1−γf(W
Y
), the maximization program is equivalent to

max
ω∈Q

ω⊺(η + yσΣ)− y
2
ω⊺σσ⊺ω, (79)

with ω = z/W and lifetime relative risk aversion

y = −
WF11

F1

= −
vf ′′(v)

f ′(v)
, (80)

the program defined in Eq. (79) is well defined, since, for y > 0, the objective function is

strictly concave and the margin constraint is convex, so there is a unique solution that,

from the maximum theorem, is continuous in y.

Case η = 0.

In this case, the program defined in Eq. (79) is independent of the parameter y, so

the fraction of wealth invested in each asset is constant. The unconstrained allocation

is
z

W
= (σσ⊺)−1σΣ. (81)
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If

max
λ∈Λ

(
λ⊺(σσ⊺)−1σΣ

)
≤ 1, (82)

the margin constraint is never binding, so

z∗

W
= (σσ⊺)−1σΣ. (83)

If, on the other hand,

max
λ∈Λ

(
λ⊺(σσ⊺)−1σΣ

)
> 1, (84)

the constraint is always binding. Depending of the parameters values, K assets are

optimally held in the portfolio, with K = 1, . . . , N. More specifically, assuming that

assets N,N − 1, . . . , K + 1 are dropped from the portfolio, K assets remain if and only

if for exactly K assets

max
λ∈Λ

(λke
⊺

kIKω
∗) > 0, k = 1, . . . , K, (85)

with

IKω
∗ =

(IKσσ
⊺I⊺K)

−1IKσΣ+ (1− λ⊺I⊺K(IKσσ
⊺I⊺K)

−1IKσΣ)IKλ

λ⊺I⊺K(IKσσ
⊺I⊺K)

−1IKλ
(86)

and z∗k = 0 for k = K +1, . . . , N . The proof is the same as in the case η 6= 0 (see below)

and is therefore omitted.

Case η 6= 0.

Since we intend to achieve a maximum, the smaller the number of constraints that

are binding, the higher the maximum value. First we look at the values of y such that

the margin constraint is not binding.

Nonbinding region. The first order condition leads to

ω∗ =
(σσ⊺)−1

y
(η + yσΣ). (87)

To satisfy the margin constraint, we must have

max
λ∈Λ

(ω∗)⊺λ ≤ 1. (88)
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First, we characterize the binding cutoff y∗B. As long as the constraint is not binding,

the optimal asset allocation is given by Eq. (87). Define

y∗B = max
λ∈Λ

λ⊤(σσ⊤)−1η

1− λ⊤(σσ⊤)−1σΣ
. (89)

Since Λ is discrete and finite, the maximum is attained for some λ = λ∗B; by construction,

we have

(λ∗B)
⊤ (σσ

⊤)−1

y∗B
(η + y∗BσΣ) = 1, (90)

so the constraint is binding at y = y∗B. Using Eq. (87), and the condition on the matrix

JK in Eq. (21), it is easy to see that for y > y∗B, max
λ∈Λ

λ⊤
(
z∗

W

)
< 1, so the constraint is

not binding. Finally, for the constraint to be binding at y = y∗B, it is easy to verify that

vector λ∗B (at y = y∗B), must be such that the sign of λ∗B,i and ω
∗
i given by Eq. (87) is

the same for all i = 1, . . . , N.

Case Θ = 0. Using Eq. (87), we obtain the following reduced HJB equation

(
θ + (γ − 1)(m− γ

Σ⊺Σ

2
)

)
f(v) =

γ

1− γ
(f ′(v))

γ−1

γ + f ′(v) +B−1vf ′(v)

−
1

2
η⊺(σσ⊺)−1η

(f ′(v))2

f ′′(v)
.

(91)

Consider the Legendre transform: x = f ′(v), v = −J ′(x) and f(v) = J(x) − xJ ′(x). It

follows that function J must solve the following linear ODE

(
θ + (γ − 1)(m− γ

Σ⊺Σ

2
)

)
J(x) =

γ

1− γ
x

γ−1

γ + x

+ (θ − B−1 + (γ − 1)(m− γ
Σ⊺Σ

2
)xJ ′(x)

+
1

2
η⊺(σσ⊺)−1ηx2J ′′(x).

(92)

The general solution is

J(x) =
γAx

γ−1

γ

1− γ
+Bx+

γK

β − 1 + γ
x

β−1+γ
γ +

γL

δ − 1 + γ
x

δ−1+γ
γ , (93)
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where K and L are constants and β and δ are respectively the positive and negative

root of the quadratic

1

2γ2
(
η⊺(σσ⊺)−1η

)
x2 +

(
A−1 − B−1 −

1

2γ2
η⊺(σσ⊺)−1η

)
x = A−1. (94)

We note that if x is a root of the quadratic

(
θ + (γ − 1)(m− γ

Σ⊺Σ

2
)

)
= (θ−B−1+(γ− 1)(m− γ

Σ⊺Σ

2
)x+

1

2
η⊤(σσ⊺)−1ηx2, (95)

then z = γ(x− 1) + 1 is a root of the quadratic

1

2

(
η⊤(σσ⊺)−1η

)
x2 +

(
A−1 − B−1 −

1

2
η⊤(σσ⊺)−1η

)
x = A−1. (96)

Differentiating Eq. (93) with respect to x and using the fact that x = f ′(v) and

v = −J ′(x) leads to

v +B = Af ′(v)−
1

γ +Kf ′(v)
β−1

γ + Lf ′(v)
δ−1

γ . (97)

Then, when v is large, the margin constraint is irrelevant: asymptotically, the solution

f ′(v) must be the same as in the unconstrained case, so f ′(v)−
1

γ ∼
∞
A−1v. Since δ−1 < 0,

we must have L = 0. Finally, K must be positive, otherwise for all v in the nonbinding

region we have f ′(v) < f ′
0(v), where f0 is the unconstrained, reduced, value function.

Integrating this relationship from v to M > v, we find that

f0(v) < f(v) + f0(M)− f(M). (98)

Since in the limit when wealth goes to infinity, constrained and unconstrained value

functions coincide, for any given v the previous relationship implies that f0(v) < f(v),

which is impossible.

Binding region. We now assume that y ≤ y∗B. The Lagrangian for the maximization

problem is

L = ω⊺(η + yσΣ)−
1

2
yω⊺σσ⊺ω − ψ(ω⊺λ− 1), (99)
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where ψ ≥ 0 is the Lagrange multiplier associated with the constraint. Let ψK(λ, y)

denote the value of the Lagrange multiplier ψ when only the first K assets are held in

the portfolio for some level of risk aversion y and vector of margin coefficients λ ∈ Λ.

The first order condition leads to

ω∗ =
(σσ⊺)−1

y
(η + yσΣ− ψN (λ

∗
B, y)λ

∗
B). (100)

Since the margin constraint is binding, (λ∗B)
⊺ω∗ = 1, we obtain that

ψN (λ
∗
B, y) =

(λ∗B)
⊺(σσ⊺)−1η − (1− (λ∗B)

⊺(σσ⊺)−1σΣ)y

(λ∗B)
⊺(σσ⊺)−1λ∗B

. (101)

This derivation is valid as long as for all i = 1, . . . , N , ω∗
i /λ

∗
B,i ≥ 0. At y = y∗B, ψN = 0,

exactly one constraint is binding and all asset allocations are different from zero until y

becomes too small. More precisely, from Eqs. (100) and (101), it is easy to verify that

z∗i = 0 exactly when y = yi,N with

yi,N =

(
λ∗B −

(λ∗

B)⊺(σσ⊺)−1λ∗

B

e⊺i (σσ
⊺)−1λ∗

B

ei

)
⊺

(σσ⊺)−1η

1−
(
λ∗B −

(λ∗

B)⊺(σσ⊺)−1λ∗

B

e⊺i (σσ
⊺)−1λ∗

B

ei

)⊤
(σσ⊺)−1σΣ

. (102)

We can assume that yN,N = max
i=1,..,N

{yi,N} and yN,N > 0. When y = yN,N , z
∗
N = 0 and a

second linear constraint becomes binding. Hence, we can conclude that for yN,N < y <

y∗B, the margin constraint is binding and all assets are optimally held in the portfolio.

For y slightly below yN,N , at least two linear constraints are binding and allocation

in asset N must be zero for y on some interval [yN,N − ε, yN,N ] for some ε > 0. To

see this, we proceed by contradiction and assume that the position of asset N changes

sign at y = yN,N . We denote λ
∗

B the vector of margin coefficients that has the same

components as vector λ∗B, except the last one. Since Λ is a discrete set, at y = yN,N we

must have ψN (λ
∗
B, yN,N) 6= ψN (λ

∗

B, yN,N), which is impossible by the continuity of the

solution in the lifetime relative risk aversion y. As mentioned earlier, the vectors λ of

these two linear constraints have their N−1 first components in common and only their

last components differ. It follows that as risk aversion y decreases, the optimization

problem is identical to program defined in Eq. (79) but possibly of smaller dimension

(not holding some assets may be optimal) and for a different vector of margin coefficients

λ ∈ Λ. Next, Lemma E.1 characterizes the optimal asset allocation when it is optimal
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only hold K assets in the portfolio. To simply the exposition, we assume, without loss

of generality, that the first K assets are held in the portfolio while keeping in mind that

several different K asset configurations can take place as y decreases. Finally, it should

be clear from the previous N asset analysis that in general (except for a parameter

degeneracy), it is optimal to hold K assets as long as y belongs to a nonempty interior

interval.

Lemma E.1. Assume that for y in
[
y−N,K, y

+
N,K

]
with 0 < y−N,K < y+N,K ≤ y∗B, the first

K assets are optimally held in nonzero positions. Then, for all y ∈
[
y−N,K, y

+
N,K

]
, there

is a vector λ ∈ Λ such that the optimal asset allocation is given by

IKω
∗ =

I⊤K(IKσσ
⊺I⊤K)

−1IK (η − ψK(λ, y)λ)

y
, (103)

and satisfies that

(i) for all i ∈ {1, . . . , K}, ω∗
i /λi ≥ 0

(ii) the Lagrange multiplier ψK associated with the optimization problem is positive and

given by

ψK(λ, y) =
(IKλ)

⊺(IKσσ
⊺I⊤K)

−1IKη −
(
1− (IKλ)

⊺(IKσσ
⊺I⊤K)

−1IKσΣ
)
y

(IKλ)⊺(IKσσ⊺I⊤K)
−1IKλ

. (104)

(iii) Risky asset allocations are given by

IKω
∗ =

(IKσσ
⊺I⊺K)

−1IKη

y
+

(
MK −

LK

y

)
(IKσσ

⊺I⊺K)
−1IKλ, (105)

with

LK =
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IKη

(IKλ)⊺(IKσσ⊺I⊺K)
−1IKλ

MK =
1

(IKλ)⊺(IKσσ⊺I⊺K)
−1IKλ

.

(106)

For y in
[
y−N,K , y

+
N,K

]
, no other asset configuration of dimension larger than K satisfies

all the aforementioned properties.

Proof of Lemma E.1: By assumption for all λ ∈ Λ, (1−λ⊺I⊤K(IKσσ
⊺I⊤K)

−1IKσΣ) >

0, so as y decreases, ψK remains positive. Consider the optimization problem PN,J when
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investors face a margin constraint, N assets are available but the last N − J assets

must be held in zero positions. Clearly, program PN,J is more stringent than program

PN,J+1, and for (y, λ) ∈ R+ × Λ given, the optimal solution of problem PN,J is an

admissible (not necessarily optimal) allocation for problem PN,J+1. Then, assume that

for (y, λ) ∈ R+ × Λ, there is a solution to program PN,J+1 that is given by Eq. (103)

where the Lagrange multiplier is given by Eq. (104) for K = J+1. Given what precedes,

it cannot be the case that the optimal solution to program PN,J+1 and, a fortiori the

optimal solution to program PN,N , is given by Eq. (103) for K = J unless asset K +1 is

held in a zero position. Whenever the asset position is given by Eq. (103), the investor

is better off holding more rather than less assets.

Margin constraint binding for all y ≤ y∗B. The result follows from the fact that,

if K ≤ N assets are optimally held in the portfolio as lifetime relative risk aversion y

decreases, then Lagrange multiplier ψK given by Eq. (104) remains positive and therefore

the constraint must be binding. This implies that once the constraint starts binding at

y = y∗B, it remains binding for all y ≤ y∗B.

A given optimal asset position may only be found as long as y belongs to

a single interval. Assume that for y in
[
y−N,K , y

+
N,K

]
with 0 < y−N,K < y+N,K ≤ y∗B, it is

optimal to hold only K assets (without loss of generality the first K assets) in nonzero

positions with vector of margin coefficient I⊺Kλ and assume that y+N,K is the largest value

of y such that it is optimal to hold the (specific) asset combination. Lagrange multiplier

ψK(λ, y) given by Eq. (104) is a linear function that decreases with the second argument

y, which implies that the components of the vector yIKω
∗ is also a linear function of

y, where IKω
∗ is given by Eq. (103). Next, note that the components of vector IKω

∗

has a constant sign (the same sign as the component of vector IKλ) on an interval. It

remains to show that it is not possible to reintegrate some assets while keeping the first

K assets and then dropping back the reintegrated assets to again hold only the first K

assets. Since the constraint is binding, if asset K + 1 were to be reintegrated into the

portfolio at y = y−N,K , the K + 1 asset’s position as a function of y for y slightly below

y−N,K can be written as

ω∗
K+1 =

AK+1 − BK+1y

y
, (107)

with BK+1 > 0 (< 0) if the corresponding margin coefficient λK+1 is equal to λ
+(−λ−),

the first K components of vector λ being the same as when y is in
[
y−N,K , y

+
N,K

]
. If
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BK+1 > 0 (< 0), then for all values of y < y−N,K , z
∗
K+1 > 0(< 0), which implies that asset

K + 1 should not be dropped out of the portfolio without first dropping (at least) one

of the first K assets held in the portfolio. It follows that a specific asset configuration

can only hold for y within a single interval.

Asset reintegration condition. Assume that at y = y+N,J ≤ y∗B, it is optimal to

hold only (the first) J assets for some vector of margin coefficient λ ∈ Λ. By Lemma E.1,

it is optimal to reintegrate asset J + 1 into the portfolio at some lower level y−N,J < y+N,J

if and only e⊺J+1ω
∗ 6= 0 at all y = y−N,J − ε, with ε > 0 small, where allocation ω∗ is given

by Eq. (103) for K = J + 1. This leads to the condition ψJ+1(λ, y
−
N,J) = ψJ(λ, y

−
N,J).

No asset reintegrated once asset with largest leveraged expected return

held alone. Observe that for y > 0 small enough, assuming η 6= 0, the obvious optimal

solution to the program defined by Eq. (79) is ω∗ = (0, . . . , ω∗
i , . . . , 0), with ω

∗
i = 1/λi,

where asset i is such that ηi/λi = max
k=1,..,N

ηk/λk for some λ ∈ Λ. Hence, for y small

enough, only one asset is held in the portfolio. Next, observe that the program defined

by Eq. (79) is equivalent to the following program

max
ω∈Q

ω⊤(
η

y
+ σΣ)−

1

2
ω⊤σσ⊤ω, (108)

where ω = z
W
. Without loss of generality, assume that at y = y∗1 the solution of the

optimization problem defined in Eq. (108) is ω∗
1 = 1

λ1
with λ1 ∈ {−λ−, λ+}, and ω∗

k = 0

for k = 2, . . . , N. We want to show that this is also the optimal solution for all y < y∗1.

The key is to observe that y < y∗1

max
ω∈Q

ω⊤(
η

y
+σΣ)−

1

2
ω⊤σσ⊤ω ≤ max

ω∈Q

[
ω⊤(

η

y∗1
+ σΣ)−

1

2
ω⊤σσ⊤ω

]
+ max

ω∈Q
ω⊤(

η

y
−
η

y∗1
).

(109)

By assumption, the optimal solution to the optimization problem

max
ω∈Q

[
ω⊤(

η

y∗1
+ σΣ)−

1

2
ω⊤σσ⊤ω

]
, (110)

is ( 1
λ1
, 0, . . . , 0) and it turns out that for y < y∗1 the optimal solution to the optimization

problem

max
ω∈Q

ω⊤(
η

y
−

η

y∗1
), (111)
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is also ( 1
λ1
, 0, . . . , 0). The result follows.

Reduced HJB equation (first K assets held). Using the expressions for ω∗

derived in Lemma E.1, we obtain the following reduced HJB equation

(
θ + (γ − 1)(m− γ

Σ⊺Σ+Θ⊺Θ

2
)

)
f(v) =

γ

1− γ
(f ′(v))

γ−1

γ + f ′(v)

+ (B−1
K + γ(Σ⊺Σ +Θ⊺Θ)− γ(IKΣ)

⊺IKΣ+ LK)vf
′(v)

+
1

2

(
Σ⊺Σ+Θ⊺Θ+M2

K(IKλ)
⊺(IKσσ

⊺I⊺K)
−1IKλ

−2MK(IKλ)
⊺(IKσσ

⊺I⊺K)
−1IKσΣ

)
v2f ′′(v)

−
1

2

(
(IKη)

⊺(IKσσ
⊺I⊺K)

−1IKη − L2
K(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IKλ
) (f ′(v))2

f ′′(v)

(112)

Note that the coefficient of the term (f ′(v))2 /f ′′(v) is negative if K > 1 by the Cauchy-

Schwarz inequality, and equal to zero for K = 1; the coefficient of the term v2f ′′(v) is

equal to

Σ⊺Σ+Θ⊺Θ− (IKΣ)
⊺IKΣ+ (MK(IKσI

⊺

K)
−1IKλ+ IKσΣ)

⊺(MK(IKσI
⊺

K)
−1IKλ+ IKσΣ),

(113)

which is positive.

Deterministic income and general preferences.

The Hamilton-Jacobi-Bellman equation for the primal value function F is

θF = max
z
W

∈Q
ũ(F1) + (rW + Y )F1 +mY F2 + z⊺(µ− r1)F1 +

1
2
z⊺σσ⊺zW 2F11, (114)

where ũ is the convex conjugate of u. This maximization problem is the same as the one

solved for the CRRA preferences case so all the results found in the CRRA preference

case apply. Furthermore, note that since Σ = 0, margin coefficient λ∗B,i must have the

same sign as e⊺i (σσ
⊺)−1(µ− r1).
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Appendix F. Proof of Proposition 6

When N = 2 and Σ = 0, the program defined by Eq. (79) becomes

max
ω∈Q

ω⊤(µ− r1)−
y

2
ω⊤σσ⊤ω − ψ2(ω

⊤λ− 1), (115)

where λ ∈ Λ and ψ2 ≥ 0 is the Lagrange multiplier. The first order condition is

z∗

W
=

(σσ⊤)−1

y
(µ− r1− ψ2λ), (116)

and

ψ2 =
λ⊤(σσ⊺)−1(µ− r1)− y

λ⊤(σσ⊺)−1λ
. (117)

The constraint starts binding at

y = y∗B = max
λ∈Λ

λ⊤(σσ⊤)−1(µ− r1), (118)

so that

λ∗B = argmax
λ∈Λ

λ⊤(σσ⊤)−1(µ− r1). (119)

The covariance matrix is

σσ⊤ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, (120)

so that

(σσ⊤)−1 =
1

σ2
1σ

2
2(1− ρ2)

[
σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
. (121)

For y ≥ y∗B

z∗1
W

=
1

y(1− ρ2)σ2
1σ

2
2

[
σ2
2(µ1 − r)− ρσ1σ2(µ2 − r)

]

z∗2
W

=
1

y(1− ρ2)σ2
1σ

2
2

[
σ2
1(µ2 − r)− ρσ1σ2(µ1 − r)

]
,

(122)
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For y ≤ y∗B

z∗1
W

=
1

λ1

[(
σ1

λ1

)2
+
(

σ2

λ2

)2
− 2ρσ1

λ1

σ2

λ2

]
[(

µ1 − r

λ1
−
µ2 − r

λ2

)
1

y
+

(
σ2
λ2

)2

− ρ
σ1
λ1

σ2
λ2

]

z∗2
W

=
1

λ2

[(
σ1

λ1

)2
+
(

σ2

λ2

)2
− 2ρσ1

λ1

σ2

λ2

]
[(

µ2 − r

λ2
−
µ1 − r

λ1

)
1

y
+

(
σ1
λ1

)2

− ρ
σ1
λ1

σ2
λ2

]
.

(123)

Let us assume that asset 1 is ultimately selected so that µ1−r
λ∗

1

> max
λ2∈{−λ−,λ+}

µ2−r
λ2

, for some

λ∗1 ∈ {−λ−, λ+} and set λ
∗

1 = λ+ if λ∗1 = −λ−, λ
∗

1 = −λ− if λ∗1 = λ+.

General properties. For y ≤ y∗B, asset allocations (z1, z2) are given by Eq. (123)

provided that it is possible to find a pair (λ1, λ2) ∈ Λ such asset zi
λi

≥ 0, i = 1, 2,

otherwise, only one asset is held in the portfolio. Second, recall that if asset 1 is held

alone at y = y, then it is optimal to hold only asset 1 for all y ≤ y (Proposition 5).

Third, it is never optimal to hold only asset 1 in a position (say long) for y in some

interval and only asset 1 in the opposite position (say short) for y in some other interval.

Fourth, define the dropping (D) and reintegrating (R) asset cutoffs

yL2,D =




µ1−r
λ∗

1

− µ2−r
λ+

(
σ1

λ∗

1

)2
− ρσ1

λ∗

1

σ2

λ+




+

and yS2,D =




µ1−r
λ∗

1

+ µ2−r
λ−

(
σ1

λ∗

1

)2
+ ρσ1

λ∗

1

σ2

λ−




+

y∗1,R =




µ1−r
λ∗

1

− µ2−r
λ2

−
(

σ2

λ2

)2
+ ρσ1

λ∗

1

σ2

λ2




+

and y∗1,D =




µ1−r

λ
∗

1

− µ2−r
λ2

−
(

σ2

λ2

)2
+ ρσ1

λ
∗

1

σ2

λ2




+

,

(124)

and y∗2,D = min∗{yL2,D, y
S
2,D}. The value of λ2 cannot change and is determined by the

sign of asset 2 position at y = y∗B using Eq. (122). Given what precedes, by inspection,

it is easy to check that the maximum number of regions that can be encountered is equal

to five, namely 0 < y∗2,D < y∗1,R < y∗1,D < y∗B. The special case y∗1,R = y∗1,D occurs if and

only if SP1
= ρSP2

, where SP1
, SP2

are the Sharpe ratios of assets 1, 2 respectively. By

inspection of Eq. (122) it must be the case that y∗1,R = y∗1,D = y∗B = µ2−r
λ2σ2

2

. On
[
0, y∗2,D

]

asset 1 is held alone and on
[
y∗2,D, y

∗
B

]
both assets are held in the portfolio with the

same sign. Thus, it is not possible to have four regions. Alternatively, we may have
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only three regions 0 < y∗2,D < y∗B. Finally, the special case y∗2,D = y∗B occurs if and only

if SP2
= ρSP1

and there are only two regions.

To illustrate the three possible dynamics of the portfolio concentration once the

margin constraint is binding, y ≤ y∗B, we consider three parameter configurations below.

Five regions. We assume that 0 < µ2 − r < µ1 − r and µ1−r
σ1

< ρµ2−r
σ2

, which

implies that 0 < σ2 < ρσ1. Note that λ∗1 = λ+ and
(
λ∗B,1, λ

∗
B,2

)
= (−λ−, λ+) so

y∗B = (−λ−, λ+)⊤(σσ⊤)−1(µ− r1) > 0. (125)

In this case, λ
∗

1 = −λ− and we have

y∗1,D =
µ1−r
λ− + µ2−r

λ+(
σ2

λ+

)2
+ ρ σ1

λ−

σ2

λ+

, y∗1,R =

µ1−r

λ+
−

µ2−r

λ+

−
(
σ2

λ+

)2
+ ρ σ1

λ+

σ2

λ+

, y∗2,D =

µ1−r

λ+
−

µ2−r

λ+

(
σ1

λ+

)2
− ρ σ1

λ+

σ2

λ+

. (126)

and one can check that indeed, 0 < y∗2,D < y∗1,R < y∗1,D < y∗B.

On
[
y∗1,D, y

∗
B

]
asset 1 is held (short) and asset 2 is held (long)

z∗1
W

=
1

λ−
[(

σ1

λ−

)2
+
(
σ2

λ+

)2
+ 2ρ σ1

λ−

σ2

λ+

]
[(

−
µ1 − r

λ−
−
µ2 − r

λ+

)
1

y
+
( σ2
λ+

)2
+ ρ

σ1
λ−

σ2
λ+

]
< 0

z∗2
W

=
1

λ−
[(

σ1

λ−

)2
+
(
σ2

λ+

)2
+ 2ρ σ1

λ−

σ2

λ+

]
[(

µ2 − r

λ+
+
µ1 − r

λ−

)
1

y
+
( σ1
λ−

)2
+ ρ

σ1
λ−

σ2
λ+

]
> 0,

(127)

on
[
y∗1,R, y

∗
1,D

]
only asset 2 is held (long)

z∗1
W

= 0

z∗2
W

=
1

λ+
,

(128)

on
[
y∗2,D, y

∗
1,R

]
asset 1 is held (long) and asset 2 is held (long)

z∗1
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ1 − µ2

y
+
σ2
λ+

(σ2 − ρσ1)

]
> 0

z∗2
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ2 − µ1

y
+
σ1
λ+

(σ1 − ρσ2) y

]
> 0,

(129)
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and finally on
[
0, y∗2,D

]
only asset 1 is held (long)

z∗1
W

=
1

λ+

z∗2
W

= 0.

(130)

Three regions. We assume that 0 < µ2 − r < µ1 − r, µ2−r
σ2

> ρµ1−r
σ1

, which implies

0 < ρσ2 < σ1. We have λ∗1 = λ+, λ∗B,1 = λ∗B,2 = λ+ and

y∗B = (λ+, λ+)⊤(σσ⊤)−1(µ− r1) > 0. (131)

Margin coefficient λ
∗

1 is irrelevant. We have 0 < y∗2,D < y∗B with

y∗2,D =
µ1 − µ2

σ1

λ+ (σ1 − ρσ2)
. (132)

On
[
y∗2,D, y

∗
B

]
asset 1 is held (long) and asset 2 is held (long)

z∗1
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ1 − µ2

y
+
σ2
λ+

(σ2 − ρσ1)

]
> 0

z∗2
W

=
1

σ2
1 + σ2

2 − 2ρσ1σ2

[
µ2 − µ1

y
+
σ1
λ+

(σ1 − ρσ2)

]
> 0,

(133)

and on
[
0, y∗2,D

]
only asset 1 is held (long)

z∗1
W

=
1

λ+

z∗2
W

= 0.

(134)

Two regions. We assume that 0 < µ2 − r < µ1 − r, µ2−r
σ2

= ρµ1−r
σ1

. We have λ∗1 = λ+.

It follows that

y∗2,D = y∗B = λ+
µ1 − r

σ2
1

> 0. (135)

Only asset 1 is held (long)

z∗1
W

=
1

max{y, y∗B}

µ1 − r

σ2
1

> 0

z∗2
W

= 0.

(136)
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Appendix G. Proof of Proposition 7

We assume that for (i, j) = {1, . . . , K}2,

ηi
λ∗i

=
ηj
λ∗j

> 0, (137)

Assume that, for y ∈
[
y−N,K , y

+
N,K

]
, it is optimal to hold the first K assets in such a way

that the condition in Eq. (137) is satisfied for k = 1, . . . , K. The Lagrange multiplier

given by Eq. (104) can be written as

ψK(y, λ
∗) =

η1
λ∗1

−
1− (λ∗)⊤I⊤K(IKσσ

⊺I⊤K)
−1IKσΣ

(λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKλ∗
y, (138)

which leads to the following optimal portfolio allocation

IKω
∗ = (IKσσ

⊺I⊤K)
−1

(
σΣ+

1− (λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKσΣ

(λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKλ∗
λ∗
)
. (139)

Asset allocations are independent of assets’ excess return η as well as the lifetime risk

aversion y.

Remark. If we assume that
e⊤i σΣ

λ∗

i
=

e⊤j σΣ

λ∗

j
for (i, j) in {1, . . . , K}2 we obtain that

IKω
∗ =

(IKσσ
⊺I⊤K)

−1λ∗

(λ∗)⊤I⊤K(IKσσ
⊺I⊤K)

−1IKλ∗
, (140)

which is only depends on the covariance matrix and the margin coefficients of the first

K assets.

We now show that if all assets have the same leveraged expected excess return, i.e.

the condition in Eq. (137) holds for K = N , then if at y ∈
[
y−N,K , y

+
N,K

]
exactly K assets

are held in the portfolio, then the same K assets will be held in the same position for

all y ≤ y−N,K .

Step 1: We know that for y ≤ y∗B, the margin constraint is binding. For y = 0

the investor is indifferent between assets, therefore threshold yK is well defined for some

K ∈ {1, . . . , N}.
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Step 2: If no security among the K assets held is first dropped out of the portfolio,

reintegrating asset i ∈ {K + 1, . . . , N} into the portfolio is not optimal otherwise for

all ε > 0 small enough, at y = y−N,K + ε (respectively y = y−N,K − ε), the fraction

of wealth invested in each asset is given by Eq. (139) for asset K (respectively asset

K + 1). Observe that these expressions are independent of risk aversion y, so as ε goes

to 0 there will be a jump in asset allocations at y = y−N,K, which is impossible because

of the continuity of the solution in parameter y.

Step 3: From Eq. (139), the expression for the asset allocation is, by assumption,

optimal for values of the lifetime relative risk aversion y in
[
y−N,K , y

+
N,K

]
and admissible

for all y below y+N,K. From step 2, to reintegrate asset K + 1, one asset among the K

assets held must first be dropped, which cannot be optimal, since, from Lemma E.1,

should it be possible to hold K assets whose positions are given by Eq. (139), holding

only K − 1 assets will be a dominated investment strategy.

Appendix H. Dual Approach: Fictitious Financial

Market

Let a, b and κ be, respectively, an 1 × 1, an N × 1 and an M × 1 adapted stochas-

tic processes to filtration F and consider the following fictitious financial market that

consists of:

- a riskless bond B̂ with dynamics given by

dB̂t = (r + a)B̂tdt, (141)

- N risky, nondividend paying securities whose prices evolve according to:

dŜt = IŜt
(µ+ b)dt + IŜt

σdwt, (142)

- M additional, nondividend paying securities whose prices evolve according to:

dP̂t = IP̂t
µ̂dt + IP̂t

σ̂dwY
t , (143)
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where µ̂ and σ̂ are respectively anM ×1 andM ×M adapted stochastic processes

to filtration F, such that κ = −σ̂−1(µ̂− r1).

Dual formulation

A state price density πa,b,κ is an adapted stochastic process to filtration F defined by

πa,b,κ
0 = 1 and

dπa,b,κ
t = πa,b,κ

t

(
−(r + at)dt−

(
σ−1

(
bt − at1 + µ− r1

))
⊺

dwt + κ⊺t dw
Y
t

)
, (144)

where a, b and κ are, respectively, an 1× 1, an N × 1 and an M × 1 adapted stochastic

process to filtration F.

Effective domain

For (a, b, κ) ∈ R× R
N × R

M , let

e(a, b, κ) = sup
z

z+x
∈Q

− ax− b⊺z. (145)

The effective domain N is defined by

N =
{
(a, b, κ) ∈ R× R

N × R
M , e(a, b, κ) <∞

}
. (146)

Lemma H.1. Under the margin constraint, Eq. (4), the effective domain is given by

N = {(a, b, κ) ∈ R+ × R
N
+ × R

M , κ+a ≤ bi ≤ κ−a, i = 1, . . . , N}, (147)

and e(a, b, κ) ≡ 0, for all (a, b, κ) ∈ N .

Proof of Lemma H.1. The relationship e(a, b, κ) ≡ 0 comes from the fact that Q

is a cone. Then, it is easy to see that we must have a ≥ 0, bi ≥ 0, i = 1, . . . , N . If

zi ≥ 0, i = 1, . . . , N we have

− ax− b⊺z = −a

(
x+ (1− λ+)

N∑

i=1

zi

)
−

N∑

i=1

(bi − (1− λ+)a)zi. (148)

63



Since zi ≥ 0, i = 1, . . . , N we must have bi − (1 − λ+)a ≥ 0, i = 1, . . . , N . Similarly,

when zi ≤ 0, i = 1, . . . , N , we have

− ax− b⊺z = −a

(
x+ (1 + λ−)

N∑

i=1

zi

)
−

N∑

i=1

(bi − (1 + λ−)a)zi. (149)

Since zi ≤ 0, i = 1, . . . , N , we must have bi − (1 + λ−)a ≤ 0, i = 1, . . . , N . Since

λ+ = κ+ + 1 and λ− = κ− − 1, the result follows.

Following the derivation in Cuoco (1997), for some suitable price density π∗ =

πa∗,b∗,κ∗

, the optimization problem, given in Eq. (9), is equivalent to

F (W0, Y0) = max
c

E0

[∫ ∞

0

u(cs)e
−θsds

]

such that E0

[∫ ∞

0

π∗
scsds

]
= W0 + E0

[∫ ∞

0

π∗
sYsds

]
,

(150)

with W0 > 0 and Y0 > 0 given.

Appendix I. Dual Approach

To ensure that the optimization problem, given by Eqs. (9), and (150) are equivalent,

it is enough to determine the saddle point (c∗, φ∗, (a∗, b∗, κ∗)) of the functional

L(c, ψ, (a, b, κ)) = E0

[∫ ∞

0

u(cs)e
−θsds

]
−φ

(
E0

[∫ ∞

0

πa,b,κ
s (cs − Ys)ds

]
−W0

)
. (151)

The maximization over c yields u′(c∗s)e
−θs = φπa,b,κ

s and the Lagrange multiplier φ∗ is

determined by the budget constraint

E0

[∫ ∞

0

πa,b,κ
s (I(φ∗πa,b,κ

s eθs)− Ys)ds

]
=W0, (152)

where I is the inverse of the marginal utility function. We define the process Xa,b,κ:

Xa,b,κ
t = φ∗πa,b,κ

t eθt. (153)
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The dual value function J is given by

J(X0, Y0) = min
(a,b,κ)∈N

E0

[∫ ∞

0

(
ũ(Xa,b,κ

s ) +Xa,b,κ
s Ys

)
e−θsds

]
, (154)

where ũ(X) = max
c≥0

u(c)− Xc is the convex conjugate of u. The solution of this mini-

mization problem (a∗, b∗, κ∗) allows us to recover the state price density π∗ = πa∗,b∗,κ∗

.

For CRRA preferences, the convex conjugate is given by

ũ(X) =





γX
γ−1
γ

1−γ
, γ 6= 1,

− lnX − 1 , γ = 1.
(155)

Properties of the dual value function

Primal variables (F,W ) and dual variables (J,X) are linked by the following Legen-

dre transformation

W = −J1(X, Y ) and X = F1(W,Y ). (156)

As explained in He and Pagès (1993), J is nonincreasing and strictly convex in X . It is

also easy to check that J is nondecreasing and concave in Y. For the case of a CRRA

investor, the dual value function J can be written as J(X, Y ) = X
γ−1

γ h(X
1

γ Y ), for some

smooth function h. For convenience, let us write N = Na,b × R
M . The dual value

function J satisfies the following Hamilton-Jacobi-Bellman equation:

θJ =
γX

γ−1

γ

1− γ
+XY + (θ − r)XJ1 +mY J2 +

Σ⊺Σ +Θ⊺Θ

2
Y 2J22 −

Σ⊺Σ

2

J2
12

J11

+ min
κ∈RM

{
κ⊺κ

2
X2J11 + κ⊺ΘXY J12

}

+ min
(a,b)∈Na,b

{
−aXJ1 +

X2

2

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
⊺

(σσ⊺)−1

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
J11

}

(157)
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We obtain that κ∗ = −ΘXY J12
X2J11

, which leads to

θJ =
γX

γ−1

γ

1− γ
+XY + (θ − r)XJ1 +mY J2 +

Σ⊺Σ +Θ⊺Θ

2
Y 2

(
J22 −

J2
12

J11

)

+ min
(a,b)∈Na,b

{
−aXJ1 +

X2

2

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
⊺

(σσ⊺)−1

(
b+ µ− (r + a)1−

σΣY J12
XJ11

)
J11

}

(158)

Using the fact that γXJ11 = −J1+Y J12 and−XJ11/J1 = 1/y, the minimization problem

is equivalent to

min
(a,b)∈Na,b

a+
1

2y

(
η + yσΣ+ b− a1

)
⊺

(σσ⊺)−1
(
η + yσΣ+ b− a1

)
. (159)

The minimization problem given by Eq. (159) and the maximization problem, given by

Eq. (16), are dual programs of one another: the solution a∗ of the dual problem is equal

to the Lagrange multiplier ψ of the primal problem. Within the nonbinding region, we

find that b∗i = a∗ = 0. When K assets are optimally held — without loss of generality

we can always assume the first K assets — the solution of program given by Eq. (159)

is

a∗ = ψK =
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IKη − (1− (IKλ)
⊺(IKσσ

⊺I⊺K)
−1IKσΣ)y

(IKλ)⊺(IKσσI
⊺

K)
−1IKλ

b∗k = (1− λk)a
∗, k = 1, . . . , K,

(160)

for some λ ∈ Λ, and the fraction of wealth invested in risky assets z∗/W is given by

IK
z∗

W
=

(IKσσ
⊺I⊺K)

−1

y
IK(η − yσΣ+ b∗ − a∗1). (161)

The last N −K constraints of set Na,b are non binding and the last N −K components

of vector b∗ are such that z∗k = 0, for k = K + 1, K + 2, . . . , N .

Remark. Observe that the right hand side of Eq. (150) represents the lifetime re-

sources of the investor. Even though an individual is not allowed to pledge his future

labor income in any investment strategy and can only use his financial wealth W0, his

lifetime resources may by far exceed W0. The margin requirement imposes a limit on
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the investor’s maximum exposure to risky assets. When the margin requirement binds,

the investor becomes fairly risk tolerant, which leads him to sacrifice diversification and

load up his portfolio with assets that deliver a high expected return.

Remark. For the particular case of deterministic income and independent returns, the

investor’s choice can be thought of in terms of an adjusted Sharpe ratio for asset k, ŜP,k,

defined by

ŜP,k =
µk + b∗k − (r + a∗)

σk
. (162)

Inside the nonbinding region, for every asset k, the adjusted Sharpe ratio ŜP,k and the

true Sharpe ratio SP,k = (µk − r)/σk coincide since, when the constraint is not binding,

b∗k = a∗ = 0. Inside the binding region with N assets, we have b∗k = (1 − λ∗B,k)a
∗, for

k = 1, . . . , N so indeed ∣∣∣ŜP,k

∣∣∣ < |SP,k| , (163)

since µk−r and λ∗B,k have the same sign. Asset k is dropped out of the portfolio as soon

as its adjusted Sharpe ratio ŜP,k becomes zero. Inside the binding region with only K

assets, as the margin constraint becomes more binding, the adjusted Sharpe ratio of the

remaining K risky assets shrinks, since a∗ rises when y decreases. This result is in line

with empirical findings by Ivković et al. (2008) who report that concentrated portfolios

have lower Sharpe ratios.

Appendix J. Proof of Proposition 8

We prove Proposition 8 first for several special cases when shorting is not allowed and

then for the general case. We also provide a complete characterization for the special

case when the returns of the risky assets are independent, shorting is not allowed, and

the margin requirement is the same for the market index fund and the market-weighted

portfolio of risky assets. In this special case, the market index fund is the first asset

dropped from the portfolio, irrespective of the characteristics of the risky assets. Both

before and after the market index fund drops from the investor’s portfolio, assets whose

beta is less than, or equal to, one and that have volatility larger than the volatility of

the market index fund, may remain in the investor’s portfolio.
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The maximization program is

max
(ω,ωM )∈RN+1

(ω, ωM)⊺(η + yσΣ, ηM + yπ⊺σΣ)−
y

2
(ω, ωM)⊺V (ω, ωM)

s.t. (ω+)⊺λ+ + (ω−)⊺λ− + λ+Mω
+
M + λ−Mω

−
M ≤ 1,

(164)

where (λ+)⊺ = (λ+1 , λ
+
2 , . . . , λ

+
N)

⊺ and (λ−)⊺ = (λ−1 , λ
−
2 , . . . , λ

−
N)

⊺.

First, note that since the objective function is continuous and the set over which

the maximum is sought, {(ω, ωM) ∈ R
N+1, (ω+)⊺λ+ + (ω−)⊺λ− + λ+Mω

+
M + λ−Mω

−
M ≤ 1}

is compact, the maximum is achieved and at least one solution exists. The constraint

(ω+)⊺λ+ +(ω−)⊺λ−+ λ+Mω
+
M +λ−Mω

−
M ≤ 1 can be rewritten as: λ⊺ω+ λMωM ≤ 1, where

λ⊺ = (λ1, λ2, . . . , λN)
⊺, and λk ∈ {−λ−k , λ

+
k }, and ωk/λk ≥ 0 for all k ∈ {1, . . . , N}.

The Lagrangian of the maximization problem is

L =(ω, ωM)⊺(η + yσΣ, ηM + yπ⊺σΣ)−
y

2
(ω, ωM)⊺V (ω, ωM)

− ψ [(ω, ωM)⊺(λ, λM)− 1)] + (
ω

λ
,
ωM

λM
)⊺(ϕ, ϕM),

(165)

which leads to the following optimal condition

(η + yσΣ, ηM + yπ⊺σΣ)− yV (ω∗, ω∗
M)− ψ(λ, λM) + (

ϕ

λ
,
ϕM

λM
) = 0, (166)

where ψ ≥ 0, with ψ [(ω∗, ω∗
M)⊺(λ, λM)− 1)] = 0 and (ϕ/λ, ϕM/λM) ∈ R

N
+ × R+, such

that ϕkω
∗
k/λk = 0 and ϕMω

∗
M/λM = 0, for k = 1, . . . , N. We note that, by convention,

if (x, y) ∈ R
N × R

N , then z⊺ =
(

x
y

)
⊺

=
(

x1

y1
, x2

y2
, . . . , xN

yN

)
.

The optimal condition on the index fund holding is redundant. Since the system

admits a (non-unique) solution the Lagrange multipliers must satisfy

ψ(λM − π⊺λ)−
ϕM

λM
+ π⊺

ϕ

λ
= 0. (167)

Manipulating the N ×N system, we obtain that

ω∗ + ω∗
Mπ =

1

y
(σσ⊺)−1(η +

ϕ

λ
+ yσΣ− ψλ). (168)
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Observe that ω∗
k + ω∗

Mπk is the total exposure of the portfolio to asset k, either by

directly holding asset k with weight ω∗
k, and/or through the market index fund with

weight ω∗
Mπk.

We now investigate two special cases when short sales are prohibited.

Special Case 1: No Short Sales, Labor Income Uncorrelated with the Risky

Assets.

Our analysis is divided in two parts: when the margin requirement is not binding

and when the margin requirement is binding.

Part 1: Analysis when the margin requirement is not binding

First, observe that since π ∈ R
N
++, holding all the securities long for large values

of the lifetime relative risk aversion, y, is a feasible strategy. For y > y∗B, the margin

requirement is not binding and we have

ω∗ + ω∗
Mπ =

1

y
(σσ⊺)−1(µ− r1) =

̟π

y
∈ R

N
+ . (169)

Let (λ+)⊺ = (λ+1 , λ
+
2 , . . . , λ

+
N)

⊺ denote the vector of long margin coefficients for the

securities and λ+M the margin coefficient for the market index fund. In order to determine

the value of the binding threshold for the margin requirement, y∗B, we need to distinguish

several cases.

Special Case 1.1. Equal margin requirements: λ+M = π⊺λ+.

From Eq. (169), at y = y∗B we obtain that

1 =
(λ+)⊺(σσ⊺)−1(µ− r1)

y∗B
+ (λ+M − π⊺λ+)ω∗

M , (170)

so that

y∗B = (λ+)⊺(σσ⊺)−1(µ− r1). (171)

This is the same binding threshold as in the case when the market index fund is not

available.

Special Case 1.2. Margin requirement for market index fund greater than

weighted margin requirement for individual assets: λ+M > π⊺λ+.
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Again at y = y∗B, we have

1 =
(λ+)⊺(σσ⊺)−1(µ− r1)

y∗B
+ (λ+M − π⊺λ+)ω∗

M . (172)

Since the investor is always better off when the margin requirement is not binding,

the optimal strategy must be such that the margin requirement starts binding at the

lowest possible value of the lifetime relative risk aversion, y. As we assume λ+M > π⊺λ+,

choosing ω∗
M = 0 is optimal and

y∗B = (λ+)⊺(σσ⊺)−1(µ− r1). (173)

In this case the binding threshold is the same as in the case when the market index

fund is not available. In addition, the market index fund is not held when the margin

requirement starts binding.

Special Case 1.3. Margin requirement for market index fund smaller than

weighted margin requirement for individual assets: λ+M < π⊺λ+.

Again, it is optimal to choose ω∗
M is such a way that the margin requirement starts

binding for the smallest possible level of the lifetime relative risk aversion, y. As we

assume that λ+M < π⊺λ+, choosing ω∗
M as large as possible, while compatible with ω∗ +

ω∗
Mπ ∈ R

N
+ , is optimal. We can choose ω∗

M = 1/λ+M and therefore we must have ω∗ = 0.

It follows that

y∗B = λ+M1
⊺

(σσ⊺)−1(µ− r1) =
λ+M
̟

(174)

Observe that

y∗B < (λ+)⊺(σσ⊺)−1(µ− r1) (175)

as
λ+M
π⊺λ+

(λ+)⊺(σσ⊺)−1(µ− r1) = λ+M1
⊺

(σσ⊺)−1(µ− r1) (176)

and, by assumption
λ+M
π⊺λ+

< 1. (177)

This strategy is feasible since at y = y∗B, if ω
∗
M = 1

λ+

M

, from Eq. (169) we have

ω∗ =

(
1

y∗B
−

̟

λ+M

)
(σσ⊺)−1(µ− r1) = 0 ∈ R

N
+ . (178)
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Therefore, when the market index fund margin requirement is favorable compared to

the margin requirements of the individual assets, the portfolio margin requirement starts

binding at lower values of the lifetime relative risk aversion, y, and, at the value y∗B, when

the margin requirement starts binding, the investor only holds the market index fund in

his portfolio.

Part 2: Analysis when the margin requirement is binding

We first derive the following Lemma.

Lemma J.1. Choose K < N assets and let JK denote the K×N matrix whose first line

is equal to ek if asset k is among the K assets chosen and has the smallest index, second

line is equal ej if asset j is among the K assets chosen and has the second smallest index

and so on. Let VK be the covariance matrix formed by the set of the K chosen assets

and the market index fund which has rank K + 1 and is given by

VK =

[
JKσσ

⊺J⊺

K JKσσ
⊺π

π⊺σσ⊺J⊺

K π⊺(σσ⊺)π

]
. (179)

Then, we have that

V −1
K

[(
JK(µ− r1), µM − r

)]
= (0, 0, .., 0, ̟−1). (180)

Proof of Lemma J.1.

First, notice that

VK =

[
JKσσ

⊺J⊺

K ̟JK(µ− r1)

̟(µ− r1)⊺J⊺

K ̟2(µ− r1)⊺(σσ⊺)−1(µ− r1)

]
. (181)

Set

d = ̟2
[
(µ− r1)⊺(σσ⊺)−1(µ− r1)− (µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1
JK(µ− r1)

]
> 0.

(182)
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Inverting matrix VK , we obtain that V −1
K is equal to

[
(JKσσ

⊺J⊺

K)
−1
(
1 + ̟2

d
JK(µ− r1)(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1
)

−̟
d
(JKσσ

⊺J⊺

K)
−1 JK(µ− r1)

−̟
d
(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 1

d

]
.

(183)

Let IK,K+1 be the K × (K +1) matrix that consists of the first K rows of the (K +1)×

(K + 1) identity matrix. It follows that

IK,K+1V
−1
K [(JK(µ− r1), µM − r)]

=
̟2

d

[
d

̟2
+ (µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 JK(µ− r1)− (µ− r1)⊺(σσ⊺)−1(µ− r1)

]

× (JKσσ
⊺J⊺

K)
−1
JK(µ− r1)

= 0 (by definition of d in Eq. 182).

(184)

It remains to check that the claim is true for the last component. Using the fact that

µM − r = π⊺(µ− r1), we have that

e⊺K+1V
−1
K

[(
JK(µ− r1), µM − r

)]
=−

̟

d
(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 JK(µ− r1) +

1

d
π⊺(µ− r1)

=
̟

d

[
−(µ− r1)⊺J⊺

K (JKσσ
⊺J⊺

K)
−1 JK(µ− r1)

+(µ− r1)⊺(σσ⊺)−1(µ− r1)
]

=̟−1.

(185)

We now examine how asset selection takes place for values of the lifetime relative

risk aversion, y, slightly below the value y∗B, for which the margin requirement starts

binding.

Special Case 1.1: λ+M = π⊺λ+.

For y slightly below y∗B, we have

ω∗ + ω∗
Mπ =

(σσ⊺)−1
[
µ− r1− ψN (λ

+, y)λ+
]

y
, (186)
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where

ψN (λ
+, y) =

(λ+)⊺(σσ⊺)−1(µ− r1)− y

(λ+)⊺(σσ⊺)−1λ+
> 0 (187)

is decreasing in the lifetime relative risk aversion, y. As y decreases, eventually it reaches

a threshold where exactly one component of vector ω∗ + ω∗
Mπ is equal to zero. Without

loss of generality, we can assume that when y = y∗N,D, then we have ω∗
N + ω∗

MπN = 0.

Since by assumption πN > 0, we must have ω∗
M = 0, i.e., the investor optimally chooses

not to hold the market index fund as soon as dropping the first asset is optimal.

Special Case 1.2: λ+M > π⊺λ+.

For y slightly below y∗B, only the N securities are held in a non-zero position in the

portfolio. As argued above, it is never optimal to re-integrate the market index fund into

the portfolio, since, if it were optimal to re-integrate the market index fund, it would be

the next asset to be dropped as y decreases further, which leads to a contradiction.

Special Case 1.3: λ+M < π⊺λ+.

If
µM − r

λ+M
> max

k∈{1,...,N}

µk − r

λ+k
, (188)

then, for all y ≤ y∗B, the optimal portfolio is ω∗
M = 1/λ+M and ω∗ = 0, i.e., when the

leveraged expected excess return of the market index fund is greater than the leveraged

expected excess return of every risky asset, then, once the margin requirement binds,

the investor only holds the market index fund in his portfolio.

Next, assume that
µM − r

λ+M
< max

k∈{1,...,N}

µk − r

λ+k
. (189)

All assets cannot be re-integrated into the portfolio at y = y∗B − ε, ε > 0, otherwise

the condition ψ(λ+M − π⊺λ+)− ϕM

λ+

M

+ π⊺ ϕ
λ+ = 0 would be violated: at least one (possibly

more) asset is not re-integrated into the portfolio for y slightly below y∗B. For values

of the lifetime relative risk aversion, y, slightly below y∗B, by continuity of the optimal

solution in parameter y, the market index fund must be held and we assume that it is

73



optimal to hold in non-zero positions K securities. The optimal asset allocation is given

by

(JKω
∗, ω∗

M) =
V −1
K

[
(JK(µ− r1), µM − r)− ψK+1(y)(JKλ

+, λ+M)
]

y

=
1

y

(
−ψK+1(y)IK,K+1V

−1
K (JKλ

+, λ+M), ̟−1 − ψK+1(y)e
⊺

K+1V
−1
K (JKλ

+, λ+M)
)
,

(190)

with

ψK+1(y) =
(JKλ

+, λ+M)⊺V −1
K (JK(µ− r1), µM − r)− y

(JKλ+, λ
+
M)⊺V −1

K (JKλ+, λ
+
M)

=
y∗B − y

(JKλ+, λ
+
M)⊺V −1

K (JKλ+, λ
+
M)
.

(191)

We note that since IK,K+1V
−1
K I⊺KJK(µ − r1) = 0, the set of K securities optimally held

must be such that −IK,K+1V
−1
K (JKλ

+, λ+M) ∈ R
K
++. Recall that the Lagrange multiplier

ψK+1 increases as the lifetime relative risk aversion, y, decreases. This implies that

allocations in the K securities must be increasing as y decreases whereas the position in

the market index fund is decreasing. We conclude that:

• The market index fund is the next asset to be dropped out of the portfolio at

threshold value y∗M,D such that ̟−1−ψK+1(y
∗
M,D)e

⊺

K+1V
−1
K (JKλ

+, λ+M) = 0, which

implies that

y∗M,D = −
(JKλ

+)⊺IK,K+1V
−1
K (JKλ

+, λ+M)

̟
> 0. (192)

• The market index fund is never re-integrated into the portfolio, since should this

happen, as the lifetime relative risk aversion, y, decreases further, the market index

fund will again be the first asset to be dropped out, which contradicts the fact that

a particular asset configuration can only occur once, when y belongs to a particular

interval.

Special Case 2: Independent Assets, µ − r1 > 0, No Short Sales, No Labor

Income Correlation and λ+M = π⊺λ+.
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We find that the level of the lifetime relative risk aversion for which the margin

requirement starts binding, y∗B, is given by

y∗B = (λ+)⊺(σσ⊺)−1(µ− r1), (193)

and for y > y∗B, the optimal allocation in asset k is such that

ω∗
k + ω∗

Mπk =
µk − r

yσ2
k

, (194)

with (ω∗
k, ω

∗
M) ∈ R

2
+. Note that since λM = π⊺λ+, we have that

(λ+)⊺ω∗ + λMω
∗
M = (λ+)⊺(ω∗ + ω∗

Mπ) (195)

is strictly below one for y > y∗B, and equal to one for y = y∗B. For y slightly below y∗B,

we have

ω∗
k + ω∗

Mπk =
1

yσ2
k

(µk − r − ψN (λ
+, y)λ+k ) (196)

and the Lagrange multiplier ψN (λ
+, y) is equal to (α⊺ξ−y)/α⊺1, where ξk = (µk−r)/λ

+
k

and αk =
(
λ+k /σk

)2
, k ∈ {1, . . . , N}. It is possible to rewrite the optimal aggregate asset

holding for security k as

ω∗
k + ω∗

Mπk =
αk

yλ+k α
⊺1

(y − α⊺(ξ − ξk1)). (197)

At y = y∗B, we must have ψN (λ
+, y∗B) = 0, which leads to

y∗B = α⊺ξ. (198)

Next, without loss of generality, assume that 0 < ξN < ξN−1 < · · · < ξ1. From Eq. (197),

since ξ ≥ 0 and α ≥ 0, it is easy to see that as the lifetime relative risk aversion, y,

decreases, asset allocation ω∗
N + ω∗

MπN is the first allocation to hit zero at

y∗N,D = α⊺(ξ − ξN1). (199)

Since (ω∗
N , ω

∗
M) ∈ R

2
+, πN > 0, it must be the case that at y = y∗N,D, we have ω∗

N =

ω∗
M = 0, i.e., the aggregate position in asset N , as well as the position in the market

index fund, are equal to zero.
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More generally, for K ∈ {1, . . . , N} define the cutoff where asset K is dropped from

the investor’s portfolio

y∗K,D = (IKα)
⊺
[
IK(ξ − ξK1)

]
, (200)

and by convention, set y∗N+1,D = y∗B; observe that 0 = y∗1,D < y∗2,D < · · · < y∗N+1,D. For

k = 1, . . . , N − 1, we have K ∈ {1, . . . , N} with

ω∗
k =

αk

yλ+k

[
y − y∗K,D

]+

(IKα)⊺1
. (201)

Thus, there are exactly N+1 regions: if K = 1, . . . , N−1, when the value of the lifetime

relative risk aversion, y, is such that y∗K,D < y ≤ y∗K+1,D, only the first K assets are held

in the portfolio, and the market index fund is not held. When y∗N,D < y ≤ y∗B, the

margin requirement is binding: all the N securities are held long in the portfolio and the

investor may have a long position in the market index fund. Finally, when y > y∗B, the

margin requirement is not binding: all the N securities are held long in the portfolio and

the investor may have a long position in the market index fund. Observe that, given our

assumptions, asset N−1 in general may have a beta below one and/or a larger volatility

than the market index fund and still, for all values of the lifetime relative risk aversion,

y ∈
[
y∗N−1,D, y

∗
N,D

]
, the investor optimally chooses to hold asset N − 1 and to not hold

the market index fund.

General Case, No Labor Income Correlation, Σ = 0

As long as the margin requirement is not binding, the optimal allocations satisfy

ω∗ =

(
1

y
−̟ω∗

M

)
(σσ⊺)−1(µ− r1)

y
. (202)

As argued before, it is optimal to let the constraint bind at the lowest possible values y∗B.

Since investing nothing into the securities and holding a long position to the maximum

allowed by the market index fund margin coefficient is a feasible strategy, we conclude

that y∗B ≤ λ+M/̟. The key thing to observe is that y∗B is such that (y∗B)
−1−̟ω∗

M must be

non-negative as we must have ω∗
M ≤ λ+M and y∗B ≤ λ+M/̟. This implies that at y = y∗B,

the sign of the position in asset i is the same as the sign of e⊺i (σσ
⊺)−1(µ − r1), which

pins down the value of the margin coefficients for the securities. Since, by assumption,

π > 0, this implies that at y = y∗B, on the aggregate all securities must be held in a long
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position. Then as argued before, it is optimal to choose the position in the market index

fund, ω∗
M , such that (λM − π⊺λ)ω∗

M achieves the lowest possible value. Therefore, it is

never optimal to short the index fund, so we must have λM = λ+M . It is then easy to see

that

y∗B =





λ⊺(σσ⊺)−1(µ− r1), if λ+M − π⊺λ > 0, when ω∗
M = 0 is optimal,

λ+M1
⊺

(σσ⊺)−1(µ− r1), if λ+M − π⊺λ = 0, when ω∗
M =

[
0, 1

λ+

M

]
is optimal

λ+M1
⊺

(σσ⊺)−1(µ− r1), if λ+M − π⊺λ < 0, when ω∗
M = 1

λ+

M

is optimal and ω∗ = 0.

(203)

We now examine how asset selection takes place for y < y∗B. If

µM − r

λ+M
> max

k∈{1,...,N}
max

λk∈{−λ−

k
,λ+

k
}

µk − r

λk
, (204)

then no securities are held at y = y∗B and are never re-integrated into the portfolio: for

all y ≤ y∗B, ω
∗ = 0 and ω∗

M = 1/λ+M , i.e., only the market index fund is held when its

leveraged expected excess return is greater than the leveraged expected excess returns

of every risky asset.

Next, we assume that

µM − r

λ+M
< max

k∈{1,...,N}
max

λk∈{−λ−

k ,λ+

k }

µk − r

λk
. (205)

For values of the lifetime relative risk aversion, y, slightly below y∗B, the analysis con-

ducted for the no short sale case still applies. In particular, if not already dropped from

the portfolio, the market index fund is the first asset to be dropped from the portfolio,

possibly at the same time as another security, as soon as y reaches a low enough level.

The only case that remains to be investigated is the case where if at y = y∗K , exactly

K securities are held in the portfolio, some possibly in a short position, is it optimal

to re-integrate the market index fund into the portfolio? The answer is no: should the

market index fund be re-integrated into the portfolio at y∗R,M < y∗K , using Lemma J.1,

we obtain that the set of K securities must be such that −IK,K+1V
−1
K (JKλ, λ

+
M) has the

same sign as the vector of margin coefficients JKλ. Recall that the Lagrange multi-

plier ψK+1 increases as the value of the lifetime relative risk aversion, y, decreases. As

JKω
∗ = −y−1ψK+1(y)IK,K+1V

−1
K (JKλ

+, λ+M), the allocations in the K securities must

be increasing, in absolute value, as y decreases, and because the margin requirement is
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binding, the position in the market index fund has to be decreasing, in absolute value.

Eventually, the market index fund drops out from the portfolio, which leads to a con-

tradiction. We conclude that once dropped from the portfolio, the market index fund is

never re-integrated into the portfolio at a lower level of the lifetime relative risk aversion,

y.

Appendix K. Proof of Proposition 9

Investment inside the nonbinding region.

Recall that we assume Θ = 0. We start with some properties of the optimal alloca-

tions inside the nonbinding region. Consumption, wealth and income are linked by the

following relationshipW+BY = Ac+Kc1−βY β or, equivalently, using reduced variables

v +B = Af ′(v)−
1

γ +Kf ′(v)
β−1

γ . (206)

Applying Itô’s lemma and identifying the coefficients with the wealth dynamics, the

optimal portfolio allocations are given by

z∗ = zf − βK
(σσ⊺)−1η

γ
f ′(v)

β−1

γ Y. (207)

When e⊺i (σσ
⊤)−1η > 0(< 0), the constrained asset allocation z∗i is lower (higher) than its

unconstrained counterpart zfi . Next, we show that, inside the nonbinding region, income

has the same effect on the constrained risky allocations as it has on the unconstrained

ones. Differentiating Eq. (206) yields

f ′(v)

f ′′(v)
= −

A

γ
f ′(v)−

1

γ +
β − 1

γ
Kf ′(v)

β−1

γ < 0. (208)
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From Eqs. (208) and (206) it is easy to check that the margin requirement is not binding

for f ′(v)
1

γ ≤ Z∗, for some 0 < Z∗ < Ẑ where Ẑ = βA/ ((β − 1)B). Then, we have

∂z∗

∂Y
= (σσ⊺)−1η

(
B − βKf ′(v)

β−1

γ (1−
β − 1

γ

vf ′′(v)

f ′(v)
)

)

=
(σσ⊺)−1η

A− (β − 1)Kf ′(v)
β
γ

(
AB + (β − 1)2BKf ′(v)

β
γ − β2AKf ′(v)

β−1

γ

)
.

(209)

Set Z = f ′(v)
1

γ and for Z in [0, Z∗], define the auxiliary function h with

h(Z) = AB + (β − 1)2BKZβ − β2AKZβ−1. (210)

h is a smooth function with h′(Z) = β(β − 1)2KBZβ−2(Z − Ẑ) < 0, so it is decreasing

on [0, Z∗], since Z∗ < Ẑ. We want to show that h is positive on [0, Z∗]. First, note that

h(0) = AB > 0. Then, for Z = Z∗, the margin constraint is binding and for Z ≤ Z∗ we

have (λ∗B)
⊤z∗ ≤W or, equivalently, using the expression of z∗

v(1−
(λ∗B)

⊺(σσ⊺)−1(µ− r1)

γ
) ≥

(λ∗B)
⊺(σσ⊺)−1η

γ
(B − βKf ′(v)

β−1

γ ). (211)

Using Eq. (206) we obtain that for all Z in [0, Z∗]

KZβ ≥ ϑ(Z − Z)

K(Z∗)β = ϑ(Z∗ − Z),
(212)

where

Z =
1−

(λ∗

B)⊺(σσ⊺)−1(µ−r1)

γ

1− (λ∗B)
⊺(σσ⊺)−1σΣ

A

B
> 0

ϑ =
B (1− (λ∗B)

⊺(σσ⊺)−1σΣ)

1− (λ∗B)
⊺(σσ⊺)−1σΣ+ (β − 1)

(λ∗

B)⊺(σσ⊺)−1η

γ

> 0.

(213)

Finally, we have

h(Z∗) =
B

Z∗
(βZ − (β − 1)Z∗). (214)

It remains to show that

Z∗ ≤ βZ/(β − 1). (215)
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Set x = Z/Z∗ and x∗ = Z/Z∗ < 1, so that for all 0 ≤ x ≤ 1, we have

xβ ≥
x− x∗

1− x∗
. (216)

We want to show that this is the case if and only if

x∗ ≥ (β − 1)/β, (217)

or, equivalently,

β ≤
1

(1− x∗)
. (218)

For x ∈ [0, 1], define the auxiliary function f with

f(x) = xβ −
x− x∗

1− x∗
. (219)

Observe that

f(0) =
x∗

1− x∗
> 0

f(1) =0

f ′(x) =βxβ−1 − (1− x∗)−1.

(220)

If β > 1/(1−x∗), then f ′(1) > 0 and since f(1) = 0, it must be the case that f(1−ε) < 0,

for some ε > 0 small enough. This leads to a contradiction since by the condition in

Eq. (212) f is non-negative on [0, 1]. Thus, we must have β ≤ 1/(1−x∗) or, equivalently,

Z∗ ≤
βZ

β − 1
. (221)

It follows that h(Z∗) ≥ 0 and for all Z in [0, Z∗), h(Z) > 0. We can conclude that z∗i is

increasing (decreasing) with income exactly when e⊤i (σσ
⊤)−1η > 0(< 0). Finally, since

z∗

W
= (σσ⊺)−1σΣ +

(σσ⊺)−1η

y
, (222)

we deduce that
∂

∂Y

(
1

y

)
≥ 0, (223)
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which implies that
∂y

∂Y
≤ 0. (224)

Furthermore, since
∂y

∂Y
= −v

∂y

∂v
, (225)

we find that
∂y

∂v
≥ 0. (226)

At Y = 0; i.e., when v is infinite, y = γ, so we deduce that for all v inside the non-binding

region, y < γ. Finally, note that z∗/W rises as v and W decrease.

Global properties of the optimal consumption c∗.

Recall that

c∗ = Y f ′(v)−
1

γ , (227)

so
∂c∗

∂W
= −

f ′′(v)f ′(v)−
1

γ
−1

γ
> 0. (228)

Then
∂c∗

∂Y
=
f ′(v)−

1

γ

γ
(γ − y) . (229)

Inside the nonbinding region, we have seen that y < γ, and inside the binding region, we

must have y < y∗B < γ. Hence, we always have y < γ and we conclude that ∂c∗/∂Y > 0.

Appendix L. Proof of Proposition 10

For y < y∗B, the Hamilton-Jacobi-Bellman equation is such that the coefficient of the

term v2f ′′(v) is positive and the coefficient of the term −(f ′(v))2/f ′′(v) is nonnegative.

This is exactly the same type of ODE studied by Duffie et al. (1997). In Proposition 1

of their paper, these authors establish that

lim
v↓0
f ′(v) (230)

81



exists, is positive and finite. They also show that

lim
v↓0

sup−vf ′′(v) = 0. (231)

Since

0 < −vf ′′(v) ≤ sup
0<x≤v

− xf ′′(x), (232)

it follows that

lim
v↓0

− vf ′′(v) = 0. (233)

Hence, we have

lim
v↓0

−
vf ′′(v)

f ′(v)
= 0. (234)

Around v = 0, we postulate the following asymptotic expansion

f(v) ∼
0
d0 + v − d1v

3

2 + d2v
2 + o(v2), (235)

for some constants d0, d1 > 0 and d2 to be determined. Our choice for f ′(0) = 1 is

justified because if f ′(0) = 1, the quantity

γ

1− γ
(f ′(v))

γ−1

γ + f ′(v) (236)

achieves its maximum value for v = 0. Using the Hamilton-Jacobi-Bellman Eq. (112)

for K = 1 and identifying coefficients, we obtain

f(0) = d0 =
1

(1− γ)
(
θ + (γ − 1)(m− γ Σ⊤Σ+Θ⊤Θ

2
)
) > 0, (237)

and

θ + (γ − 1)(m− γ
Σ⊺Σ+Θ⊤Θ

2
) =

9

8γ
d21 + (r −m+ γ(Σ⊺Σ+Θ⊤Θ) +

η1
λ∗1

). (238)

It follows that

d1 =
2
√

2γ(θ + γ(m− (γ + 1)Σ
⊺Σ+Θ⊤Θ

2
))− (r + η1/λ∗1)

3
> 0. (239)
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This implies that

c∗ ∼
0
Y (240)

and,

y = −
vf ′′(v)

f ′(v)
∼
0

3d1v
1

2

4
. (241)

Appendix M. Proof of Proposition 11

When income is deterministic, we have, in the dual formulation, κ∗ ≡ 0. Notice that

u′(c∗t ) = Xa∗,b∗,0
t with

dXa∗,b∗,0
t = Xa∗,b∗,0

t (−(r + a∗t )dt+ (ζa
∗,b∗

t )⊺dwt), (242)

where

ζa
∗,b∗

t = −σ−1
(
b∗t − a∗t1 + µ− r1

)
. (243)

Using Itô’s lemma, we find that the consumption growth rate is given by

dc∗t
c∗t

=

(
r + a∗t − θ

RR(c∗t )
+

1

2

RP (c∗t )

(RR(c∗t ))
2

∥∥∥ζa
∗,b∗

t

∥∥∥
2
)
dt+

(ζa
∗,b∗

t )⊺

RR(c∗t )
dwt, (244)

where

RR(c) = −
cu′′(c)

u′(c)
(245)

is the relative risk aversion ratio and

RP (c) = −
cu′′′(c)

u′′(c)
(246)

is the relative risk prudence ratio. The instantaneous volatility of consumption is given

by
∥∥∥ζa

∗,b∗

t

∥∥∥
2

/(RR(c∗t ))
2. We now show that for all t ≥ 0,

∥∥∥ζa
∗,b∗

t

∥∥∥
2

≤ ‖ζ0,0‖
2
. Inside the

nonbinding region, we have ζa
∗,b∗

t = ζ0,0. Inside the binding region when K assets are

held, for some λ ∈ Λ, we have

b∗ = (1− λ)a∗

a∗ =
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IK(µ− r1)− y

(IKλ)⊺(IKσσ⊺I⊺K)
−1(IKλ)

> 0,
(247)
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so that ∥∥ζa∗,b∗
∥∥2 = (IK(µ− r1− λa∗))⊺(IKσσ

⊺I⊺K)
−1IK(µ− r1− λa∗). (248)

Hence for all λ ∈ Λ

∂

∂y

∥∥ζa∗,b∗
∥∥2 = −2

∂a∗

∂y
(IKλ)

⊺(IKσσ
⊺I⊺K)

−1IK(µ−r1−λa
∗) =

2

(IKλ)⊺(IKσσ⊺I⊺K)
−1(IKλ)

> 0.

(249)

Given what precedes, since at y = y∗B we have
∥∥ζa∗,b∗

∥∥ = ‖ζ0,0‖, we deduce that for all

y ≤ y∗B,
∥∥ζa∗,b∗

∥∥ ≤ ‖ζ0,0‖ .

Appendix N. Numerical Algorithm

N.1. Model Setup

Market

The continuous-time dynamics of the asset values and income changes are given by

Eqs. (1, 2), and (3). We approximate the continuous-time dynamics by a discrete-time

Markov chain using the discretization described in He (1990). In this discretization an N

dimensional multivariate normal distribution is described by N + 1 nodes. Discretizing

returns in this fashion preserves market completeness in discrete time.

Optimization problem

We consider the optimization problem described in Eq. (9) of Section 2 in a discrete-

time setting, where the investor starts working at time 0 and retires at time T . From the

discussion of homogeneity in Section 2, we can reduce the number of state variables after

scaling by income Yt and obtain the following Bellman equation at t = 0, . . . , T − 1 :

ft (vt) = max
qt,ωt

u (qt) + βEt

[
g1−γ
t ft+1 (vt+1)

]

s.t. vt+1 = g−1
t (vt + 1− qt)

(∑N
i=1 ωi,tR

e
i,t +Rf

)

λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t ≤ 1

fT = φτ
(vT+1)1−γ

1−γ

(250)
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where vt = Wt/Yt is the wealth over income ratio; qt = ct/Yt is the consumption over

income ratio; ωt = zt/Wt is the portfolio weight; gt = Yt+1/Yt is the income growth rate

over period t; Re is the expected one period excess asset return; Rf is the one period

return of the money-market account; ft (vt) = Y
−(1−γ)
t Ft (Wt, Yt) is the reduced value

function; and the factor φτ captures the effect of the investor’s remaining lifetime. If

the investor’s remaining life is τ years, and the opportunity set remains constant, then

the factor φτ is given by

φτ =

[
1− (βα)1/γ

1− (βα)(τ+1)/γ

]−γ

,

α = E



(

N∑

i=1

ω∗
iR

e
i +Rf

)1−γ



(251)

where ω∗ are the optimal portfolio weights after retirement — see Ingersoll (1987).

N.2. Solution Methodology

To solve the problem described in Eq. (250), we extend the method proposed by

Brandt et al. (2005) to incorporate endogenous state variables and constraints on port-

folio weights. We also use an iterative method to find the solution to the Karush-Kuhn-

Tucker (KKT) conditions; i.e., the first order conditions with constraints. The idea is to

approximate the conditional expectations in the KKT conditions locally within a region

that contains the solution to the KKT conditions and iteratively contract the size of the

region.

As suggested by Carroll (2006), we separate consumption optimization from portfolio

optimization in Eq. (250) by defining a new variable, total investment It:

It = vt − qt + 1. (252)

At the optimal value of consumption, q∗t , Eq. (252) defines an one-to-one correspondence

between wealth vt and total investment It. Therefore we can specify a particular grid,

G, either through wealth, vt (G), or, equivalently, through investment, It (G). Specifying

It (G) instead of vt (G) allows splitting the problem in Eq. (250) into two subproblems:
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[Portfolio Optimization]

f p
t (It) = max

ωt

βEt

[
g1−γ
t ft+1 (vt+1)

]
, t = 0, . . . , T − 1

s.t. vt+1 = g−1
t It

(∑N
i=1 ωi,tR

e
i,t +Rf

)

λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t ≤ 1

(253)

[Consumption Optimization]

ft (vt) = max
qt

u (qt) + f p
t (vt − qt + 1) , t = 0, . . . , T − 1, (254)

where f p (·) is the value function of the portfolio optimization problem in Eq. (253).

Given the separation of consumption and portfolio optimization, we use the following

algorithm to solve the problem in Eq. (250):

Algorithm

Step 1: Set the terminal condition at time T .

Step 2: Find the optimal portfolio and consumption backwards at t = T − 1, T − 2, · · · , 0:

Step 2.1: Construct a grid for total investment It with ng grid points {I it}
ng

i=1.

Step 2.2: Find the optimal portfolio and consumption at each grid point I it , i = 1, · · · , ng:

Step 2.2.1: [Portfolio optimization] given I it , find ω
∗
t (I

i
t) by solving Eq. (253).

Step 2.2.2: [Consumption optimization] given {I it , ω
∗
t (I

i
t)}, find q∗t (I

i
t) by solving

Eq. (254).

Step 2.2.3: Recover state variable vt at grid point i by vit = I it + q∗t (I
i
t)− 1.

After specifying the factor φτ , Step 1 is trivial. Step 2.1 requires constructing a grid

in an one-dimensional space. To account for the nonlinearity of the value function at

lower wealth levels we place more grid points toward the lower investment values in a

double exponential manner as suggested by Carroll (2006).
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N.3. Portfolio Optimization

Given a grid point I it , i = 1, · · · , ng, we want to optimize over ωt by solving Eq. (253).

To simplify the problem, and slightly abusing notation, we consider ω+
t , ω

−
t as choice

variables, such that ω+
t ≥ 0, ω−

t ≥ 0, ωt = ω+
t − ω−

t and solve the following problem:

f p
t (It) = max

ω+
t ,ω−

t

βEt

[
g1−γ
t ft+1 (vt+1)

]

s.t. vt+1 = g−1
t It

[∑N
i=1

(
ω+
i,t − ωi,t−

)
Re

i,t +Rf
]

λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t ≤ 1

ω+
i,t, ω

−
i,t ≥ 0, i = 1, · · · , N

(255)

Notice that to maintain equivalence between Eqs. (253) and (255) we also need the

constraints ω+
i,tω

−
i,t = 0 for i = 1, · · · , N , in Eq. (255). However, one can show that

dropping these constraints will expand the feasible region but will not introduce new

optimal solutions which are non-trivially different.

The Lagrangian and KKT conditions of the problem in Eq. (255) are given by:

Lagrangian

Lp
(
ω+
t , ω

−
t , l

+
t , l

−
t , l

m
t

)
= βEt

[
g1−γ
t ft+1 (vt+1)

]
+
∑N

i=1 l
+
i,tω

+
i,t +

∑N
i=1 l

−
i,tω

−
i,t

+lmt

(
1− λ+

∑N
i=1 ω

+
i,t − λ−

∑N
i=1 ω

−
i,t

) (256)

KKT conditions

0 = βItEt

{
g−γ
t

∂ft+1(vt+1)
∂vt+1

Re
i,t

}
+ l+i,t − lmt λ

+, i = 1, . . . , N FOCs

0 = −βItEt

{
g−γ
t

∂ft+1(vt+1)
∂vt+1

Re
i,t

}
+ l−i,t − lmt λ

−, i = 1, . . . , N FOCs

0 = l+i,tω
+
i,t, i = 1, · · · , N Complementarity

0 = l−i,tω
−
i,t, i = 1, · · · , N Complementarity

0 = lmt

(
1− λ+

∑N
i=1 ω

+
i,t − λ−

∑N
i=1 ω

−
i,t

)
Complementarity

1 ≥ λ+
∑N

i=1 ω
+
i,t + λ−

∑N
i=1 ω

−
i,t Feasibility

0 ≤ ω+
i,t, ω

−
i,t, l

+
i,t, l

−
i,t, l

m
t , i = 1, · · · , N Feasibility

(257)

where lmt is the Lagrange multipliers of the margin constraint; l+t and l−t are the Lagrange

multipliers of the non-negativity constraints. While in general the KKT conditions are
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only necessary for optimality, for the problem in Eq. (255) the KKT conditions are

both necessary and sufficient since the objective function is concave in
(
ω+
t , ω

−
t

)
and all

constraints are linear in
(
ω+
t , ω

−
t

)
.

Solving the KKT conditions requires enumeration of all the possibilities for the com-

plementary conditions. In general, the 2N + 1 Lagrange multipliers (lmt , l
+
i,t, l

−
i,t, i =

1, · · · , N) give 22N+1 possible specifications of the complementary conditions. However

many of these specifications can be combined or ignored: if the margin constraint is

not binding (lmt = 0) we only need to solve the FOCs without splitting ωt as ω
+
t − ω−

t ;

if the margin constraint is binding (lmt > 0) we can ignore all the specifications with

ω+
i,tω

−
t > 0, i = 1, · · · , N , since these specifications are not optimal. Overall there are

3N + 1 specifications that need to be checked. Once a solution to the KKT conditions

under any of these specifications is found we can stop since the sufficiency of the KKT

conditions guarantees optimality.

Approximation of conditional expectations

We use functional approximation to approximate conditional expectations in the

KKT conditions as a linear combination of basis functions:

Et

{
g−γ
t

∂ft+1 (vt+1)

∂vt+1

Re
i,t

∣∣∣∣ It, ω
+
t , ω

−
t

}
≈

nb∑

j=1

αij (It) bj (ωt) , i = 1, · · · , N, (258)

where nb is the number of basis functions and {bj (·)}
nb

j=1 are the basis functions on port-

folio weights ωt = ω+
t −ω

−
t . The coefficients αij (It) at each investment grid point {I it}

ng

i=1

are estimated through cross-test-solution regression in the following way: we randomly

generate ns test solutions
{
ω
(k)
t

}ns

k=1
within a set called the test region. To guarantee

that all the test solutions are feasible we assume that the test region is included in the set

of all feasible solutions Q. For each test solution ω
(k)
t we evaluate the basis functions at

the test solution
{
bj(ω

(k)
t )
}nb

j=1
; given the test solution ω

(k)
t and the investment level It,

we generate returns for the risky assets following the discretization procedure described

in He (1990) and compute the expectation of the left-hand-side of Eq. (258); the weights

αij(It) are estimated by OLS regression across the ns test solutions. The basis functions

we use are powers of the choice variables up to third order. We use the multidimensional

root-finding solver of the GSL library to solve the KKT conditions. We use 300 grid
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points and 300 test solutions after checking that the results do not change if 500 grid

points and 500 test solutions are used.

Test region iterative contraction (TRIC)

TRIC is a method introduced in Yang (2010) to improve the accuracy of the func-

tional approximation approach for solving the dynamic portfolio choice problem. When

we approximate the conditional expectation in Eq. (258) through cross-test-solution re-

gressions, the quality of the approximation is affected by the number of basis functions

nb, the number of test solutions ns, and the size of the test region: keeping nb and ns

constant, the smaller the test region, the more accurate the approximation. This moti-

vates the method of contracting the test region in an iterative manner: at each iteration

i, we estimate the approximation in Eq. (258) with test solutions generated within Q(i);

using this approximation we solve the KKT conditions to find ω(i); if ω(i) ∈ Q(i) we

contract the test region of the next iteration to Q(i+1) ⊂ Q(i); if the new solution is

outside the test region, ω(i) /∈ Q(i), we enlarge the test region of the next iteration to

Q(i) ⊂ Q(i+1) ⊂ Q(i−1); after each iteration, we check convergence by computing the

relative change in portfolio weights
∥∥ω(i) − ω(i−1)

∥∥ /
∥∥ω(i−1)

∥∥, where ‖x‖ is the norm of

x, defined by ‖x‖2 = Trace(x⊺x), and comparing it with a threshold ε. In our numer-

ical tests we contracted the test region by 50%. If the test region did not contain the

solution, we expanded the test region by 150%. In the results we report the algorithm

converged within two to three iterations for most grid points.

To start the procedure we need an initial test region Q(0) that contains the optimal

solution. If no further information is available we can set Q(0) = Q, the feasible region

of the problem, defined in Eq. (255). However, it is possible to obtain a smaller Q(0) if

we know the solution for similar parameter values, called a reference solution. We have

used our knowledge of the asymptotic behavior of the solutions to construct reference

solutions: for each time period we always solve from the grid point with the highest

investment level down to the grid point with the lowest investment level; the solution

at the higher level grid point serves as the reference solution for the adjacent lower level

grid point; when we change between time periods the reference solution at the highest

level grid point is set by linearly interpolating the solutions at the next period; at the

last time period, t = T − 1, the reference solution at the highest level grid point, where

the margin constraint is not binding, is set to the analytical solution.
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N.4. Consumption Optimization and Value Function Sensitivity

After the optimal portfolio at an investment grid point has been found, we find the

optimal level of consumption at that grid point by solving the consumption optimization

problem defined in Eq. (254). The first order condition leads to

q−γ
t =

∂f p
t (It)

∂It
. (259)

To evaluate the term ∂f p
t (It) /∂It, we apply the envelope theorem to the Lagrangian Lp

in Eq. (256) and obtain

∂f p
t (It)

∂It
=
∂Lp

∂It

∣∣∣∣
ω∗
t (It)

= βEt

[
g−γ
t

∂ft+1 (vt+1)

∂vt+1

(
n∑

i=1

ω∗
t (It)R

e
i,t +Rf

)]
, (260)

where the conditional expectation is estimated using the discretization scheme for the

returns of the risky assets.

In both the portfolio optimization step and the consumption optimization step at

time t, we need to evaluate the value function sensitivity ∂ft+1 (vt+1) /∂vt+1. To evaluate

this sensitivity without knowing the functional form of ft+1 (vt+1), we apply the envelope

theorem to the Lagrangian, L (qt+1, vt+1) = u (qt+1) + f p
t+1 (vt+1 − qt+1 + 1), and get

∂ft+1 (vt+1)

∂vt+1

=
∂L (qt+1, vt+1)

∂vt+1

∣∣∣∣
q∗t+1

(vt+1)

=
∂f p

t+1 (It+1)

∂It+1

∣∣∣∣
q∗t+1

(vt+1)

= q∗−γ
t+1 (vt+1) . (261)

Thus, due to the form of the Lagrangian, the value function sensitivity of the problem

in Eq. (250) is completely specified by the optimal consumption as

∂ft+1(vt+1)
∂vt+1

=

{
q∗−γ
t+1 (vt+1) if t < T − 1

φτ (vT + 1)−γ if t = T − 1
(262)

To evaluate the value function sensitivity at values of v between grid points, we linearly

interpolate the optimal consumption results on grid points.
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Fig. 1. This figure illustrates the intuition of Proposition 4 for the case of an asset allo-
cation problem with a margin requirement, three risky assets with uncorrelated returns,
and income growth uncorrelated with the risky assets returns. The axes correspond to
the allocations in each risky asset as a percentage of wealth zi/W, i = 1, 2, 3. The mar-
gin coefficients are λ+ for long positions and λ− for short positions. The allocations are
shown at different values of the wealth to income ratio, with the arrows indicating the
direction of change in the allocations as the ratio decreases. The margin requirement
binds when the chosen allocation lies on the shaded plane; asset 1 is dropped when the
allocation lies on the edge on the z2/W−z3/W plane. Asset 3 is dropped when income is
much larger that wealth, and the allocation is represented by the vertex on the positive
z2/W axis.
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Fig. 2. This figure presents the asset allocations for different levels of the financial wealth
to annual income ratio. The investor receives income with a stochastic growth rate. The
investor’s opportunity set consists of a riskless asset and five risky assets calibrated to the
returns of stock industry indices for the industries High Tech, Consumer, Manufacturing,
Health, and Other. The parameter values for the processes followed by the risky and
riskless assets and the labor income growth are given in Table 1. The investor is not
allowed to borrow or short an asset and is required to pay 100% of an asset’s value. The
top panel corresponds to a 30-year-old investor and the bottom panel to a 60-year-old
investor.
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Fig. 3. This figure presents the asset allocations for different levels of the financial wealth
to annual income ratio. The investor receives income with a stochastic growth rate. The
investor’s opportunity set consists of a riskless asset and five risky assets calibrated to the
returns of stock industry indices for the industries High Tech, Consumer, Manufacturing,
Health, and Other. The parameter values for the processes followed by the risky and
riskless assets and the labor income growth are given in Table 1. The investor is allowed
to purchase a risky asset on 50% margin and to short it at 150% margin. The top panel
corresponds to a 30-year-old investor and the bottom panel to a 60-year-old investor.
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Fig. 4. This figure presents the asset allocations for different levels of the financial wealth
to annual income ratio. The investor receives deterministic income. The investor’s
opportunity set consists of a riskless asset and five risky assets calibrated to the returns
of stock industry indices for the industries High Tech, Consumer, Manufacturing, Health,
and Other. The parameter values for the processes followed by the risky and riskless
assets are given in Table 1. The investor is not allowed to borrow or short an asset and
is required to pay 100% of an asset’s value. The top panel corresponds to a 30-year-old
investor and the bottom panel to a 60-year-old investor.
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Fig. 5. This figure presents the asset allocations for different levels of the financial wealth
to annual income ratio for an investor that faces a non-negative wealth constraint but no
borrowing or margin requirements. The investor receives income with stochastic growth
rate and has access to a riskless asset and five risky assets calibrated to the returns of
stock industry indices for the industries High Tech, Consumer, Manufacturing, Health,
and Other. The parameter values for the processes followed by income and the risky and
riskless assets are given in Table 1. The top panel corresponds to a 30-year-old investor
and the bottom panel to a 60-year-old investor.
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Fig. 6. This figure presents the asset allocations for different levels of the financial
wealth to annual income ratio for an investor who receives labor income with stochastic
growth that is correlated with the High Tech asset with correlation 20%. The investor’s
opportunity set consists of a riskless asset and five risky assets calibrated to the returns
of stock industry indices for the industries High Tech, Consumer, Manufacturing, Health,
and Other. The remaining parameter values for the processes followed by the risky and
riskless assets and the labor income process are given in Table 1. The investor is not
allowed to borrow or short an asset and is required to pay 100% of an asset’s value. The
top panel corresponds to a 30-year-old investor and the bottom panel to a 60-year-old
investor.



Table 1: Parameter Values for the Base Case
This table includes the base case values of the parameters for the investor characteristics,
and the characteristics of the returns of the risky assets. The five risky assets correspond
to five industry indexes: Consumer, Manufacturing, High Tech, Health, and Other.
Number of periods 45 years (age 20 to age 65)
Risk aversion 3
Long margin 1
Short margin ∞
Time discount factor (annually) 0.98
Interest rate (annually) 1.4%
Income growth rate (annually) 3%
Income volatility (annually) 10%

Cnsmr Manuf HiTec Hlth Other Income
Drift (annually) 8.51% 7.83% 9.51% 6.97% 8.87% 3%
Volatility (annually) 28.9% 25.8% 33.3% 26.6% 29.7% 10%
Beta 1.01 0.91 1.15 0.79 1.06
Sharpe ratio 25% 25% 24% 21% 25%
Systematic risk 27% 25% 31% 21% 29%
Idiosyncratic risk 9% 7% 12% 16% 7%
Correlations 1.000 0.898 0.832 0.732 0.932 0.000

1.000 0.848 0.698 0.930 0.000
1.000 0.772 0.856 0.000

1.000 0.727 0.000
1.000 0.000

1.000



Table 2: Asset Allocation and Diversification Measures of the Base Case
This table presents the optimal asset allocations and diversification measures for the base case: stochastic income growth
with no-short-sale-no-borrowing constraint. W/Y is the current wealth to income ratio. Cnsmr, Manuf, HiTec, Hlth, and
Other are the portfolio weights (as a percentage of current wealth) of the five industry indices: Consumer, Manufacturing,
High Tech, Health, and Other. Margin is the total usage of the margin account in percentage. µh and σh are the expected
value and standard deviation of the excess return of the risky part of the portfolio. σi,h is the idiosyncratic standard
deviation. IVarS is the idiosyncratic variance share. Sh is the Sharpe ratio of the risky part of the portfolio. RSRLh is
the relative Sharpe ratio loss. RLh is the return loss of the total portfolio. ULh is the utility loss. βh is the β of the
constrained portfolio with respect to the unconstrained portfolio. LRRA is the lifetime relative risk aversion.

Panel A: Age 30
W/Y Cnsmr Manuf HiTec Hlth Other Margin µh σh σi,h IVarS Sh RSRLh RLh ULh βh LRRA

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
∞ 5 9 7 3 7 32 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 3.00

1000.0 5 10 8 3 8 33 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.87
100.0 7 13 10 4 10 44 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.18
20.0 12 22 17 8 18 76 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.26
15.0 13 25 19 9 20 86 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.12
12.0 14 28 21 9 22 94 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.01
10.0 15 28 24 9 24 100 7.47 27.3 0.2 0.0 27.3 0.0 0.00 0.00 1.01 0.94
9.0 16 24 27 7 27 100 7.58 27.7 0.8 0.1 27.3 0.0 0.00 0.00 1.02 0.91
8.0 16 19 30 4 31 100 7.72 28.2 1.5 0.3 27.3 0.0 0.00 0.00 1.04 0.86
7.0 17 13 34 0 35 100 7.88 28.9 2.3 0.7 27.3 0.1 0.01 0.00 1.06 0.82
6.0 16 5 38 0 42 100 8.01 29.4 3.1 1.1 27.2 0.3 0.02 0.01 1.08 0.76
5.0 13 0 41 0 46 100 8.11 29.8 3.7 1.5 27.2 0.5 0.04 0.01 1.09 0.71
4.0 6 0 46 0 48 100 8.16 30.1 4.2 2.0 27.1 0.7 0.06 0.02 1.10 0.62
3.0 0 0 53 0 47 100 8.24 30.5 5.0 2.7 27.0 1.0 0.09 0.03 1.10 0.53
2.5 0 0 57 0 43 100 8.27 30.7 5.5 3.2 27.0 1.3 0.11 0.03 1.11 0.49
2.0 0 0 64 0 36 100 8.32 31.0 6.4 4.2 26.8 1.7 0.15 0.04 1.12 0.42
1.6 0 0 73 0 27 100 8.38 31.4 7.5 5.7 26.6 2.5 0.21 0.06 1.12 0.37
1.2 0 0 87 0 13 100 8.48 32.4 9.6 8.9 26.2 4.1 0.36 0.10 1.14 0.31
1.0 0 0 99 0 1 100 8.56 33.2 11.4 11.8 25.8 5.6 0.51 0.14 1.15 0.27
0.6 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.19
0.3 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.10
0.0 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.00



Panel B: Age 60
W/Y Cnsmr Manuf HiTec Hlth Other Margin µh σh σi,h IVarS Sh RSRLh RLh ULh βh LRRA

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
∞ 5 9 7 3 7 32 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 3.00

1000.0 5 9 7 3 7 32 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.98
100.0 5 10 8 3 8 33 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.85
20.0 6 12 9 4 9 40 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.38
15.0 7 12 10 4 10 43 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.23
12.0 7 13 10 5 10 45 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 2.10
10.0 7 14 11 5 11 48 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.99
9.0 8 15 11 5 11 50 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.94
8.0 8 15 12 5 12 52 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.83
7.0 8 16 12 5 13 55 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.74
6.0 9 17 13 6 13 59 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.63
5.0 10 19 14 6 15 64 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.50
4.0 11 21 16 7 17 72 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.34
3.0 13 25 19 8 20 85 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.11
2.5 15 28 22 10 22 96 7.43 27.2 0.0 0.0 27.3 0.0 0.00 0.00 1.00 1.01
2.0 16 20 29 4 30 100 7.69 28.1 1.4 0.2 27.3 0.0 0.00 0.00 1.03 0.88
1.6 16 3 38 0 43 100 8.04 29.5 3.3 1.2 27.2 0.4 0.03 0.01 1.08 0.75
1.2 5 0 47 0 48 100 8.18 30.1 4.3 2.1 27.1 0.7 0.06 0.02 1.10 0.60
1.0 0 0 53 0 47 100 8.24 30.5 5.0 2.7 27.0 1.0 0.09 0.03 1.10 0.54
0.6 0 0 74 0 26 100 8.39 31.5 7.7 5.9 26.6 2.6 0.22 0.06 1.12 0.34
0.3 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.19
0.0 0 0 100 0 0 100 8.57 33.3 11.6 12.2 25.7 5.8 0.53 0.14 1.15 0.00



Table 3: Base Case Simulation Results
This table presents summary statistics of the simulated wealth as well as the portfolio and
consumption choices for an individual investor starting from a given initial wealth to annual
income ratio and following the optimal investment and consumption strategy. The results
are based on 10,000 simulation paths. W/Y and C/Y are the realized wealth to annual
income ratio and consumption to income ratio. Cnsmr, Manuf, HiTec, Hlth, and Other are the
portfolio weights, as a percentage of current wealth, of the five industry indices: Consumer,
Manufacturing, High Tech, Health, and Other. Margin is the total usage of the margin account
in percentage. Q25, Q50, and Q75 are the 25% percentile, the 50% percentile (median), and
the 75% percentile. SD is the standard deviation.

Panel A: Initial wealth equal to two years of income

W/Y C/Y Cnsmr Manuf HiTec Hlth Other Margin
(%) (%) (%) (%) (%) (%)

Q25 2.1 0.9 0 0 54 0 10 100
Q50 2.7 1.0 0 0 69 0 30 100

Age 30 Q75 3.7 1.0 0 0 90 0 43 100
Mean 3.3 1.0 2 1 71 0 26 100
SD 2.0 0.1 5 4 21 1 17 1

Q25 3.4 0.8 0 0 26 0 23 100
Q50 4.9 0.9 9 0 43 0 37 100

Age 45 Q75 8.0 1.1 15 19 55 6 46 100
Mean 6.8 1.0 8 8 43 2 34 96
SD 5.7 0.2 7 11 19 4 12 10

Q25 7.8 0.6 7 13 10 4 10 43
Q50 11.0 0.8 7 14 11 5 11 48

Age 60 Q75 15.7 1.1 8 16 13 5 13 55
Mean 13.0 0.9 8 15 11 5 12 50
SD 8.2 0.4 2 3 3 1 3 11

Panel B: Initial wealth equal to ten years of income

W/Y C/Y Cnsmr Manuf HiTec Hlth Other Margin
(%) (%) (%) (%) (%) (%)

Q25 5.0 1.1 7 0 20 0 20 88
Q50 8.7 1.3 12 17 31 3 28 100

Age 30 Q75 15.3 1.6 15 24 46 8 44 100
Mean 11.5 1.4 10 13 35 4 30 93
SD 9.0 0.4 6 11 18 4 12 12

Q25 5.0 0.9 7 0 15 0 15 67
Q50 9.6 1.1 10 16 22 5 21 96

Age 45 Q75 18.5 1.5 14 22 42 7 40 100
Mean 14.2 1.3 10 14 30 4 27 84
SD 13.7 0.6 5 10 18 4 13 19

Q25 9.5 0.7 6 12 9 4 9 40
Q50 14.0 1.0 7 13 10 4 10 44

Age 60 Q75 22.0 1.4 8 15 11 5 12 51
Mean 18.1 1.2 7 14 11 5 11 47
SD 14.8 0.8 2 3 2 1 2 10
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