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Abstract

How do liquidity constraints affect households? This is a well-researched subject

with remarkably few theoretical results. This paper bridges this gap by providing

analytical results on how a liquidity constraint affects optimal consumption. I first

provide an implicit analytical solution to consumption with liquidity constraints.

Using this expression, I prove that the consumption function is strictly concave in

wealth if there exists a relevant liquidity constraint. Since uninsurable income risk

also makes consumption concave in wealth, it is not possible to separate the effects

of income risk from the effects of liquidity constraints. Next, I prove that for utility

functions that satisfy decreasing absolute risk aversion, a tighter liquidity constraint

induces households to reduce consumption, become more sensitive to wealth changes,

have a ”more” concave consumption function in wealth, and exhibit greater absolute

risk aversion and absolute prudence. This result thus provide theoretical results for

how credit crunches affect households.

JEL: D11, D91, E21

Keywords: Consumption; Liquidity Constraints

1 Introduction

The question of how liquidity constraints affect households attracts a lot of attention. Nu-
merous important papers discuss how credit constraints affect consumption (e.g. Zeldes
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1989, Jappelli and Pagano 1994, and Ludvigson 1999), amplify business cycles (e.g. Kiy-
otaki and Moore 1997 and Iacoviello 2005), affect the cost of business cycles (e.g. Imro-
horoğlu 1989), and prolong crises (e.g. Eggertsson and Krugman (2012) on deleveraging
and Guerrieri and Lorenzoni (2017) on credit crunches). However, despite the widespread
interest, there are remarkably few analytical results on liquidity constraints. This paper
attempts to bridge this gap by providing analytical results on two important questions:
How does the presence of a liquidity constraint affect household behavior? And how
does changes in liquidity constraints affect household behavior?

To address these questions, I study a household problem where infinitely-lived, im-
patient, and risk-averse households save and borrow, have time-separable hyperbolic
absolute risk aversion (HARA) utility, and face a liquidity constraint on wealth holdings.
The key to my results relies on the observation that the household problem with a liquidity
constraint is a solvable first-order differential equation in optimal consumption. I derive
an implicit closed form solution to the consumption function where the liquidity con-
straint enters as a boundary constraint. Using this framework, I prove how the presence
of and shifts in liquidity constraints affect consumption and risk preferences.

The first contribution of this paper is to show how liquidity constraints affect con-
sumption. I compare the consumption function with and without a liquidity constraint,
and show that households respond to the constraint in three ways. First, they reduce
consumption. The liquidity constraint forces consumption to be equal to total income at
the constraint. Since households are impatient, they reduce consumption at the constraint,
but also for all other levels of wealth since they want to smooth consumption. Second,
households become more sensitive to wealth changes. Households want to avoid the con-
straint, making each unit of wealth more valuable. They therefore increase the marginal
propensity to consume (MPC) out of wealth. Third, the consumption function is strictly
concave in wealth. The effects of the constraint are weaker the wealthier households are.
The reduction in consumption is therefore greatest for households close to the constraint
and less so for wealthy households. The result of this gradual decrease in influence of the
constraint is a strictly concave consumption function in wealth.

Importantly, the results here rely on a continuous time version of the consumption-
saving problem. There is a notable difference between the results in this paper and com-
parable results for discrete time versions of the same model (Carroll and Kimball 2001).
In discrete time, the liquidity constraint introduces a kink point in wealth in the optimal
consumption function. Below this threshold, households are constrained and consump-
tion is equal to total income. Above this threshold, households are unconstrained. The
continuous time version of the model introduces no such kink points. Indeed, as long as
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households have wealth above the constraint, they are never constrained. Moreover, the
derivatives of the optimal consumption function are well-defined for all levels of wealth.
As a result, I can prove how the liquidity constraint affects the MPC and the concavity of
the consumption function for all households.

A liquidity constraint and uninsurable income risk have the same qualitative effects
on consumption. Households reduce consumption, increases the MPC out of wealth,
and has a concave optimal consumption function in the presence of either a liquidity
constraint or uninsurable income risk (Kimball 1990a and Carroll and Kimball 1996)
However, there is one important difference. The effects of a liquidity constraint are
independent of the third derivative of the utility function (prudence). Even imprudent
households have lower consumption, are more sensitive to wealth changes, and have a
concave consumption function in wealth if a liquidity constraint exists. Indeed, since the
liquidity constraint generates buffering behavior similar to that of an income risk model
and this effect is independent of prudence, we can conclude that prudence is not necessary
for precautionary saving even at the household level. This result is stronger than Huggett
and Ospina (2001) who show that prudence is not necessary for aggregate precautionary
saving.

The second question I ask is how does a tighter liquidity constraint affect consumption
and risk preferences? Credit crunches and changing credit conditions are important com-
ponents of the business cycle. Recently, Guerrieri and Lorenzoni (2017) derive important
implications of credit crunches on interest rates and output. This paper complements this
research by providing theoretical results on how a tighter liqudity constraint affects house-
holds. I show, in Proposition 2, that risk-averse, impatient, and infinitely-lived households
with decreasing absolute risk aversion (DARA) utility respond to a tighter liquidity con-
straint by reducing consumption, becoming more sensitive to wealth changes, having a
”more” concave consumption function in wealth, and increasing absolute risk aversions
and absolute prudence.

In a sense, a tighter liquidity constraint is very similar to a demand shock. All else
equal, households respond by consuming less. However, there are further implications
on consumption dynamics and policy transmission. First, tighter liquidity constraints
limit households’ ability to borrow. An interest rate reduction that is supposed to in-
duce households to consume more has less influence when borrowing is more restricted.
Expansionary monetary policy is therefore less influential when liquidity constraints are
tighter. Second, tighter liquidity constraints make households more sensitive to short-run
wealth changes. Short-run changes in disposable income, such as tax rebates or transfer
policies, influence households more if the marginal propensity to consume is higher. As
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a result, fiscal policy is more influential with a tighter liquidity constraint. Changes in
credit conditions thus alter the optimal mix of monetary and fiscal policy.

This paper is not the first to analytically characterize how liquidity constraints affect
consumption. Seater (1997) and Park (2006) are similar to my paper in the sense that
they use a continuous time approach to solve the consumption-saving problem with
liquidity constraints. Seater (1997) analyzes the case where time-discounting equals the
interest rate and income fluctuates. Compared with the unconstrained case, he shows that
consumption must be lower when the constraint binds and higher in other periods for the
budget constraint to hold. Park (2006) solves the problem with CRRA utility and shows
that the liquidity constraint affects optimal consumption even for households far away
from the liquidity constraint. Carroll and Kimball (2001) analyzes a discrete time version
of the model and find that for either quadratic, CRRA or CARA utility, the consumption
function is concave in wealth in the neighborhood of the liquidity constraint. Moreover,
Nishiyama and Kato (2012) show that the consumption function is concave in wealth
with quadratic utility if a liquidity constraint exists. Since the quadratic utility has zero
prudence, this implies that prudence is not necessary for the consumption function to be
concave in wealth. In a related paper, Carroll (2004a) derives the conditions for a well-
defined solution with a liquidity constraint, but limits the analysis to CRRA utility. The
contributions of this paper are to characterize the global effects of liquidity constraints
on consumption for a general class of utility functions and further to characterize how
changes in liquidity constraints affect households. Moreover, I explicitly derive how
liquidity constraints and changes in these affect risk preferences.

The rest of this paper is organized as follows. Section 2 presents the model. Section
3 presents the results on how a liquidity constraint affect consumption and risk prefer-
ences. In Section 4, I present the result on how changes in the liquidity constraint affect
consumption and risk preferences.

2 The Model

I solve the consumption-saving problem for an infinitely-lived impatient household with
constant income and a fixed liquidity constraint. The household maximizes its lifetime
utility flow from future consumption ct discounted at rate ρ ≥ 0∫

∞

t
e−ρsu(c(ws))ds (1)
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where u(c) is a utility function of the HARA class

u(c) =


1

a−1 (ac + b)1−1/a a , 0, 1

−be−c/b a = 0

log(c + b) a = 1

(2)

with b > max{−ac, 0}. Note that u′(c) > 0 and u′′(c) < 0 is always true for HARA utility.
Household wealth takes the form of risk-free bonds and evolves according to

dwt = (rwt + y − c(wt))dt (3)

where r is the real interest rate. The household also faces an exogenous liquidity constraint
on wealth holdings

wt ≥ w (4)

where w is a scalar satisfying w > − y
r (natural borrowing limit).

For the rest of this paper, I analyze the household problem in a stationary setting and
present the equations without time subscripts. The following Hamilton-Jacobi-Bellman
(HJB) equation fully describes the solution to the household problem1

ρV(w) = max
c

u(c) + V′(w)(rw + y − c(w)) (5)

where V(w) is the value function of a household with assets w. Note that equation (5) can
also represent a model with deterministic income growth, see Appendix B. The first order
necessary condition is

u′(c) = V′(w) (6)

To obtain a differential equation in consumption, I first use the envelope theorem on
equation (5) to obtain

c(w) = rw + y −
V′(w)
V′′(w)

(ρ − r)

and then use the first order condition (6) to replace all value function expressions with
utility functions to obtain

c(w) = rw + y −
u′(c(w))

u′′(c(w))c′(w)
(ρ − r)

Furthermore, the definition of HARA utility is that risk tolerance is linear in consumption,

1See e.g. Chang (2004) for how to derive this expression.
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−
u′(c(w))
u′′(c(w)) = ac(w) + b. We can then simplify further to get

c(w) = rw + y +
ac(w) + b

c′(w)
(ρ − r) (7)

The optimal solution to the household problem is therefore a first-order non-linear differ-
ential equation in consumption.

3 Consumption with Liquidity Constraints

This section contains three main results. First, I show that the differential equation is
solvable and we are able to obtain an implicit expression (8) for optimal consumption in
Proposition 1. Using expression (8), it is straightforward to derive three results on the
qualitative properties of consumption with liquidity constraints in Corollary 1. Third, I
show how the liquidity constraint affects households’ risk preferences in Corollary 2.

Proposition 1. Suppose w > − y
r , ρ > r > 0, then

c(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r
−
ρ − r

r

(
a(rw + y) + b

) (a(rw + y) + b
ac(w) + b

) r
a(ρ−r)

(8)

optimally solves (7) for all HARA utility functions (2).

Proof. See Appendix A.1. �

Proposition 1 provides an implicit expression for optimal consumption with a liquidity
constraint. Note that (8) contains the special case with linear consumption when the
liquidity constraint is the natural borrowing limit (w = −

y
r )

cu(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r

(9)

By comparing consumption in the constrained and the unconstrained case, we can show
what happens to optimal consumption when we add a liquidity constraint

Corollary 1. For utility functions of the HARA class, if w > − y
r , ρ > r > 0, and r + a(ρ− r) > 0.

Then there exists an optimal consumption function for all w ∈ (w,∞) where

1. Consumption is lower than in the unconstrained case: cu(w) > c(w) > rw + y.

2. The MPC out of wealth is greater than in the unconstrained case: c′(w) > c′u(w) > 0.
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3. Consumption is strictly concave in wealth: c′′(w) < 0.

4. If also a > 0, consumption is asymptotically linear: limw→∞ c(w) = cu(w).

Proof. See Appendix A.2. �

Corollary 1 reveals four effects of introducing a liquidity constraint in the optimal
consumption problem. First, the presence of a liquidity constraint reduces consumption
for all levels of wealth. The liquidity constraint imposes a shadow cost on consumption
because households know that the constraint binds at some point in the future. Due to the
intertemporal substitution motive, households become more reluctant to consume and
reduce their optimal consumption.

Second, the MPC out of wealth is always greater with a liquidity constraint than in the
unconstrained case. Since households want to avoid the liquidity constraint, each unit
of wealth is more valuable to households. They are therefore more sensitive to wealth
changes, increasing their MPC out of wealth.

Third, the optimal consumption function is strictly concave in wealth in the presence of
a liquidity constraint. The effects of the liquidity constraint are greatest at the constraint,
but also affects all wealth levels through the intertemporal substitution motive. How-
ever, the effect is declining in the distance from the constraint. Poor households reduce
consumption more than wealthy households. This asymmetric reduction in consumption
results in an optimal consumption function that is strictly concave in wealth.

Fourth, if utility also satisfies DARA, consumption is asymptotically linear as wealth
goes to infinity. However, note that the optimal consumption function is never linear for
a finite value of wealth since cu(w) > c(w).

There are two notable differences between introducing liquidity constraint in continu-
ous time compared to discrete time. In discrete time, there exists a threshold wealth level.
Below this wealth level, households are constrained, while the consumption function is
linear above this level (Carroll and Kimball 2001). The liquidity constraint therefore in-
troduces a kink point in the optimal consumption function in discrete time. This does not
happen in continuous time. Since c(w) > rw+ y when w > w, the liquidity constraint never
binds unless the household is exactly at the constraint. Moreover, since cu(w) > c(w) for
all w ∈ (w,∞), the optimal consumption function is never exactly equal to the linear un-
constrained solution for a finite value of wealth. As a result, the liquidity constraint does
not introduce a kink point and the optimal consumption is smooth and well-behaved.

This smoothness is a very important property and allows us to derive general results
for the effects of the liquidity constraint. In particular, the first and second derivatives of
the optimal consumption function exist for all wealth levels. In discrete time, on the other
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hand, the liquidity constraint only introduces concavity locally around the kink point
(counterclockwise concavification, Carroll and Kimball 2001), but is linear otherwise.
Moreover, the MPC is higher only below the kink point, and equal otherwise. The fact
that liquidity constraints introduces this artificial non-smoothness in discrete time is an
important reason why solving economic models in continuous time might be preferable.2

Remark 1. The results in Corollary 1 only hold for w ∈ (w,∞). For w = w, c(w) = rw + y while
c′(w) and c′′(w) are undefined.

Remark 2. The condition w > − y
r ensures that the liquidity constraint is tighter than the natural

borrowing limit.

Remark 3. The results in Corollary 1 are independent of the third derivative of the utility function.

Remark 4. The condition ρ > r > 0 ensures that the liquidity constraint is relevant.

Remark 5. The condition r + a(ρ − r) > 0 ensures that c′(w) > 0 for all w ∈ (w,∞).

3.1 An Illustration of Corollary 1

In order to provide some intuition behind the results in Proposition 1, I illustrate how the
liquidity constraint affects consumption for a power utility function.

Example 1. Optimal Consumption with Power Utility.
For households with power utility, u(c) = c1−γ

1−γ , γ > 0, the optimal consumption function is

c(w) =
γr − r + ρ

γr
(rw + y) −

(
ρ − r
γr

)
(rw + y)

(
rw + y
c(w)

) γr
ρ−r

Figure 1 illustrates how a liquidity constraint affects optimal consumption. The blue
line shows consumption in the constrainted case and the red line shows consumption
in the unconstrained case. The difference between the two lines illustrates how the liq-
uidity constraint affects consumption. First, when households face a liquidity constraint,
they cannot consume more than their total income at the constraint. Since consumption
is always greater than total income when ρ > r > 0, households are forced to reduce
consumption at the constraint. Since households smooth consumption through the in-
tertemporal substitution motive, they also reduce consumption for wealth levels above
the constraint. However, this effect is decreasing in the distance from the constraint.

2Other reasons are computational efficiency (Achdou et al. 2016) and the fact that one can more often
derive closed form solutions to household problems in continuous time than in discrete time.
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Figure 1: The effects of liquidity constraints for power utility.
Parameters: γ = 2; y = 1, ρ = 0.04, r = 0.035, and w = 0.

Indeed, as wealth increases, the optimal constrained consumption function converges to
the linear unconstrained consumption function. Figure 1 thus reveals all four effects of a
liquidity constraint in Corollary 1: consumption is lower, the marginal propensity to con-
sume out of wealth is higher, the optimal consumption function is concave in wealth, and
the consumption function converges to the linear unconstrained consumption function as
wealth goes to infinity.

3.2 Can we separate the effects of liquidity constraints from the effects

of uninsurable income risk?

The results in this paper imply that the effects of liquidity constraints and uninsurable
income risk are qualitatively similar. Corollary 1 shows that consumption is lower, the
marginal propensity to consume out of wealth is higher, and the consumption function
is concave in wealth if a liquidity constraint exists. Introducing uninsurable income risk
has the same qualitative effects on optimal consumption (Kimball 1990a and Carroll and
Kimball 1996). An important question is whether we can distinguish between the two
channels. Indeed, many researchers have shown that the consumption function is concave
in wealth, supporting that either liquidity constraints, income risk, or both are present.

However, there is a way to separate the two sources of consumption concavity. The
effects of a liquidity constraint are independent of prudence while the effects of income risk
crucially depend on the third derivative of the utility function. If one can find households
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that are imprudent in the data, but still have a concave consumption function, it suggests
that a liquidity constraint is present and important. Moreover, a comparison of the shape
of the consumption function between imprudent and prudent households can reveal the
relative importance of the two channels. If the consumption functions are similar for
the two groups, it suggests that liquidity constraints are the main culprit. While if the
consumption functions are different between the two groups, it suggests that income risk
is important for the shape of the consumption function.

3.3 Risk Preferences with Liquidity Constraints

Liquidity constraints also affect how households’ behavior towards risk.

Corollary 2. For utility function of the DARA class (a > 0), if w > − y
r , and ρ > r > 0, the

liquidity constraint has the following effects on risk preferences

1. Absolute risk aversion is higher than in the unconstrained case, A(c(w)) ≥ A(cu(w)).

2. Absolute prudence is higher than in the unconstrained case, P(c(w)) ≥ P(cu(w)).

Proof. See Appendix A.3. �

Corollary 2 shows that if households have utility functions with decreasing absolute
risk aversion (DARA), a liquidity constraint has two effects on risk preferences: house-
holds are more risk-averse in the sense that their absolute risk aversion is higher, and
households are more prudent in the sense that their absolute prudence is higher.

Absolute risk aversion and absolute prudence are important sufficient statistics related
to gambles and precautionary saving, respectively. Pratt (1964) shows that for small risks,
the risk premium is increasing in absolute risk aversion. The introduction of a liquidity
constraint therefore raises the risk premium of households. As a result, households reduce
demand for risky assets and prices of risky assets should be lower when there exists a
liquidity constraint than in the unconstrained case. Similarly, Kimball (1990b) shows that
absolute prudence is a measure of the intensity of the precautionary saving motive. For
small income risk, the precautionary saving premium is increasing in absolute prudence.
One prediction is thus that constrained households are more sensitive to income risk and
save more for precautionary reasons. Indeed, the liquidity constraint strengthens the
precautionary saving motive, as emphasized by (Carroll and Kimball 2001).
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4 Comparative Statics: Shifts in the Liquidity Constraint

In this section, I go beyond the effects of introducing a liquidity constraint to an uncon-
strained household and investigates the effects of changes in the liquidity constraint. The
key observation is that the degree to which consumption is affected by a liquidity con-
straint is governed by a simple metric, the distance between consumption at the liquidity
constraint in the unconstrained and the constrained cases. I define this metric as the cost
of the liquidity constraint and characterize how changes in this cost affect consumption
and risk preferences.

Definition 1. The Cost of the Liquidity Constraint.
The cost of the liquidity constraint is the distance between consumption at the liquidity constraint
in the constrained and the unconstrained case

κ(w) = cu(w) − c(w) =
ρ − r

r

(
a(rw + y) + b

)
> 0

Note that the cost of the liquidity constraint is linear in the value of the constraint, w.
Thus one can equally well interpret the results in this section as the effects of shocks to the
liquidity constraint. Indeed, this section provides theoretical results for a permanent credit
crunch shock similar to that analyzed in e.g. Guerrieri and Lorenzoni (2017). In addition,
it provides theoretical results for how other shocks affect consumption through changes
in the liquidity constraint. For instance, if households face loan-to-value constraints
on mortgage debt, a house price decline affects the tightness of the liquidity constrain
in addition to many other channels. The results in this section thus characterize how
households adjust due to the liquidity constraint channel in response to a house price
decline. Indeed, the subsequent results indeed remain agnostic to the underlying cause
of changes in the tightness of the constraint.

Proposition 2. The Effects of Tighter Credit Conditions.
For utility functions of the DARA class (a > 0), if u′ > 0, u′′ < 0, a > 0, w > − y

r , ρ > r > 0,
and r + a(ρ − r) > 0. Then for all w ∈ (w,∞), the effects of an increase in the cost of the liquidity
constraint κ̂ > κ on consumption are

1. Consumption decreases: c(w; κ̂) < c(w;κ).

2. The MPC out of wealth increases: c′(w; κ̂) > c′(w;κ).

3. The consumption function is ”more” concave in wealth: c′′(w; κ̂) < c′′(w;κ).

4. The degree of absolute risk aversion increases: A(c(w; κ̂)) > A(c(w;κ)).
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5. The degree of absolute prudence increases: P(c(w; κ̂)) > P(c(w;κ)).

Proof. See Appendix A.4. �

Proposition 2 presents five qualitative effects of tighter credit conditions on household
behavior. consumption decreases, the MPC out of wealth increases, consumption is
”more” concave in wealth, households act more risk averse, and households act more
prudent. The results in Proposition 2 thus imply that a tighter liquidity constraint always
strengthen the effects of the liquidity constraint, inducing a greater deviation from the
unconstrained (and linear) case.

In a sense, a tighter liquidity constraint is very similar to a negative demand shock.
All else equal, households respond by consuming less. However, there are further im-
portant implications on consumption dynamics and policy transmission. First, a tighter
liquidity constraint limits households’ ability to borrow. Subsequently, interest rate cuts
have smaller effects on consumption since borrowing is more restricted. Expansionary
monetary policy is therefore less influential when liquidity constraints are tighter. Since
tight credit conditions are common during recessions, this effect can help explain the ob-
served procyclicality of the influence of monetary policy (see e.g. Tenreyro and Thwaites
2016). Second, a tighter liquidity constraint makes households more sensitive to short-run
wealth changes. Since stimulus policies such as tax rebates influence consumption more
if the MPC is higher, fiscal policy is therefore more influential during periods with tighter
credit conditions. Since tighter credit conditions are common during recessions, this im-
plies that fiscal policy is more influential during recessions. As a result, tighter credit
conditions make monetary policy less influential and fiscal policy more influential and
the optimal policy varies with credit conditions. This could have important implications
for the coordination of optimal policy over the business cycle.

Proposition 2 also present two results on risk preferences. First, a tighter liquidity
constraint makes households more risk-averse. Since more risk-averse households re-
quire higher risk premiums, a tighter liquidity constraint results in lower prices on risky
assets. Subsequently, since credit conditions are tighter during recessions, we should
observe that asset prices fall during recessions. Second, a tighter liquidity constraint also
makes households more prudent and therefore more sensitive to uninsurable income risk.
Households should therefore respond to tighter liquidity constraints by saving more, both
because the liquidity constraint is tighter, but also because households are more prudent
and therefore save more due to income risk.
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5 Conclusion

In this paper, I derive an implicit analytical expression for optimal consumption for
infinitely-lived, impatient, and risk-averse households with HARA utility. Using this
expression, I show that the introduction of a liquidity constraint reduces consumption,
increases the marginal propensity to consume out of wealth, and makes the consumption
function concave in wealth. A liquidity constraint therefore has the same qualitative effects
on consumption as prudence and uninsurable income risk - but the effect is independent
of the sign of the third derivative of the utility function. Under the further assumption of
DARA utility, I also show that the introduction of a liquidity constraint makes households
more risk-averse and more prudent. In the second part of the paper, I show how tighter
credit conditions affect optimal household behavior. For households with DARA utility, a
tighter liquidity constraint induces them to reduce consumption, increase their marginal
propensities to consume, make the consumption function ”more” concave in wealth, and
households more risk-averse and prudent.
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A Appendix

A.1 Proof of Proposition 1

Proof. The first step is to solve for the closed form solution of the optimal value function.
I show in Lemma 1 that equation (7) is solvable and the solution contains a free parameter
which is pinned down by the liquidity constraint.

Lemma 1. The analytical solution.
Suppose that there exists a function c(w) such that

c(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r
− K0 (ac(w) + b)−

r
a(ρ−r) (10)

where K0 is a constant. Then equation (7) holds for the HARA utility function

u(c) =


1

a−1 (ac + b)1−1/a a , 0, 1

−be−c/b a = 0

log(c + b) a = 1

The proof is as follows

Proof. Suppose that (10) holds. Differentiating both sides with respect to w, we get

c′(w) = r + a(ρ − r) +
r

a(ρ − r)
K0 (ac(w) + b)−

r+a(ρ−r)
a(ρ−r) ac′(w) (11)

Solving (10) for the K0-term

K0 (ac(w) + b)−
r

a(ρ−r) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r
− c(w) (12)

Substituting (12) into (11)

c′(w) = r + a(ρ − r) +
r

ρ − r
((rw + y)

(
r + a(ρ − r)

r

)
+ b

ρ − r
r
− c(w)) (ac(w) + b)−1 c′(w) (13)
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Rearranging (13)

c(w) =
r + a(ρ − r)

r

(
ac(w) + b

c′(w)
(ρ − r) + rw + y

)
− (ac(w) + b)

ρ − r
r

+ b
ρ − r

r

c(w) = rw + y +
ac(w) + b

c′(w)
(ρ − r)

which is (7). �

The second step is to show that there exists a c(w) that satisfies (10) together with
the liquidity constraint c(w) ≤ rw + y. Note that under the assumption of Proposition
1, ρ > r > 0 so c(w) ≥ rw + y. The liquidity constraint therefore holds with equality,
c(w) = rw + y. Solve (10) for K0 using the liquidity constraint

K0 =
ρ − r

r

(
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r) (14)

Insert this K0 into (10)

c(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r
−
ρ − r

r

(
a(rw + y) + b

) (a(rw + y) + b
ac(w) + b

) r
a(ρ−r)

(15)

By the assumption in Proposition 1, ρ > r > 0 and ac(w) + b > 0, so (15) is continuous and
exists for all w ∈ [w,∞). Furthermore, it satisfies the liquidity constraint by construction.

The third step is to derive the solution for optimal consumption in the unconstrained
case. This is very helpful because consumption in the constrained case is always bounded
by the linear unconstrained solution and I will use this property to show that (15) is
optimal. I define unconstrained consumption as the solution to (15) under the natural
borrowing limit (w = −

y
r )

cu(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r

(16)

The unconstrained solution is thus linear in total income. Moreover,

cu(w) − c(w) =
ρ − r

r

(
a(rw + y) + b

) (a(rw + y) + b
ac(w) + b

) r
a(ρ−r)

> 0

so constrained consumption is always bounded upward by the linear unconstrained
consumption function.

The fourth step is to verify that the consumption rule (15) is indeed optimal. Since the
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first-order condition and the liquidity constraint hold by construction, it suffices to verify
the transversality condition

lim
t→∞

e−ρtV(wt) = 0

First note that w is always bounded below by the liquidity constraint. We therefore need
to show that w is bounded above. To show this note first that consumption is always
greater or equal to total income

c(w) − (rw + y) =
(
a(rw + y) + b

) ρ − r
r
−

(
a(rw + y) + b

) ρ − r
r

(
a(rw + y) + b

ac(w) + b

) r
a(ρ−r)

≥ 0

since w ≥ w and 0 ≤
(

a(rw+y)+b
ac(w)+b

) r
a(ρ−r)
≤ 1 when ρ > r > 0. It follows that wt+∆t ≤ wt for all t

such that the path of wealth is also bounded (wt ∈ [w,w0] for all t). Since all flow utility
functions are continuous, the value function is also continuous and bounded such that
the transversality condition is trivially satisfied.

�

A.2 Proof of Corollary 1

Proof. Corollary 1 follows by applying repeated total derivation on the solution for op-
timal consumption in the constrained problem and the unconstrained problem (16), and
comparing the results. For convenience, I reiterate the optimal consumption functions in
the constrained

c(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r
−
ρ − r

r

(
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r) (ac(w) + b)−

r
a(ρ−r)

and the unconstrained cases

cu(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r

Part I: cu(w) > c(w) > rw + y
Calculating the difference between consumption in the constrained and the unconstrained
case, we get

c(w) − cu(w) = −
ρ − r

r

(
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r) (ac(w) + b)−

r
a(ρ−r) < 0

where the last inequality follows since ρ > r > 0 and ac(w) + b > 0 by assumption. To
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show the second part, calculate

c(w) − (rw + y) =
(
a(rw + y) + b

) ρ − r
r
−

(
a(rw + y) + b

) ρ − r
r

(
a(rw + y) + b

ac(w) + b

) r
a(ρ−r)

> 0

since w ∈ (w,∞) and 0 <
(

a(rw+y)+b
ac(w)+b

) r
a(ρ−r)

< 1 when ρ > r > 0.

Part II: c′(w) > c′u(w) > 0
From (16), we know that

c′u(w) = r + a(ρ − r) > 0

where the last inequality follows by the assumption in Corollary 1. We then need to find
the marginal propensity to consume from the constrained solution. Apply total derivation
on (8)

c′(w) = r + a(ρ − r) +

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r)

c′(w) (17)

Note that since r + a(ρ − r) > 0 and ρ > r > 0 by assumption, we have

0 <
(

a(rw + y) + b
ac(w) + b

) r+a(ρ−r)
a(ρ−r)

<

(
a(rw + y) + b
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r)

= 1

It then follows that

c′(w) =
r + a(ρ − r)

1 −
(

a(rw+y)+b
ac(w)+b

) r+a(ρ−r)
a(ρ−r)

> r + a(ρ − r) = c′u(w)

Part III: c′′(w) < c′′u (w) = 0
Note first that since the unconstrained consumption function is linear, c′′u (w) = 0. We
therefore only need to show that c′′(w) < 0 in the constrained solution. Apply total
derivation on (17)

c′′(w) =

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r)

c′′(w) −
r + a(ρ − r)
ρ − r

(
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r) (ac(w) + b)−

r+2a(ρ−r)
a(ρ−r) (c′(w))2

c′′(w) = −
1

1 −
(

a(rw+y)+b
ac(w)+b

) r+a(ρ−r)
a(ρ−r)

r + a(ρ − r)
ρ − r

(
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r) (ac(w) + b)−

r+2a(ρ−r)
a(ρ−r) (c′(w))2 < 0

where the last inequality follows since 0 <
(

a(rw+y)+b
ac(w)+b

) r+a(ρ−r)
a(ρ−r)

< 1, ρ > r > 0, r + a(ρ − r) > 0,
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and ac(w) + b > 0 by the assumptions in Corollary 1.

Part IV: limw→∞ c(w) = cu(w)
We know that c′(w) > 0 for all w so that limw→∞ c(w) = ∞. It thus follows that as long as
a > 0

lim
w→∞
−
ρ − r

r

(
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r) (ac(w) + b)−

r
a(ρ−r) = 0

such that

lim
w→∞

c(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r

= cu(w)

�

A.3 Proof of Corollary 2

Proof. Part I: A(c(w)) ≥ A(cu(w))
Absolute risk aversion for HARA utility equals

A(c(w)) = −
u′′(c(w))
u′(c(w))

=
1

ac(w) + b

Under the DARA assumption, A(c(w))
dc(w) < 0, then since c(w) ≤ cu(w), we get A(c(w)) ≥ A(cu(w)).

Part II: P(c(w)) ≥ P(cu(w))
Absolute prudence for HARA utility equals

P(c(w)) = −
u′′′(c(w))
u′′(c(w))

=
1 + a

ac(w) + b

Under the DARA assumption, P(c(w))
dc(w) < 0, then since c(w) ≤ cu(w), we get P(c(w)) ≥

P(cu(w)). �

A.4 Proof of Proposition 2

Proof. Since we know that κ(w) is monotonically increasing and linear in w, all results for
w also hold for κw. I therefore show all results for w

Before we start, let us reiterate the optimal consumption function

c(w) = (rw + y)
(

r + a(ρ − r)
r

)
+ b

ρ − r
r
−
ρ − r

r

(
a(rw + y) + b

) r+a(ρ−r)
a(ρ−r) (ac(w) + b)−

r
a(ρ−r)
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Part I: dc(w)
dw < 0

Apply total derivation of the consumption expression with respect to w gives

dc(w)
dw

= −
(
r + a(ρ − r)

) (a(rw + y) + b
ac(w) + b

) r
a(ρ−r)

+
dc(w)

dw

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r)

< 0

where the last inequality follows since r+a(ρ−r) > 0, ρ > r > 0, and 0 <
(

a(rw+y)+b
ac(w)+b

) r+a(ρ−r)
a(ρ−r)

< 1.

Part II: dc′(w)
dw > 0

Apply total derivation on (8) with respect to w and obtain

c′(w) = r + a(ρ − r) +

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r)

c′(w) (18)

Apply total derivation on (18) with respect to w

dc′(w)
dw

=
r + a(ρ − r)
ρ − r

r
ac(w) + b

(
a(rw + y) + b

ac(w) + b

) r
a(ρ−r)

c′(w)

−
r + a(ρ − r)
ρ − r

a(rw + y) + b
(ac(w) + b)2

dc(w)
dw

(
a(rw + y) + b

ac(w) + b

) r
a(ρ−r)

c′(w)

+

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r) dc′(w)

dw
> 0

where the last inequality follows since r + a(ρ − r) > 0, ρ > r > 0, ac(w) + b > 0, c′(w) > 0,
dc(w)

dw < 0, and 0 <
(

a(rw+y)+b
ac(w)+b

) r+a(ρ−r)
a(ρ−r)

< 1.

Part III: dc′′(w)
dw < 0

Apply total derivation on (18) with respect to w to obtain

c′′(w) = −
r + a(ρ − r)
ρ − r

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r) (c′(w))2

ac(w) + b
+

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r)

c′′(w) (19)

Apply total derivation on (19) with respect to w
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dc′′(w)
dw

= −

(
a(rw + y) + b

ac(w) + b

) r
a(ρ−r)

(
r

ac(w) + b
−

a(rw + y) + b
(ac(w) + b)2

dc(w)
dw

)
︸                                     ︷︷                                     ︸

>0

(c′(w))2

ac(w) + b

−
r + a(ρ − r)
ρ − r

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r)

2c′(w)dc′(w)
dw

ac(w) + b
−

a(c′(w))2

(ac(w) + b)2

dc(w)
dw

︸                                      ︷︷                                      ︸
>0

+
r + a(ρ − r)

a(ρ − r)

(
a(rw + y) + b

ac(w) + b

) r
a(ρ−r)

c′′(w)︸︷︷︸
<0

(
ar

ac(w) + b
−

a(rw + y) + b
(ac(w) + b)2 a

dc(w)
dw

)
︸                                       ︷︷                                       ︸

>0

+

(
a(rw + y) + b

ac(w) + b

) r+a(ρ−r)
a(ρ−r) dc′′(w)

dw
< 0

where the last inequality follows since r + a(ρ − r) > 0, ρ > r > 0, ac(w) + b > 0, dc(w)
dw < 0,

a > 0, and 0 <
(

a(rw+y)+b
ac(w)+b

) r+a(ρ−r)
a(ρ−r)

< 1.

Part IV: dA(c(w))
dκ > 0

Absolute risk aversion for HARA utility equals

A(c(w)) = −
u′′(c(w))
u′(c(w))

=
1

ac(w) + b

Under the DARA assumption, A(c(w))
dc(w) < 0, then since dc(w)

dκ < 0 we get dA(c(w))
dκ > 0.

Part V: dP(c(w))
dκ > 0

Absolute prudence for HARA utility equals

P(c(w)) = −
u′′′(c(w))
u′′(c(w))

=
1 + a

ac(w) + b

Under the DARA assumption, P(c(w))
dc(w) < 0, then since dc(w)

dκ < 0 we get dP(c(w))
dκ > 0. �

B The Household Problem with Income Growth

In this appendix, I rewrite the household problem in Section 2 to include income growth.
The difference between the two problems is that income now varies such that income is
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a state variable. However, by some simplifying assumptions similar to on the nature of
the liquidity constraint and the income process, we can normalize wealth by income and
keep the problem in its tractable form with one state variable.

The new budget constraint, income process, and liquidity constraint are

dwt

dt
= rwt + yt − c(wt) (20)

dyt

dt
= µyt (21)

wt ≥ wyt (22)

where w is a scalar satisfying w > −1
r (natural borrowing limit).

Similarly to Carroll (2004b), I normalize the problem above by income. All normalized
variables are denoted by a hat. The rewritten budget constraint and liquidity constraint
are

dŵ
dt

=
d
dt

wt

yt
=

dwt

dt
1
yt
−

dyt

dt
wt

y2
t

= (r − µ)ŵt + 1 − ĉt(ŵ) (23)

ŵt ≥ w (24)

Similar to the model in Section 2, the stationary solution is given by the HJB-equation
where the utility function defined in terms of ĉ.

ρV(ŵ) = max
ĉ

u(ĉ) + V′(ŵ)
(
(r − µ)ŵ + 1 − ĉ(ŵ)

)
(25)

where V(ŵ) is the value function for a household with assets ŵ. The first order necessary
condition is

u′(c) = V′(ŵ) (26)

The first order differential equation is now equivalent to Equation (7) in Section 2

(u′)−1 (V′(ŵ)) = rŵ + 1 − µŵ −
V′(ŵ)
V′′(ŵ)

(ρ + µ − r)

or similarily, by defining r̂ = r − µ, we get

(u′)−1 (V′(ŵ)) = r̂ŵ + 1 −
V′(ŵ)
V′′(ŵ)

(ρ − r̂) (27)

As a result, all the Propositions in the paper also holds in this growth model for the
modified consumption function, ĉ(ŵ). Notably, since y is always positive, the results on
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positive consumption, higher marginal propensity to consume, and concavity also holds
for the original consumption function, c(w):

c = ĉ(ŵ)y > 0
dc
da

=
d
da

(
ĉ (ŵ) y

)
= ĉ′(ŵ)

1
y

y = ĉ′(ŵ) > 0

d2c
da2 =

d
da

(ĉ′ (ŵ)) = ĉ′′(ŵ)
1
y
< 0
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