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Abstract

We experimentally investigate the impact of strategic uncertainty and complementarity on leader
and follower behavior using the model of Farrell and Saloner (1985). At the core of the model are en-
dogenous timing, irreversible actions and private valuations. We find that strategic complementarity
strongly determines follower behavior. Once a subject decides to abandon the status quo the prob-
ability that other players jump on the bandwagon increases sharply. However, there is a reluctance
to lead when leading is a conditional best response. We explain this deviation from the neo-classical
equilibrium by injecting some noise in the equilibrium concept. We also find that cheap talk improves
efficiency.

Keywords: strategic complementarity; type uncertainty; endogenous timing; laboratory experi-
ment

JEL Codes: D82, L14, L15

∗We are grateful for helpful comments from Urs Fischbacher, Jean-Robert Tyran, Henrik Orzen, Mark Bernard, Stefan
Palan, and from participants at the BI Workshop on Experimental Economics, Oslo, May 2014, the ESA European Meeting,
Prague, September 2014, the 9th NCBEE meeting, Aarhus, September 2014, the seminar of the Thurgau Institute of
Economics, Kreuzlingen, April 2015, and the 2nd IMEBESS, Toulouse, April 2015. We thank our two anonymous referees
for their many constructive comments. This research was financed by the Research Council of Norway, grant 212996/F10.
†BI Norwegian Business School and Centre for Experimental Studies and Research (CESAR)
‡BI Norwegian Business School and CESAR, e-mail: leif.helland@bi.no (corresponding author)
§Uppsala University and CESAR



1 Introduction

Many economic environments are characterized by the presence of asymmetric information and strategic
complementarity. Examples include bank runs (Garratt and Keister, 2009; Goldstein and Pauzner, 2005);
speculative currency attacks (Morris and Shin, 1998); setting of industry standards (Farrell and Saloner,
1985; Farrell and Klemperer, 2007); technology adoption (Katz and Shapiro, 1985, 1986); political re-
volts (Edmond, 2013; Egorov and Sonin, 2011); and foreign direct investment (Rodrik, 1991; Goldberg
and Kolstad, 1995). In such environments, there is a potential for joint welfare improvements through
coordination of actions. When players’ moves are endogenous, the timing of moves may in itself serve
as an important coordinating device. For players with conditional best responses, strategic uncertainty
enters the picture and may impact on the ability to coordinate actions.1

We investigate the seminal model of Farrell and Saloner (1985) (FS) in a controlled laboratory ex-
periment.2 In the model, players have incomplete information about types and endogenously time their
actions in the presence of strategic complementarity. In stage one, players simultaneously decide whether
to Stay with the status quo or Go to the alternative, where Go is an irreversible action.3 In stage two,
players that are not committed to Go again choose between Stay or Go. If no player committed in the
first stage, second stage decisions are again simultaneous. All payoffs are obtained after the second stage.
The key decision in the model is whether to Lead or Follow. A leader is defined as a player that chooses
to Go in the first stage. A follower is defined as a player that Stays in the first stage and matches the first
stage decision of her co-player in the second stage. Due to strategic complementarity, when a player leads,
this may create incentives for the co-player to “jump on the bandwagon.” The strength of the incentive
depends on the private valuations of the co-player with respect to the status quo and its alternative.
Thus, a player may regret the decision to Lead if the co-player fails to Follow.

In FS, the combination of a specific information structure and the endogeneity of moves produces
a unique equilibrium.4 This provides an unequivocal benchmark for our analysis and facilitates sep-
arate assessment of the role of strategic uncertainty and complementarity. Our two main treatments
explore how variations in strategic uncertainty affect leadership decisions. This treatment variation is
also consequential for follower decisions because of strategic complementarity.

We present two main results. Foremost, we find that subjects often fail to Lead when the optimality
of this action depends on beliefs about their match. This effect of strategic uncertainty is unaccounted
for by the model. Leading carries the risk of failure: The leader might end up alone. We find that it is
the variation in the cost of failed leadership, rather than the sharp cut-off between dominant and non-
dominant equilibrium strategies, that appears to cause the reluctance to Lead. We clarify this argument
by introducing some noise in the decision making process. Such noise makes beliefs relevant everywhere,
eroding the sharp divide between dominant and non-dominant equilibrium strategies. In particular, we
show that an agent quantal response equilibrium (AQRE) organizes our data well.

Second, we find that the effect of strategic complementarity is strong. If a subject takes the Lead, all
strategic uncertainty is resolved, and types who should Follow in equilibrium do so with high probability.
This contrasts with recent findings in a similar environment in which subjects have incomplete information
about fundamentals rather than types. We comment further on this below.

In addition, we investigate an extension of the model which permits cheap talk. We find that cheap

1We follow Morris and Shin (2002) in defining strategic uncertainty as “uncertainty concerning the actions and beliefs
(and beliefs about the beliefs) of others.” Strategic uncertainty need not be important for behavior. In neo-classical theory,
strategic uncertainty should have no bearing on a player’s choice of action if the player has a dominant best reply.

2For textbook treatments, see Shy (2001) and Belleflamme and Peitz (2015).
3E.g. the action Go could—depending on the application—be “switch to the new technology platform”, “rise against

the ruler”, or “make an investment.” The action Stay would have the prefix “do not” attached.
4Coordination problems are defined by the presence of multiple, Pareto-ranked equilibria. Coordination failure results if

players beliefs lead them to play a payoff dominated equilibrium. Thus, in a strict sense, there are no coordination problems
in the game we use.
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talk improves subjects’ ability to coordinate on mutually beneficial actions and increases efficiency.
To the best of our knowledge, ours is the first experiment to address the FS-model. The paper

closest to ours is Brindisi et al. (2014).5 While they use the same sequence of moves as we do, type
uncertainty is replaced by uncertainty about fundamentals. Agents get a private signal about the true
state of fundamentals, resembling a global games set-up. In contrast to us, they find that strategic
complementarity does not strongly determine outcomes, as it should do in equilibrium. This indicates
that the information structure is crucial in determining the strength of bandwagon behavior in the
presence of complementarities and irreversible choices. While strategic complementarity is a strong force
in environments with private information about types, it appears not to be so under private information
about fundamentals.

More generally, most, if not all, economic situations of interest embody a mix of type uncertainty and
uncertainty about fundamentals. Usually, it is not evident what the crucial source of uncertainty is in a
particular situation. Accordingly, the choice of information structure should be determined with a view
to the context.6 For these reasons, we believe that models such as the one analyzed in this paper have
the potential to shed further light on situations in which the current practice is to rely on a global games
approach.

There is an experimental literature on leadership effects in weak-link games. In contrast to our
setting, multiple Pareto ranked equilibria coexist in these games. However, as in our setting, strategic
complementarities are strong in weak-link games. Several instruments of leadership have been been
found to increase efficiency in this class of games. These include leadership by example (Cartwright
et al., 2013), leadership by communication (Brandts et al., 2015; Brandts and Cooper, 2007; Chaudhuri
and Paichayontvijit, 2010), and commitment by leaders to help (low ability) followers (Brandts et al.,
2016). There is also an experimental literature on leadership in public goods provision in which there are
no strategic complementarities (see Helland et al. (2017) for a review).

The remainder of the paper is organized as follows. In the next section, we describe the model.
For concreteness, we present the model using the parameters of the experiment. Thereafter, in the
third section, we review our design and the experimental procedures. In section four, we present the
experimental results. The fifth section considers how noisy behavior impacts the equilibrium. The final
section concludes.

2 Model

There are two players, i ∈ {1, 2}, and two stages, t ∈ {1, 2}.7
Prior to the first stage, nature draws a payoff relevant type θi for each player. θi is private information

observed by player i only. Type draws are i.i.d from a uniform distribution on [0, 10] such that θi ∼
U [0, 10] for all i. We discuss the role of θi for payoffs in detail below.

In each stage, each player has a possible action Stay or Go. These actions are indicated by Sti and
Gti, respectively. If a player chooses Stay in the first stage (S1

i ), then the player again chooses between
Stay and Go in the second stage (S2

i or G2
i ). However, if a player chooses Go in the first stage (G1

i ), this
commits the player to Go in the second stage as well (G2

i ). The decision to Go in the first stage is thus
irreversible. We refer to the choice of G1

i as a decision to Lead.
At the end of each stage, players observe all previous actions. Second stage decisions can therefore be

conditioned on first stage actions. We refer to the choice of G2
i as a decision to Follow whenever the first

5Brindisi et al. (2009) provides a thorough exposition of the theory.
6This is also the view taken in the seminal work on global games. See the discussion in Carlsson and Van Damme (1993),

pp.251-2.
7The model can be generalized to the case with n players and n stages. The model can also accommodate more general

payoff functions then the ones we use.
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stage actions are S1
i and G1

−i. Hence, a decision to Follow is a decision to Go conditional on the other
player choosing to Lead.

The payoff to player i depends on which of four possible outcomes is realized at the end of the second
stage. The payoffs are presented in Table 1. All payoffs are either constants or linear functions of θi.

S2
2 G2

2

S2
1 7, 7 5, αθ2

G2
1 αθ1, 5 θ1 + 2, θ2 + 2

Table 1: Payoff Matrix

In particular, θi determines the payoffs from action Go. Higher realizations of θi translate into higher
payoffs from both a joint choice of Go and a unilateral choice of Go. The payoff from a unilateral choice of
Go is also affected by the parameter α. We vary α between our two main treatments: α = 1 in treatment
D and α = 1/2 in treatment N . Because of the difference in α, Lead is a dominant strategy for high
types in the D treatment but not in the N treatment.8 In the N treatment, a decision to Go is always
conditional on the belief that joint play of Go is sufficiently likely. As we discuss in the next section,
this enables us to compare groups of players for whom the decision to Lead is optimal but for whom the
role of beliefs is different. Observe in addition that the game exhibits strategic complementarity: The
difference in payoffs between Go and Stay increases if the other player also chooses to Go.9

An optimal strategy in this setting depends on both a player’s type and the strength of the comple-
mentarity effect.10 In particular, a player who favors joint play of Go faces a key decision in the first
stage. On the one hand, a decision to Lead means that joint play of Go is more likely. The decision
to Lead resolves strategic uncertainty (because the player is committed to Go) and increases the payoff
from a joint choice of Go (due to complementarity in actions). This makes it more attractive for the
other player to also choose Go. On the other hand, when a player chooses to Lead, the player forgoes an
opportunity to observe the first stage actions. When complementarity is relatively important for payoffs,
a player may therefore want to Stay rather than Lead.

This intuition suggests that players with sufficiently high types will Lead while players with interme-
diate preferences will delay their decision to the second stage. Below, we show formally that there is a
“bandwagon” equilibrium of this type. In the bandwagon equilibrium, players use monotone threshold
strategies in which types above a threshold θ∗ Lead, players with types above a threshold θ Follow, and
players with types below θ Stay in both stages.11 This divides players into three strategic ranges accord-

8This explains our treatment names. We use D to denote the treatment in which some players have a dominant strategy
to Lead. We use N to denote the treatment in which no types have a dominant strategy to Lead.

9This increasing first difference is the discrete analog of a positive cross partial derivative of payoffs. See the definition
of strategic complementarity given by Bulow et al. (1985) (for a discussion, see chapter 2 in Cooper (1999), the section on
supermodular games). If the other player chooses Stay, then the difference in payoffs between Go and Stay equals αθi − 7.
However, if the other player chooses Go, then the difference in payoffs is θi−3. Because θi−3 > αθi−7, the payoffs exhibit
increasing first differences (recall α ≤ 1). For a recent study that also examines the role of strategy complementarities in a
discrete game with private information see Brindisi et al. (2014).

10Formally, a strategy in this game is a mapping from types and history of actions to a first and second stage action. In
practice, however, we use “strategy” to refer to optimal play for a particular type (or range of types).

11Our linear specification of payoffs satisfies the four assumptions given by Farrell and Saloner (1985) that guarantee the
existence of a bandwagon equilibrium. The only exception is our N treatment, which violates part of assumption 3: There
are no players in the N treatment for whom a unilateral decision to Go is dominant. However, this part of assumption 3 is
superfluous. The model has “interesting” equilibria as long as the bandwagon thresholds are such that 0 < θ < θ∗ < 10.
This is the case in our N treatment. In contrast, if both parts of assumption 3 were violated, then the interesting aspects
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ing to their type: (1) a Lead range (θ∗, 10] in which players Go in the first stage (G1
i , G

2
i ), (2) a Follow

range (θ, θ∗] in which players first Stay and then Go if the other player Leads (S1
i , (G

2
i |G1
−i, S

2
i |S1
−i)), and

(3) a Stay range in which players choose to Stay in both stages (S1
i , S

2
i ).12

To demonstrate formally that there exists a unique symmetric (Bayesian perfect) bandwagon equilib-
rium, we compare the payoffs associated with the three strategies, Lead, Follow, and Stay.13 Throughout,
we denote payoffs by a function π with arguments indicating the second stage actions of both players.14

Since payoffs depend on type, π is conditional on θi. For example, π(Gi, S−i; θi) denotes the payoff from
a unilateral choice of Go by a player with type θi (the bottom left cell in Table 1).

We begin by checking which players have dominant strategies. The decision to Lead is dominant if
a player prefers a unilateral choice of Go compared to a joint choice of Stay. Based on Table 1, it is
straightforward to identify the threshold θ above which players strictly prefer to Lead. Specifically, θ
follows from the indifference condition

π(Gi, S−i; θ) =π(Si, S−i; θ)

αθ =7.

In the D treatment (α = 1), Lead is a dominant strategy for players with types θ > θ = 7. No comparable
dominance region exists in the N treatment (α = 1

2 ) because the dominance threshold exceeds the highest
possible type.

We use a similar argument to establish the region in which Stay is dominant. Let θ denote the type
of a player who is indifferent between a unilateral choice of Stay and a joint choice of Go, such that all
θi < θ have a dominant strategy to Stay:

π(Si, G−i; θ) = π(Gi, G−i; θ)

5 = θ + 2

In both treatments, θ = 3 and the strategy (S1
i , S

2
i ) is dominant if a player has a type θi ≤ θ = 3. This

also implies that any players with types greater than θ should Follow in the second stage whenever the
other player chooses to Lead.

Next, we consider players who do not have dominant strategies and for whom strategic uncertainty is
the key challenge. These are players with types above θ but below θ. In this region, the complementarity
effect is critical because the payoffs associated with coordinated actions (G2

i , G
2
−i and S2

i , S
2
−i) exceed

those associated with unilateral choices (S2
i , G

2
−i or G2

i , S
2
−i). Whereas some types in this range prefer a

joint choice of Stay, other types in this range prefer a joint choice of Go. Specifically, types below θ◦ = 5
prefer Stay while types above θ◦ = 5 prefer Go.15

Two strategies are relevant for types who lack dominant strategies. The first is to Follow. The other
is to Lead. The advantage of Follow is that it guarantees coordination whenever players are using the
bandwagon strategy: If the other player chooses to Lead, then the outcome is G2

i , G
2
−i and if the other

of the model would disappear. If no player has a dominant strategy to Stay, then any player who favors a joint choice of
Go would choose to Lead while any other player has a best response to Follow. As a result, the outcome would be either a
joint choice of Go (whenever at least one player favors Go) or a joint choice of Stay (when neither player favors Go).

12We use the notation of the form (G2
i |G1
−i, S

2
i |S1
−i) to indicate that the second stage action is conditioned on the

realization of the first stage action of the other player.
13These are the only strategies that need to be considered. Lead is the only strategy in which Go is a first stage

action. There are four possible strategies in which Stay is the first stage action. These include the strategy Stay,
(S1

i , (S
2
i |G1
−i, S

2
i |S1
−i), and the strategy Follow, (S1

i , (G
2
i |G1
−i, S

2
i |S1
−i)). A third possible strategy is Go in the second

stage regardless of the first stage actions of the other player (S1
i , (G

2
i |G1
−i, G

2
i |S1
−i)), and a the fourth possible strategy is to

“anti-Follow,” (S1
i , (G

2
i |S1
−i, S

2
i |G1
−i)). However, these last two strategies are both (weakly) dominated whenever the other

players use the bandwagon strategy. Hence, only the strategies Lead, Stay, and Follow need to be compared.
14Since payoffs depend only on the second stage outcome only, we drop the t superscripts.
15θ◦ follows from the a comparison of π(Gi, G−i; θ

◦) = θ◦ + 2 and π(Si, S−i; θ
◦) = 7.
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player chooses to Stay, then the outcome is S2
i , S

2
−i. The drawback Follow is that players who prefer the

outcome G2
i , G

2
−i (i.e., players with types greater than θ◦) may end up coordinated on S2

i , S
2
−i. Players

who prefer Go strongly enough will therefore prefer to Lead even though they do not have a dominant
strategy and will regret the decision to Lead if the second stage outcome is G2

i , S
2
−i. For such players,

Lead maximizes expected payoffs because it sufficiently increases the likelihood of the preferred outcome
G2
i , G

2
−i.

To identify the threshold θ∗ above which Go is optimal—though not necessarily dominant—we com-
pare the expected payoffs from Follow and Lead:

P(θ−i > θ)π(Gi, G−i; θ
∗) + (1− P(θ−i > θ))π(Gi, S−i; θ

∗)︸ ︷︷ ︸
Expected Payoff Lead

=

P(θ−i > θ∗)π(Gi, G−i; θ
∗) + (1− P(θ−i > θ∗))π(Si, S−i; θ

∗)︸ ︷︷ ︸
Expected Payoff Follow

. (1)

The left hand side of equation 1 is the expected payoff from Lead. This is comprised of two terms. The
first is the probability of meeting a player who is either in the Lead or Follow ranges and the final outcome
is joint play of Go. The second term on the left-hand side is the probability of meeting a player in the
Stay range, in which case the final outcome is a unilateral choice of Go. Analogously, the right hand side
of equation 1 gives the expected payoff from the strategy Follow. This is also composed of two terms.
The first is the probability of meeting a player who Leads and the second stage outcome is Gi, G−i. The
second term on the right-hand side is the probability of meeting a player in the Follow or Stay ranges.
In this case, the final outcome is that both players Stay.

Plugging in for the payoff functions and the probabilities (which follow from the assumption that
θi ∼ U [0, 10] for all i) yields

(10− θ)
10

(θ∗ + 2) +
θ

10
αθ∗ =

(10− θ∗)
10

(θ∗ + 2) +
θ∗

10
7.

In the case of the D treatment (α = 1), this reduces to

θ∗2 − 5θ∗ − 2θ = 0.

Given that θ = 3 , the only positive root of this equation is θ∗ = 6. For the N treatment, the identical
computation yields θ∗ = 7.3. This demonstrates that the bandwagon strategy with thresholds θ and θ∗

is a best response to itself. In addition, observe that the left-hand side of equation 1 is monotonically
increasing in θ∗ while the right hand side is monotonically decreasing. As a consequence, the bandwagon
strategy is not just a best response to itself but is also unique in the class of symmetric monotone threshold
strategies.

Finally, to establish that any symmetric equilibrium has the bandwagon form, observe that regardless
of a player’s beliefs, the benefits of leading are non-decreasing in the player’s type θ. If it is optimal for a
player of type θ

′
to Go in the first stage, then it is also optimal for types θ > θ

′
to Go in the first stage.

Any symmetric equilibria must therefore have the threshold form. This establishes that the bandwagon
strategy is the unique symmetric equilibrium because we already showed that the bandwagon strategy is
unique among symmetric threshold strategies.

To summarize the results from this section, there are two strategically relevant bandwagon thresholds
θ and θ∗. The lower bandwagon threshold θ separates players who should Stay from those who should
Follow. The upper bandwagon threshold θ∗ separates players who should Follow from those who should
Lead. Because it is important in the remainder, we emphasize that θ∗ < θ. This means that there exist
players for whom Leading is optimal but who will regret the decision to Lead if they alone choose Go.
For players with types in the range (θ∗, θ], the decision to Lead thus relies on beliefs. However, because θ
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is not part of the bandwagon strategy, it is not strategically relevant. As a consequence, the model does
not anticipate behavior to be different above and below this threshold within the Lead range.

Signaling We also investigate a version of the game with communication. The game with communica-
tion is identical to the game presented above but with the addition of a cheap talk stage just after agents
have observed their type θi but prior to the first stage. In the cheap talk stage, players must send either
the message Stay or the message Go. This allows players to announce their preference for one of the
outcomes. Importantly, the message is non-binding and this is common knowledge.

Our focus is on the truth-telling equilibrium of the signaling game (a formal analysis of the signaling
equilibrium is provided in the supplementary materials section S.3). However, in addition to the truth
telling equilibrium, there can exist equilibria in which the messages are uninformative. In such babbling
equilibria, the thresholds are the same as in the game without cheap talk described above. Our reason
for focusing on the truth telling equilibrium is that it payoff dominates babbling equilibria.

In the truth-telling equilibrium, players send a message that corresponds to their favored platform:
Players with types θ > θ◦ send the message Go while the remaining types send the message Stay. If
players send the same message, they coordinate in the first stage. This eliminates Pareto inefficiency. If
the players send conflicting messages, however, then the game resembles the game without communication
except that players can partially update their beliefs about the type of the other player. Thus, conflicting
communication does not improve coordination. Specifically, a player who sends the message Stay must
have a type in the range [0, θ◦]. This has consequences for the optimal θ∗. Because the probability
that the other player will Follow, conditional on giving signal Stay, is lower than the unconditional
probability (as is the case in the absence of communication), the threshold θ∗ is higher in the game with
communication.16

3 Design and procedures

Design We conduct three treatments, D, N , and S. Table 2 facilitates a comparison of the key features
and predictions associated with each treatment.

As is evident from Table 2a, the only payoff difference between the treatments is that π(Gi, S−i; θi)
is reduced by half in the N treatment. Otherwise, the main difference between the treatments is that
pre-play communication is allowed in the S (Signal) treatment but is absent from the D and N treatments.

The model predicts treatment differences in the first stage due to differences in the threshold θ∗. The
values of θ∗ are summarized in Table 2b. For instance, θ∗ = 6 in the D treatment but θ∗ = 7.3 in the
N treatment. The Lead range should therefore be largest in the D treatment and smallest in the N
treatment. No comparable differences are expected in the second stage because θ = 3 in all treatments:
Players with types above θ should Follow and players with types below θ should Stay.

Comparison of the D and N treatments enables us to address two main questions: First, what is the
impact of strategic uncertainty on first stage behavior? Second, to what extent do complementarities in
actions shape second stage behavior?

• Strategic uncertainty : Despite the fact that the model makes identical predictions for players in
the Lead range, the relevance of beliefs is distinctly different in the D and N treatments. These
differences are summarized in the fourth and fifth columns of Table 1b. In the D treatment, the
decision to Lead is dominant for players with types greater than θ̄ = 7.0. Such players face no
strategic uncertainty. In contrast, the decision to Lead is always predicated on beliefs in the N
treatment. Hence, strategic uncertainty enters the picture. Comparison of the first stage behavior
of subjects in the D and N treatments thus facilitates a test of the behavioral impact of beliefs.

16The computations are analogous to those presented for the model without communication, but take into account the
partial updating that results from observing the message of the match.
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Payoffs

π(Si, S−i; θi) π(Si, G−i; θi) π(Gi, S−i; θi) π(Gi, G−i; θi)

Dominant (D) 7 5 θi θi + 2
Non-dominant (N) 7 5 1

2θi θi + 2
Signal (S) 7 5 θi θi + 2

(a)

Predictions

Thresholds Best Response = G1
i

θ θ◦ θ∗ Conditional Dominant

Dominant (D) 3.0 5.0 6.0 θi ∈ [6.0, 7.0) θi ∈ [7.0, 10.0]
Non-dominant (N) 3.0 5.0 7.3 θi ∈ [7.3, 10.0] θi ∈ ∅
Signal (S) 3.0 5.0 6.2 θi ∈ [6.2, 7.0) θi ∈ [7.0, 10.0]

(b)

Table 2: Payoffs (2a) and predictions (2b) for treatmentsD, N , and S.

• Complementarities in actions: Due to irreversibility, when a player’s match chooses to Lead, this
resolves all strategic uncertainty in the second stage of the game. What remains is the pure effect of
strategic complementarities. In the second stage, we therefore investigate the behavior of subjects
conditioned on the their match Leading. The frequency of Follow decisions by subjects in the Follow
range is a direct measure of the strength of complementarities. This complementarity effect should
not vary over treatments.

Our design also permits an assessment of the effect of communication on efficiency.

• Communication: In the S treatment, players send a cost-free signal simultaneously, prior to taking
their first stage action. According to theory, access to a cost-free signal should eliminate Pareto in-
efficiency. We implement this treatment with the same parameters as the D treatment. This allows
a direct assessment of differences in efficiency, including Pareto inefficiency, due to communication.
We compute overall measures of efficiency based on gross payoffs.

Experimental procedures All sessions were conducted in the research lab of the BI Norwegian Busi-
ness school using participants recruited from the general student population at the BI Norwegian Business
School and the University of Oslo, both located in Oslo, Norway. Recruitment and session management
were handled via the ORSEE system Greiner (2015). In each of our three treatments, we ran five sessions
per treatment with between 16 and 20 subjects per session. No subject participated in more than one
session. z-Tree was used to program and conduct the experiment (Fischbacher, 2007). Anonymity of
subjects was preserved throughout.

On arrival to the lab, subjects were randomly allocated to cubicles in order to break up social ties.
After being seated, instructions were distributed and read aloud in order to achieve public knowledge of
the rules. All instructions were phrased in neutral language. Rather than choose between Stay and Go,
subjects were asked to choose either shape Circle (that is, Stay) or shape Square (that is, Go). Sample
instructions and screen shots are provided in the supplementary materials.

Each session of the experiment began with two non-paying test games for subjects to get acquainted
with the software. This was immediately followed by n− 1 games in which the subjects earned payoffs,
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where n is the total number of participants in the session.17 In each game, subjects were matched with
one other subject according to a highway protocol. Every subject thus met every other subject once
and only once.18 In total, our data consists of 2673 unique games (excluding test games). Each game
consisted of a single repetition of the two-player, two-stage game with the rules and payoff functions
outlined above. Subjects earned experimental currency units (ECUs). After the final game, accumulated
earnings in ECU were converted to NOK using a fixed and publicly announced exchange rate. Subjects
were paid in cash privately as they left the lab. On average subjects earned 250 Norwegian Kroner (about
36 USD at the time). A session lasted on average 50 minutes.

Gameplay was formulated in the following fashion: At the beginning of each each new game, each
subject received a private number drawn from a uniform distribution on the interval (0, 10) with two
decimal points of precision. This number defined the subject’s type θi for that game and that game only.
A dedicated screen was used to display this information. Thereafter, subjects observed a 2 × 2 matrix
of their own payoffs and a button to choose a first-stage action. The first stage concluded when both
subjects in the match had made their decisions. If both subjects decided to Go in the first stage, they
bypassed the second stage and continued directly to the feedback.

The second stage began with a screen that revealed the first stage actions of both subjects in the pair.
Next, subjects who decided to Stay in the first stage again chose between Stay and Go. If a subject’s
match decided to Go in the first stage, then the subject observed a truncated 2× 1 matrix in which the
payoffs conditioned on the match choosing Stay were removed. This reflected the fact that the subject’s
match had committed to Go. Otherwise, if both subjects decided to Stay, then subjects observed the
same 2× 2 matrix as in the first stage.

After all second stage decisions were resolved, the subjects moved to a feedback screen. The feedback
consisted of a history of decisions and profits for each of the games played. It also displayed total
accumulated profits.

The signal treatment S included an additional stage between the type draw stage and the first stage
action choice. In this stage, subjects simultaneously selected either the message “I choose circle” or the
message “I choose square”. The chosen message was revealed to their match on a dedicated screen.
Apart from this additional stage, the screens and information were identical to those used in the two
other treatments.

4 Results

First stage behavior The first stage behavior of the subjects is consistent with the use of bandwagon
strategies and the essential predictions of the model. Table 3 presents the proportion of test subjects in
each of the three strategic ranges that chose to Go in the first stage. As anticipated by the model, test
subjects in the Stay and Follow ranges chose to Go with a low probability while test subjects in the Lead
range chose to Go with a high probability.19 Moreover, the probability of Go increases rapidly in the
vicinity of θ∗—as one would expect if subjects use threshold strategies. This pattern is clear in Figure
S1 in the supplemental materials. This figure presents the information in Table 3 on a finer grid. Note
that throughout we use the prefix “S” to denote material found in the supplemental materials.

To formally assess the predictions of the model, we compare behavior across treatments using Wilcox-
son Rank Sum (WRS) tests. Using session level data, between treatment comparisons find no significant
differences in behavior between the D and N treatments in either the Stay range or the Follow range

17Hence, in a treatment with 20 participants, each participants played 19 repetitions of the game with payoffs.
18This protocol eliminates certain dynamic problems, such as strategic teaching and reciprocity (see Fréchette (2012) for

a discussion).
19Note that the observed differences between the Stay and Follow range arise not because of a general difference throughout

the ranges but due to a relatively high rate of Go among subjects in the Follow range just below θ∗.
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D N

Stay 0.04 0.04
Follow 0.27 0.21
Lead 0.89 0.71

Table 3: First Stage, Proportion choosing Go

(p = 0.92 and p = 0.35, respectively).20 Likewise, in the part of the Lead range in which decisions are
conditioned on beliefs, i.e. in the region (θ∗, θ̄], we are unable to identify a significant treatment difference
(p = 0.17).21 In short, we find no behavioral differences over treatments when beliefs are relevant.

In contrast, when we compare behavior over the entire Lead range, (θ∗, 10], we reject equality of the
treatments. In this region, the probability that a subject chooses to Lead is a full 18 percentage points
higher in the D treatment than in the N treatment. This difference is strongly significant (p = 0.01).22

Moreover, given a 5 percent significance level and the observed variances of the D and N treatments,
this test has a power of 99 percent.23

We attribute the difference in behavior to the fact that Go is a dominant action in the D treatment
but is predicated on beliefs in the N treatment.24 When beliefs are relevant for actions, subjects tend to
be more tentative and adopt a “wait-and-see” approach.25:

Result 1 (Leader behavior) Subjects are relatively more reluctant to Lead when leading is a
conditional best response.

Relative to the model, test subjects with types above θ∗ do not Lead often enough. In doing so, these
subjects forgo an opportunity to induce their favored outcome whenever their match is in the Follow
range.26 This is costly. In the D treatment, subjects with θi > θ∗ who Stay on average earn 3.6 ECU
less than what they would earned if they had chosen to Lead. The comparable number for participants
in the N treatment is 1.6 ECU.27 Also, a high fraction of subjects in the Follow range choose the out of
equilibrium action Go in the first stage of the game. Below, we use the AQRE to rationalize observed
deviations from the Nash equilibrium of the model.

Second Stage Behavior The results from the second stage are characterized by bandwagon behavior.
The second stage results are summarized in Table 4.28 When a subject in the Follow range has a match
that Stays in the first stage, the subject also Stays with high probability: In 92 percent of cases in the
D treatment and in 93 percent of cases in the N treatment (that is, they Go in 8 percent and 7 percent

20See Tables S1 and S2. Inspecting Figure S2 it may appear that there are treatment differences in the error rate also
to the left of θ∗. But these differences are not statistically significant at conventional levels, and we refrain from further
discussion of them.

21See Tables S3 and S4. We do not identify a difference regardless of whether we compare the range θDi ∈ (6, 7] in the D

treatment with the entire Lead range in the N treatment θNi ∈ (7.3, 10] or if we base the test on a balanced set of data and

use the restricted ten base point region just beyond the Go threshold, θNi ∈ (7.3, 8.3].
22See Table S5.
23The power computation was carried out using the simulation routine of Bellemare et al. (2016).
24When we limit the comparison to individuals with high types—in the D treatment, only those subjects with a dominant

strategy—the results remain unchanged relative to the comparison over the entire range (p = 0.01). See Table S6.
25Duffy and Ochs (2012) observe a similar “wait-and-see” dynamic in a study of binary entry games.
26Because types are distributed uniformly, subjects are expected to be in the Follow range 30 percent of the time in the

D treatment and 43 percent of the time in the N treatment. The actual rates realized in the treatments were 35 percent
and 43 percent.

27These are subjects in the region θ ∈ [θ∗ = 6, θ̄ = 7) in the D treatment and θ ∈ [θ∗ = 7.3, 10] in the N treatment.
28Figure S3 provides a complementary illustration of second stage behavior.
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Match Go Match Stay

D N D N

Stay 0.04 0.06 0.04 0.02
Follow 0.90 0.87 0.08 0.07
Lead 0.90 0.95 0.64 0.36

Table 4: Second Stage, Proportion choosing Go

of cases, respectively). Furthermore, when a subject in the Follow range has a match that Leads, the
subject also chooses to Go with a high probability: In 90 percent of cases in the D treatment and in 87
percent of cases in the N treatment. Subjects in the Follow range thus mirror the first stage action of
their match. As anticipated, WRS tests do not identify differences in the behavior across treatments.29

We conclude that there is strong evidence of strategic complementarity and that second stage behavior
is consistent with the use of bandwagon strategies.30

Result 2 (Follower behavior) In the presence of a Leader, complementarity strongly determines
second stage behavior of subjects in the Follow range.

One feature of Table 4 that is not accounted for by the model is the observation of individuals in the
Lead range who choose to Stay in the first stage. This is a mistake relative to the bandwagon equilibrium.
Nevertheless, it is straightforward to characterize the optimal second stage behavior for such individuals:
All subjects with types above θ = 3—including those above θ∗—should Follow whenever their match
chooses to Lead. This is due to strategic complementarity. This accounts for the high rates of Go among
this group (Table 4, bottom row, the first two columns, 0.90 and 0.95). Otherwise, if a subject’s match
chooses to Stay in the first stage, only individuals in the D treatment for whom Go is a dominant strategy
should correct their mistake by choosing to Go in the second stage. We also see evidence of this in the
data. The rate of Go among subjects in the Lead range whose match chose to Stay is substantially higher
in the D treatment than the N treatment (Table 4, bottom row, the last two columns, 0.64 and 0.36).31

In addition, it is worth noting that the relatively high level of errors among this group—individuals who
also fail to Go in the second stage despite the other player Leading—does not reflect an unconditional
level of errors but the rate of errors among only the group that has already made a first stage error. The
unconditional probability of this type of “double error” is about five percent in the D treatment and ten
percent in the N treatment.

Signal Recall that players in the S treatment with types θi > θ◦ = 5 should signal Go while players
with types θi < θ◦ = 5 should signal Stay. This means that there are four possible outcomes from the
communication stage: Two outcomes in which the subjects give the same signal, either Go or Stay, and
the two outcomes in which the subjects give opposite signals.

29Details are provided in Tables S8, S9, S10, and S11. The only comparison that approaches significance is for players in
the Follow range for whom the match chooses to Go (p = 0.07). Even so, the average difference in the rate of Go is only
0.03 (0.90 compared with. 0.87, Table S11). For the other three tests, the p-values are all in excess of 0.24. Admittedly,
for the observed differences, these tests are not sufficiently powerful. To acheive sufficient power (90% or more), we would
need to increase the number of observations by over an order of magnitude. This was not feasible. However, regardless of
statistical significance, any unidentified differences are likely to be of small economic magnitude. Lack of power ultimately
reflects a lack of difference between the treatments relative to variability within the treatments.

30These effects are confirmed in the supplementary materials, using a logistic regression. Specifically, see figure S4).
31See the left panel figure S3 in which individuals with dominant strategies correct their mistake in the second stage even

if their match chose to Stay.

10



Table 5 shows the proportion of test subjects that chose to Go for each combination of messages.
Included in parentheses is the number of cases.

Match Message Go Match Message Stay

Own Message Go Own Message Stay Own Message Go Own Message Stay

θi ≤ 5 0.44 (18) 0.19 (367) 0.31 (13) 0.02 (440)
θi > 5 0.96 (384) 0.47 (62) 0.74 (416) 0.28 (60)

Table 5: First Stage, Proportion choosing Go

The first observation is that subjects almost always send the correct message: Of the participants
with types θi < θ◦, 807 send the message Stay while only 31 send the message Go. Of the participants
with types θi > θ◦, 800 send the message Go while 112 send the message Stay.

The next observation is that test subjects almost always coordinate actions in the first stage if they
send the same message (columns 1 and 4). This is most evident in the bottom left and the upper right
cells. This is consistent with theory. The opportunity for pre-play communication enables participants
to update their beliefs about their match’s type (section S.3 shows the computation of the bandwagon
thresholds in this case). If both subjects send the same message, then both subjects should choose that
action in the first stage.

Our results relate to previous findings on the effect of cheap talk. In many experiments, two-way
communication has been found to increase coordination when preferences are aligned, but not so when
preferences conflict (see the reviews in Crawford (1998); Blume and Ortman (2007)). These findings, how-
ever, are not general. Clark et al. (2001) and Dugar and Shahriar (2018) report results from experiments
in which two way communication fails to increase coordination when preferences are aligned.

Result 3 (Communication) Cheap talk promotes subjects ability to coordinate actions on mutually
beneficial outcomes.

Our last observation is that there is a similar pattern of first stage errors in the S treatment as in the
other treatments. When subjects send conflicting signals, subjects with types above 6.2 should Go in the
first stage. We find that in 85 percent of such cases, subjects with θi > 6.2 do in fact Lead. However, as
in the other treatments, we also find over-eagerness to Go among individuals who are below this threshold
in the Follow range. In 35 percent of such cases, subjects choose to Lead when they should have chosen
to Stay.

Efficiency The different treatments affect the incentives and ability of subjects to achieve efficient
outcomes. Table 6 presents the theoretical and empirical efficiency of each treatment, computed as the

S D N

Model 98.0 97.8 93.7
Realized 95.2 94.1 88.4

Table 6: Efficiency (as % of maximum payoff)

fraction of the maximum total earnings.32 The theoretical efficiency associated with equilibrium play of

32The maximum total earnings is computed as the payoff that would be realized if a social planner chose the subjects’
actions to maximize total payoff. The theoretical payoff is computed as the payoff that would be realized if all subjects
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the model is marginally higher in the S treatment than the D treatment, and somewhat lower in the N
treatment. In terms of realized efficiency, however, the differences are more pronounced. 95.3 percent
of the maximum payoffs are realized in the S treatment, compared to 94.1 percent in the D treatment
and 88.4 percent in the N treatment.33 Furthermore these differences are statistically significant at
conventional levels using one-sided Wilcoxson Rank Sum tests (p = 0.087 for S and D, p = 0.005 for S
and N , and p = 0.005 between D and N).34 Efficiency thus seems to improve with access to cheap talk
and with the redundancy of beliefs. These findings should, however, be treated with some caution given
that we have not power tested the relationships.

Result 4 (Efficiency) Cheap talk and unconditional best responses to Lead improve efficiency.

5 Agent Quantal Response Equilibrium

Although the predictions of the model tend to be supported by the data, behavior is not uniformly
consistent with the postulated equilibrium. In particular, we observe an asymmetric pattern of errors
in the vicinity of θ∗ for both the D and N treatment. This pattern is most pronounced in the D
treatment.35 Although it is natural for subjects to make mistakes in the computation of θ∗, we would
expect a symmetric pattern of error if the mistakes were idiosyncratic. Asymmetry suggests instead a
systematic deviation from the equilibrium. The overall level of errors is also higher in the N treatment
than the D treatment.

A key observation is that the frequency of errors is inversely related to their costs. Subjects with types
close to θ∗, who are nearly indifferent between Lead and Stay, often make mistakes while subjects with
extreme types, who have unequivocal preferences for G or S, rarely do. This is consistent with the core
intuition for a quantal response equilibrium. We therefore estimate the AQRE of the model (McKelvey
and Palfrey, 1998). This framework enables us to assess whether the observed pattern of behavior
is consistent with an equilibrium in which decisions are noisy. Furthermore, the AQRE perspective
emphasizes that beliefs are consequential everywhere. Since the model we study has a unique equilibrium,
this allows us to gauge the impact of beliefs on behavior in a smooth way.

Employing the notation from Turocy (2010), let a, a′ denote actions and I(a) denote the information
set that includes action a. In a game of perfect recall, like the bandwagon game, any node appears at
most once along any path of play. Let ρ denote a behavior strategy profile. Such a profile denotes,
for each action a, the probability ρa that action a is played if information set I(a) is reached. Finally,
let πa(ρ) denote the expected payoff to the player of taking action a on reaching information set I(a),
contingent on the behavior profile ρ being played at all other information sets. We say that the strategy
profile is a logit AQRE if, for all players, for some λ ≥ 0, and for all actions a and every information set:

ρa =
eλπa(ρ)∑

a′∈I(a) e
λπa′ (ρ)

played the equilibrium bandwagon strategy. The empirical payoff is computed based on the actual payoffs of test subjects.
Note that the maximum total surplus is nearly identical across treatments.

33Note that the percentages are affected by how we have defined our efficiency measure. In particular, realize that all
pairs will earn a certain minimum amount in equilibrium. Because of this, our efficiency measure does not range from 0 to
100. To see why, notice that the efficiency measure could be made arbitrarily close to 1 by simply adding a sufficiently large
number to each of the payoffs. Although we considered other efficiency measures, we rejected them in favor of the simplest
computation. Regardless, the important question is whether there is a statistical difference between the treatments.

34See supplementary materials section S.4 for WSR statistics for pairwise comparisons of the treatments and the associated
tabulations of realized efficiency by session.

35We document this asymmetry further in figure S2 which plots the distribution of errors along with a smoothed trend.
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In an AQRE ρa > 0 for all actions a. Thus, beliefs are relevant everywhere. Equilibrium requires that
beliefs are correct at each information set. The set of logit AQRE maps λ ∈ [0,∞] into the set of
totally mixed behavior profiles. Letting λ → ∞ identifies a subset of the set of sequential equilibria as
limiting points (McKelvey and Palfrey, 1998). Thus, when noise vanishes one is back in the neo-classical
equilibrium theory. On the other hand, and for a given game, moderate noise can get amplified in an
AQRE, resulting in substantial deviations from neo-classical equilibrium theory.

We estimate the logit AQRE on 20 equally sized bins (i.e. the empirically observed Go frequency in
that range) for the three decision nodes: The first stage action and two second stage actions that depend
on whether the match chose Stay or Go in the first stage. Our estimation performs a fixed point iteration
in which we loop through the QREs for each stage, taking behavior in the other stages as given. We fit
λ by minimizing the distance between the binned empirical data and the estimates. Figure 1 presents
the best fit for each treatment individually.36 We choose to present the individually estimated logit
AQREs because the treatments are quite different, both in terms of the costs of unilaterally choosing
Go (which are higher for the N treatment) and in terms of the complexity of the environment (in the D
treatment the majority of the subjects have a dominant strategy whereas the majority of subjects in the
N treatment have only a conditional best response).37 Based on a χ2 test of the first stage frequency
of Go, we are able to conclude that the AQRE predictions are statistically different from what would
be expected under the hypothesis of random or Nash behavior. Details of the tests are included in the
supplemental materials.38
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Figure 1: AQRE and Data by Treatment

The AQRE reproduces key features of the data. Crucially, it captures the behavior around θ∗: The
AQRE correctly predicts that types just below θ∗ deviate from the model to a greater extent than types

36Section S.5 in the supplementary materials provides a detailed discussion of the estimation procedure.
37Jointly estimated logit AQRE are presented in the supplementary materials figure S6. With joint fitting of the data,

it is primarily the fit for high types in the N treatment that suffers. Qualitatively, however, the jointly estimated logit
AQREs are consistent with the ones presented in the main text. Haile et al. (2008) demonstrate the lack of falsifiability of
QRE when any error distribution is permitted. However, even a treatment by treatment estimation of the logit AQRE is
disciplined by the extreme value distributional assumption necessary to arrive at the logit form of choice probabilities.

38See section S.5.
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just above this cut-off. The AQRE also identifies key features such as the stable level of leading for high
types in the D treatment.39 Between treatments, the AQRE correctly predicts that there should be a
rapid change in behavior around the cut point θ∗ = 6 in the D treatment whereas behavior in the N
treatment should change more gradually. The AQRE thus predicts the difference in the level of errors we
observe in the data. Relative to our earlier discussion of the role of beliefs with regard to conditional and
unconditional best responses, the AQRE provides a more nuanced perspective: It suggests that beliefs
vary continuously and that this is an important feature for modeling actual behavior.

Result 5 (Noisy Leadership) The AQRE rationalizes observed behavior. In particular, it explains
the reluctance to Lead when leading is a conditional best response in the neo-classical equilibrium.

6 Conclusion.

We have investigated the model of Farrell and Saloner (1985) in a controlled laboratory experiment. We
find that subjects by and large respond to the incentives of the model as predicted. However, there is a
reluctance to Lead not accounted for by the model. This reluctance is primarily present when leadership
failure is costly. For our parameters, leadership failure is more costly when leading is a conditional
best response. We use a quantal response equilibrium to account for this phenomenon. In the quantal
response equilibrium beliefs are relevant everywhere. We find that the observed deviations from neo-
classical equilibrium is explained well by injecting some noise in the equilibrium concept.

Once a subject decides to Go he or she produces a strong incentive for moderate types to jump on
the bandwagon. This is because the leader resolves all uncertainty on behalf of potential followers. We
find that this complementarity in actions strongly determines follower behavior. Hence, the main driver
of deviations from neo-classical equilibrium is weak leadership. As a consequence, efficiency losses are
greater when potential leaders have non-dominant best responses. However, we find that cheap talk
improves subjects’ ability to coordinate on mutually beneficial actions and increases efficiency.

39The flat (and even declining for high noise) Lead probability for players with high types in the D treatment is the
outcome of the subgame structure. For subjects with high types, if they fail to Lead in the first stage, there is still a high
probability that they choose Go in the second stage (since they prefer Go even if their co-player chooses Stay). The payoff
consequence is therefore about the same for all subjects in this range: It is approximately the size of the payoff externality
from not inducing the preferred outcome. This predicts similar behavior for these subjects. In addition, when behavior is
noisy, lower types are less likely to correct their mistakes in the second stage than higher types. This can explain why for
lower levels of noise it is actually types in the vicinity of θ̄ for whom a error to not Lead is most costly.
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Brindisi, F., B. Çelen, and K. Hyndman (2014). The effect of endogenous timing on coordination under
asymmetric information: An experimental study. Games and Economic Behavior 86 (July), 264–281.

Bulow, J. I., J. D. Geanakoplos, and P. D. Klemperer (1985). Multimarket oligopoly: Strategic substitutes
and complements. Journal of Political economy 93 (3), 488–511.

Carlsson, H. and E. Van Damme (1993). Equilibrium selection in stag hunt games. In K. Binmore,
A. Kirman, and P. Tani (Eds.), Frontiers of game theory, Chapter 12, pp. 237–253. Cambridge, MA:
MIT Press.

Cartwright, E., J. Gillet, and M. Van Vugt (2013). Leadership by example in the weak-link game.
Economic Inquiry 51 (4), 2028–2043.

Chaudhuri, A. and T. Paichayontvijit (2010). Recommended play and performance bonuses in the mini-
mum effort coordination game. Experimental Economics 13 (3), 346–363.

Clark, K., S. Kay, and M. Sefton (2001). When are nash equilibria self-enforcing? an experimental
analysis. International Journal of Game Theory 29 (4), 495–515.

Cooper, R. (1999). Coordination games. Cambridge University Press.

Crawford, V. (1998). A survey of experiments on communication via cheap talk. Journal of Economic
Theory 78, 286–298.

Duffy, J. and J. Ochs (2012). Equilibrium selection in static and dynamic entry games. Games and
Economic Behavior 76 (1), 97–116.

Dugar, S. and Q. Shahriar (2018). Restricted and free-form cheap-talk and the scope for efficient coor-
dination. Games and Economic Behavior . Forthcoming.

15



Edmond, C. (2013). Information manipulation, coordination, and regime change. Review of Economic
Studies 80 (4), 1422–1458.

Egorov, G. and K. Sonin (2011). Dictators and their viziers: Endogenizing the loyalty–competence
trade-off. Journal of the European Economic Association 9 (5), 903–930.

Farrell, J. and P. Klemperer (2007). Coordination and lock-in: Competition with switching costs and
network effects. In M. Armstrong and R. Porter (Eds.), Handbook of Industrial Organization, Volume
3 (1 ed.)., Chapter 31, pp. 1967–2072. Amsterdam: North Holland.

Farrell, J. and G. Saloner (1985). Standardization, compatibility, and innovation. RAND Journal of
Economics 16 (1), 70–83.

Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made economic experiments. Experimental
Economics 10 (2), 171–178.
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S SUPPLEMENTARY MATERIALS

S.1 First-Stage Behavior

S.1.1 Figures

Figure S1 shows the first stage behavior of subjects in the D and N treatments. On the horizontal axis is
a set of twenty bins, each corresponding to 0.5 intervals over subject types: The first bin includes subjects
with types θ ∈ [0, 0.5), the second bin includes subjects with types θ ∈ [0.5, 1), etc. On the vertical axis
is the proportion of subjects in each bin who chose to Go in the first stage. We interpret this proportion
as a probability. The bubbles are scaled by the number of observations within a bin, relative to the total
number of observations within a treatment.
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Figure S1: First Stage Behavior

The theoretical prediction for the first stage behavior is a step function at θ∗: In the equilibrium
of the model, subjects with types below θ∗ Stay in the first stage while those above θ∗ Lead. For each
treatment, this threshold is indicated by a dashed line. The plots in figure S1 illustrate that subjects
with low types tend to Stay in the first stage while subjects with high types tend to Go. Moreover, the
frequency of leading increases steeply in the vicinity of θ∗ in both treatments. This is consistent with the
use of bandwagon strategies.
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S.1.2 Between Treatment Comparisons

To assess whether behavior in the strategic ranges is the same in the D and N treatments, we use Wilcoxon
rank-sum (WSR) tests to compare the frequency with which participants choose to Go. These tests are
based on between treatment comparisons of session-level data. For each test, we present the relevant
session data and the associated means and standard deviations. We denote the WSR test statistic byW .
The p-value indicates how likely it is that the given observations come from the same distribution.

Comparison of behavior in the Stay Range (Table S1). A two-sample Wilcoxon rank-sum (Mann-
Whitney) test can not reject equality of behavior in the Stay range, θ ∈ [0, θ], in the D and N treatments:
W = 0.1, p = 0.92.

Session D N
1 0.00 0.01
2 0.02 0.03
3 0.04 0.04
4 0.08 0.05
5 0.08 0.07

Mean 0.04 0.04
Std 0.04 0.02

Table S1: θD ∈ [0, 3) vs. θN ∈ [0, 3)

Comparison of behavior in the Follow Range (Table S2). A two-sample Wilcoxon rank-sum
(Mann-Whitney) test can not reject equality of behavior in the Follow range, θ ∈ [θ, θ∗], in the D and N
treatments: W = 0.94,p = 0.35.

Session D N
1 0.22 0.12
2 0.22 0.18
3 0.24 0.23
4 0.33 0.24
5 0.36 0.29

Mean 0.27 0.21
Std 0.07 0.06

Table S2: θD ∈ [3, 6) vs. θN ∈ [3, 7.3)
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Comparison of behavior when Lead is a conditional best response (Tables S3 and S4). A
two-sample Wilcoxon rank-sum (Mann-Whitney) test can not reject equality of behavior when Lead is
a conditional best response regardless of whether we compare the region θ ∈ [θ∗, θ]) in the D treatment
with the entire Lead region in the N treatment or just the restricted region θ ∈ [θ∗, θ∗ + 1]: Both tests
deliver identical results, W = 1.36,p = 0.17.

Session D N
1 0.69 0.63
2 0.73 0.70
3 0.76 0.71
4 0.85 0.73
5 0.92 0.77

Mean 0.79 0.71
Std 0.09 0.05

Table S3: θD ∈ [6, 7) vs. θN ∈ [7.3, 10]

Session D N
1 0.69 0.44
2 0.73 0.57
3 0.76 0.71
4 0.85 0.74
5 0.92 0.79

Mean 0.79 0.65
Std 0.09 0.14

Table S4: θD ∈ [6, 7) vs. θN ∈ [7.3, 8.3)

Comparison of behavior in the Lead range (Table S5). A two-sample Wilcoxon rank-sum (Mann-
Whitney) test rejects equality of behavior for the Lead range, θ ∈ [θ∗, 10]: W = 2.61,p = 0.01.

Session D N
1 0.83 0.63
2 0.86 0.70
3 0.90 0.71
4 0.91 0.73
5 0.94 0.77

Mean 0.89 0.71
Std 0.04 0.05

Table S5: θD ∈ [6, 10] vs. θN ∈ [7.3, 10],
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Comparison of behavior when Lead is an unconditional best response in D (Table S6). A
two-sample Wilcoxon rank-sum (Mann-Whitney) test rejects equality of behavior for subjects with high
type draws; when we compare test subjects in the D treatment in the region θD ∈ [θ∗ + 1, 10] with
test subjects in the N treatment in the region θN ∈ [θ∗ + 1, 10], we strongly reject equality of behavior:
W = 2.61,p = 0.01.

Session D N
1 0.87 0.68
2 0.89 0.69
3 0.92 0.74
4 0.94 0.78
5 0.97 0.79

Mean 0.92 0.74
Std 0.04 0.05

Table S6: θD ∈ [7, 10] vs. θN ∈ [8.3, 10]

S.1.3 The Cost of Failing to Lead

In the bandwagon game, the decision to Stay or Lead is most difficult for test subjects with types in the
vicinity of the first stage Lead threshold θ∗. These are subjects who have a conditional best response to
Lead. They prefer a joint choice of G but would stick with S if they knew that their match will choose S
with certainty. In the D treatment, this range is relatively small while in the N treatment it is relatively
large. To get a measure of how costly it is for players in this region to forgo leading, we tabulate the
frequency with which subjects in the relevant ranges encounter a subject in the Follow range. Next, we
tabulate the frequency with which subjects take the correct strategic timing decision and the matched
subject does in fact Follow.40 Finally, as a crude measure of the importance of correctly taking the
strategic timing decision, we list the average payoff from the (correct) decision to Lead relative to the
average payoff from the decision to Stay:

Data Correct Go Correct Go & Followed Follow Error ∆Payoff
Joint 0.79 0.72 (0.91) 6.51 3.28
D 0.79 0.79 (1.00) 9.17 1.59
N 0.78 0.71 (0.91) 5.24 3.61

Table S7: Strategic Timing

40In about 9% of cases subjects in the Follow range fail to Follow.
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S.1.4 Errors

Figure S2 shows the empirical frequency of errors in 0.1 unit bins along with a think black black line
which is a 0.5 unit moving average of the error frequencies. This figure has three main features: First,
the pattern of errors is asymmetric around the cut point in both treatments. Second, there is sharper
pattern of errors in the D treatment relative to the N treatment. This suggests that the range in which
the decision to Lead is uncertain is more narrow in the D treatment relative to the N treatment. Third,
there is a generally higher level of errors in the N treatment relative to the D treatment for subjects with
high types. This testifies to an overall higher level of uncertainty in the N treatment.

0
.2

.4
.6

.8
1

E
rr

or
 P

ro
ba

bi
lit

y

0 2 4 6 8 10
Type

Data Moving average

D Treatment

0
.2

.4
.6

.8
1

0 2 4 6 8 10
Type

Data Moving average

N Treatment

Figure S2: First Stage Errors
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S.2 Second-Stage Behavior

S.2.1 Figures

Figure S3 presents the second-stage behavior by treatment, conditional on the match’s action. The figure
includes only those subjects who take a second stage decision. On the horizontal axis is subject type,
grouped in half unit bins. On the vertical axis is the proportion of subjects that Go in the second stage.
The left panel presents the second stage behavior for subjects whose match chose to Stay in the first stage
while the right panel presents the second stage behavior for subjects whose match chose to Lead in the
first stage. Data from the N treatment are presented as hollow bubbles and data from the D treatment
are presented as shaded bubbles. The size of the bubbles reflects the proportion of observations in a
bin relative to the total number of observations within a treatment. The thresholds identified by the
equilibrium of the model are marked by vertical lines: We denote θ by a short dashed black line (this
threshold is identical for both treatments) while we denote θ∗ by a short dashed black line for the D
treatment (θ∗ = 6) and a long dashed gray line for the N treatment (θ∗ = 7.3).
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Figure S3: Second Stage Behavior by Match Action

As is evident from figure S3, complementarity has a strong effect on the outcomes.
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S.2.2 Second Stage Between Treatment Comparisons

Comparison of behavior in the Stay Range (Table S9 and S8). Two-sample Wilcoxon rank-
sum (Mann-Whitney) test can not reject equality of behavior when test subjects are in the Stay range.
This holds when the match chooses to Stay (W = 1.16,p = 0.24) and when the match chooses to Go
(W = −0.63, p = 0.53).

Match Stay
Session D N

1 0.00 0.00
2 0.03 0.00
3 0.04 0.02
4 0.05 0.04
5 0.08 0.04

Mean 0.04 0.02
Std 0.03 0.02

Table S8: θD ∈ [0, 3) vs. θN ∈ [0, 3)

Match Go
Session D N

1 0.00 0.00
2 0.03 0.03
3 0.03 0.07
4 0.05 0.08
5 0.10 0.13

Mean 0.04 0.06
Std 0.04 0.05

Table S9: θD ∈ [0, 3) vs. θN ∈ [0, 3)

Comparison of behavior in the Follow Range (Table S10 and S11). Two-sample Wilcoxon
rank-sum (Mann-Whitney) test can not reject equality of behavior when test subjects are in the Follow
range. This holds when the match chooses to Stay (W = 0.52,p = 0.60) and when the match chooses to
Go (W = 1.79, p = 0.07).

Match Stay
Session D N

1 0.02 0.05
2 0.03 0.06
3 0.10 0.07
4 0.12 0.08
5 0.13 0.08

Mean 0.08 0.07
Std 0.05 0.01

Table S10: θD ∈ [3, θ∗D = 6) vs. θN ∈ [3, θ∗N =
7.3)

Match Go
Session D N

1 0.88 0.84
2 0.89 0.85
3 0.89 0.86
4 0.92 0.88
5 0.92 0.90

Mean 0.90 0.87
Std 0.02 0.03

Table S11: θD ∈ [3, θ∗D = 6) vs. θN ∈ [3, θ∗N =
7.3)
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S.2.3 Logistic Regression

To demonstrate the predictive ability of the bandwagon model and to illustrate the role of complemen-
tarity, we estimate the logistic regression for individual i in repetition t of the game with errors clustered
at the level of the individual subjects:

P
(
G2
it|a1

jt

)
=F

(
β0 + β1θit + β2rangeit + β3treatmentit + β4a

1
jt

+β5rangeia
1
jt + β6rangeittreatment + β7treatmenta1

jt + εit
)

We include three dummy variables: The range dummy to indicate players with types in the Follow
range (relative to the Stay range), the treatment dummy to indicate the D treatment (relative to the
N treatment), and the dummy variable a1

j to indicate whether the first stage action of i’s match was Go.
We include the pairwise interactions between these last three variables.

G2
it Coeff. (p-value) Std. Err.

θit 0.44 (0.00) 0.11
range -0.44 (0.31) 0.43

treatment 0.40 (0.46) 0.53
a1
jt 0.84 (0.06) 0.44

range x a1
jt 3.94 (0.00) 0.41

treatment x a1
jt -0.39 (0.38) 0.44

treatment x range 0.33 (0.52) 0.52
constant -4.50 (0.00) 0.45

Table S12: Logistic estimates of second stage Go probability

In this specification, only type θit, match action a1
jt, and the interaction between range and a1

jt are

significant.41 Contrary to theory, type has an independent effect on the probability to Go and higher
types are more likely to Go regardless of their match’s action. However, this effect is relatively weak.
The much stronger effect is the interaction between the match’s action and range. In particular, when a
subject is in the Follow range and their match chooses to Go in the first stage, the average probability
that the test subject will Lead increases by about 70 percentage points relative to the case when their
match chooses to Stay. In addition, we see that the impact of the match’s action is close to zero in the
case when the test subject is in the Stay range. These effects are clearly illustrated by figure 8 which
plots the predicted Go probability given the match’s action in both the D and N treatments.42

41Alternative specifications yielded nearly identical results with small differences in estimated coefficients and p-values.
42Recall that in both treatments, the dividing line between the Stay and Follow ranges is at θ = 3.
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Figure S4: Predicted Leading Probabilities Conditional on Match Action

S.3 Signaling Game

Model

The equilibrium in the model with signaling has a similar form as the equilibrium in the model without
signals. First, observe that players will always send the message that promotes the outcome that they
prefer. The message that players send therefore perfectly reveals whether a player has a type above
or below θo. An implication is that players who send the same message will choose the same action.
In addition, if players send conflicting messages, then the player who prefers outcome Go can update
her belief about the type of their match. Relative to the game without signaling, the player has more
information since the range of possible types for the match is truncated from θ∗ to θo. This means that
the upper bandwagon threshold must satisfy

P(θ−i > θ|θ−i < θo)π(Gi, Gj ; θ
∗) + (1− P(θ−i > θ|θ−i < θo))π(Gi, S−i; θ

∗) = π(Si, S−i; θ
∗).

Given the uniform distribution of types on the interval [0, 10], and our parameterization of the payoff
functions, this reduces to

θo − θ
θo

(θ∗ + 2) +
θ

θo
θ∗ = 7,

where θ = 3, and θo = 5. Relative to the D treatment, the upper bandwagon threshold increases slightly
from 6 to 6.2 in the game with signaling.

Figures

We present the first-stage results in figure S5. Comparison of the D and S treatments demonstrates that
communication improves coordination of actions whenever subjects have the same preferred outcome.
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Figure S5: First Stage GO by Signal

On the main diagonal, we see that when players send the same message, they overwhelmingly choose
the same action in the first stage. When both players signal Go or both signal Stay, the coordination
success of subjects is substantially higher than what is observed in the D and N treatments. On the
off-diagonal, we see the instances in which subjects send conflicting signals. In these cases, the subjects
should play bandwagon strategies similar to the D treatment, but with θ∗ = 6.2. As expected, we observe
that subjects with dominant strategies (respectively θ < θ and θ > θ) behave as they should. However,
as in the other treatments, there is an over-eagerness for subjects just below θ∗ to Lead.
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S.4 Efficiency

Wilcoxson rank-sum tests identify a statistically significant difference with respect to the realized efficiency
(the empirically observed payoff as a percent of the maximum possible payoff) between each pair of
treatments, between S and D (W = 1.4,p = 0.087) , between S and N (W = 2.6,p = 0.005) , and
between D and N (W = 2.6,p = 0.005).

Session S D N
1 97.0 95.4 89.4
2 95.6 95.0 88.3
3 94.8 94.9 88.3
4 94.6 93.9 88.0
5 94.1 93.2 88.0

Mean 95.2 94.1 88.4
Std 0.01 0.01 0.01

Table S13: Empirical efficiency as percent of maximum by treatment–session,

S.5 Equilibrium with Noise

Regarding the estimation of the AQRE, a few comments are warranted. In our estimation, we discretize
the continuous type space into B equally spaced bins with types corresponding to the mid-point in the
bin. Since all actions in an AQRE are played with some non-zero probability, the expected payoff for a
player in bin i depends on how likely it is to get a match j in each of the 1...B bins and how likely a
match of type j will choose Go at each information set. In particular, in the second stage, players update
their beliefs about their match’s type based on whether their match chose to Stay or Go in the first stage.
Although we present estimates based on B = 20 bins, we estimated versions with up to 100 bins. Since
increasing the number of bins did not change any conclusions—even delivering the same estimate of the
noise parameter—we choose to present the simpler version.

Given the discretization, the estimation involves two stages. In the first stage, we estimate a fixed
point for the vector of first stage Go probabilities taking the second stage Go probabilities as given. Since
agents are forward looking, they anticipate how likely it is that their match will Go in the first stage and
how their own first stage action will affect the second stage action of their match. In the second stage,
agents that chose to Stay are in one of two possible situations: Either their match chose to Go or their
match chose to Stay. In both cases, we must estimate a QRE for the second stage Go probability for each
of the B types. In particular, when the match chose to Stay, the second stage estimation depends on the
first-stage probability estimates because agents update their beliefs about how likely each type is. This
is important because high types will be more likely to Go in the second stage. The first and second stage
decisions are thus interlinked because the first-stage decisions depend on the anticipated second stage
probabilities and the second stage decisions depend on the updated beliefs generated in the first stage.

The actual estimation proceeded by looping through the first and second stage, using the estimated
probabilities from the previous iteration of the procedure as beliefs. To efficiently estimate the model,
we vectorize the computations. For example, in the first stage we compute the payoff from choosing Go
for all the types i = 1, . . . , B from the matrix multiplication

1

B
1
(
pT
1 πi(G

1
i,G

1
j ) + (1T − pT

1 )pT
2,Goπi(G

1
i,G

2
j ) + (1T − pT

1 )(1T−pT
2,Go)πi(G

1
i,S

2
j )
)

where all vectors are denoted in bold, are of length 1 × B, and transposes are indicated by a T . The
vector p1 denotes the probability of match j = {1, . . . , B} choosing Go in the first stage, p2,Go denotes
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the probability of match j = {1, . . . , B} chossing Go in the second stage conditional on i choosing to
Lead, and πi denotes payoffs to a type i = {1, . . . , B} that depends on the outcome realized in the second
stage. The first term in the entire product, 1

B1, is the probability of meeting each of the B types while
the second term (everything inside the outer parenthesis) is a B × B matrix that in each i, j-cell gives
the expected payoff to a type i of meeting a type j. Notice that the second factor is composed of three
outer products that respectively give the payoff from (1) both choosing to Lead, (2) i leading and j
following in the second stage, and (3) i leading while j chooses to Stay in the second stage. The product
thus produces a vector of length 1 × B that in each position gives the expected payoff to a type i that
results from the sum of payoffs from meeting all the j ∈ {1, . . . , B} types. Analogous computations were
carried out for the first stage payoff of choosing to Stay, as well as for the second stage payoffs that also
depend via updated beliefs on the first stage action of the match. QRE probability estimates in each
stage could then be computed as the ratio of payoffs from Go relative to the sum of the payoffs from Go
plus the payoffs of Stay as shown in section 5. The QRE probabilities from the first and second stage
for all B types then characterize the behavior profile. The estimation terminated when the estimates
converged sufficiently that the maximum distance between the previous best estimates and the current
best estimates fell below a chosen threshold.

How to select the level of noise and fit the AQRE is an open question. In particular, it is possible
to allow the level of noise to vary across both the stages of the game and the treatments. This accounts
for differences in the strategic environment. However, when using such a flexible specification, overfitting
can be an issue. To discipline our analysis, we therefore chose to constrain the noise parameter to be the
same across both the first and second stage of the estimation. In figure 9, we also present the same plots
as in figure 1 but with the noise parameter estimated jointly for both treatments. In the top panel we
present the data and fitted AQRE for all the periods while in the bottom panel the same information for
the last ten periods.

28



0
.2

.4
.6

.8
1

Le
ad

 P
ro

ba
bi

lit
y

0 2 4 6 8 10
Type

QRE Data

D treatment

0
.2

.4
.6

.8
1

Le
ad

 P
ro

ba
bi

lit
y

0 2 4 6 8 10
Type

QRE Data

N treatment

All Periods

0
.2

.4
.6

.8
1

Le
ad

 P
ro

ba
bi

lit
y

0 2 4 6 8 10
Type

QRE Data

D treatment

0
.2

.4
.6

.8
1

Le
ad

 P
ro

ba
bi

lit
y

0 2 4 6 8 10
Type

QRE Data

N treatment

Last 10 Periods

Figure S6: AQRE, Joint estimate of lambda

We investigated several procedures to select the level of noise: Maximum likelihood, Euclidean
(quadratic) distance, and absolute distance. In all cases, our fit was based on the closeness of the first-
stage estimates to the data. All three procedures produced similar results, although maximum likelihood
and Euclidean distance estimated somewhat higher levels of noise. The maximum likelihood estimates
were strongly affected by the fact that for the lower half of the types, the predicted first-stage behavior
is close to zero. Because actual behavior was somewhat greater than zero—even for lowest types—the
maximum likelihood procedure yields a high level noise. The Euclidean distance estimates were strongly
affected by the non-monotonic behavior in the D treatment in which subjects in bin [5, 5.5) were leading
at a higher rate than subjects in bin [5.5, 6). Given our interest in using the model for prediction, we
therefore fit the AQRE using the absolute distance criteria rather than maximum likelihood or Euclidean
distance procedures.

Goodness of fit

To assess the goodness of fit of the AQRE model, we use a χ2 test. For any model of behavior, each
type of player is associated with a probability of choosing Go. Consequently, the distribution of Go will
follow a binomial distribution. Because the binomial distribution approaches the normal distribution
asymptotically, if we group players in narrow bins, the joint distribution of the probability of Go will
approach a multivariate normal distribution. A χ2 test can then be used to evaluate whether the AQRE
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frequencies are consistent with the frequencies expected under an alternative hypothesis.
Consider the case of testing the AQRE model against the hypothesis of random behavior. Let there

be q bins indexed by j, each withnj observations. Denote the AQRE predictions by x̂j and observe that
the prediction of random behavior is p = 0.5 for all j. Under the null hypothesis of random behavior,
x = ((x̂1−n10.5)/

√
n10.5(1− 0.5), ..., (x̂q−0.5nq)/

√
nq0.5(1− 0.5))′ will approach a multivariate normal

with the zero vector in expectation and the identity matrix as the covariance matrix. Furthermore, xTx =∑q
j=1(p̂j − 0.5nj)

2/nj0.5(1− 0.5) will (asymptotically) be distributed as χ2
q under the null hypothesis. A

χ2 test can thus be carried out to compare the AQRE prediction with the anticipated probability of Go.
A similar type of test can be used to compare the AQRE model with the Nash prediction. However,

because the Nash equilibrium predicts zero probabilities for certain types, we use the AQRE predictions
as the null hypothesis (to avoid dividing by zero).

For both random and Nash behavior, we can strongly reject the null hypothesis. The χ2 statistics
are large in each case. The AQRE is inconsistent with the predictions given by these other models
of behavior. For the case of random behavior, the test statistics are 1643 and 1474 for the D and N
treatments, respectively. This is far in excess of the threshold of about 38 required for 1% significance.
Similarly, compared with Nash, test statistics for both treatments were in excess of 159.
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S.6 Appendix. Instructions for baseline treatment

INSTRUCTIONS

You are going to participate in an experiment financed by the Department of Economics at BI and the
Norwegian Research Council.

You will earn money. How much you earn depends on the decisions you make, as well as on the decisions
made by other subjects.

All interactions are anonymous and are performed through a network of computers. The administrators
of the experiment will not be able to observe your decisions during the experiment.

There are 20 subjects participating in the experiment. All participants are in this room. They have all
been recruited in the same way as you and are reading the same instructions as you are for the first time.
It is important that you do not talk to any of the other subjects in the room until the experiment is over.

In the experiment you will earn points. At the end of the experiment, you will be paid in Norwegian
Kroner (NOK) based on your total earnings in points from all the games of the experiment. The exchange
rate from points to NOK is:

1 point = 1,25 NOK

The more points you earn, the more cash you will receive.

DESCRIPTION OF THE EXPERIMENT

The experiment consists of 19 games. In each game, you are randomly matched with another participant
(your “match”). You will be matched with each participant once and only once.

Each game has an identical structure and consists of two stages:

• First stage: In the first stage, you select either action CIRCLE or action SQUARE. If your action
is SQUARE in the first stage, then your action is SQUARE in the second stage as well.

Your match faces an analogous first-stage decision between action CIRCLE and action SQUARE.

After you and your match have selected actions, you observe your match’s action and your match
observes your action. This concludes the stage.

• Second Stage: In the second stage, there are two possibilities:

◦ If your action in the first stage is CIRCLE then you again select between action CIRCLE and
action SQUARE.

◦ If your action in the first stage is SQUARE then you do not make a second-stage selection:
Your second stage action is SQUARE.
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Your match has the same options: If your match selected CIRCLE in the first stage, then he/she selects
again. Otherwise, your match’s second stage action is SQUARE.

At the conclusion of the second stage, you observe your match’s action and your match observes your
action. Points are allocated based on which of the four combinations of actions occurs. The four combi-
nations are:

1. Your action is CIRCLE and your match’s action is CIRCLE

2. Your action is CIRCLE and your match’s action is SQUARE

3. Your action is SQUARE and your match’s action is CIRCLE

4. Your action is SQUARE and your match’s action is SQUARE

The payoff structure is discussed in the next section.
After points are allocated, the game is concluded.

Payoff structure

At the beginning of each game, the software in the machine draws a random number between 0.00 and
10.00. Each number in the interval 0.00 to 10.00 has an equal probability of being drawn.

This random number determines your payoffs in that game and that game only. You observe this number
before you choose any actions.

Specifically, your payoff structure takes the following form:

Your payoffs (in points)
Your action is CIRCLE and your match’s action is CIRCLE: 7
Your action is CIRCLE and your match’s action is SQUARE: 5
Your action is SQUARE and your match’s action is CIRCLE: Your random number
Your action is SQUARE and your match’s action is SQUARE: 2+Your random number

The software in the machine also draws a separate random number between 0.00 and 10.00 for your
match. Again, each number in the interval 0.00 to 10.00 has an equal probability of being drawn. This
random number determines the payoffs for your match. Your match observes this number before he/she
makes any decisions.

Your match’s payoff structure takes the following form:

Your match’s payoffs (in points)
Your action is CIRCLE and your match’s action is CIRCLE: 7
Your action is CIRCLE and your match’s action is SQUARE: Your match’s random number
Your action is SQUARE and your match’s action is CIRCLE: 5
Your action is SQUARE and your match’s action is SQUARE: 2+Your match’s random number

In other words, your payoffs and the payoffs of your match only differ due to differences in your random
numbers.
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Information

Your payoff structure is revealed to you at the beginning of the game. You observe the points associated
with each possible combination of actions before making a selection in the first stage.

In addition, prior to making your choice in the second stage, you observe the first-stage action of your
match.

However, you never observe your match’s payoffs.

Your match has similar information: Your match observes his/her own payoffs at the beginning of the
game and observes your first-stage action prior to the second stage. But your match never observes your
payoffs directly.

At the end of each game, historical statistics are presented. These statistics show the decisions made in
each of the games that have been played. It also shows your profits from each game, as well as your total
accumulated profits.

EARNINGS

After the last game is completed, your earnings in points are converted to Norwegian Kroner at the stated
exchange rate. Your earnings will be paid in cash as you exit the lab.

TEST GAMES

We run two “test games” before we start the experiment. You do not earn points in these test games.
However, the test games allow you to familiarize yourself with the screens used in the experiment.

Are there any questions?
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S.7 Screenshots

Figure S7: Stage 0. Random Number

34



Figure S8: Stage 1. First Decision
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Figure S9: Screen 2. Both Stay
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Figure S10: Screen 2. Match Go
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Figure S11: Screen 3. Feedback
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