

This file was downloaded from BI Open Archive, the institutional repository (open access) at BI Norwegian Business School http://brage.bibsys.no/bi.

It contains the accepted and peer reviewed manuscript to the article cited below. It may contain minor differences from the journal's pdf version.

Boustanifar, H., Grant, E., & Reshef, A. (2018). Wages and human capital in finance: International evidence, 1970-2011. *Review of Finance*, 22(2), 699-745 Doi: http://dx.doi.org/10.1093/rof/rfx011

Copyright policy of Oxford University Press, the publisher of this journal:

The authors retain rights to "upload their accepted manuscript PDF ("a post-print*") to institutional and/or centrally organized repositories, but must stipulate that public availability be delayed until 24 months after first online publication in the journal."

Wages and Human Capital in Finance: International Evidence, 1970–2011*

Hamid Boustanifar BI Norwegian Business School Everett Grant Federal Reserve Bank of Dallas

Ariell Reshef
CNRS, Paris 1 Pantheon-Sorbonne, Paris School of Economics and CEPII

October 2016

Abstract

We study the allocation and compensation of human capital in the finance industry in a set of developed economies in 1970–2011. Finance relative wages generally increase—but not in all countries, and to varying degrees. Trading-related activities account for 50% of the increases, despite accounting for only 13% of employment, on average. Financial deregulation is the most important factor driving up wages in finance; it has a larger effect in environments where informational rents and socially inefficient risk taking are likely to be prevalent. Differential investment in information and communication technology does not have causal explanatory power. High finance wages attract skilled international immigration to finance, raising concerns for "brain drain."

JEL classifications: G2, J2, J3.

Keywords: Financial regulation, informational rents, allocation of talent, wage inequality.

^{*}We wish to thank for valuable comments and discussions: Thorsten Beck, Rudiger Fahlenbrach, Martin Hellwig, Camille Landais, Francesc Ortega, Thomas Philippon, Tano Santos, Per Strömberg, Adair Turner, as well as participants in the European Central Bank conference "The Optimal Size of the Financial Sector" (September 2014), the Nordic Finance Network Workshop (November 2014), the 2015 Canadian Economic Association, the 11th Econometric Society World Congress, and the 2015 American Economic Association conference. Boustanifar: hamid.boustanifar@bi.no; Grant: Everett.Grant@dal.frb.org; Reshef: ariell.reshef@psemail.eu. The views in this paper are those of the authors and should not be attributed to the Federal Reserve Bank of Dallas or the Federal Reserve System.

1 Introduction

High wages in finance have received significant attention following the 2007–2008 financial crisis, due to the perceived centrality of finance as the cause, catalyst or propagator of the Great Recession in the United States and in Europe. There are four underlying reasons for this. First, the persistence of high wages in finance after the crisis, while growth and employment in many economies remain depressed, begs the question whether social returns are dwarfed by private returns to workers in finance—especially given the public support for financial institutions in distress during the crisis. Second, socially inefficient high wages in finance may draw talent from other more productive sectors of the economy. Third, financial development has an important role in explaining economic development in broad cross sections of countries and, therefore, it is important to understand the internal organization of finance, as well as the indirect effects of financial development. Fourth, high wages in finance contribute significantly to overall inequality, as we demonstrate below.

While rising wages in finance have been documented in several countries, the causes and mechanisms are not well-understood. Philippon and Reshef (2012) argue that the most important factor affecting wages in finance in the United States is financial deregulation. We introduce better identification strategies and bring new data to bear on this claim.² Our findings support the paramount importance of financial deregulation on finance relative wages in a broader set of countries. Figure 1 illustrates this relationship. In addition, we investigate the channels through which deregulation increases finance wages. We show that the effect of deregulation on wages is largest in environments where it is likely to be associated with socially inefficient risk taking and informational rents. Another novel aspect of our work is to investigate whether high wages in finance attract skilled workers across international borders. We find that they do, raising concerns for allocative efficiency and potential "brain drain".

We study wages in finance—relative to the rest of the non-farm private sector—in a set of 23 industrialized and transition economies in 1970–2011. We show that changes in educational composition explain little of the evolution of finance wages. In contrast, changes in relative wages of highly educated finance employees (relative to educated workers employed elsewhere) explain

¹See Rousseau and Sylla (2003) and Levine (2005) on the link between financial development and economic growth. It is important, however, to distinguish between human capital and wages within finance, and its overall size. Juxtaposing findings in Philippon and Reshef (2012) with those in Philippon and Reshef (2013) we see that the growth of finance and its internal organization are not the same phenomena, and follow different—although not independent—paths.

²By using panel data for several countries over time, and by employing IV regressions, we try to identify the causal relationship between financial regulation and wages in finance. Our paper has two shortcomings compared to Philippon and Reshef (2012). First, our sample is shorter. Second, the consistency across countries of the financial regulation variables may neglect country-specific features of legislation; we elaborate on the last point below.

more than all of the increases in finance relative wages overall. We estimate that wages of skilled workers in finance account for 31% of increases in skill premia for countries with overall skill premia increases; this is striking given that finance accounts for only 5.4% of all skilled workers in private sector employment, on average.³ Fifty percent of the increase in finance relative wages is accounted for by workers that are focused on trading (but not originating) securities and related activities, such as financial advising—despite the fact that these activities employ only 13% of finance workers, on average. These findings motivate examining mechanisms that operate particularly on skilled workers and on non-traditional banking and trading activities.

We confirm that the most important causal driver of finance relative wages is deregulation, and the economic effect is large. This causal interpretation is supported by estimates of the dynamic effect of deregulation on wages, instrument variables analyses, and an event study approach. We do not find evidence for a causal relationship for other factors, such as changes in information technology intensity, financial globalization, and expansion of domestic credit.

Financial regulation affects wages in finance through limits on the scope and scale of financial activity within the financial sector, in particular activity that is more prone to asymmetric information and risk taking. This is particularly true for highly skilled individuals, because rules and restrictions on the range and nature of their activities reduce the need for incentive pay (Philippon and Reshef (2012)).⁴ Goodhart, Hartmann, Llewellyn, Rojas-Suarez, and Weisbrod (1998) illustrate that the pervasiveness of asymmetric information in finance leads to a different effect of deregulation there versus other industries, where we expect—and usually find—wage reductions, not increases.⁵

A few recent papers have studied individual level micro data on finance wages. However, none of them studies directly the underlying determinants of the rise in finance wages, which lie at the industry level. Our work aims to fill this gap. At the micro level, wages in finance may increase through three channels: (1) an increase in skill, unobserved quality or "talent" of workers in the sector (changes in composition); (2) an increase in the returns to skill or talent in finance, holding constant the composition; and (3) industry rents, defined as compensation that is over and above

³Tanndal and Waldenstrom (2015) use synthetic control group methodology and find that financial deregulation affects overall top income shares; they do not study finance wages directly and do not discuss causality. See also Godechot (2016) on the relationship between inequality and other finance-related correlates.

⁴Guadalupe (2007) provides evidence that competition in the product space increases demand for skill. Wozniak (2007) studies the effect of banking deregulation in the United States on the structure of compensation *within* banking; she finds that within-establishment inequality dropped, while between-establishment inequality increased. This reflects the effect of deregulation on industry organization.

⁵Peoples (1998) discusses the effects of product market deregulation on wages in the American trucking, rail-road, airline and telecommunications industries, where unionization played a major role. There regulation—and deregulation—of entry and prices in these industries followed a pattern similar to that suggested in the classic Stigler (1971) paper.

a competitive wage. The last channel may not be empirically distinguishable from the second if skilled or talented individuals capture higher shares of industry rents.

Using data on French engineers in 1983–2011, Célérier and Vallée (2015) estimate that the entire increase in finance wages in their sample is explained by differential increases in returns to talent in finance. They speculate that the increase in returns to talent is driven by technology and scale effects. In contrast, Bohm, Metzger, and Stromberg (2015) find that the increase in relative wages in finance in Sweden in 1991–2010 cannot be explained by changing returns to talent. Moreover, they show that average talent—measured by cognitive test scores and high-school grades—has not increased in finance relative to other sectors. Their findings imply that the entire increase in finance wages must be attributed to rents. Lindley and McIntosh (2014) study a sample of 378 workers in finance in the United Kingdom and—similar to Bohm, Metzger, and Stromberg (2015)—do not detect an increase in talent (measured as numeracy). While changing job characteristics and technological change go some way in explaining the rise in finance wages within their sample, a large residual is left unexplained.

Whether increasing wages in finance accrue due to more talented workers, greater returns to talent, or increases in rents, equally or unequally distributed—the factors that cause these changes operate at the industry level. This is where our paper makes its contribution.

We find greater effects of financial deregulation on wages in countries with more complex financial systems, or with more opaque trading activities. Indeed, deregulation allows more financial activity to occur outside of the traditional regulatory sphere ("shadow banking").⁶ In particular, we find that deregulation has a greater effect on finance wages in countries with financial systems that rely more on non-bank credit markets (versus bank loans) and stock markets, where there is greater trading intensity in "Over the Counter" (OTC) securities, and where the sector is less competitive. This is consistent with recent theories that stress the role of asymmetric information and complexity in giving rise to informational rents, and in causing excessive risk taking in finance, for example, Korinek and Kreamer (2014). Axelson and Bond (2015) study a model in which the threat of moral hazard is associated with high wages and rents in finance. Closely related, Biais and Landier (2015) and Bolton, Santos, and Scheinkman (2016) study models in which more opaque activities are related to higher informational rent extraction.⁷ In line with this, Efing, Hau,

⁶ For example, Ben Bernanke, the former Chairman of the Federal Reserve, defines shadow banking as "a diverse set of institutions and markets that, collectively, carry out traditional banking functions—but do so outside, or in ways only loosely linked to, the traditional system of regulated depository institutions"; Bernanke (2013).

⁷Bolton, Santos, and Scheinkman (2016) stress the social inefficiency caused by informational rents in opaque "over the counter" markets versus transparent organized markets. While Axelson and Bond (2015) highlight differences in the threat of moral hazard across industries, Biais and Landier (2015) characterize conditions (within an overlapping generations model) under which opacity and rent extraction increase over time.

Kampkötter, and Steinbrecher (2015) find that incentive pay (bonuses) is positively correlated with trading volume and volatility in a set of 66 Austrian, German, and Swiss banks. Cheng, Hong, and Scheinkman (2015) find that residual compensation of chief executive officers (CEOs) and risk-taking are positively correlated across American finance firms in 1992–2008.

We also find that the effect of deregulation on finance wages is stronger in countries with more flexible labor markets. This is consistent with recent theories that stress the role of firm-to-firm mobility of finance workers, which is likely to be easier in such environments. For example, Acharya, Pagano, and Volpin (2016) study a model in which an increase in firm-to-firm mobility causes employers to provide excessive short term compensation, while the employees take excessive long term risk. Bijlsma, Zwart, and Boone (2012), Thanassoulis (2012) and Benabou and Tirole (2016) study models in which competition between banks leads to competition for banker talent, which manifests in high banker compensation and incentive pay (bonuses) and unnecessarily high (long run) risk for banks. In a similar vein, Glode and Lowery (forthcoming) argue that competition for traders—as opposed to bankers, who increase surpluses—is associated with higher rents and reduced social efficiency. These mechanisms can be triggered, or intensified, by deregulation, with stronger effects in environments that facilitate firm-to-firm mobility.

We document that finance increased its relative intensity of information & communication technology (ICT), and we estimate that ICT is relatively more complementary to skill in finance than in other sectors. ICT may drive increases in relative wages for skilled labor in finance as suggested by Autor, Katz, and Krueger (1998) and Autor, Levy, and Murnane (2003).¹⁰ Within finance, Autor, Levy, and Murnane (2002) document how computerization affects demand for labor and job complexity in two large banks.¹¹ Morrison and Wilhelm (2004) and Morrison and Wilhelm (2008) argue that investment in ICT affected the optimal organization of investment

⁸This is consistent with evidence in Philippon and Reshef (2012), who show that scale effects explain little of the wage differential of CEOs in finance versus CEOs in other sectors after 1990, leaving other mechanisms, such as risk taking, to play an important role.

⁹See also Godechot (2008), who performs a case study where two traders obtained large bonuses after making credible threats to leave their French bank employer; he interprets this as a consequence of classic hold up, which is possible due to asset specificity.

¹⁰The overall rise in relative demand for more educated workers in developed countries, as well as the increase in their relative wages, is well documented; see for example Machin and Van Reenen (1998). Berman, Bound, and Machin (1998) attribute this to skill-biased technological change. See Acemoglu (2002b) for a review of the early literature on skill biased technological change. Acemoglu and Autor (2011) highlight these and other forces that may affect relative demand, in particular globalization and offshoring; they also provide an up-to-date report on empirical findings and theoretical considerations. Acemoglu (2002a) argues that the increase in supply of more educated workers biases innovation towards equipment that is more complementary to their skills. For other explanations for the increase in demand for skilled workers see Card (1992), Card and Lemieux (2001), and Acemoglu, Aghion, and Violante (2001).

¹¹Autor, Levy, and Murnane (2002) focus on digital imaging technology. A more recent technology in banking is internet-based services, that can replace low and medium-skilled employees, and leverage the skills of highly skilled employees who design these services.

banks in the United States. While we find that the increase in relative ICT intensity in finance is positively *correlated* with relative skilled wages in finance, this relationship is not causal. While ICT may increase the productivity of skilled workers in finance, the results suggest that this force is not *differentially* stronger relative to other sectors.¹² In contrast, the relationship of finance relative wages with financial deregulation is robust and causal. These results contribute to the understanding of demand for skill and income inequality.

One concern about high wages in finance is that they attract skilled workers from other parts of the economy, where they may be more productive socially. If competition for talent is fierce, the same forces may manifest themselves across international borders. Here, it is plausible that attracting skilled workers from other countries has detrimental effects on the country of origin via brain drain. In order to address this issue, we ask whether high wages in finance attract skilled workers across international borders. We use bilateral immigration data in a sample of 15 industrialized countries, where immigrants in each destination are differentiated by level of education and industry. We fit regression models that resemble gravity equations from the international trade and finance literatures (e.g., Ortega and Peri (2014)) and find that high wages in finance do attract skilled workers across borders. This raises concerns that high wages in finance may lead to brain drain. This effect is not present for unskilled workers, which is likely due to higher barriers for low skilled workers to immigrate relative to the pecuniary benefit of doing so.

These findings contribute to the literature on the allocation of talent. Both Baumol (1990) and Murphy, Shleifer, and Vishny (1991) stress the importance of allocating the most talented individuals in society to socially productive activities. Policies and institutions that can readily influence this allocation can be much more important for welfare than the overall supply of talent.¹³ Goldin and Katz (2008) document increasing shares of Harvard University undergraduates who choose a career in finance since 1970, as well as an increasing wage premium that they are paid relative to their peers.¹⁴ Wurgler (2009) and Cahuc and Challe (2012) argue that the existence of financial bubbles can attract skilled workers to finance, and Oyer (2008) shows that during financial booms

¹²For example, does ICT make skilled workers in investment banking more productive than skilled workers at Google? The results suggest, no. Morrison and Wilhelm (2004) and Morrison and Wilhelm (2008) argue that investment in ICT affected the optimal organization of investment banks in the United States: Codification of activities reduced the incentives for accumulation of tacit human capital through mentorship, which led to change from partnerships to joint stock companies. This change would also lead to higher wage compensation versus illiquid partnership stakes that are "cashed in" only upon retirement. Although this argument is germane only to American investment banks—while we study 23 countries—our results are not inconsistent with it.

¹³See also the equilibrium model of Acemoglu (1995), where both the allocation of talent and relative rewards are endogenously determined.

¹⁴Shu (2013) finds no increase in the proportion of graduates from M.I.T. working in finance in 2006-2012, but this sample is already at the end of a long process of increasing shares of graduates from elite American universities working in finance, for example in Harvard University (Goldin and Katz (2008)).

more Stanford MBAs are attracted to finance.¹⁵ Kneer (2013) argues that financial deregulation is detrimental to other skill intensive sectors, while Cecchetti and Kharroubi (2013) argue that credit growth hurts disproportionately R&D-intensive manufacturing industries. Although direct evidence is not provided, these authors interpret their findings as indicating a brain drain from the real economy into finance. Here we provide direct evidence that internationally, high wages in finance attract highly educated immigrants.

In the next section we document a set of facts about wages and skill intensity in finance. In section 3 we entertain explanations for the rise in relative wages in finance. In Section 4 we show how high wages in finance attract skilled workers across borders (skilled immigration). In Section 5 we offer concluding remarks.

2 The evolution of finance relative wages

There are a number of notable phenomena in the international development of finance wages over the past 40 years, which we investigate in this section. First, we observe significant heterogeneity across countries in the trends and levels of relative wages in finance. Second, we find that the increases in skilled finance workers' wages account for all of the increases in finance relative wages and then some; changes in relative skill intensity explain little of the overall evolution of relative wages in finance. Third, we show that finance skilled relative wages explain on average 31% of increases in overall skill premia across countries in our sample, thus contributing significantly to wage inequality. This is striking given the size of the sector in total private sector employment, which is on average only 5.4%. Fifty percent of increases in finance relative wages are driven by trading (but not originating) securities and related activities, such as financial advising—despite the fact that these activities employ only 13% of finance workers, on average. These findings motivate examining mechanisms that operate particularly on skilled workers and on the non-traditional banking sector.

2.1 Data

Our sample is a set of 23 industrialized and transition economies in 1970–2011. This is based on data for 22 countries in 1970–2005 from the EUKLEMS dataset, March 2008 release. We extend this source until 2011 using the OECD's Structural Analysis (STAN) database; this adds

¹⁵Using survey data for the United States, United Kingdom, Germany and France, and controlling for observables, Wurgler (2009) finds similar trends to our wage series for these countries.

¹⁶See appendix for list of countries and years covered for each country. See O'Mahony and Timmer (2009) for more detailed documentation.

Norway to our sample, to make 23 countries.¹⁷ We use STAN data to compute the overall finance relative wage, defined below in (1). We do not use STAN data for any other purposes because of compatibility issues with EUKLEMS, because STAN does not report wages and employment by skill levels, and because several of our explanatory variables are missing for Norway. In the appendix we detail the years in which we supplement EUKLEMS with STAN data. While we use all 23 countries for descriptive analysis, our regressions below are estimated in a sample of 15 countries for which we have sufficient data.

Finance is comprised of three subsectors: Financial intermediation, except insurance and pension funding (including central banking, banking and savings institutions, other sources of credit, and investment in securities); Insurance and pension funding, except compulsory social security; and Other activities related to financial intermediation (administration of financial markets, trading activities (but not originating), financial advising, mortgage and insurance advisers, actuaries, etc.). We provide complete details on these subsectors' definitions in the appendix. For notational simplicity we refer to this whole sector as "Finance."

We analyze the evolution of time series in finance relative to the non-farm, non-finance, private sector, which we denote as NFFP. All labor concepts pertain to full time equivalent employees. We do not use the more comprehensive concept of "persons engaged", which includes proprietors and non-salaried workers in addition to employees, because we regard the wage series based on this concept to be misleading.¹⁸ The EUKLEMS also reports wages and employment by skill levels. Our definition of high skilled workers from the EUKLEMS is consistent across countries and time, and implies a university-equivalent bachelors degree.

2.2 Finance relative wages

The finance relative wage is defined as

$$\omega_t = \frac{w_{\text{fin},t}}{w_{\text{nffp},t}} , \qquad (1)$$

where $w_{s,t}$ is the average wage across all workers in each sector $s \in \{\text{fin,nffp}\}\$, calculated as total compensation of employees divided by the total hours worked by employees. Figure 2 depicts the

¹⁷STAN is available from http://stats.oecd.org.

¹⁸Total compensation of persons engaged is calculated in the EUKLEMS by total compensation of employees multiplied by the ratio of hours worked by persons engaged to hours worked by employees. This implies the same average wage for salaried and non-salaried workers, which is woefully inadequate when comparing finance to other sectors of the economy. In addition, compensation data for persons engaged is missing in many more cases, relative to employees. On average, there are fewer "persons engaged" who are not employees in finance than in NFFP. The trends for wage series for "persons engaged" are virtually identical to those based on employees, while the levels differ somewhat. This is inconsequential for our regression analyses, because we always include country fixed effects.

finance relative wage in our sample, where we group countries based on whether ω is increasing, decreasing or exhibits a mixed trend. We split the countries where ω is increasing into two separate panels in order to ease the exposition. Overall, there is significant heterogeneity in the trends of ω across countries: 12 countries see increases, while the remaining 11 are split between decreases and mixed trends.¹⁹

Figure 2 also reveals that finance relative wages plateau or even decrease slightly after 2007 for several countries that saw significant increases until then (Panel A and B)—notably the United States. Appendix Table A1 provides more details on this trend reversal. However, we are cautious in making general statements about this due to the short time span after the financial crisis.

We now ask, what is the importance of changes in the skill (education) composition of finance for the relative wage of finance? We decompose changes in ω into within and between skill group changes using the formula

$$\Delta\omega = \sum_{i} \Delta\omega^{i} \overline{n}_{\text{fin}}^{i} + \sum_{i} \Delta n_{\text{fin}}^{i} \overline{\omega}^{i} , \qquad (2)$$

where $i \in \{\text{skilled}, \text{unskilled}\}$ denotes skill groups. Here $\Delta \omega^i$ is the change over some period of the relative wage of skill group i in finance, w_{fin}^i , compared to w_{nffp} (the average wage in the NFFP sector), $\overline{n}_{\text{fin}}^i$ is the average employment share of skill group i in finance, Δn_{fin}^i is the change in the employment share of skill group i within finance, and $\overline{\omega}^i$ is the average relative wage of skill group i in finance compared to the average wage in the NFFP sector.²⁰ The first sum captures the contribution of wage changes within groups, while the second sum captures the contribution of changes of skill composition (the "between" component). We compute this decomposition for each country in the sample.

Table 1 Panel A reports $\Delta\omega$, the within share $(\sum_i \Delta\omega^i \overline{n}_{\rm fin}^i/\Delta\omega)$ and the between share $(\sum_i \Delta n_{\rm fin}^i \overline{\omega}^i/\Delta\omega)$ for all countries, sorted by $\Delta\omega$. The within share is on average much larger than the between share, 167% versus -67%, respectively. Even after dropping the United Kingdom and Austria, whose tiny $\Delta\omega$ in this period inflates their within share, the within share is on average 78% versus 22% for the between share.

We rearrange the components of (2) in order to describe how much skilled workers account for

¹⁹ Notable here is the United Kingdom, where ω fluctuates substantially. We also computed ω using data from the OECD STAN database and the series are very similar to what we find here using EUKLEMS, in particular for the UK. It is the real average wage in finance $w_{\rm fin}$ that explains most of the mixed pattern, not the average real wage in the rest of the economy $w_{\rm nfp}$. As we show below, the UK relative wage of skilled workers in finance behaves less erratically, i.e, it increased substantially during the sample period, in a similar fashion to other countries.

²⁰Averages are over beginning and end of period of change.

changes in the finance relative wage

$$\Delta\omega = \left(\Delta\omega^{\rm skilled} \overline{n}_{\rm fin}^{\rm skilled} + \Delta n_{\rm fin}^{\rm skilled} \overline{\omega}^{\rm skilled}\right) + \left(\Delta\omega^{\rm unskilled} \overline{n}_{\rm fin}^{\rm unskilled} + \Delta n_{\rm fin}^{\rm unskilled} \overline{\omega}^{\rm unskilled}\right) \ . \ \ (3)$$

The last column in Table 1 Panel A reports the share of changes in the finance relative wage that are due to skilled workers alone from (3), $(\Delta \omega^{\text{skilled}} \overline{n}_{\text{fin}}^{\text{skilled}} + \Delta n_{\text{fin}}^{\text{skilled}} \overline{\omega}^{\text{skilled}})/\Delta \omega$. In countries that saw significant increases in finance relative wages, skilled workers account for more than the total increase, 131%. Interestingly, the three largest decreases in ω are not accounted for by skilled workers, but by unskilled workers' wages.

Overall, within group wage changes matter much more than changes in skill composition for explaining the finance relative wage, and skilled workers' wage increases account for all of the overall finance increases and then some.

To illustrate this point in a different way we examine the finance excess wage, which we define as the difference between the actual relative wage, ω , and a benchmark relative wage, $\widehat{\omega}$:

$$\omega_t^{\text{excess}} = \omega_t - \widehat{\omega}_t$$
.

The benchmark wage $\widehat{\omega}$ is defined as the finance relative wage that would prevail if skilled and unskilled workers in finance earned the same as in the NFFP sector:

$$\widehat{\omega}_{t} = \frac{(1 - n_{\text{fin},t}^{\text{skilled}}) \cdot w_{\text{nffp},t}^{\text{unskilled}} + n_{\text{fin},t}^{\text{skilled}} \cdot w_{\text{nffp},t}^{\text{skilled}}}{(1 - n_{\text{nffp},t}^{\text{skilled}}) \cdot w_{\text{nffp},t}^{\text{unskilled}} + n_{\text{nffp},t}^{\text{skilled}} \cdot w_{\text{nffp},t}^{\text{skilled}}}.$$
(4)

Here $n_{s,t}^j$ is the employment share of type $j \in \{\text{unskilled}\}\$ workers in sector s, and $w_{\text{nffp},t}^j$ is the wage of type $j \in \{\text{unskilled}\}\$ workers in the NFFP sector.

Figure 3 reports ω_t^{excess} using the same country grouping as Figure 2. The sample is restricted relative to Figure 2 due to availability of data on wages and employment by skill level. The trends in ω^{excess} are almost identical to those of ω , with few exceptions. This reinforces the point made above: Most of the variation in the finance relative wage is due to within-skill wage shifts. A closer inspection of the data shows that most of the excess wage is due to the relative wage of high skilled workers in finance. The relative wage of skilled workers in finance tracks ω very closely, as we illustrate next.

The relative wage of skilled workers in finance is defined as

$$\omega_t^{\text{skilled}} \equiv \frac{w_{\text{fin},t}^{\text{skilled}}}{w_{\text{nffp},t}^{\text{skilled}}} , \tag{5}$$

where $w_{s,t}^{\text{skilled}}$ is the average wage of skilled workers in sector $s \in \{\text{fin,nffp}\}$, calculated as total

compensation of skilled employees divided by the total hours worked by skilled employees. Figure 4 depicts ω^{skilled} , where we group countries based on whether they are increasing, decreasing or exhibit a mixed trend. The sample is again restricted relative to Figure 2 due to data availability. As with relative average wages, there is significant heterogeneity in the trends of ω^{skilled} across countries: 12 countries see increases, three see decreases, and seven exhibit mixed trends. Australia exhibits the largest increase (but recall the drop in ω until 1985), followed by the United Kingdom, the United States and Canada. In these countries skilled workers in finance command a wage premium of 50–80% relative to similarly-educated workers in the NFFP sector.

2.3 Finance relative skill intensity

We define the relative skill intensity in finance as

$$\eta_t \equiv n_{\mathrm{fin},t}^{\mathrm{skilled}} - n_{\mathrm{nffp},t}^{\mathrm{skilled}} \ ,$$

where $n_{s,t}^{\text{skilled}}$ is the employment share of high skilled workers in sector $s \in \{\text{fin , nffp}\}$. Figure 5 depicts η_t for two groups of countries. In Panel A we group countries who see relative skill intensity in finance consistently increasing. Spain and Japan see the largest increases, where finance becomes almost 30 percentage points more skill intensive than the rest of the economy in 2005.

It is interesting to compare the changes in relative skill intensity to changes in finance relative wages. Spain and the Netherlands see significant increases in both. But Luxembourg and the United States, while exhibiting the largest increases in ω , see only very modest increases in η . This is manifested in the poor ability of the benchmark wage, $\hat{\omega}_t$, to track the finance relative wage, especially in the countries and periods when the increase in the finance relative wage is large.

What does relative skill intensity in finance, η_t , capture? Using Swedish data, Bohm, Metzger, and Stromberg (2015) show that relative skill (education) in finance is a poor measure of relative ability—measured as cognitive and non-cognitive test scores at age 18. While relative education increases, relative ability—thus measured—does not follow a similar trend. If so, why does finance become so much more education-intensive over time in some countries? One reason may be barriers to entry: If there are industry rents, tertiary and even post-graduate education may serve only as a screening device. The authors find that returns to ability in finance have not increased over time, and therefore cannot explain the increase in finance wages in Sweden.²¹ Alternatively, certain types of fields of study may be relatively more important in finance, given ability. Our findings

²¹This contrasts with Célérier and Vallée (2015), who find that differentially increasing returns to ability of French engineers fully explains increases in their wages in finance. However, Célérier and Vallée (2015) do not address the overall composition of ability in finance.

are consistent with both hypotheses: Increasing relative skilled wages in finance may reflect skilled workers capturing most of the industry's rents, as well as heterogeneity in fields of study.

Whatever the reason may be, variation in skill composition in finance does not help much explain the variation in relative finance wages, as we saw above. Therefore, we do not explore in detail its determinants in the regression analysis below.

2.4 Contribution of finance wages to inequality

Changes in the relative wage of skilled workers are an important dimension of overall changes in wage inequality. Therefore, we wish to assess how much finance contributes to changes in the relative wage of skilled workers in the nonfarm private sector (including finance), denoted here as $\Delta \pi$.²² We decompose $\Delta \pi$

$$\Delta \pi = \sum_{s} \Delta \pi_s \overline{n}_s + \sum_{s} \Delta n_s \overline{\pi}_s , \qquad (6)$$

where $\Delta \pi_s$ is the change over some period in the relative wage of skilled workers in sector $s \in \{\text{fin,nffp}\}\$ relative to the overall average wage of unskilled workers in the nonfarm private sector, denoted w_t , $\pi_s = w_{s,t}^{\text{skilled}}/w_t$, and $\overline{\pi}_s$ is the average relative wage of skilled workers in sector s, thus defined.²³ Here \overline{n}_s is the average share of skilled workers employed in sector s out of total skilled nonfarm private sector employment and Δn_s is the change in that share for sector s. The first sum captures the contribution of wage changes within sectors, while the second sum captures the contribution of skill across sectors (the "between" component). We compute this decomposition for each country in the sample.

Another way to arrange the elements of (6) is

$$\Delta \pi = (\Delta \pi_{\text{fin}} \overline{n}_{\text{fin}} + \Delta n_{\text{fin}} \overline{\pi}_{\text{fin}}) + (\Delta \pi_{\text{nffp}} \overline{n}_{\text{nffp}} + \Delta n_{\text{nffp}} \overline{\pi}_{\text{nffp}}) . \tag{7}$$

We focus on the first term in parentheses, which captures the contribution of finance, due to both the effect of changes in finance skilled wages, and the effect of changes in allocation of skilled workers to finance. Table 1 Panel B reports $\Delta \pi$, the within share $\sum_s \Delta \pi_s \overline{n}_s / \Delta \pi$, the between share $\sum_s \Delta n_s \overline{n}_s / \Delta \pi$, and the finance share $(\Delta \pi_{\text{fin}} \overline{n}_{\text{fin}} + \Delta n_{\text{fin}} \overline{\pi}_{\text{fin}}) / \Delta \pi$ for all countries, sorted by

²²Using survey data and corrections for top coding, Philippon and Reshef (2012) find that finance accounts for 15% to 25% of the overall increase in wage inequality in the United States in 1980–2005. Roine and Waldenstrom (2014) show how close the finance relative wage in Philippon and Reshef (2012) tracks the share of income of the top percentile in the U.S. over the entire 20th century. In line with this, Bakija, Cole, and Heim (2012) document that financial professionals increased their representation in the top percentile of earners (including capital gains) from 7.7% in 1979 to 13.2% in 2005, while their representation in the top 0.1 percentile of earners from 11.2% in 1979 to 17.7% in 2005 (see also Kaplan and Rauh (2010)). For similar evidence for the United Kingdom and France, see Bell and Reenen (2013) and Godechot (2012). In line with these studies, Denk (2015b) shows that, with some variation, finance is over-represented in the top 1 percent of earners accross all European countries in 2010.

²³ Averages are over beginning and end of period of change.

 $\Delta\pi$ in decreasing order, based on (6) and (7). We see that π has increased in several countries in our sample, while in others it has not, and in some cases even declined.²⁴

The first message from Table 1 Panel B follows from the fact that the within share is always very close to one: Changes in relative skilled wages overall—not changes in allocation of skilled workers to finance (despite $\overline{\pi}_{\rm fin} > \overline{\pi}_{\rm nffp}$)—drive $\Delta \pi$.

The second message is that finance contributes disproportionately to the skill premium, relative to its size in employment. When the overall skill premium increases, finance contributes in the same direction in all but one case (Italy, where finance relative wages decline sharply, albeit from a high level). The average contribution of finance when $\Delta \pi > 0$ is 31%.²⁵ Given that the average employment share of finance in total skilled employment is 5.4% (excluding Luxembourg, which employs 20% of its skilled workers in finance)—this is a large contribution to the skill premium.²⁶ When the skilled relative wage decreases, finance skilled wages often counter this and increase, making for a negative finance share and contribution to increasing inequality. Overall, in 16 out of 22 countries finance contributes to increase inequality. When taking into account negative contributions to declines in skilled relative wages, the contribution of finance is a positive 15%.²⁷

The between component attributed to finance, $\Delta n_{\rm fin} \overline{\pi}_{\rm fin}$, is very small (not reported); almost all of the finance share is explained by increases in relative skilled wages within finance, i.e. $\Delta \pi_{\rm fin} \overline{n}_{\rm fin}$.

2.5 Finance subsectors and relative wages

In this section we ask which types of financial activity drive finance relative wages. For example, does traditional banking intermediation or trading activity explain the rise? Our data allow us to investigate this by looking at three subsectors within the finance industry: financial intermediation; insurance and pension funding, except compulsory social security; and other financial activities that are related to trading and advising.

The three subsectors may not capture precisely the same activities to the same extent across countries, due to variation across countries in activities *within* subsectors. Therefore, the subsectors should be considered as coarse indicators of activity types.²⁸ An additional limitation of the analysis

 $^{^{24}}$ Countries that see a large decrease in π are those who expanded educational attainment rapidly in this period. For example, see Verdugo (2014) for the case of France.

²⁵This amounts to 8.5 percent points increase in skilled relative wages on average, compared to an average decrease of 0.30 percent points across countries in our sample.

²⁶Denk (2015a) calculates more modest contributions of finance wages to inequality. The main reason for this is that his measure of inequality is the Gini coefficient, which is inadequate when most of the finance wage premium is concentrated at the top of the distribution. In addition, his analysis is based on employer survey data, which may not include all relevant wage concepts.

 $^{^{27}}$ This implies multiplying the finance contributions by -1 when skilled relative wages decline, and then averaging.

²⁸While aggregation always masks composition within aggregates, this issue is particularly important here, as our data indicate. See appendix for complete details on activities within each subsector.

here is that the sample is restricted due to data availability across countries and time. For example, Canada does not report subsector data in any of the sources we use, and Japan does not report separately financial intermediation; therefore, these two important countries are dropped from the analysis altogether.

To begin our analysis, we decompose changes in finance relative wages $\Delta\omega$ along the subsector dimension using (2), except that now the index runs over the three subsectors, $i \in \{\text{int }, \text{ ins }, \text{ oth}\}$, rather than skill types. Here "int" stands for financial intermediation; "ins" stands for insurance and pension funding; and "oth" stands for other financial activities. By rearranging (2), one can describe the contribution of each subsector in the overall change,

$$\Delta\omega = (\Delta\omega^{\rm int}\overline{n}_{\rm fin}^{\rm int} + \Delta n_{\rm fin}^{\rm int}\overline{\omega}^{\rm int}) + (\Delta\omega^{\rm ins}\overline{n}_{\rm fin}^{\rm ins} + \Delta n_{\rm fin}^{\rm ins}\overline{\omega}^{\rm ins}) + (\Delta\omega^{\rm oth}\overline{n}_{\rm fin}^{\rm oth} + \Delta n_{\rm fin}^{\rm oth}\overline{\omega}^{\rm oth}) \ . \eqno(8)$$

The results of this analysis are presented in Panel C of Table 1, where we report the within share, the between share, and the share of each finance subsector $((\Delta \omega^i \overline{n}_{\text{fin}}^i + \Delta n_{\text{fin}}^i \overline{\omega}^i)/\Delta \omega, i \in \{\text{int}\}$, ins , oth)) for all countries, sorted by $\Delta\omega$ in decreasing order. The first message from the table is that within sector changes are driving the evolution of the relative skilled wage series, not changes in subsector composition. Second, when focusing on countries that saw significant increases in finance relative wages (at least 0.08, the case of the United Kingdom), the average contributions of both financial intermediation and other activities are 50% each. These results suggest that it is increases within these two subsectors—and not in insurance and pension funding—that drove up relative skilled wages. The employment share of other activities in financial employment is small relative to the other two activities, at 13.6% on average (Table A3). This means that relative wage increases within this subsector were much larger than in other subsectors of finance, which is evident in Table A2. In addition, we see that when finance wages decrease ($\Delta\omega < 0$), the contribution of other activities is more often negative than positive. This means that wages in other activities tend to increase even when the overall relative wage in finance decreases. Overall, in all but two countries (Slovenia and Ireland) the contribution of other activities is to increase finance relative wages. When taking into account negative contributions to declines in finance relative wages, the contribution of other activities is a positive 50%.²⁹ Ignoring Slovenia and Ireland, this contribution increases to 68%.

We further explore the evolution of subsector wages, but in order to conserve on space we relegate the underlying tables to the appendix. We find significant heterogeneity in the levels of finance subsector relative wages across countries and subsectors, and over time (Table A2). From 1985–2005, there are sizeable increases in all three of the subsector averages across countries. Fitting

²⁹This implies multiplying contributions by -1 when $\Delta\omega < 0$ and then averaging.

with the conclusions in the previous paragraph, the average rise in the relative wages for financial intermediation is twice that of the insurance and pension funding subsector, while other activities' increase is three times as great. These results fit with the idea that improved opportunities for bank profit via deregulation and greater market concentration drove the rise in the finance relative wage, as one would expect those two sectors to benefit more from an environment allowing for broader investment opportunities under increased market power.

We also find significant heterogeneity in employment shares within finance (Table A3). The employment share for financial intermediation within finance drops between 1985 and 2005 from about 67% to 59%, on average. Insurance and pension funding generally accounted for about 23% of workers within finance, on average, with no apparent trend. The decline in the employment share of financial intermediation within finance is mirrored by a commensurate increase in the other activities subsector of about 8%, from 10% to 18% on average.

While there is significant heterogeneity across countries, on average the results presented in this subsection are consistent with those in Philippon and Reshef (2012) about the important role of "other finance", which includes mainly trading-related activities, in explaining the increase in finance relative wages.³⁰

3 Explaining the evolution of finance relative wages

We entertain five theories for explaining variation in finance relative wages: technology adoption; financial deregulation; domestic credit expansion; financial globalization; and banking competition. This section motivates each one of these and the explanatory variables used to measure them, followed by our analysis.

We stress that we wish to explain the differential part of the rise in wages in finance, i.e. relative to the NFFP sector. Some of the forces that affect wages in finance operate in analogous ways in the NFFP sector; for example, the precipitous drop in the price of computing power. Here we estimate the differential effects on finance.

3.1 Explanatory variables

Financial deregulation

The optimal organization of firms, and therefore their demand for various skills, depends on the competitive and regulatory environment. Tight regulation inhibits the ability of the financial sector to take advantage of highly skilled individuals because of rules and restrictions on the ways firms

³⁰Panel D of Table II and Figure V of Philippon and Reshef (2012); our calculations based on EUKLEMS data for the United States broadly corroborate those numbers.

organize their activities, thus lowering demand for skill in finance. Philippon and Reshef (2012) argue that financial deregulation is the main driver of relative demand for skill in finance, and that technology and other demand shifters play a more modest role.

In order to capture the regulatory environment we rely on widely used data on financial reforms from the Abiad, Detragiache, and Tressel (2008) dataset. The dataset includes measures of financial reform along 7 dimensions:

- 1. Credit controls. This measure combines the restrictiveness of bank reserve ratios (>20%, 10-20%, <10%); and whether the government directs credit to certain sectors. Overall, this captures restrictiveness on the profitability of existing banks from lending, either by restricting leverage (but also risk), or by preventing optimal decisions on allocation of lending.
- 2. Interest rate controls. This measure captures the degree to which the government regulates deposit and/or lending rates. Overall, these are interventions in the optimal choice of deposit and lending rates.
- 3. Entry barriers/pro-competition measures. This measure captures: (1) The extent to which foreign banks are allowed to enter the domestic market; (2) Whether entry of new domestic banks is allowed; (3) Whether there are restrictions on bank branching; and (4) whether banks are allowed to engage in a wide range of activities. The last component distinguishes between universal banking versus Glass-Steagall-type separation of credit intermediation from investment activities, but it is not available separately.
- 4. Banking supervision. This measure captures: (1) Whether a country adopted a capital adequacy ratio based on the Basel standard; (2) Whether the banking supervisory agency is independent from executive branch influence; (3) Whether a banking supervisory agency conducts effective supervision through on-site and off-site examinations; and (4) Whether the country's banking supervisory agency covers all financial institutions without exception.
- 5. Privatization. This measure captures the degree to which the banking sector is government owned or controlled (>50%, 25-50%, 10-25%, <10%).
- 6. International capital flows. This measure captures three dimensions of interventions in foreign exchange: (1) Whether all types of international activities face the same exchange rate ("unified system"); (2) Whether there are restrictions on capital inflows; and (3) Whether there are restrictions on capital outflows.

7. Securities market policies. This measure captures two different dimensions of securities market policy: (1) Whether a country takes measures to develop securities markets; (2) Whether a country's equity market is open to foreign investors.

All measures 1–7 take discrete values from 0 to 3. For complete details on coding see Abiad, Detragiache, and Tressel (2008). We use the aggregate measure of financial deregulation that is the sum of all indices, normalized to be between 0 and 1. Larger values of the deregulation index mean fewer restrictions. Although the word "deregulation" implies changes in the regulatory environment towards fewer restrictions, we keep this wording in order to avoid awkward terms like "unregulation".

One shortcoming of using the deregulation index is that none of its subcomponents addresses insurance services, which are an important part of the financial system. This may not be a major drawback, because insurance services exhibit the least change in our sample (see appendix Table A2 and Table A3). A more substantial shortcoming is that these measures, by virtue of being standardized across countries, miss country-specific differences in intensities of reform and of responses of financial institutions, although they capture accurately the timing of reforms.³¹ Table 2 summarizes levels of the deregulation index in 1973 and 2005, together with its change over this period.

Information and communication technology

The strong complementarity of ICT with non-routine cognitive skills — such as those valued in the financial sector — may be able to help explain changes in finance relative wages. Autor, Katz, and Krueger (1998) and Autor, Levy, and Murnane (2003) highlight the role of ICT in changing demand for skill—in particular, replacing routine tasks and augmenting non-routine cognitive skills. If highly educated workers possess such non-routine cognitive skills, then higher ICT intensity in finance can help explain the higher wages that highly educated workers in finance command, relative to similar workers in the rest of the economy.

We consider the share of computers, software, and information & communication technology in the capital stock of the financial sector minus that share in the aggregate economy. Investment in ICT should have a big return for finance, which is an industry that relies almost entirely on gathering and analyzing data.³² The return may be greater than in the NFFP sector, leading to

³¹For example, the Abiad, Detragiache, and Tressel (2008) indices for the United States are not easily comparable to the deregulation measure in Philippon and Reshef (2012), which captures profound changes in the financial regulatory environment and removal of restrictions on organization and financial activities.

³² Indeed, the financial sector has been an early adopter of IT. According to U.S. fixed asset data from the Bureau of Economic Analysis, finance was the first private industry to adopt ICT in a significant way. In the EUKLEMS data, the average ICT share of the capital stock in finance is 2.6% in 1970, double the 1.3% share in the NFFP sector.

relatively more ICT investment and higher stocks in finance than in the rest of the economy.

The EUKLEMS dataset provides data on real capital stocks by industry (in 1995 prices), the share of ICT in the real capital stock, and quantity indices for the total industry capital stock, ICT capital and non-ICT capital. Not all countries in the sample report data on real capital stocks, although all report quantity indices (we use the latter in Section 3.2). For the purpose of illustrating an increase in ICT intensity we use the share of ICT in the real capital stock. We define the relative ICT intensity in finance as

$$\theta_{\text{fin},t} = ICT_share_{\text{fin},t} - ICT_share_{\text{nffp},t}$$
,

where $ICT_share_{s,t}$ is the share of ICT in the real capital stock in sector $s \in \{\text{fin,nffp}\}$ at time t. Table 3 reports θ_{fin} for countries that have the underlying data at four mid-decade years and decade-long changes. For almost all countries and decade intervals θ_{fin} increases over time. The changes also become bigger over time. Finance becomes more ICT-intensive relative to the NFFP sector practically everywhere, at an increasing rate. Finland exhibits by far the largest increase, followed by Denmark, Australia and the United States. Canada exhibits a low value of θ_{fin} , but this is because ICT intensity is high in the NFFP sector there.

Domestic credit

When demand for credit is high, it may be necessary to employ highly skilled workers to screen potential borrowers and investments, and then to monitor them and manage risk. Monitoring may require efficiency wages in order to avoid the threat of moral hazard. We capture this using total domestic credit provided by the financial sector as a share of GDP. This concept includes gross credit to the private sector, as well as net credit to the government. The data are from the World Bank's World Development Indicators database. Domestic credit to private sector refers to financial resources provided to the private sector by financial corporations, such as through loans, purchases of nonequity securities, and trade credits and other accounts receivable, that establish a claim for repayment. For some countries these claims include credit to public enterprises. The financial corporations include monetary authorities and deposit money banks, as well as other financial corporations where data are available (including corporations that do not accept transferable deposits but do incur such liabilities as time and savings deposits). Examples of other financial corporations are finance and leasing companies, money lenders, insurance corporations, pension funds, and foreign exchange companies.

We also use data from Jordà, Schularick, and Taylor (2014) (JST) on the volume and composition of domestic bank credit to the private sector for 11 countries that are in our sample, and

supplement these data with domestic bank credit data from the World Bank when possible. Overall, total bank credit data from JST and from the World Bank are very close for observations that exist in both sources. We use these data to split total credit into bank credit and non-bank credit. We use JST data to split bank credit into household versus corporate credit, and into mortgage versus non-mortgage credit. These two splits are not the same: Although mortgage credit is a large part of household credit, substantial mortgage credit is obtained by the corporate sector, and households have substantial non-mortgage credit. When using World Bank domestic credit we made a few corrections for breaks in the series. See Appendix for detailed descriptions of data and the corrections we made.

While expansion of credit can be a consequence of financial deregulation, for example due to removing financial repression (McKinnon (1973) and Shaw (1973))—the nature, quality and riskiness of this credit is not captured by the credit volumes alone. The latter are captured by our financial deregulation index.

Financial globalization

Foreign investors that are represented by local financial firms may also demand high quality services, which can be performed only by skilled workers. Likewise, investment overseas is a more complex type of activity, which also requires highly skilled workers. If the skills needed to preform these tasks are in fixed supply, or supply does not keep up with demand, then wages of those who can perform these tasks well will be bid up. We capture this using a measure of *de facto* financial globalization, namely foreign assets plus foreign liabilities as a ratio to GDP. The data are from Lane and Milesi-Ferretti (2007).

This force is largely independent of financial regulation *per se*, as Kindleberger (1987) argues, since its surge was driven mostly by lower communication and transport costs within a given regulatory framework.

3.2 ICT and complementarity with high skilled workers

It is generally accepted that ICT capital is more complementary with skilled workers than with unskilled workers (e.g., Griliches (1969), Berman, Bound, and Griliches (1994)) and indeed, we find this to be the case. We also estimate that ICT capital is more complementary with skilled workers in finance than with skilled workers in the NFFP sector. This, together with the increase in relative ICT intensity in finance, can be a mechanical force driving demand for skill and wages in finance.

A simple way to characterize complementarity is by using the following equation:

$$S^{\text{skilled}} = \eta + \alpha \ln \left(\frac{w^{\text{skilled}}}{w^{\text{unskilled}}} \right) + \beta \ln \left(\frac{C}{Q} \right) + \gamma \ln \left(\frac{K}{Q} \right) + \delta \ln Q , \qquad (9)$$

where S^{skilled} is the wage bill share of skilled labor, C is ICT capital, K is all other forms of capital, and Q is output.³³ Here β and γ capture the degree of complementarity of skilled labor with ICT and other types of capital. Positive values imply complementarity to skilled labor.³⁴ If the underlying production function is constant returns to scale, then $\delta = 0$. While this is a reasonable assumption at the industry or aggregate level, we do not impose it.

We estimate empirical versions of (9) separately for finance, for the entire economy, and for the NFFP sector in panel data from the EUKLEMS dataset:

$$S_{ct} = \eta_c + \alpha \ln \left(\frac{w^{\text{skilled}}}{w^{\text{unskilled}}} \right)_{ct} + \beta \ln \left(\frac{C}{Q} \right)_{ct} + \gamma \ln \left(\frac{K}{Q} \right)_{ct} + \delta \ln Q_{ct} + \varepsilon_{ct} , \qquad (10)$$

where c denotes countries, t denotes years, η_c are country fixed effects, and ε_{ct} is the error term. Our identifying assumption is that technology is stable over time, and that its curvature is the same across countries within an industry (the coefficients α , β , γ and δ do not vary over time or countries within an industry). The η_c terms allow technology to be different across countries within industries. All variables are industry-specific, including relative wages.

We use industry-specific quantity indices from the EUKLEMS dataset for C, K and Q, which are equal to 100 in 1995. This renders the C/Q and K/Q ratios equal to unity in 1995, but does not affect the estimation in the presence of country fixed effects. The proportional adjustment to make the ratios "real" is additive in logs and is absorbed by the country fixed effects η_c . Quantity indices are available for 22 countries in the EUKLEMS dataset, for different time periods.³⁵ Quantity indices are available for financial intermediation (finance in our taxonomy) and the aggregate economy. We manipulate indices for the aggregate economy, finance, farm and public sectors, to obtain indices for NFFP; see appendix for details. Doing this reduces the sample to 16 countries. We follow standard methodology and estimate (10) by TSLS, instrumenting for the capital shares using first, second and third lagged values; results using other lags are similar.

Table 4 reports the results, which indicate that ICT is complementary to skill for finance, the entire economy and the NFFP sector, but it is more complementary to skill in finance. The coefficient to $\ln(C/Q)$ is larger in finance, and this difference is also highly statistically significant. These results hold whether or not we include $\ln Q$ (i.e., whether we assume a constant returns to scale technology) or not. In untabulated results, we find similar results in specifications that

³³Derivation of (9) starts with a translog cost function, and assumes that that capital is quasi-fixed. See, e.g., Berman, Bound, and Griliches (1994). We provide complete derivations in the appendix.

 $^{^{34}}$ To be precise, positive β or γ imply that either type of capital (ICT or other, respectively) is more complementary with skilled labor relative to unskilled labor.

³⁵These are Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Spain, Finland, France, Germany, Hungary, Ireland, Italy, Japan, South Korea, Luxembourg, Netherlands, Portugal, Slovenia, Sweden, United Kingdom, United States (NAICS based data).

constrain the country dummies to be equal in finance, the aggregate and NFFP.³⁶

Below we test whether stronger complementarity of ICT with skill in finance, together with the increase in relative ICT intensity in finance, drove demand for skill and wages in finance.

3.3 Econometric specification

We start by fitting descriptive regressions, that are useful for summarizing the patterns in the data. These take the form

$$y_{c,t} = \gamma \cdot deregulation_{c,t-3} + \beta' x_{c,t-3} + \alpha_c + \delta_t + \varepsilon_{c,t} , \qquad (11)$$

where y is either the finance relative wage ω or the finance skilled relative wage ω^{skilled} , both from Section 2. Here α_c and δ_t are country c and year t fixed effects, respectively, and ε_{ct} is the error term. The variable deregulation is the deregulation index described above. The vector x includes explanatory variables, such as relative ICT intensity, domestic credit measures and financial globalization. We estimate (11) using OLS; identification of γ and β relies on within-country variation, relative to the average level in a particular year.

Although we lag explanatory variables in (11) by three years to guard against simultaneity, we are still concerned about omitted variables that may bias our estimator.³⁷ The next set of regressions tries to address these concerns.

The second set of regressions are predictive regressions. These take the following form

$$\Delta y_{c,t+3} = \gamma \cdot \Delta deregulation_{c,t} + \beta' \Delta x_{c,t} + \alpha_c + \delta_t + \varepsilon_{c,t} , \qquad (12)$$

where $\Delta y_{c,t+3} = y_{c,t+3} - y_{c,t}$, $\Delta x_{c,t} = x_{c,t} - x_{c,t-3}$, and $\Delta deregulation_{c,t} = deregulation_{c,t} - deregulation_{c,t-3}$. This is a very demanding specification. For example, identification of γ relies on independent within-country variation in the timing and magnitude of changes in deregulation, relative to the aggregate magnitude. Accounts of financial deregulation argue that the timing was indeed exogenous and independent across countries (e.g., Englund (1990), Vives (1990) and Melitz (1990) in Sweden, France and Spain, respectively). Therefore, these predictive regressions permit a stronger causal interpretation by significantly alleviating concerns for omitted variables bias. Omitted variables that may be correlated in levels over time are less likely to be correlated in terms of the timing of their changes. Indeed, while our set of explanatory variables exhibit sometimes non-trivial correlations among themselves in levels, their correlations in changes drop significantly in magnitude and become invariably statistically insignificant (appendix Table A4).

 $^{^{36} \}rm{These}$ results are available upon request.

³⁷Using longer lag lengths yield similar results, but reduces explanatory power.

Specification (12) also allows us to use plausibly excludable instruments for financial deregulation in changes to further establish causality. We use 3-year lagged financial deregulation in levels $deregulation_{c,t-3}$ as an instrument for changes in financial deregulation over the following three years $\Delta deregulation_{c,t}$. Abiad and Mody (2005) discuss political economy models that justify this specification.³⁸

The instrument is relevant and strong; since the range of the deregulation index is limited between zero and one, a higher level (less regulation) is negatively correlated with increases in deregulation (indeed, we report strong first stage regressions in appendix Table A6, Panel A). The instrument is plausibly excludable. It is unlikely that the level of deregulation in t-3 affects changes in wages from t to t+3 in a systematic way, other than through its effect through deregulation changes over t-3 to t. If it did, e.g. in a positive way, then we would find increasing gradients for finance relative wages, because the level of deregulation is invariably increasing over time across countries in our sample. The patterns in the data do not support this last condition.

Although the exclusion restriction is not a testable assumption, we run the following specification tests. We fit "false first stage" regressions, in which we pretend to use $deregulation_{c,t-3}$ to instrument for other variables in $\Delta x_{c,t}$. We find that the instrument is invariably uncorrelated with elements of $\Delta x_{c,t}$ (appendix Table A6, Panel B). This is reassuring—albeit not constituting proof—because it increases our confidence that the instrument is not correlated with other, potentially omitted and relevant variables in (12).

Descriptive statistics for all regression variables are reported in Table 5. We report the levels and changes of relative finance wages and relative skilled wages in finance in the appendix Table A1. Correlations between all variables used in the regressions are also provided in appendix Table A4.

All regressions report robust standard errors. The use of standard errors clustered by country is not appropriate due to the limited number of countries in our sample (Angrist and Pischke (2008)). Nevertheless, in our predictive regressions this clustering does not change standard errors materially, whether we instrument or not. Clustering by country does increase substantially standard errors in the descriptive regressions, but we do not attach a causal interpretation there. These results are reported in appendix Table A5. Our standard errors do not change materially if we cluster by year, use Newey-West standard errors, or if we bootstrap.³⁹ We tested for serial correlation in all

³⁸Abiad and Mody (2005) use a nonlinear ordered logit regression, and include also the square of the level as predictor of change. We also experimented with adding the square of the level in the first stage regressions; doing so keeps the second stage results virtually unchanged.

³⁹Cameron, Gelbach, and Miller (2008) suggest bootstrapping in the presence of a small number of clusters. However, MacKinnon and Webb (2016) show that if clusters are unbalanced, even this procedure may fail to improve inference in the presence of unbalanced clusters, and rejection rates remain high. Our panel data is also unbalanced,

regressions using the procedure in Wooldridge (2002) (pages 310–311) and did not reject the null hypothesis of no serial correlation at conventional levels of statistical significance.⁴⁰

We perform several other robustness checks that are not reported here. First, we control for country level macro variables that might be related to our dependent variables such as GDP growth and interest rates. Second, we drop top and bottom percentiles of the distribution of our dependent variables from the regressions and rerun the regressions. Third, we run the regressions without one country from the sample while keeping the rest; we do this for each country separately. The main results hold under these robustness checks.

3.4 Finance relative wages descriptive level regressions

Table 6 reports the results from level regressions (11). First, we find that financial deregulation is positively associated both with overall finance relative wages and with relative skilled wages in finance—and the magnitude of the effect is economically significant. The estimated coefficients on the financial deregulation variable in columns 1 and 5 imply that weakening regulation by one standard deviation of the index in this sample is associated with an increase of overall wages and relative skilled wages in finance by 0.27 and 0.20 of a standard deviation, respectively. These effects grow significantly to 0.55 and 0.3 of a standard deviation in columns 3 and 8, respectively.

Second, we find that relative ICT intensity in finance has a positive and statistically significant correlation with relative skilled wages in finance as in Section 3.2, but not with the overall finance relative wage. These results suggest that the positive effect of relative ICT intensity on skilled workers' wages is offset by a negative effect on unskilled wages, which is in line with findings in Autor, Levy, and Murnane (2002).

Third, de facto financial globalization (log of international assets plus liabilities as a share of GDP) is positively correlated with the overall finance relative wage but has no significant correlation with the skilled one. A one standard deviation increase in de facto financial globalization increases the average relative wage in finance by 0.57 of a standard deviation. The different results for the overall and skilled relative wages are due to a strong effect on relative skill intensity in finance, i.e. financial globalization is associated with higher relative skill intensity in finance (regressions not reported here, but are available upon request).

Fourth, domestic credit supply (as a share of GDP) is positively associated with both relative finance wage measures, and the effects are economically large. A one standard deviation increase in

so we report robust standard errors instead.

⁴⁰Drukker (2003) presents simulation evidence that this test has good size and power properties. In addition, inspection of the partial autocorrelation functions revealed no evidence of autoregressive or moving averages in the errors.

domestic credit increases overall and skilled relative wages in finance by 0.44 and 0.83 of a standard deviation

Variation in different types of credit may have different effects on finance relative wages. More non-bank credit is associated both with skilled and overall finance relative wages, but bank credit only has a significant effect on finance relative skilled wages. Within bank credit, it is credit to households and mortgage credit (which significantly, but not perfectly, overlap) that drive the result for skilled finance workers. This can be explained by the following observations. Most of the increase in the ratio of bank credit to GDP since 1970 in advanced economies has been driven by the dramatic rise in mortgage lending relative to GDP (Jordà, Schularick, and Taylor (2014)). This increase in mortgage lending made the creation and marketing of mortgage-backed securities and securitization more appealing, which subsequently led to higher skilled wages in finance as these activities are relatively complex and require specific skills.

3.5 Finance relative wage predictive regressions

We now turn to the predictive regressions based on equation (12). Although this is a very demanding specification, we also use instrumental variables as an alternative identification of the causal effect of financial deregulation on relative wages in finance, as discussed above. Table 7 shows that the only robust predictor for changes in overall and skilled relative wages in finance is changes in financial deregulation. The magnitude of the effect is economically large. In the OLS specification, a one standard deviation faster increase of the financial deregulation index corresponds to a 0.18 standard deviation faster increase in relative wages in finance, and 0.21 for skilled relative finance wages. The IV regression results are stronger. The standardized coefficients of financial deregulation changes on the overall and skilled relative wages are 0.44 and 0.41, respectively. The regression results are similar for skilled workers and for average workers. This is because changes in the overall finance relative wage are mostly due to variation in skilled wages, as shown in Table 1 and discussed above, especially when finance wages increase.

The instrument in the IV regressions is strong, with large first stage partial F-stats. In the appendix (Table A6, Panel A) we report the first stage regressions, where, as expected, financial regulation in levels in t-3 is negatively correlated with future deregulation in t-3 to t.

Using several specifications and estimators, we find that deregulation of financial markets is the most important factor driving overall and skilled relative wages in finance.

3.6 Finance relative wages around deregulation events

In order to strengthen the causal interpretation of our results we examine the dynamics of the relationship between deregulation and finance relative wages using an event study approach. To this end, we fit the following regression:

$$y_{ct} = \beta_{-7} D_{ct}^{\leq -7} + \beta_{-6} D_{ct}^{-6} + \dots + \beta_{-1} D_{ct}^{-1} + \beta_{1} D_{ct}^{1} + \dots + \beta_{6} D_{ct}^{6} + \beta_{7} D_{ct}^{\geq 7}$$

$$+\alpha_{c} + \delta_{t} + \varepsilon_{c,t} ,$$

$$(13)$$

where y_{ct} is either the finance relative wage (1) or the finance relative skilled wage (5). The dummy variables D_{ct}^k indicate the time between the current year and the year of the deregulation event. For example, D_{ct}^{-1} is a dummy variable that equals one for the year before a country deregulates and zero otherwise; D_{ct}^6 equals one for the sixth year after a country deregulates and zero otherwise. The indicator $D_{ct}^{\leq -7}$ equals one in all years that are seven or more years before the country deregulated; $D_{ct}^{\geq 7}$ equals one in all years that are seven or more years after the country deregulated. The omitted category is the year of the deregulation event, k=0, so the interpretation of the coefficients is relative to this reference year, which varies across countries. The year of the deregulation event for each country is the year with the largest increase in the deregulation index. This decision is justified on the basis of country-specific histories of the process of financial deregulation: when countries decide to deregulate, they concentrate most of their reforms in one or two years, with some further reforms later on.⁴¹

We include country α_c and year fixed effects δ_t to control for country-specific effects and common trends. We use robust standard errors to compute confidence intervals, but clustering by country or by year yield very similar results here.

Figure 6 plots year-by-year estimates and 95% confidence intervals of the β_k coefficients. Confidence intervals mechanically increase as the time to/from the deregulation event grows due to fewer observations in those categories. The coefficient estimates for all years preceding the deregulation event are virtually zero, showing that the increase in finance relative wages did not precede deregulation. Significant increases in finance relative wages follow large deregulation events. The

⁴¹The event years for each country are: Australia 1982, Austria 1980, Canada 1987, Czech Republic 1996, Germany 1985, Denmark 1988, Finland 1984, United Kingdom 1979, Italy 1974, Japan 1991, South Korea 1991, Netherlands 1980, Portugal 1992, Sweden 1986, United States 1980. These dates fit the histories of almost all countries, as illustrated for Sweden by Englund (1990) and Spain by Vives (1990). Although France is not in this sample due to data limitations (no ICT data), the account of Melitz (1990) supports our approach. Two exceptions are the so-called "Big Bang" reforms of the United Kingdom in 1986 and Japan in 1997–1999. This is because the Big Bang reforms in these two countries focused mostly on securities markets, while other, perhaps more fundamental dimensions of financial regulation of banking occurred earlier. Ultimately, this also reflects the limitation of our regulation indicators.

adjustments seem plausible because they are gradual until the 6th year, after which they becomes stable.⁴² These relationships over time are not a result of the general upwards trends in many of the dependent relative wage series. Even if large deregulation events tend to arrive earlier in the sample, before relative wages have increased, the year fixed effects absorb this timing issue.

Overall, Figure 6 supports our causal interpretation: deregulation predicts increases in relative wages; relative wage increases do not precede major deregulation events. The estimates imply an increase of 0.34 on finance relative wages, and 0.4 on finance relative skilled wages. These effects are in line with the point estimates in sections 3.4 and 3.5.

3.7 Market structure, financial deregulation and relative wages

We now turn to investigate mechanisms by which deregulation affects relative wages in finance. In particular, we ask whether deregulation matters more in some countries versus others, depending on their characteristics. By doing this we also try to infer when is deregulation more likely to be associated with rents and socially inefficient risk taking. We are guided by theory that is discussed in the introduction, as well as our empirical descriptive findings in Section 2. Both motivate examining mechanisms that operate particularly on (typically skilled) workers in the non-traditional banking sector, where rents may accrue due to opaque activities where there is greater information asymmetry. Theory also motivates examining environments where competition for talent leads to the threat of firm-to-firm movement of workers.

Our strategy is to interact deregulation in the level and predictive regressions with time-invariant country-specific variables. In particular, we add to regressions (11) and (12) interactions with the level of deregulation and with changes thereof, respectively

$$\omega_{c,t} = \theta \left(z_c \cdot deregulation_{c,t-3} \right) + \gamma \cdot deregulation_{c,t-3} + \beta' x_{c,t-3} + \alpha_c + \delta_t + \varepsilon_{c,t}$$
 (14)

and

$$\Delta\omega_{c,t+3} = \theta \left(z_c \cdot \Delta deregulation_{c,t} \right) + \gamma \cdot \Delta deregulation_{c,t} + \beta' \Delta x_{c,t} + \alpha_c + \delta_t + \varepsilon_{c,t} , \qquad (15)$$

where the variables are defined above in Section 3.3. The coefficient of interest is θ . In order to conserve on space, we report regressions with the overall finance relative wage ω^{skilled} and $\Delta\omega^{\text{skilled}}$ as dependent variables in appendix Table A8; these are comparable to the results discussed below.

In order to obtain z_c for both (14) and (15) we first compute the average over the first three

⁴²In untabulated results we estimate a variant of (13) with $\beta_7 D_{ct}^7 + \beta_8 D_{ct}^8 + \beta_9 D_{ct}^9 + \beta_{10} D_{ct}^{\geq 10}$ instead of $\beta_7 D_{ct}^{\geq 7}$. Our point estimates of β_7 , β_8 , β_9 , β_{10} are of similar magnitude, implying similar effects after the 7th year after the deregulation event and on, but confidence intervals rapidly increase due to few observations in those categories. This is why we decided to display results using only up to $\beta_7 D_{ct}^{\geq 7}$.

years in which data is available for all countries, separately for each variable. Then we standardize these averages to get z_c . This has the virtue of facilitating comparability across variables, and also maintains comparability of the magnitude of the main effect of regulation or deregulation for the average country, γ , when the value of z_c is zero. Table A7 in the appendix reports the values and standardized values used for z_c , as well as correlations across all z_c 's.

The choice of using averages over the first three years of data availability reduces noise in z_c , while capturing country characteristics as early as possible. Using averages over all available years is less desirable, but the results do not change substantively when we do this (they are typically a bit stronger), and are available upon request. This is encouraging, because it implies that country rankings and relative position are stable in each dimension, and the interaction variables pick up country-invariant characteristics. Below we report for each variable the years which are used in our analysis. These are invariably the first three years for which each variable is available to all 15 countries in our regression sample.⁴³ The results are reported in Table 8; Panel A reports results for (14) and Panel B for (15).

Composition of financial intermediation

We use the following variables to test whether deregulation has differential effects depending on the nature of financial intermediation. In particular, we seek indicators for trading and opaque activities:

- Non-bank domestic credit / GDP. Non-bank domestic credit data from Jordà, Schularick, and Taylor (2014), as described above in Section 3.1. Average over 1993–1995.
- Bank non-interest income share of total bank income. Non-interest related income includes net gains on bank-owned trading of securities and derivatives, net of fees and commissions and other operating income that is not related to (interest bearing) loan income. Source: Financial Development dataset, World Bank. Average over 1997–1999.
- Stock market capitalization / GDP. Source: Financial Development dataset, World Bank. Average over 1989–1991.
- OTC trading turnover ratio to total stock market turnover. The total average daily turnover of currency and interest rate OTC derivatives. Source: Bank for International Settlement's (BIS) 1995-2004 Triennial Central Bank Surveys of foreign exchange and deriva-

 $^{^{43}}$ This is typically after the first year in which data are available for any country.

tives markets. 44 Stock market turnover source: Financial Development dataset, World Bank. Average over 1995–1997.

- OTC trading turnover / GDP. OTC data again from the BIS's survey. GDP source: Financial Development dataset, World Bank. Average over 1995–1997.
- Indicator for global financial center. This indicator variable takes value one for countries in which there is at least one city deemed a "top 20" global financial center. Cities are ranked across five major areas: financial sector development; business environment; infrastructure factors; human capital; and reputation and general factors. Source: Global Financial Centres Index, produced by the think-tank Z/Yen, September 2016 revision. Countries in our sample that have a global financial center are Australia, Canada, Germany, United Kingdom, Japan, South Korea, United States.

The results in Table 8, columns 1–6, indicate that all of these variables increase the effect of deregulation on finance relative skilled wages, both in the level regressions and in the predictive regressions, except for non-bank domestic credit in the level regressions, and the global financial center indicator in the predictive regressions. As financial intermediation becomes less bank-dependent, when banks derive more of their income from non-traditional intermediation (lending), when stocks represent a larger share of the economy, and when OTC markets are more important, deregulation has a larger effect on finance wages. In column 6 we see that the main effect of deregulation is positive only if a country has a global financial center. Indeed, countries that have a global financial center also have many of the other characteristics that increase the effect of deregulation (appendix Table A7, panels C and D).⁴⁶

Labor market flexibility

Theories cited in the introduction stress the role of firm-to-firm mobility in creating rents for workers and high risk taking. We use the following measure of labor market protection to capture the possibility of labor movement across firms. When job security is higher, theory predicts less job-to-job mobility. If deregulation increases competition for talent, then this should have a stronger effect in countries that have more flexible labor markets.

⁴⁴This is an expanded survey performed by the BIS of a broad sample of derivatives dealers—as many as 53 jurisdictions participate—and together these two related sets of markets saw \$9.6 trillion on average each day in notional turnover in 2016. To eliminate double-counting of the size of transactions within a country, which arises when two dealers each report the same transaction, these inter-dealer transactions are halved if both parties are within the same country. This is referred to by the BIS as the "net-gross" basis.

⁴⁵The analysis is based on over 29,000 responses from an online questionnaire together with over 100 indices from organizations such as the World Bank, OECD, and the Economist Intelligence Unit.

⁴⁶In appendix Table A9 we find that this effect is larger for Anglo-Saxon countries, all of which are global financial centers (Australia, Canada, United Kingdom, United States).

• Employment protection index. Strictness of employment protection for regular contracts. 47 Higher values mean stronger job security for workers. Source: OECD indicators of employment protection. Average over 1985–1987.

In column 7 of Table 8 we see that in countries with more flexible labor markets (lower protection) the effect of deregulation is significantly larger.

Competitiveness and market structure

We now ask whether deregulation has different effects conditional on the competitiveness of the financial sector. We expect to find higher wages in less competitive settings, where financial firms are expected to make higher profits. If profits are shared with workers (Akerlof and Yellen (1990)), then this can lead to higher wages.⁴⁸ Highly skilled workers are almost surely more likely to capture these rents.⁴⁹ Although deregulation is associated with lowering barriers to entry, competitive pressure may lead to strategic responses like consolidation.⁵⁰ Higher concentration may create incentives to take on more risk and allocate a higher surplus to finance at the expense of the rest of the economy, as in Korinek and Kreamer (2014).

Although banks do not comprise the entire financial sector, changes in bank concentration over time are indicative of overall financial concentration, especially in countries with a universal banking sector. We use the following variables to capture competition in the banking sector:

• Bank concentration. We measure bank concentration by the share of the three largest banks in total commercial banking assets.⁵¹ Source: Financial Development dataset, World Bank (originally collected by Bureau van Dijk in the Bankscope dataset). Average over 1997-1999.

⁴⁷We also have data on strictness of employment protection for *temporary* contracts, which we believe is less relevant in our context. Nevertheless, since protection of permanent and temporary contracts are highly correlated, regression results using either indicator are very similar.

⁴⁸ Azar, Raina, and Schmalz (2016) show that cross-ownership of banks in the U.S. is related to higher fees, some of which can be passed on to workers.

⁴⁹In appendix Table A11 we show that indeed bank concentration is associated with higher finance relative wages, and especially for skilled workers in finance (Table A10 reports relevant descriptive statistics). We estimate descriptive level regressions of the form in equation (11) using bank concentration instead of financial deregulation. Bank concentration data are only available from 1997 through 2005, so the regression sample is effectively 2000–2005, and we have only 60 observations. We do not have sufficient power to estimate predictive regressions with bank concentration. Overall, the results for these regressions are in line with the earlier results, in the following sense: Market structure (regulation and bank concentration) are the most important drivers of relative wages in finance.

⁵⁰For example, in Spain deregulation lead big banks to respond in mergers, as the government also intervened in order to protect "national champions" (Vives (1990)). The number of US commercial banks insured by the Federal Deposit Insurance Corporation hovered around 14,000 for most of the twentieth century, but started dropping more-orless continuously after 1984, until it reached 6,300 in 2011. Similarly, the number of FDIC-insured saving institutions dropped continuously from 3,400 in 1984 to 1,067 in 2011.

⁵¹Total assets include total earning assets, cash and due from banks, foreclosed real estate, fixed assets, goodwill, other intangibles, current tax assets, deferred tax, discontinued operations and other assets.

- Revenue-based competition index (H-statistic). The H-statistic measures the elasticity of banks revenues relative to input prices. Under perfect competition, an increase in input prices raises both marginal costs and total revenues by the same amount, and hence the H-statistic equals 1. Under a monopoly, an increase in input prices results in a rise in marginal costs, a fall in output, and a decline in revenues, leading to an H-statistic less than or equal to 0. When H-statistic is between 0 and 1, the system operates under monopolistic competition. Source: Financial Development dataset, World Bank. Average over 1996-1998.
- Profit-based competition index (|Boone elasticity|). The Boone elasticity is the elasticity of profits with respect to marginal costs. To obtain the elasticity, the log of bank profits (measured by return on assets) is regressed on the log of marginal costs. An increase in the absolute value of the (negative) Boone elasticity implies a more competitive environment. The rationale behind this is that higher profits are achieved by more-efficient banks. Hence, the more negative the Boone indicator, the higher the degree of competition is, because the effect of reallocation is stronger. Source: Financial Development dataset, World Bank. Average over 1997-1999.

The results in Table 8, columns 8–10, indicate that higher concentration and weaker competition (lower value of index) are associated with a larger effect of deregulation on relative wages—both in the level regressions and in the predictive regressions—except for the profit-based competition index in the level regressions.

Overall, the results in this section imply that the effect of deregulation on wages is largest in countries with financial systems that rely more on non-traditional banking (versus bank loans) and stock markets, where there is greater trading intensity in OTC securities, in countries with more flexible labor markets, and where the sector is less competitive. Theory discussed in the introduction implies that these are associated with greater risk taking, and socially inefficient informational rents. Although we cannot make precise statements on whether these rents accrue to more talented workers or not, we find similar results for both skilled and unskilled workers, as indicated in appendix Table A8. The results here also strengthen our causal interpretations in the following sense: we find larger effects of deregulation in countries where we expect them, in a way that is consistent with theory.

4 Finance wages and brain drain

Given the findings above, it is natural to ask whether high wages in finance attract talent from other activities and locations. Providing a complete and convincing answer to this question is well beyond the scope of this paper. The results in this section should be taken as suggestive evidence that may inspire more research in this area.

It is very difficult to empirically characterize allocative effects between activities within an economy and make the distinction between social and private returns. Instead, in this section we ask whether high wages in finance lure qualified workers from other countries. We restrict attention to immigration within a sample of 15 industrialized countries. Among these countries remittances and backward knowledge spillovers to the country of origin are arguably not likely to be large, and therefore it is relatively clear that attracting skilled workers from other countries has detrimental effects on the country of origin, i.e., brain drain.

We find that wage premiums for skilled workers in finance—over and above overall skilled wages—predict skilled immigration and employment in finance, affecting both the magnitude of immigration and its allocation. We do not find evidence of this effect for unskilled immigrants in finance. This raises concerns that high wages in finance may have implications for brain drain across borders.

4.1 Immigration data

Ideally, we would have liked to investigate if high wages in finance in country A lure highly skilled workers in country B, who were working in other sectors, to immigrate to country A to work in the finance sector. Unfortunately, to the best of our knowledge, there are no comprehensive data sets that provide information on employment both before and after immigration. Moreover, data on immigration flows, rather than stocks, are also scant. Therefore, we rely on data on bilateral immigration stocks for 15 OECD countries in 2000.⁵² All wages are calculated from the EUKLEMS database, and are converted to United States dollars when needed. Immigration stocks in a given sector in a destination country are classified by source country and education level. We focus on highly educated workers (attaining a bachelors degree from a four year college or university), but we also compare these results to those for less educated immigrants.

It is informative to study the sample properties in some detail. In general, this illustrates that the determinants of skilled immigration employed in finance in destination countries are destination

 $^{^{52}}$ The countries are: Australia, Austria, Canada, Denmark, Spain, Finland, France, Hungary, Ireland, Italy, Luxembourg, Portugal, Sweden, United Kingdom, United States. See appendix for more details on the sample. Data downloaded from: http://stats.oecd.org/Index.aspx?DatasetCode=MIG#

and sector-specific; they are not simply proportional to country and sector sizes. Table 9 shows that there is considerable heterogeneity in immigration stocks by destination (column 1 in both panels). Columns a and 1–4 report statistics on immigrants who work in finance in destination countries (where they immigrated to), while columns b and 5–7 report statistics on those same immigrants by source country (i.e., by country from which they emigrated from). Panel A reports statistics for skilled workers. The average immigrant working in finance is relatively skill intensive, except in France (column a). However, emigrants from France who work in finance in destination countries are relatively highly skilled (column b). Comparing columns 4 and 7 we see that there is much more heterogeneity in the share of skilled immigration working in finance (standard deviation = 6) than in their shares in skilled emigration (standard deviation = 1.5). This illustrates a general pattern: The pattern of skill intensity in finance is not strongly influenced by source country characteristics. This conclusion is strengthened by column 3, which shows that there is enormous variation in skilled immigrants working in finance as a share of total skilled employment in finance (standard deviation = 8). Differences between the corresponding variations for overall immigration (of which skilled immigration is a part) are markedly smaller, which indicates that finance-specific forces are less important for unskilled workers.

Larger countries attract more skilled immigrants in finance, as can be seen in columns 1 and 2. However, attracting more skilled immigrants to finance is virtually uncorrelated with the share of skilled immigrants in total skilled employment in finance (column 3, correlation = 0.01), and very weakly correlated with a country's share in overall skilled immigration to the destination (column 4, correlation = 0.12). This indicates that finance-specific forces play a role in attracting skilled immigration to that sector. The same correlations for overall immigrant employment in finance in Panel B are markedly higher (0.26 and 0.65, respectively), which indicates that finance-specific forces are less important for unskilled workers.

We can summarize the descriptive analysis using terms of art taken from the international trade literature: There is relatively little variation in countries' comparative advantage in producing skilled immigrants working in finance in destination countries, relative to variation in the absorptive capacity of such workers in finance in destination countries. This statement is much weaker for unskilled immigrants. We use these findings to guide the analysis that follows.

4.2 Finance wages and brain drain

In this section we study the drivers of skilled immigration to finance. We start by fitting the following regression, which resembles a trade or finance gravity equation (for example, see Ortega

and Peri (2014):

$$\ln m_{od}^{H,fin} = \alpha_o + \beta \ln w_d^{H,fin} + \gamma \ln w_d^{H,nffp} + \delta' X_{od} + \varepsilon_{od} . \tag{16}$$

Here m_{od} denotes immigration stock (not flow) in destination d from origin o, H denotes skilled workers, fin denotes employment in finance, and nffp denotes employment outside finance and agriculture. X is a vector of standard "gravity" control variables: Common language and common border indicators, and the log of distance between origin and destination capital cities. The α_o are origin fixed effects. Since we wish to estimate the effect of wages in the destination country, we cannot add destination fixed effects. We add overall skilled wages in the NFFP sector in the destination $w_d^{H,nffp}$ in order to control for the overall attractiveness of the destination for skilled immigrants. Descriptive statistics for the variables are reported in Table 10.

Regression results of fitting (16) to data are reported in Table 11, columns 1 and 2. The message from Panel A is that high skilled wages in finance predict more skilled immigration into finance, even after controlling for skilled wages elsewhere in the destination country. In column (2) we estimate an elasticity of 2.3 between skilled finance wages and skilled immigration, controlling for NFFP skilled wages. A one standard deviation increase in log finance wages increases finance immigration by 0.54 log points, which is 23% of the standard deviation of log skilled immigration (2.32; see Table 10).

We compare this result to a similar regression for unskilled workers in Panel B (replace all H superscripts with L in (16)). We find that unskilled wages in finance do not predict low skilled immigration to finance once low skilled wages elsewhere are controlled for. The coefficient on $\ln w_d^{L,fin}$ is small and statistically insignificant. This is somewhat surprising: If unskilled workers do not have specific human capital and operate in a competitive environment, then differences in industry wages should have larger effects for them—but this is not the case in the data. It seems that for immigration, it is the skilled workers who respond more to industry wage differentials. This could be due to higher barriers of entry faced by unskilled immigrants, relative to skilled immigrants.

In the next specification, we replace the bilateral finance skilled immigration stock with its share in the total skilled immigration stock, $m_{od}^{H,fin}/m_{od}^{H}$

$$100 \times \left(\frac{m_{od}^{H,fin}}{m_{od}^{H}}\right) = \alpha_o + \beta \ln w_d^{H,fin} + \gamma \ln w_d^{H,nffp} + \delta' X_{od} + \varepsilon_{od} . \tag{17}$$

⁵³Data from CEPII, downloaded from: http://www.cepii.fr/anglaisgraph/bdd/distances.htm#. Using different measures of distance from the CEPII dataset barely affects the results.

We multiply the dependent variable by 100 in order to make the magnitudes comparable to (16). This specification is preferable for estimating the effect of finance wages on the attractiveness of the sector.⁵⁴

The results are reported in columns 3 and 4 of Table 11 and, as shown, we find a similar pattern as in columns 1 and 2: Finance wages increase skilled finance immigration even as a share of overall skilled immigration. A one standard deviation increase in log finance wages increases the share of finance immigration by 3.2 percentage points, compared to a standard deviation of 7 percentage points (i.e., 46% of the variation). As before, when we compare this to the corresponding regression for unskilled workers in Panel B (replace all H superscripts with L in (17)), we find that unskilled wages in finance have no predictive power for low skilled immigration in finance once overall low skilled wages are controlled for.

Our third specification asks whether the relative skilled wage within finance has an effect on immigrant skill intensity in finance over and above the relative skilled wage in the rest of the economy:

$$\left(\frac{m_{od}^{H,fin}}{m_{od}^{L,fin}}\right) = \alpha_o + \beta \left(\frac{w_d^{H,fin}}{w_d^{L,fin}}\right) + \gamma \left(\frac{w_d^{H,nffp}}{w_d^{L,nffp}}\right) + \delta' X_{od} + \varepsilon_{od} ,$$
(18)

In column 6 we see that relative skilled wages within finance $(w_d^{H,fin}/w_d^{L,fin})$ have a stronger effect on the skill intensity of finance immigration $(m_{od}^{H,fin}/m_{od}^{L,fin})$ than do the relative skilled wages in the NFFP sector $(w_d^{H,nffp}/w_d^{L,nffp})$. A one standard deviation increase in $w_d^{H,fin}/w_d^{L,fin}$ increases $m_{od}^{H,fin}/m_{od}^{L,fin}$ by 0.34, compared to a standard deviation of 1.24 (i.e., 28% of the variation — this compared to 20% for $w_d^{H,nffp}/w_d^{L,nffp}$).

We document that high skilled wages in finance predict skilled immigration employment in finance and this affects both the magnitude and the allocation of immigration. We do not find strong evidence for this for unskilled immigrants in finance. This is most likely due to higher barriers to entry relative to the benefits of migrating into finance faced by unskilled immigrants, who, therefore, respond more to overall wage differentials across countries.

Overall, these results raise concerns that high wages in finance may cause brain drain across borders, with detrimental effects on the countries of origin.

5 Concluding remarks

In this paper we study the evolution of wages in the finance industry in a set of developed economies in 1970–2011. Relative wages in finance generally increase, but there is wide variation across

⁵⁴This is simlar to analysis of import shares in the international trade literature.

countries. We find that half of the countries in our sample see finance relative wage increases, while the remainder are split between decreases and mixed trends. Changes in skill composition do not explain relative wages in finance. Most of the variation is driven by within-group wage changes, in particular skilled wages in finance relative to skilled wages in the rest of the private sector. Changes in finance relative skilled wages help explain an outsized fraction of changes in the overall skill premium, despite a small sectoral employment share. A large part of the evolution of finance relative wages is driven by trading activities and non-traditional banking.

We find that financial deregulation is the most important causal determinant of relative wages in finance. The effect of deregulation is largest in countries with financial systems that rely more on non-traditional banking (versus bank loans) and stock markets, where there is greater trading intensity in OTC securities, in countries with more flexible labor markets, and where the sector is less competitive. These results are consistent with the view that financial regulation limits the scope and scale of financial activity within the financial sector, in particular activity that is more prone to greater risk taking, and is likely associated with socially inefficient informational rents.

Our results cannot resolve the micro-econometric debate on talent in finance. However, they are consistent with the view that a significant part of higher returns to "talented" individuals in finance reflect their disproportional share of industry rents, because: (1) most of the increases in relative wages in finance are due to skilled workers, and (2) the effect of deregulation on skilled relative wages is larger in environments where informational rents are likely to be prevalent.

We also document that increasing wages in finance are associated with the cross border allocation of talent. We find that when finance pays higher wages, it attracts more skilled immigrants. This suggests a negative externality that countries with high finance wages impose on other countries.

Better understanding of the micro-mechanisms through which deregulation affects wages in finance is an important field of future research. In addition, although we argue that financial deregulation leads to higher wages in the financial sector, and is likely to be associated with informational rents, we cannot provide evidence on whether this outcome is socially optimal. This requires a structural model that is far beyond the scope of this paper.⁵⁵ The work of Kneer (2013), Cecchetti and Kharroubi (2012) and Arcand, Berkes, and Panizza (2012) suggests that higher wages in finance, through their effect on talent absorption, may cause potential harm to some industries (but see also Martinsson (2013) for a different view). However, these studies only identify differential effects on some sectors versus others, and they do not address general equilibrium and social

⁵⁵Philippon (2007) analyzes the case of endogenous growth with financial intermediation and innovation in the non-financial sector. Laeven, Levine, and Michalopoulos (2015) model real and financial innovation in a symmetric way.

incentive considerations.

Philippon (2013) and Bazot (2014) estimate that the unit cost of financial intermediation has risen in the United States and in Europe after 1980.⁵⁶ A large fraction of this rise in costs can be attributed to labor costs. Therefore, it is difficult to argue that the efficiency of labor in financial intermediation has increased markedly, in a way that can explain higher relative wages, or variation in relative wages. Part of the increase in the cost of financial intermediation can be explained by changes in the composition of financial products, in particular more market-based intermediation versus bank lending. This composition is affected by deregulation. An important and challenging task for future research is to understand the social value and cost of new financial products, their effects on labor demand and wages in finance, and how they respond to financial deregulation.

⁵⁶Beck, Degryse, and Kneer (2014) differentiate the functioning of financial intermediation from the effect of overall size of finance. Philippon and Reshef (2013) show that the rise of the size of finance is not correlated with growth in a set of currently industrial countries, and that the relationship of finance to income is not straightforward. The evolution of wealth accumulation, as described in Piketty (2014), may have a direct effect on the total payments to finance—and indirectly on the wage rate per worker and on organization within finance.

Appendix

A Data

A.1 EUKLEMS database

We use the 2008 release of the EUKLEMS. All data are available from www.euklems.net.

The overall sample covers 22 countries: Australia (1970–2005), Austria (1970–2005), Belgium (1970–2005), Canada (1970–2004), Czech Republic (1995–2005), Denmark (1970–2005), Spain (1970–2005), Finland (1970–2005), France (1970–2005), Germany (1970–2005), Hungary (1991–2005), Ireland (1970–2005), Italy (1970–2005), Japan (1970–2005), South Korea (1970–2005), Luxembourg (1970–2005), Netherlands (1970–2005), Portugal (1970–2005), Slovenia (1995–2005), Sweden (1970–2005), United Kingdom (1970–2005), United States (1970–2005). For the United States we use NAICS based data (1977–2005) and complete it with SIC based data (1970–2005) when NAICS based data are missing. Differences in series that we use between NAICS and SIC based methodology are not significant. Not all series are available for all countries and years.

We checked comparability of the 2008 release with later editions of the EUKLEMS, in 2009 and 2011. Aggregate series and relative wage series computed based on them are very similar. The main disadvantage of later releases is that skill composition is not available. For this reason we only use the 2008 release.

A.2 STAN data

We supplement the EUKLEMS data (1970–2005) with data from the OECD's Structural Analysis (STAN) database, available from http://stats.oecd.org. This source is available for several countries in the EUKLEMS sample. To this we add Norway, which does not report data in the EUKLEMS. We use the STAN data only in order to extend the finance relative wage series (1), based on EUKLEMS data, until 2011, 2010 or 2009, depending on the country.

We use the STAN ISIC Rev.4 version (STAN4), which is available until 2011 or 2010, whenever available. In other cases we used the STAN ISIC Rev.3 version (STAN3), which is available until 2009. We checked comparability of the STAN4, STAN3 and EUKLEMS data for the years in which they overlap. When the samples overlap aggregate series and relative wage series computed based on them are very similar. In cases of significant deviations, we use the STAN series that matched best the EUKLEMS series. Here we explain how this was done for the countries that were affected

- Austria: EUKLEMS until 1995 (where EUKLEMS and STAN4 intersect); STAN4 from 1996.
- Belgium, Germany, Denmark, Finland, France, Hungary, Italy, Netherlands, United States: EUKLEMS until 2005; STAN4 from 2006 with level correction to make it match exactly EUKLEMS level in 2005. This correction was minor.
- Spain, United Kingdom, Ireland, Sweden, Japan, South Korea, Luxembourg: EUKLEMS until 2005; STAN3 from 2006 with level correction to make it match EUKLEMS level in 2005. This correction was minor. Note that STAN4 is unavailable for these countries.
- Norway: STAN4 for all years, since there are no EUKLEMS data for this country. We do not include Norway in any of the regression samples.
- Slovenia: STAN4 for all years, despite available EUKLEMS data, because STAN4 data are much less noisy. This is immaterial, because Slovenia is not in any of the regression samples.

A.3 Finance subsectors classification

Both EUKLEMS and STAN databases report the same three subsectors of the financial sector, with very similar subsectors classification. We use only the EUKLEMS for subsectors analysis, where industries are classified according to the European NACE revision 1 classification. This classification is very close to the International Standard Industrial Classification (ISIC), both revision 3 and 4, which are use by STAN. Here we provide details on this classification for "J Financial Intermediation", with descriptive notes:

65 Financial intermediation, except insurance and pension funding.

- 651 Monetary intermediation.
 - 6511 Central banking. This class includes taking deposits which are used for clearance between financial institutions, supervising banking operations and possibly holding the country's exchange reserves and issuing, managing the country's currency, and acting as banker to the government. The activities of central banks will vary for institutional reasons.
 - 6519 Other monetary intermediation. This class includes monetary intermediation of monetary institutions other than central banks. Included are the activities of banks, discount houses, savings banks, and also specialized institutions granting credit for house purchase that also take deposits
- 659 Other financial intermediation.
 - 6591 Financial leasing. Leasing where the term approximately covers the expected life of the asset and the lessee acquires substantially all the benefits of its use and takes all the risks associated with its ownership. The asset may or may not eventually be transferred. Exclusion: Operational leasing is classified in division 71 (Renting of machinery and equipment without operator and of personal and household goods), according to type of goods leased.
 - 6592 Other credit granting. This class includes financial intermediation primarily concerned with making loans by institutions not involved in monetary intermediation, including the granting of consumer credit, the provision of long term finance to industry, and money lending outside the banking system. The granting of credit for house purchase by specialized institutions that do not also take deposits is included in this class. Exclusions: Financial leasing is classified in class 6591 and operational leasing in division 71 (Renting of machinery and equipment without operator and of personal and household goods).
 - 6599 Other financial intermediation n.e.c. This class includes other financial intermediation primarily concerned with distributing funds other than by making loans. This includes investment in securities (e.g. shares, bonds, bills, unit trust units, etc.) including dealing for own account by securities dealers, investment in property where this is carried out primarily for other financial intermediaries (e.g. property unit trusts) and writing swaps, options and other hedging arrangements. Activities of financial holding companies are included.

66 Insurance and pension funding, except compulsory social security.

• 660 Insurance and pension funding, except compulsory social security.

- 6601 Life insurance. This class includes life insurance (including reinsurance) and other long term insurance, with or without a substantial savings element, involving the collection and investment of funds.
- 6602 Pension funding. This class includes the provision of retirement incomes, including activities involving the collection and investment of funds. Exclusions: Funding and administration of compulsory social security programmes are classified in class 7530 (Compulsory social security activities).
- 6603 Non-life insurance. This class includes insurance (including reinsurance) of non-life business (e.g. accident, fire, health, property, motor, marine, aviation, transport, pecuniary loss and liability insurance).

67 Activities auxiliary to financial intermediation.

- 671 Activities auxiliary to financial intermediation, except insurance and pension funding.
 - 6711 Administration of financial markets. This class includes the operation and supervision of financial markets other than by public authorities and includes the activities of stock exchanges and other bodies that regulate or supervise the activities of financial markets including exchanges for commodity futures contracts.
 - 6712 Security dealing activities. This class includes dealing in financial markets on behalf of others (e.g. stock brokering) and related activities.
 - 6719 Activities auxiliary to financial intermediation n.e.c. This class includes all activities auxiliary to financial intermediation not classified elsewhere, including financial advisers, mortgage advisers and brokers, bureaux de change, etc. Exclusions: Insurance agents' and other activities closely related to insurance and pension funding are classified in class 6720 (Activities auxiliary to insurance and pension funding).
 Business brokerage activities (i.e. arranging for the purchase and sale of small and medium-sized businesses, including professional practices) and patent brokerage activities (arranging for the purchase and sale of patents) are classified in 7499 (Other business activities n.e.c.).
- 672 Activities auxiliary to insurance and pension funding.
 - 6720 Activities auxiliary to insurance and pension funding. This class includes activities involved in or closely related to the management of insurance and pension funding other than financial intermediation and includes activities of insurance agents, average and loss adjusters, actuaries, and salvage administration. Exclusion: Marine salvage is classified in class 6303 (Other supporting transport activities).

A.4 Quantity indices for non-farm, non-finance private sector (NFFP)

Capital quantity indices for the non-farm, non-finance private sector (NFFP) are given by

$$Q_{nffp,t} = \frac{Q_{agg,t} * v_{agg,1995} - \sum_{i \in \{farm, fin, public\}} Q_{i,t} * v_{i,1995}}{v_{agg,1995} - \sum_{i \in \{farm, fin, public\}} v_{i,1995}} \ ,$$

where $Q_{i,t}$ is the quantity index for sector i, $v_{i,1995}$ is the nominal value of the capital stock in 1995. This preserves the properties of the quantity indices since each quantity index is conceptually given by

$$Q_{i,t} = 100 \cdot \frac{q_{i,t}}{q_{i,1995}} = 100 \cdot \frac{q_{i,t}p_{i,1995}}{q_{i,1995}p_{i,1995}} = 100 \cdot \frac{q_{i,t}p_{i,1995}}{v_{i,1995}} ,$$

where q and p are real quantity and price, respectively. In particular, $Q_{nffp,1995} = 100$.

A.5 Domestic credit data and corrections

Our measure of overall domestic credit is *Domestic credit provided by financial sector* (% of GDP), from the World Bank: "Domestic credit provided by the financial sector includes all credit to various sectors on a gross basis, with the exception of credit to the central government, which is net. The financial sector includes monetary authorities and deposit money banks, as well as other financial corporations where data are available (including corporations that do not accept transferable deposits but do incur such liabilities as time and savings deposits). Examples of other financial corporations are finance and leasing companies, money lenders, insurance corporations, pension funds, and foreign exchange companies."

The bank credit measure from the World Bank is *Domestic credit to private sector by banks* (% of GDP): "Domestic credit to private sector by banks refers to financial resources provided to the private sector by other depository corporations (deposit taking corporations except central banks), such as through loans, purchases of non-equity securities, and trade credits and other accounts receivable, that establish a claim for repayment. For some countries these claims include credit to public enterprises." This is very similar to the definitions in Jordà, Schularick, and Taylor (2014) (JST), who split bank credit to household versus corporate credit, and to mortgage versus non-mortgage credit.

When examining the World Bank domestic credit series (both overall and bank credit), we detected a few breaks. In order to correct these breaks we spliced series based on the following criterion. In most years bank credit data from JST and from the World Bank are almost identical. Breaks in the World Bank data are invariably deviations from JST data. Therefore, we adjust all observations in which we observe large deviations from JST bank credit data. The source of the breaks is likely the denominator (GDP), because breaks appear both in the *Domestic credit provided by financial sector* (% of GDP) series and in the *Domestic credit to private sector by banks* (% of GDP) series, in the same proportion.

Here we list all corrections made to the *Domestic credit provided by financial sector* (% of GDP) series, as well as one correction to *Domestic credit to private sector by banks* (% of GDP) series for South Korea:

- Belgium 1991/1992 break: multiply all years before 1992 by the 1992/1991 ratio.
- Canada 2000/2001 break: divide all years after 2000 by the 2001/2000 ratio.
- Denmark 1999/2000 break: multiply all years before 2000 by the 2000/1999 ratio.
- France 1976/1977/1978 and 1984/1985 breaks: we correct in two steps, in the following sequence:
- 1. Change the value for 1977 from 0.381 to 0.881. In 1976 the value is 0.880, so we assume that "3" was an "8" that got botched up.
- 2. Deduct from 1978–1984 observations the average of the difference between 1984 and 1985 and the new difference between 1977 and 1978.
- South Korea 2000/2001 break: we divide all years after 2000 by the 2001/2000 ratio—for both credit concepts.
- Netherlands 1985/1986 break: divide all years before 1986 by the 1985/1986 ratio.
- Sweden 1982/1983 and 2000 break: multiply all years before 1983 by the 1983/1982 ratio; we drop the observation for year 2000.
- United Kingdom 1986/1987 break: multiply all years before 1987 by the 1987/1986 ratio.

Our main source for bank credit is JST data. We use the World Bank data whenever JST does not have it (South Korea, Austria, Portugal, Czech Republic, Slovenia). This gives a maximum of 16 countries with bank credit data: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, South Korea, Netherlands, Portugal, Sweden, United States, Slovenia. This is the sample for the bank concentration regressions reported in Table

A10 and Table A11. We lose Slovenia in all other regressions because it does not report ICT data, leaving us with 15 countries. In addition to this, when we split bank credit we lose Austria, Czech Republic and South Korea because the split is unavailable for these countries.

B Immigration data and sample

Data on immigration stocks in a sample of 15 countries in 2000 by country of origin and sector of employment in the destination country were downloaded from the OECD StatExtracts website: http://stats.oecd.org/Index.aspx?DatasetCode=MIG#. Sectors of immigrants' employment in Belgium and The Netherlands are not coded and therefore we cannot distinguish immigrants in different sectors in these two countries, so they are not part of our data. The data does not include Germany at all. Thus, the sample covers 15 countries: Australia, Austria, Canada, Denmark, Spain, Finland, France, Hungary, Ireland, Italy, Luxembourg, Portugal, Sweden, United Kingdom, United States.

There are potentially 210 bilateral observations ($15 \times 15 - 15 = 210$). There are 17 missing observations for skilled immigrants in finance, and another 17 missing observations for unskilled immigrants in finance (skilled have tertiary education; unskilled are all the rest). These missing observations are zeros and since we cannot employ them in our estimation, they are dropped. This gives us 193 bilateral observations of immigration stocks in working in finance, either skilled or unskilled. The 17 missing observations on each type of worker only partially overlap. Therefore, in specifications that use data on both we lose 10 additional observations because only 7 missing observations are common. In appendix Table A12 we report the incidence of missing observations.

When we estimate migration gravity equations using TSLS, we lose 14 additional observations because deregulation data for Luxembourg are missing; this gives us 179 observations in those regressions (193 - 14 = 179).

Samples for immigration stocks employed in other sectors of the economy vary in similar ways.

C Derivation of complementarity equation

Let there be two types of capital, k_1 and k_2 , which are quasi-fixed, and let there be two variable inputs: Skilled and unskilled labor, h and l, respectively (what follows extends to additional variable and/or quasi-fixed inputs). In this case, variable costs are given by $c = w_h \cdot h + w_l \cdot l$. If h and l are the argmin of costs, then c is the cost function. The logarithm of c can be approximated by a translog cost function:

$$\begin{split} \ln\left(c\right) &= & \eta_{h} \ln\left(w_{h}\right) + \eta_{l} \ln\left(w_{l}\right) + \eta_{k_{1}} \ln\left(k_{1}\right) + \eta_{k_{2}} \ln\left(k_{2}\right) + \eta_{q} \ln\left(q\right) + \\ &+ \frac{1}{2} \left[\begin{array}{c} \alpha_{hh} \ln\left(w_{h}\right)^{2} + \alpha_{hl} \ln\left(w_{h}\right) \ln\left(w_{l}\right) + \alpha_{lh} \ln\left(w_{l}\right) \ln\left(w_{h}\right) + \alpha_{ll} \ln\left(w_{l}\right)^{2} \\ &+ \alpha_{k_{1}k_{1}} \ln\left(k_{1}\right)^{2} + \alpha_{k_{2}k_{2}} \ln\left(k_{2}\right)^{2} + \alpha_{yy} \ln\left(q\right)^{2} \end{array} \right] \\ &+ \gamma_{hk_{1}} \ln\left(w_{h}\right) \ln\left(k_{1}\right) + \gamma_{hk_{2}} \ln\left(w_{h}\right) \ln\left(k_{2}\right) + \gamma_{hy} \ln\left(w_{h}\right) \ln\left(q\right) \\ &+ \gamma_{lk_{1}} \ln\left(w_{l}\right) \ln\left(k_{1}\right) + \gamma_{lk_{2}} \ln\left(w_{l}\right) \ln\left(k_{2}\right) + \gamma_{ly} \ln\left(w_{l}\right) \ln\left(q\right) \\ &+ \gamma_{k_{1}k_{2}} \ln\left(k_{1}\right) \ln\left(k_{2}\right) + \gamma_{k_{1}q} \ln\left(k_{1}\right) \ln\left(q\right) + \gamma_{k_{2}q} \ln\left(k_{2}\right) \ln\left(q\right) \end{array} ,$$

where q is output. Symmetry implies $\alpha_{hl} = \alpha_{lh}$.

By Shephard's lemma, $\partial c/\partial w_h = h$, so that the cost share of skilled labor is

$$S \equiv \frac{w_h h}{c} = \frac{\partial \ln (c)}{\partial \ln (w_h)} = \frac{\partial c}{\partial w_h} \frac{w_h}{c} .$$

Using this in the translog we get

$$S = \eta_h + \alpha_{hh} \ln(w_h) + \alpha_{hl} \ln(w_l) + \gamma_{hk_1} \ln(k_1) + \gamma_{hk_2} \ln(k_2) + \gamma_{hy} \ln(q) .$$

By linear homogeneity of cost with respect to prices, cost shares are homogeneous of degree zero; therefore $\alpha_{hh} + \alpha_{hl} = 0$. Write $\gamma_{hk_1} + \gamma_{hk_2} + \gamma_{hy} = \delta$. Using these gives

$$S = \eta + \alpha \ln \left(\frac{w_h}{w_l} \right) + \gamma_{k_1} \ln \left(\frac{k_1}{q} \right) + \gamma_{k_2} \ln \left(\frac{k_2}{q} \right) + \delta \ln \left(q \right) \ ,$$

which is used in the main text. If the production function is linearly homogeneous, then $\delta = 0$ (increasing all inputs by same factor increases output by same factor, but this should not affect the cost share).

References

- ABIAD, A., E. DETRAGIACHE, AND T. TRESSEL (2008): "A New Database of Financial Reforms," International Monetary Fund Working Paper 08/266.
- ABIAD, A., AND A. MODY (2005): "Financial Reform: What Shakes It? What Shapes It?," The American Economic Review, 95, 66–88.
- ACEMOGLU, D. (1995): "Reward Structures and the Allocation of Talent," European Economic Review, 39(1), 17–33.
- ———— (2002a): "Directed Technological Change," The Review of Economic Studies, 69(4), 781–809.
- ———— (2002b): "Technical Change, Inequality and the Labor Market," *Journal of Economic Literature*, 40(1), 7–72.
- ACEMOGLU, D., P. AGHION, AND G. VIOLANTE (2001): "Deunionization, Technical Change and Inequality," Carnegie-Rochester Conference Series of Public Policy, 55(1), 229–264.
- ACEMOGLU, D., AND D. AUTOR (2011): "Skills, tasks and technologies: Implications for employment and earnings," in *Hanbook of Labor Economics*, ed. by O. Ashenfelter, and D. Card, vol. 4b. North Holland.
- ACHARYA, V. V., M. PAGANO, AND P. VOLPIN (2016): "Seeking Alpha: Excess Risk Taking and Competition for Managerial Talent," *Review of Financial Studies*, 29(10), 2565–2599.
- AKERLOF, G. A., AND J. L. YELLEN (1990): "Capital Flows and Capital Goods," The Quarterly Journal of Economics, 105(2), 255–283.
- Angrist, J. D., and J.-S. Pischke (2008): Mostly harmless econometrics: An empiricist's companion. Princeton university press.
- ARCAND, J.-L., E. BERKES, AND U. PANIZZA (2012): "Too Much Finance?," IMF Working Paper, WP/12/161.
- AUTOR, D., L. KATZ, AND A. KRUEGER (1998): "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, 113(4), 1169–1214.
- Autor, D. H., F. Levy, and R. J. Murnane (2002): "Upstairs, Downstairs: Computers and Skills on Two Floors of a Large Bank," *Industrial and Labor Relations Review*, 55(3), 432–447.
- AXELSON, U., AND P. BOND (2015): "Wall Street Occupations," Journal of Finance, 70(5), 1949–1996.
- AZAR, J., S. RAINA, AND M. SCHMALZ (2016): "Ultimate Ownership and Bank Competition," Working Paper, University of Michigan.
- Bakija, J., A. Cole, and B. T. Heim (2012): "Jobs and Income Growth of Top Earners and the Causes of Changing Income Inequality: Evidence from U.S. Tax Return Data," working paper, Williams College.

- Baumol, W. J. (1990): "Entrepreneurship: Productive, Unproductive, and Destructive," *Journal of Political Economy*, 98, 893–921.
- BAZOT, G. (2014): "Financial Consumption and the Cost of Finance: Measuring Financial Efficiency in Europe (1950-2007)," Working Paper, Paris School of Economics.
- Beck, T., H. Degryse, and C. Kneer (2014): "Is more finance better? Disentangling intermediation and size effects of financial systems," *Journal of Financial Stability*, 10, 50–64.
- Bell, B., and J. Reenen (2013): "Bankers and their Bonuses," *The Economic Journal*, 124, F1–F21.
- Benabou, R., and J. Tirole (2016): "Bonus Culture: Competitive Pay, Screening, and Multitasking," *Journal of Political Economy*, 124(2), 305–370.
- BERMAN, E., J. BOUND, AND Z. GRILICHES (1994): "Changes in the Demand for Skilled Labor Within U.S. Manufacturing: Evidence from the Annual Survey of Manufactures," *The Quarterly Journal of Economics*, 109(2), 367–397.
- BERMAN, E., J. BOUND, AND S. MACHIN (1998): "Implications of skill-biased technological change: international evidence," *The Quarterly Journal of Economics*, 113(4), 1245–1279.
- BERNANKE, B. (2013): "The Crisis as a Classic Financial Panic," Speech given at the Fourteenth Jacques Polak Annual Research Conference, Washington, D.C., November 8, 2013.
- BIAIS, B., AND A. LANDIER (2015): "Endogenous Agency Problems and the Dynamics of Rents," Working Paper, Toulouse School of Economics.
- BIJLSMA, M., G. ZWART, AND J. BOONE (2012): "Competition for traders and risk," CPB Discussion Paper No. 204.
- BOHM, M., D. METZGER, AND P. STROMBERG (2015): ""Since you're so rich, you must be really smart": Talent and the finance wage premium," Working Paper.
- BOLTON, P., T. SANTOS, AND J. A. SCHEINKMAN (2016): "Cream-Skimming in Financial Markets," The Journal of Finance, 71(2), 709Ü736.
- Cahuc, P., and E. Challe (2012): "Produce or Speculate? Asset Bubbles, Occupational Choice and Efficiency," *International Economic Review*, 53(4), 1105–1131.
- CAMERON, A. C., J. B. Gelbach, and D. L. Miller (2008): "Bootstrap-based improvements for inference with clustered errors," *The Review of Economics and Statistics*, 90(3), 414–427.
- CARD, D. (1992): "The Effects of Unions on the Distribution of Wages: Redistribution or Relabelling?," NBER Working Paper No. 4195.
- CARD, D., AND T. LEMIEUX (2001): "Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis.," *The Quarterly Journal of Economics*, 116(2), 705–746.
- CECCHETTI, S. G., AND E. KHARROUBI (2012): "Reassessing the Impact of Finance on Growth," Bank of International Settlements, conference draft.
- ——— (2013): "Why does financial sector growth crowd out real economic growth?," Bank of International Settlements, conference draft.

- CÉLÉRIER, C., AND B. VALLÉE (2015): "Returns to Talent and the Finance Wage Premium," Working paper, University of Zurich, Institute fur Banking and Finance.
- CHENG, I.-H., H. HONG, AND J. A. SCHEINKMAN (2015): "Yesterday's Heroes: Compensation and Risk at Financial Firms," *The Journal of Finance*, 70(2), 839–879.
- DENK, O. (2015a): "Financial sector pay and labour income inequality: Evidence from Europe," OECD Economics Department Working Papers, No. 1225.
- ——— (2015b): "Who are the top 1% earners in Europe?," OECD Economics Department Working Papers, No. 1225.
- DRUKKER, D. M. (2003): "Testing for serial correlation in linear panel-data models," *Stata Journal*, 3(2), 168–177.
- EFING, M., H. HAU, P. KAMPKÖTTER, AND J. STEINBRECHER (2015): "Incentive pay and bank risk-taking: Evidence from Austrian, German, and Swiss banks," *Journal of International Economics*, 96, S123–S140.
- ENGLUND, P. (1990): "Financial Deregulation in Sweden," European Economic Review, 34(2), 385 393.
- GLODE, V., AND R. LOWERY (forthcoming): "Compensating Financial Experts," Journal of Finance.
- GODECHOT, O. (2008): "Hold-up" in Finance: The Conditions of Possibility for High Bonuses in the Financial Industry," Revue française de sociologie, 49(5), 95–123.
- ——— (2012): "Is Finance Responsible for the Rise in Wage Inequality in France?," Socio-Economic Review, 10, 447–470.
- Goldin, C., and L. F. Katz (2008): "Transitions: Career and Family Lifecycles of the Educational Elite," *The American Economic Review, AEA Papers and Proceedings*, 98(2).
- GOODHART, C., P. HARTMANN, D. LLEWELLYN, L. ROJAS-SUAREZ, AND S. WEISBROD (1998): Financial Regulation: Why, How and Where Now? Routledge, New York.
- GRILICHES, Z. (1969): "Capital-Skill Complementarity," Review of Economics and Statistics, 51(4), 465–468.
- Guadalupe, M. (2007): "Product Market Competition, Returns to Skill and Wage Inequality," Journal of Labor Economics, 25(3), 439–474.
- JORDA, Ò., M. SCHULARICK, AND A. TAYLOR (2014): "The Great Mortgaging: Housing Finance, Crises, and Business Cycles," NBER Working Paper No. 20501.
- Kaplan, S. N., and J. Rauh (2010): "Wall Street and Main Street: What Contributes to the Rise in the Highest Incomes?," *Review of Financial Studies*, 23(3), 1004–1050.
- KINDLEBERGER, C. P. (1987): "Financial deregulation and economic performance: An attempt to relate European financial history to current LDC issues," *Journal of Development Economics*, 27(1), 339–353.

- KNEER, C. (2013): "Finance as a Magnet for the Best and Brightest: Implications for the Real Economy," Working paper No. 392, Netherlands Central Bank, Research Department.
- KORINEK, A., AND J. KREAMER (2014): "The redistributive effects of financial deregulation," *Journal of Monetary Economics*, 68, S55–S67.
- LAEVEN, L., R. LEVINE, AND S. MICHALOPOULOS (2015): "Financial innovation and endogenous growth," *Journal of Financial Intermediation*, 24(1), 1–24.
- LANE, P. R., AND G. M. MILESI-FERRETTI (2007): "The external wealth of nations mark II: Revised and extended estimates of foreign assets and liabilities, 1970–2004," *Journal of international Economics*, 73(2), 223–250.
- LEVINE, R. (2005): "Finance and Growth: Theory and Evidence," in *Handbook of Economic Growth*, ed. by P. Aghion, and S. N. Durlauf, vol. 1A, pp. 865–934. Elsevier, Amsterdam.
- LINDLEY, J., AND S. McIntosh (2014): "Finance Sector Wage Growth and the role of Human Capital," Sheffield Economic Research Paper Series No. 2014002, (December 2013).
- MACHIN, S., AND J. VAN REENEN (1998): "Technology and Changes in Skill Structure: Evidence from Seven OECD Countries," *The Quarterly Journal of Economics*, 113(4), 1215–1244.
- Mackinnon, J. G., and M. D. Webb (2016): "Wild bootstrap inference for wildly different cluster sizes," *Journal of Applied Econometrics*, Version of Record online: 21 FEB 2016 | DOI: 10.1002/jae.2508.
- Martinsson, G. (2013): "Financial Reform, Demand for Skilled Labor, and Growth," Swedish House of Finance Research Paper No. 13-04.
- McKinnon, R. I. (1973): Money and capital in economic development. Brookings Institution, Washington, DC.
- Melitz, J. (1990): "Financial Deregulation in France," European Economic Review, 34(2), 394 402.
- MORRISON, A. D., AND W. J. WILHELM (2004): "Partnership firms, reputation, and human capital," *American Economic Review*, 94(5), 1682–1692.
- ———— (2008): "The demise of investment banking partnerships: Theory and evidence," The Journal of Finance, 63(1), 311-350.
- Murphy, K. M., A. Shleifer, and R. W. Vishny (1991): "The Allocation of Talent: Implications for Growth," *The Quarterly Journal of Economics*, 106, 503–530.
- O'Mahony, M., and M. P. Timmer (2009): "Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database," *The Economic Journal*, 119(538), F374–F403.
- ORTEGA, F., AND G. PERI (2014): "Migration, Trade and Income," Journal of International Economics, 92(2), 231–251.
- OYER, P. (2008): "The making of an investment banker: Stock market shocks, career choice, and lifetime income," *The Journal of Finance*, 63(6), 2601–2628.
- PEOPLES, J. (1998): "Deregulation and the labor market," The Journal of Economic Perspectives, pp. 111–130.

- Philippon, T. (2007): "Financiers versus Engineers: Should the Financial Sector Be Taxed or Subsidized?," forthcoming in American Economic Journal: Macroeconomics.
- ———— (2013): "Has the U.S. Finance Industry Become Less Efficient? On the Theory and Measurement of Financial Intermediation," Working Paper, NYU.
- PHILIPPON, T., AND A. RESHEF (2012): "Human Capital in the U.S. Financial Sector: 1909-2006," The Quarterly Journal of Economics, 127(4), 15511609.
- ———— (2013): "An international look at the growth of modern finance," *The Journal of Economic Perspectives*, 27(2), 73–96.
- PIKETTY, T. (2014): Capital in the Twenty-first Century. Harvard University Press.
- ROINE, J., AND D. WALDENSTROM (2014): "Long run trends in the distribution of income and wealth," in *Handbook of Income Distribution*, ed. by A. B. Atkinson, and F. Bourguignon, vol. 2. North-Holland, Amsterdam.
- ROUSSEAU, P. L., AND R. SYLLA (2003): "Financial Systems, Economic Growth, and Globalization," in *Globalization in Historical Perspective*, ed. by M. D. Bordo, A. M. Taylor, and J. G. Williamson.
- Shaw, E. S. (1973): Financial deepening in economic development. New York, NY (USA) Oxford Univ. Press.
- Shu, P. (2013): "Career Choice and Skill Development of MIT Graduates: Are the "Best and Brightest" Going into Finance?," Working Paper, Harvard Business School.
- STIGLER, G. (1971): "The Theory of Economic Regulation," Bell Journal of Economics and Management Science, 2, 3–21.
- TANNDAL, J., AND D. WALDENSTROM (2015): "Does Financial Deregulation Boost Top Incomes? Evidence from the Big Bang," Working Paper, Department of Economics, Uppsala University.
- THANASSOULIS, J. (2012): "The case for intervening in bankers' pay," The Journal of Finance, 67(3), 849–895.
- Verdugo, G. (2014): "The great compression of the French wage structure, 1969–2008," *Labour Economics*, 28, 131–144.
- VIVES, X. (1990): "Deregulation and Competition in Spanish Banking," European Economic Review, 34(2), 403 411.
- WOOLDRIDGE, J. M. (2002): Econometric Analysis of Cross Section and Panel Data. The MIT Press, second edition.
- WOZNIAK, A. K. (2007): "Product Markets and Paychecks: Deregulation's Effect on the Compensation Structure in Banking," *Industrial & Labor Relations Review*, 60(2), 246–267.
- Wurgler, T. (2009): "Of Bubbles and Bankers: The Impact of Financial Booms on Labor Markets," mimeo University of Zurich.

Table 1: Decompositions of Changes in Relative Wages

A. Finance Relative Wage: Skilled versus Unskilled

	-	Change in finance	Within skill	Between
Country	Sample	relative wage	group share	skill group
Australia	1982 - 2005	1.30	0.87	0.13
United States	1970 - 2005	0.78	0.65	0.35
Spain	1980 - 2005	0.52	0.76	0.24
Netherlands	1979 - 2005	0.45	0.52	0.48
Canada	1970 - 2004	0.43	0.64	0.36
Luxembourg	1992 - 2005	0.42	0.76	0.24
Finland	1970 - 2005	0.40	0.50	0.50
Hungary	1995 - 2005	0.38	0.56	0.44
Denmark	1980 - 2005	0.36	0.78	0.22
France	1980 - 2005	0.32	0.57	0.43
Czech Republic	1995 - 2005	0.32	0.59	0.41
Sweden	1981 - 2005	0.30	0.61	0.39
Portugal	1992 - 2005	0.29	0.67	0.33
Japan	1973 - 2005	0.26	0.10	0.90
Ireland	1988 - 2005	0.26	0.04	0.96
Germany	1991 - 2005	0.12	0.81	0.19
United Kingdom	1970 - 2005	-0.02	16.39	-15.39
Austria	1980 - 2005	-0.04	4.70	-3.70
Belgium	1980 - 2005	-0.11	2.42	-1.42
Slovenia	1995 - 2005	-0.21	1.49	-0.49
South Korea	1970 - 2005	-0.52	1.18	-0.18
Italy	1970 - 2005	-1.20	1.03	-0.03

Notes: Countries are sorted by the change in finance relative wage. The decomposit country is based on equation (2) in the text. The within share captures the contribut changes within skill groups (high skilled, low skilled) to the change in finance relative between share captures the contribution of changes of skill composition; and the sk captures the contribution of skilled workers to the change in finance relative wages equation (3) in the text. Data: EU KLEMS.

Table 1: Decompositions of Changes in Relative Wages

B. Nonfarm Private Sector Skilled Relative Wage: Finance versus NFFP

		Change in skilled	Within	Between	Finance
Country	Sample	relative wage	sector share	sector share	share
United States	1980 - 2005	0.58	0.98	0.02	0.22
Luxembourg	1992 - 2005	0.55	0.87	0.13	0.65
Portugal	1992 - 2005	0.33	0.98	0.02	0.19
Canada	1980 - 2004	0.33	0.98	0.02	0.30
Hungary	1995 - 2005	0.32	1.03	-0.03	0.01
Ireland	1988 - 2005	0.28	0.91	0.09	0.56
Germany	1991 - 2005	0.26	1.00	0.00	0.10
Italy	1980 - 2005	0.20	1.19	-0.19	-0.61
Czech Republic	1995 - 2005	0.08	1.05	-0.05	0.16
Australia	1982 - 2005	0.08	1.05	-0.05	1.57
Japan	1980 - 2005	-0.04	0.80	0.20	0.73
Sweden	1981 - 2005	-0.08	1.02	-0.02	-0.33
Spain	1980 - 2005	-0.10	1.05	-0.05	-0.48
Slovenia	1995 - 2005	-0.12	1.04	-0.04	0.11
Belgium	1980 - 2005	-0.14	1.03	-0.03	0.10
Finland	1980 - 2005	-0.15	0.98	0.02	0.23
Austria	1980 - 2005	-0.19	1.15	-0.15	-0.22
United Kingdom	1980 - 2005	-0.23	1.00	0.00	-0.08
Denmark	1980 - 2005	-0.32	1.03	-0.03	-0.13
Netherlands	1980 - 2005	-0.44	1.07	-0.07	-0.19
France	1980 - 2005	-0.55	1.01	-0.01	-0.03
South Korea	1980 - 2005	-0.74	1.01	-0.01	0.07

Notes: Countries are sorted by the change in skilled relative wage, which is defined as the wage of university-educated workers divided by the wage of other workers in the nonfarm private sector (including finance). The decomposition for each country is based on equation (6) in the text. NFFP is the non-farm, non-finance private sector. The within share captures the contribution of wage changes within sectors (Finance, NFFP); the between share captures the contribution of changes in the allocation of skilled workers across sectors (Finance, NFFP); the finance share captures the overall contribution of finance, whether from within-finance changes or changes in the allocation of skilled workers to finance, and is based on equation (7) in the text. Data: EU KLEMS.

Table 1: Decompositions of Changes in Relative Wages

inhopertors	20000
Wage.	֖֭֭֭֚֓֞֝֝֝֡֜֜֜֝֓֓֓֜֜֜֜֝֓֓֓֓֡֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֡֓֡֓֡֓֜֜֜֡֡֡֓֡֓֡֡֡֓֜֜֡֡֡֡֓֜֡֡֡֡֡֜֜֡֡֡֡֡֡
Relative	
Finance	
	_

		Change in finance	Within subsector	Between	Intermediation	Insurance and	Other Finance
Country	Sample	relative wage	share	subsector share	share	Pension share	share
Australia	1980 - 2005	1.21	06'0	0.10	0.27	0.16	0.56
United States	1980 - 2005	0.81	0.87	0.13	0.27	0.21	0.52
Spain	1980 - 2005	0.52	1.54	-0.54	09'0	0.26	0.14
Luxembourg	1995 - 2004	0.40	0.99	0.01	-0.08	0.33	0.75
Hungary	1992 - 2005	0.40	1.00	0.00	0.92	-0.19	0.27
Netherlands	1987 - 2005	0.37	1.04	-0.04	0.68	0.05	0.27
Denmark	1980 - 2005	0.36	0.97	0.03	0.31	0.40	0.29
France	1980 - 2005	0.32	1.06	-0.06	0:30	0.25	0.45
Czech Republic	1995 - 2005	0.32	1.10	-0.10	0.40	0.50	0.10
Sweden	1980 - 2005	0.29	1.00	0.00	0.58	0.01	0.41
Germany	1980 - 2005	0.21	1.01	-0.01	0.67	0.15	0.18
Finland	1983 - 2005	0.16	96'0	0.04	-0.28	0.41	0.87
United Kingdom	1980 - 2005	0.08	0.93	0.07	1.95	-2.60	1.64
Portugal	1995 - 2005	0.01	-0.35	1.35	0.78	-3.06	3.29
Austria	1980 - 2005	-0.04	0.76	0.24	1.13	1.19	-1.31
Belgium	1980 - 2005	-0.10	1.00	0.00	1.23	0.45	-0.68
Italy	1995 - 2005	-0.14	0.56	0.44	1.26	0.11	-0.37
Slovenia	1995 - 2005	-0.27	1.11	-0.11	0:30	-0.07	0.77
Ireland	1980 - 2005	-0.28	1.07	-0.07	-1.19	0.88	1.30
South Korea	1986 - 2005	-0.33	0.93	0.07	1.56	-0.48	-0.07

Notes: Countries are sorted by the change in finance relative wage. The decomposition for each country is based on equation (6) in the text, applied changes in the size of the subsector, and are based on equation (8) in the text. Canada and Japan are omitted because they do not report sufficient to subsectors. The within share captures the contribution of wage changes within subsectors of finance (Financial Intermediation, Insurance and Pensions, Other Finance); the between share captures the contribution of changes of subsector composition. The Intermediation, Insurance and Pensions, and Other Finance shares capture the overall contribution of each subsector of finance, whether from within-subsector changes or subsector data. Data: EU KLEMS.

Table 2: Financial Regulation

	Financial de	eregulation	Change in index,
	1973*	2005	1973-2005
Australia	0.10	1.00	0.90
Austria	0.14	0.90	0.76
Belgium	0.43	1.00	0.57
Canada	0.62	1.00	0.38
Czech Republic*	0.19	0.90	0.71
Denmark	0.33	1.00	0.67
Finland	0.33	0.81	0.48
France	0.29	1.00	0.71
Germany	0.62	0.90	0.29
Hungary*	0.33	0.95	0.62
Ireland	0.52	1.00	0.48
Italy	0.14	0.95	0.81
Japan	0.29	0.86	0.57
South Korea	0.14	0.71	0.57
Netherlands	0.62	1.00	0.38
Portugal	0.14	0.81	0.67
Spain	0.38	1.00	0.62
Sweden	0.29	0.95	0.67
United Kingdom	0.48	1.00	0.52
United States	0.62	1.00	0.38

Notes: The table reports financial deregulation indicators and changes. Higher values indicate less restrictions or financial liberalization. * Data for the Czech Republic and Hungary start in 1990. Data for Luxembourg and Slovenia are not available. Source: Abiad, Detragiache and Tressel (2008).

Table 3: Finance Relative ICT Capital Share

-		Finance Relat				Chai		
	1975	1985	1995	2005	1975-1985	1985-1995	1995-2005	Total
Australia	0.008	0.019	0.061	0.391	0.012	0.042	0.330	0.383
Austria		0.016	0.048	0.178		0.032	0.130	0.162
Belgium								
Canada*	-0.054	-0.015	0.012	-0.043	0.039	0.027	-0.055	0.011
Czech Republic			0.168	0.293			0.125	0.125
Denmark	0.006	0.041	0.125	0.592	0.035	0.085	0.466	0.586
Finland	0.075	0.146	0.350	0.836	0.071	0.204	0.486	0.761
France								
Germany			0.077	0.194			0.117	0.117
Hungary								
Ireland								
Italy	-0.005	0.004	0.014	0.137	0.009	0.010	0.122	0.141
Japan	0.046	0.047	0.122	0.306	0.001	0.075	0.184	0.260
South Korea		0.085	0.153	0.186		0.069	0.033	0.102
Luxembourg								
Netherlands	0.008	0.019	0.066	0.300	0.011	0.047	0.234	0.292
Portugal			0.112	0.101			-0.010	-0.010
Slovenia			-0.027	0.284			0.311	0.311
Spain								
Sweden			0.163	0.276			0.113	0.113
United Kingdom	0.035	0.015	0.129	0.303	-0.020	0.114	0.174	0.268
United States	0.014	0.054	0.146	0.355	0.040	0.092	0.209	0.341
Average	0.015	0.039	0.107	0.293	0.022	0.072	0.186	0.248
<u> </u>								

Notes: The table reports ICT (Information and Communication Technology) shares in real capital stock in finance minus the ICT share in the nonfarm, non-finance private sector (NFFP) in different years and the changes between those years. The Total change is the sum of changes in the preceding three columns. * Data for Canada in 2005 is missing and is replaced in this table by data for Canada in 2004. Data: EU KLEMS.

Table 4: ICT and complementarity with high skilled workers

	(1)	(2)	(3)	(4)	(5)	(9)
		Dependent	Dependent variable: Wage bill share of skilled workers	bill share of skille	ed workers	
	Finance	Aggregate	NFFP	Finance	Aggregate	NFFP
In(wH/wL)	0.254***	-0.0266	-0.0116	0.229***	0.0543***	0.0355**
	(0.0314)	(0.0237)	(0.0241)	(0.0252)	(0.0133)	(0.0158)
In(ICT/Q)	0.0562***	0.0472***	0.0465***	0.0409***	0.0227***	0.0273***
	(0.00234)	(0.00129)	(0.00263)	(0.00291)	(0.00212)	(0.00331)
In(NonICT/Q)	-0.0946***	0.00367	-0.0475***	-0.0671***	0.0636***	***9890.0
	(0.00901)	(0.0224)	(0.00656)	(0.00628)	(0.0171)	(0.0137)
In(Q)				0.0751***	0.120***	***8680.0
				(0.00923)	(0.00919)	(0.0104)
Observations	456	456	353	456	456	353
Number of countries	22	22	16	22	22	16
Test of equality of In(ICT/Q) coefficient with finance	/Q) coefficient v	vith finance				
Chi-squared		11.45	7.61		25.59	9.55
p-value		0.001	900.0		0.000	0.002

Notes: All regressions are estimated with two stage least squares, and include country fixed effects. Here wH and wL are wages of high skilled (i.e., university graduates) and all other workers, respectively; ICT and NonICT are quantity construction of quantity indices for the NFFP sector. The sample for NFFP is smaller due to data limitations. Test indices for ICT and non-ICT capital, respectively; and Q is the output quantity index. See text for details on the statistics are obtained by pooling data series for aggregate or NFFP with finance. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Data: EU KLEMS.

Table 5: Descriptive Statistics for Descriptive and Predictive Regressions

A. For descriptive level regressions

Change in domestic credit/GDP (t-3,t)

Change in financial globalization (t-3,t)

Change in financial deregulation index (t-3,t)

	Mean	S.D.	Min	p10	p25	p50	p75	p90	Max
Finance relative wage (t)	1.57	0.35	0.61	1.20	1.35	1.54	1.69	2.03	3.01
Finance skilled relative wage (t)	1.45	0.37	0.61	1.05	1.22	1.42	1.61	1.81	3.62
Finance relative ICT intensity (t-3)	0.12	0.14	-0.07	0.00	0.02	0.08	0.17	0.27	0.84
Domestic credit/GDP (t-3)	1.14	0.58	0.38	0.50	0.74	1.06	1.39	1.83	3.19
Non-bank domestic credit/GDP (t-3)	0.42	0.51	-0.31	0.05	0.16	0.24	0.41	1.31	2.38
Bank domestic credit/GDP (t-3)	0.72	0.28	0.21	0.40	0.48	0.68	0.91	1.08	1.63
Household bank credit/GDP (t-3)	0.36	0.19	0.06	0.11	0.22	0.33	0.49	0.62	0.84
Corporate bank credit/GDP (t-3)	0.37	0.20	0.11	0.15	0.18	0.29	0.53	0.66	0.84
Mortgage bank credit/GDP (t-3)	0.34	0.20	0.07	0.14	0.21	0.28	0.43	0.70	1.05
Non-mortgage bank credit/GDP (t-3)	0.39	0.15	0.13	0.17	0.30	0.36	0.50	0.60	0.80
Financial globalization (t-3)	0.38	0.78	-1.55	-0.66	-0.13	0.36	0.89	1.43	2.17
Financial deregulation index (t-3)	0.74	0.23	0.10	0.38	0.60	0.81	0.94	1.00	1.00
B. For predictive regressions									
	Mean	S.D.	Min	p10	p25	p50	p75	p90	Max
Change in finance relative wage (t,t+3)	0.01	0.20	-1.17	-0.16	-0.04	0.03	0.09	0.17	0.79
Change in finance skilled relative wage (t,t+3)	0.02	0.19	-0.85	-0.20	-0.03	0.03	0.10	0.18	0.75
Change in finance relative ICT intensity (t-3,t)	0.03	0.04	-0.08	0.00	0.01	0.02	0.04	0.08	0.23

Notes: Wage, skill and ICT variables are calculated based on EU KLEMS data. Domestic credit covers all forms of credit to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators database. Bank domestic credit data are from Jorda, Schularick and Taylor (2014), except for Austria and South Korea where the data are from the World Bank World Development Indicators database. Non-bank domestic credit is total domestic credit minus bank credit. The split of bank domestic credit to households versus corporations, and to mortgage versus non-mortgage lending is given in Jorda, Schularick and Taylor (2014). Financial globalization is log((foreign assets + liabilities)/GDP); data are from Lane and Milesi-Ferretti (2007). Statistics on the financial reform indices are reported in Table 3. Statistics are computed for 356 observations for 15 countries; the range for t is 1976-2005. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, South Korea, Netherlands, Portugal, Sweden, and the United States. We lose Austria, Czech Republic, South Korea and Slovenia when we split bank credit due to data unavailability.

0.09

0.24

0.08

0.14

0.23

0.09

-0.34

-0.73

-0.10

-0.09

0.00

0.00

0.00

0.11

0.00

0.09

0.24

0.05

0.17

0.35

0.14

0.24

0.53

0.23

0.49

1.01

0.48

Table 6: Finance Relative Wages: Descriptive Regressions in Levels

	(1)	(2)	(3)	(4)	(2)	(9)	(7)	(8)
Dependent Variable:		Finance re	Finance relative wage		_	inance skillec	Finance skilled relative wage	a)
Financial deregulation index, t-3	0.408***	0.473***	0.811***	0.552***	0.320**	0.324**	0.492**	0.390**
	(0.133)	(0.135)	(0.173)	(0.151)	(0.154)	(0.158)	(0.217)	(0.190)
Finance relative ICT intensity, t-3	0.287	0.200	0.168	0.0629	0.991***	***986.0	1.167***	1.073***
	(0.219)	(0.221)	(0.237)	(0.230)	(0.244)	(0.248)	(0.287)	(0.276)
Financial globalization, t-3	0.257***	0.270***	0.193**	0.174**	-0.0769	-0.0762	-0.0684	-0.156*
	(0.0556)	(0.0555)	(0.0814)	(0.0739)	(0.0633)	(0.0638)	(0.101)	(0.0916)
Domestic credit/GDP, t-3	0.265***				0.528***			
	(0.0713)				(0.0797)			
Non-bank domestic credit/GDP, t-3		0.341***	0.368***	0.273***		0.532***	0.682***	0.548***
		(0.0782)	(0.0933)	(0.0807)		(0.0880)	(0.113)	(0.0971)
Bank domestic credit/GDP, t-3		0.0937				0.518***		
		(0.103)				(0.119)		
Household bank credit/GDP, t-3			0.247				1.203***	
			(0.202)				(0.251)	
Corporate bank credit/GDP, t-3			-0.300				-0.280	
			(0.290)				(0.355)	
Mortgage bank credit/GDP, t-3				0.314				1.068***
				(0.213)				(0.256)
Non-mortgage bank credit/GDP, t-3				0.0554				0.205
				(0.218)				(0.267)
Observations	356	356	279	296	341	341	268	282
Number of countries	15	15	12	12	15	15	12	12
R-squared, within	0.303	0.315	0.371	0.369	0.211	0.211	0.262	0.251

and Tressel (2008). The dependent variables, as well as relative ICT use in finance, are calculated from the EU KLEMS database. Domestic credit covers all forms of credit KLEMS data; these countries are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, South Korea, Netherlands, Portugal, Sweden, and the United States. We lose Austria, Czech Republic and South Korea when we split bank credit due to data unavailability. Robust standard errors database. Bank domestic credit data are from Jorda, Schularick and Taylor (2014), except for Austria and South Korea where the data are from the World Bank World liabilities)/GDP); data are from Lane and Milesi-Ferretti (2007). The sample ends in 2005. The sample of 15 countries is determined by ICT data availability in the EU to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators Development Indicators database. Non-bank domestic credit is total domestic credit minus bank credit. The split of bank domestic credit to households versus corporations, and to mortgage versus non-mortgage lending is given in Jorda, Schularick and Taylor (2014). Financial globalization is log((foreign assets + in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 7: Finance Relative Wages: Predictive Regressions in Changes

	(1)	(2)	(3)	(4)
Dependent Variable: Changes from t to t+3 in	Finance relative wage	tive wage	Finance skilled	Finance skilled relative wage
	OLS	Ν	OLS	//
Change in financial deregulation, t-3 to t	0.393***	0.971***	0.452***	0.876***
	(0.111)	(0.200)	(0.134)	(0.178)
Change in finance relative share of ICT in capital stock, t-3 to t	-0.436	-0.0923	-0.452	-0.0404
	(0.309)	(0.261)	(0.330)	(0.289)
Change in financial globalization, t-3 to t	0.0504	0.0295	0.142***	0.00844
	(0.0441)	(0.0586)	(0.0538)	(0.00519)
Change in domestic credit/GDP, t-3 to t	-0.127	-0.165**	-0.161*	-0.0171**
	(0.0779)	(0.0645)	(0.0825)	(0.00728)
Observations	293	293	278	278
Number of countries	15	15	15	15
R-squared	0.201	0.341	0.144	0.387
First stage partial F-stat		32	•	36

variable. In IV regressions, we use the level of deregulation at t-3 as an instrument for changes in deregulation from t-3 to t. Deregulation data Development Indicators database. Financial globalization is log((foreign assets + liabilities)/GDP); data are from Lane and Milesi-Ferretti (2007) The sample ends in 2005. Out of our original 22 countries, we do not have sufficient data for Slovenia, and we drop Luxembourg as an outlier. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech Notes: All regressions include country and year fixed effects. The right hand side variables are the three-year changes (from t-3 to t) for each KLEMS database. Domestic credit is normalized by GDP; data from the World Bank World Development Indicators database. Bank domestic credit data are from Jorda, Schularick and Taylor (2014), except for Austria and South Korea where the data are from the World Bank World are from Abiad, Detragiache and Tressel (2008). The dependent variables, as well as relative ICT use in finance, are calculated from the EU Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, South Korea, Netherlands, Portugal, Sweden, and the United States. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 8: Finance Relative Wages: Interactions with Deregulation

(10)

(6)

8

6

(9)

(2)

4

(3)

(2)

Ξ

				+	A. Dependent Variable: Finance relative wage	Finance relative wag	e			
Interaction variable (standardized, except in column 6):	Non-bank domestic credit/GDP	Bank non-interest income share	Stock market capitalization/GDP	OTC turnover/Stock market turnover	OTC turnover/GDP	Global financial center indicator^	Employment protection index ^^	Bank concentration	Revenue-based competition index	Profit-based competition index
Financial deregulation index, t-3 * interaction variable	0.124	0.267***	0.451***	0.109**	0.147***	0.552***	-0.761***	0.201***	-0.378***	0.0278
	(0.0811)	(0.0541)	(0.0661)	(0.0503)	(0.0533)	(0.110)	(0.0665)	(0.0642)	(0.0369)	(0.0396)
Financial deregulation index, t-3	0.373**	0.285**	0.500***	0.353**	0.380**	0.0255	0.0835	0.440***	-0.205	0.395**
	(0.160)	(0.140)	(0.140)	(0.169)	(0.169)	(0.140)	(0.113)	(0.163)	(0.134)	(0.173)
Finance relative ICT intensity, t-3	0.303	0.375*	0.404**	0.289	0.274	0.401*	0.271*	0.573**	0.311	0.308
	(0.228)	(0.220)	(0.199)	(0.221)	(0.221)	(0.228)	(0.162)	(0.253)	(0.213)	(0.240)
Financial globalization, t-3	0.241***	0.264***	0.266***	0.263***	0.260***	0.301***	0.206***	0.240***	0.244***	0.262***
	(0.0664)	(0.0612)	(0.0572)	(0.0637)	(0.0642)	(0.0671)	(0.0480)	(0.0681)	(0.0606)	(0.0660)
Domestic credit/GDP, t-3	0.168	0.314***	0.0650	0.255***	0.257***	0.113	0.0403	0.216**	0.107	0.259***
	(0.105)	(0.0852)	(0.0796)	(0.0892)	(0.0905)	(0.0891)	(0.0704)	(0.101)	(0.0799)	(0.0924)
:	i.	i	į	i	i	i	Š	i	i i	i.
Observations	356	356	356	356	326	356	348	326	356	356
Number of countries	15	15	15	15	15	15	14	15	15	15
R-squared	0.760	0.783	0.800	0.761	0.760	0.778	0.843	0.765	0.812	0.757
				B. Dependen	B. Dependent Variable: Changes from t to t+3 in finance relative wage	m t to t+3 in finance	relative wage			
Interaction variable (standardized, except in column 6):	Non-bank domestic credit/GDP	Bank non-interest income share	Stock market capitalization/GDP	OTC turnover/Stock market turnover	OTC turnover/GDP	Global financial center indicator^	Employment protection index ^^	Bank concentration	Revenue-based competition index	Profit-based competition index
										,
Change in financial deregulation, t-3 to t * interaction variable	0.282**	0.359***	0.316***	0.249***	0.232***	0.382*	-0.553***	0.305***	-0.293***	-0.193*
	(0.131)	(0.0721)	(0.0880)	(0.0734)	(0.0711)	(0.218)	(0.133)	(0.0876)	(0.0873)	(0.103)
Change in financial deregulation, t-3 to t	0.379***	0.319***	0.385***	0.301**	0.334**	0.186	0.230**	0.403***	0.279***	0.460***
	(0.127)	(0.114)	(0.123)	(0.134)	(0.134)	(0.113)	(0.115)	(0.129)	(0.107)	(0.142)
Change in finance relative share of ICT in capital stock, t-3 to t	-0.457*	-0.520**	-0.525**	-0.445*	-0.421	-0.570**	-0.464*	-0.593**	-0.498*	-0.324
	(0.262)	(0.260)	(0.258)	(0.264)	(0.264)	(0.281)	(0.248)	(0.266)	(0.276)	(0.260)
Change in financial globalization, t-3 to t	0.0636	0.0331	0.0510	0.0550	0.0552	0.0448	0.0528	0.0387	0.0398	0.0539
	(0.0594)	(0.0598)	(0.0607)	(0.0597)	(0.0598)	(0.0602)	(0.0585)	(0.0604)	(0.0598)	(0.0588)
Change in domestic credit/GDP, t-3 to t	-0.115*	-0.116*	-0.111*	-0.121*	-0.122*	-0.117*	-0.0944	-0.112*	-0.0860	-0.141**
	(0.0628)	(0.0665)	(0.0658)	(0.0668)	(0.0667)	(0.0646)	(0.0646)	(0.0633)	(0.0650)	(0.0645)
Observations	293	293	293	293	293	293	289	293	293	293
Number of countries	15	15	15	15	15	15	14	15	15	15
R-squared	0.422	0.446	0.429	0.426	0.424	0.415	0.454	0.426	0.435	0.414

World Bank World Development Indicators database, Bank domestic credit data are from Jords, Schularick and Taylor (2014), except for Austria and South Korea where the data are from the World Beank World Development Indicators database. Non-bank domestic credit minus bank credit. Financial globalization is log((foreign assets + liabilities)(GDP); data are from Lane and Milesi-Ferretti (2007). Bank non-interest income generated by non-interest related activities as a percentage of total bank income; non-interest related activities as a percentage of total bank income; non-interest related activities and derivatives, net gains on other securities, net fees and commissions and other operating income. OTC turnover data are from the Bank for International Settlements. The global financial center indicator takes value 1 for Australia, Canada, Germany, United Kingdom, Japan, South Korea, and the United States; data from Global Financial Centres Index, produced by the think-tank Z/Yen. Bank non-interest income share, Stock market capitalization, Stock market turnover, Revenue-based competition index and Profit-based competition index data are from the Financial Development Dataset, World Bank. The sample ends in 2005. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, South Korea, Netherlands, Portugal, Sweden, and the United States. ^ Global financial center indicator is not standard errors in parentheses. **** p<0.01, *** p<0.01. Notes: All regressions include country fixed effects and year fixed effects. In Panel A the explanatory variables are lagged three periods. In Panel B the explanatory variables are the three-year changes (from t-3 to t) for each variable. Deregulation data are from Abiad, Detragiache and Tressel (2008). The dependent variable, as well as relative ICT use in finance, are calculated from the EU KLEMS database. Domestic credit covers all forms of credit to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the

Table 9: Immigration and Employment in Finance

A. Skilled workers									
		Skilled immigration	ligration employed in finance, by destination	y destination		Skilled em	igration employe	Skilled emigration employed in finance in destination, by source	urce
	(a)	(1)	(2)	(3)	(4)	(9)	(2)	(9)	(7)
				Share in total skilled	Share of skilled				Share in total skilled
	Skill intensity (skilled/all		Share in sample finance e	employment in finance	immigration to	Skill intensity (skilled/all		Share in sample finance er	emigration from source
	immigrants) (%)	Number	skilled immigration (%)	(%)	destination (%)	emigrants) (%)	Number	skilled emigration (%)	(%)
Australia	38.1	10458	8.2	10.97	4.67	62.6	2699	5.27	8.50
Austria	33.7	347	0.3	2.74	2.88	51.3	1744	1.37	5.43
Canada	51.0	19450	15.3	10.61	5.25	59.0	17580	13.82	6.14
Denmark	33.2	221	0.2	3.07	1.80	54.9	1710	1.34	6.03
Spain	58.5	2060	1.6	1.55	3.76	24.2	5195	4.08	6.82
Finland	49.6	132	0.1	0.57	2.61	47.3	1628	1.28	4.14
France	11.9	9429	7.4	6:29	8.69	67.4	12929	10.17	6.80
Hungary	67.4	28	0.05	0.27	2.84	51.4	1790	1.41	4.34
Ireland	62.3	4145	3.3	19.03	6.10	45.9	8354	6.57	6.78
Italy	35.8	1343	1.1	1.69	3.68	31.2	12154	9.56	8.00
Luxembourg	49.3	2261	1.8	29.44	25.65	32.4	232	0.18	8.04
Portugal	47.0	268	0.4	2.55	3.14	11.0	5525	4.34	9.58
Sweden	32.9	775	9.0	3.04	1.93	64.7	2735	2.15	6.73
United Kingdom	62.5	24131	19.0	10.55	90.6	49.0	37454	29.45	5.57
United States	56.2	51804	40.7	1.98	6.57	71.1	11455	9.01	5.89
Total		127182	100				127182	100	
Standard deviation				8.1	5.9				1.5
Correlation with colum	Correlation with column (2), "Share in sample finance skilled immigration $(\%)^{"}$	killed immigration	"(%)	0.01	0.12				

B. All workers

	Ó	Overall immigration employed in finance, by destination	l in finance, by destinati	uc	Overall emigratio	Overall emigration employed in finance in destination, by source	stination, by source
	(1)	(2)	(3)	(4)	(5)	(9)	(7)
			Share in finance	Share of total			Share in total
	Number of immigrants	Number of immigrants Share in sample finance	employment in	immigration to		Share in sample finance immigration from source	immigration from source
	in finance	immigration (%)	destination (%)	destination (%)	Number	emigration (%)	(%)
Australia	27450	9.2	8.55	3.67	10692	3.57	7.24
Austria	1030	0.34	0.91	2.53	3399	1.13	4.56
Canada	38130	12.73	6.32	4.55	29785	9.94	5.30
Denmark	999	0.22	0.84	1.92	3112	1.04	4.82
Spain	3520	1.18	1.08	2.06	21483	7.17	8.71
Finland	266	60:0	0.65	1.37	3440	1.15	2.65
France	79074	26.40	11.33	11.36	19177	6.40	4.38
Hungary	98	0.03	0.12	2.08	3481	1.16	3.41
Ireland	6649	2.22	10.07	4.44	18194	6.07	2.00
Italy	3752	1.25	0.72	2.57	38993	13.02	90'9
Luxembourg	4589	1.53	15.30	0.00	715	0.24	7.62
Portugal	1209	0.40	1.51	1.69	50271	16.78	7.42
Sweden	2355	0.79	2.51	1.63	4230	1.41	2.00
United Kingdom	38626	12.90	3.92	6.29	76431	25.52	4.83
United States	92107	30.75	1.54	5.37	16106	5.38	2.08
Total	299509	100			299509	100	
Standard deviation			4.8	2.9			1.6

Notes: Data are immigration stocks of workers that are employed in financial intermediation in the destination country, regardless of their past employment sector or employment status in the source country. Panel A reports statistics for skilled workers. The first set of columns in each panel report the skill intensity, are relative to skilled workers. Panel B reports statistics for all types of workers. The first set of columns in each panel report the distribution of immigrants in their destination countries (where they moved to), while the latter set of columns report the distribution of those immigrants by source country (where they came from). Immigration data source: OECD, Column (3) uses employment (skilled or total) in finance from EU KLEMS in order to compute the share of finance employment in destinations.

0.65

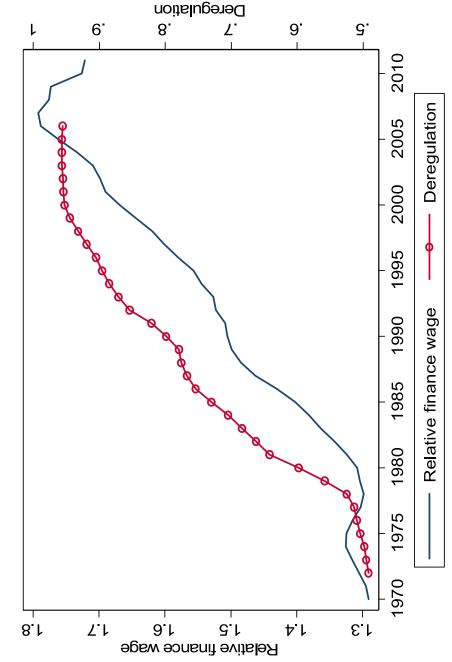
0.26

Correlation with column (2), "Share in sample finance immigration (%)"

Table 10: Summary Statistics

	Mean	S.D.	Min	Median	Max
A. Migration stocks					
Log(mH_fin)	4.15	2.32	0.0	4.09	9.62
(mH_fin/mH)*100	6.47	6.99	0.75	4.30	46.26
mH_fin/mL_fin	1.46	1.24	0.05	1.06	6.50
Log(mL_fin)	4.12	2.32	0.0	4.01	10.53
(mL_fin/mL)*100	5.05	7.26	0.26	2.58	43.33
B. Wages					
Log(wH_fin)	4.39	0.23	3.97	4.41	4.84
Log(wH_NFFP)	4.06	0.19	3.53	4.10	4.32
wH_fin/wL_fin	1.62	0.35	1.07	1.62	2.55
wH_NFFP/wL_NFFP	1.88	0.53	1.29	1.84	3.66
Log(wL_fin)	3.95	0.29	3.03	3.97	4.36
Log(wL_NFFP)	3.47	0.25	2.59	3.54	3.71

Notes: 193 observations. Here m denotes immigration stocks and w denotes wages. H denotes high-skill and L denotes low-skill workers, where high-skill is consistently defined as four-year college or a university degree or greater. Here "fin" denotes employment in finance and NFFP denotes employment in the nonfarm, non-finance private sector. All data are for the year 2000. Immigration data source for Panel A: OECD. Wage data for Panel B: EU KLEMS.


Table 11: Immigration Stocks Employed in Finance vs Wages in Finance

_					
Δ	Skil	led	imm	nigra	ti∩n

log(m	H_fin)	(mH_fin/	mH)*100	mH_fin	/mL_fin
(1)	(2)	(3)	(4)	(5)	(6)
3.783***	2.335***	16.52***	13.91***		
(0.570)	(0.789)	(3.005)	(3.023)		
	2.735***		4.912**		
	(0.789)		(1.912)		
				0.968***	0.983***
				(0.298)	(0.302)
					0.487***
					(0.141)
193	193	193	193	183	183
0.511	0.540	0.359	0.369	0.232	0.272
log(m	L_fin)	(mL_fin/	mL)*100		
(1)	(2)	(3)	(4)		
2.562***	0.374	6.442***	3.411		
(0.398)	(0.592)	(2.247)	(2.322)		
	3.712***		5.141**		
	(0.702)		(2.032)		
193	193	193	193		
0.444	0.518	0.149	0.163		
	(1) 3.783*** (0.570) 193 0.511 log(m (1) 2.562*** (0.398)	3.783*** 2.335*** (0.570) (0.789) 2.735*** (0.789) 193 193 0.511 0.540 log(mL_fin)	(1) (2) (3) 3.783*** 2.335*** 16.52*** (0.570) (0.789) (3.005) 2.735*** (0.789) 193 193 193 0.511 0.540 0.359 Iog(mL_fin) (mL_fin/ (1) (2) (3) 2.562*** 0.374 6.442*** (0.398) (0.592) (2.247) 3.712*** (0.702) 193 193 193	(1) (2) (3) (4) 3.783*** 2.335*** 16.52*** 13.91*** (0.570) (0.789) (3.005) (3.023) 2.735*** 4.912** (0.789) (1.912) 193 193 193 0.511 0.540 0.359 0.359 0.369 Iog(mL_fin) (mL_fin/mL)*100 (1) (2) (3) (4) 2.562*** 0.374 6.442*** 3.411 (0.398) (0.592) (2.247) (2.322) 3.712*** 5.141** (0.702) (2.032) 193 193 193	(1) (2) (3) (4) (5) 3.783*** 2.335*** 16.52*** 13.91*** (0.570) (0.789) (3.005) (3.023) 2.735*** 4.912** (0.789) (1.912) 193 193 193 193 193 0.511 0.540 0.359 0.369 (1) (2) (3) (4) 2.562*** 0.374 6.442*** 3.411 (0.398) (0.592) (2.247) (2.322) 3.712*** 5.141** (0.702) (2.032) 193 193 193 193

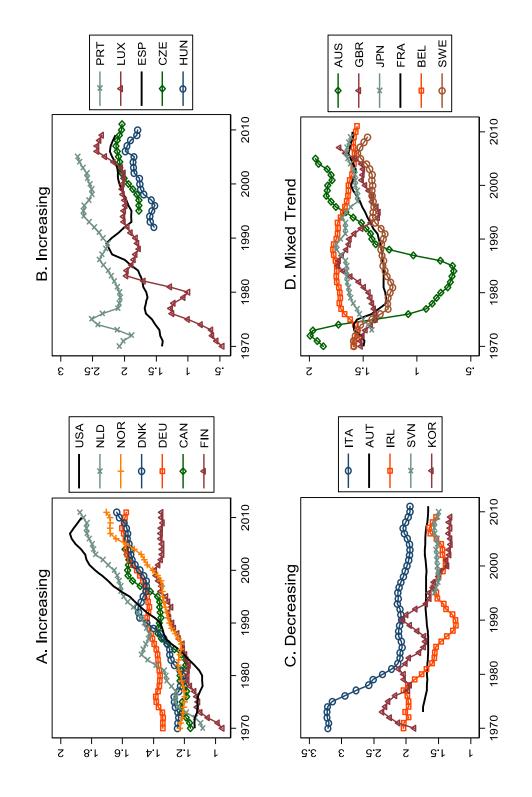

Notes: m denotes immigration stocks in 2000, and w denotes wages in 1999. H denotes high-skill and L denotes low-skill workers, where high-skill is consistently defined as four-year college or university degree or greater. "fin" denotes employment in finance, and "NFFP" in the nonfarm, non-finance private sector. All regressions include source country fixed effects and the following gravity variables from CEPII (but do not report coefficients for them): country contiguity indicator, common language indicator, and log distance between capital cities. Although regressions in both panels have the same number of observations, the sample varies slightly due to data availability. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Data sources: migration data from OECD and wage data from EU KLEMS.

Figure 1: Finance Relative Wage and Financial Deregulation

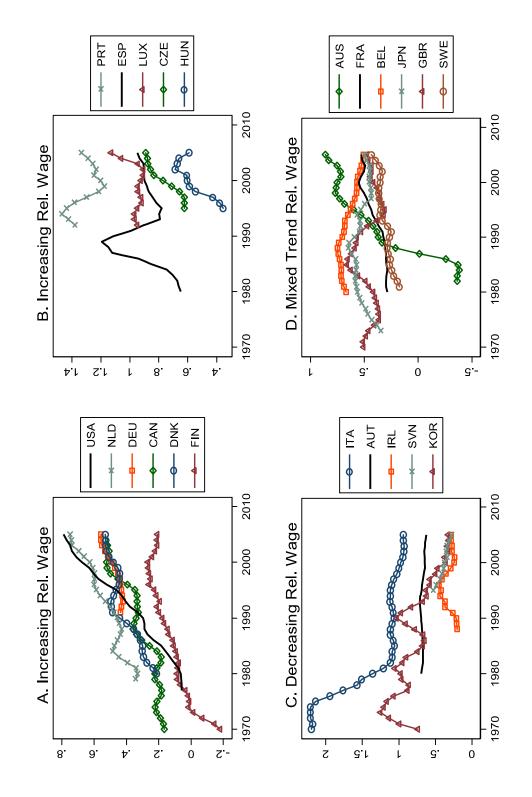

Norway, United Kingdom, and the United States. The plotted series are three-year moving averages. Data on wages until 2005 are from EU KLEMS; market policies. Each index takes values between 0 and 3, where higher values indicate lower regulation. We normalize the index to be between 0 Notes: This figure plots the average across countries of their finance relative wage and financial deregulation index. Averages are weighted, with from 2006 and on wage data are from STAN. Norway series uses only STAN data. See complete details in text. Financial regulation data are from and 1. The sample includes: Austria, Belgium, Canada, Czech Republic, Denmark, Germany, Spain, Finland, France, Hungary, Japan, Netherlands, credit/reserve requirements, Interest rate controls, Entry barriers, Banking supervision, Privatization, International capital flows, and Securities total employment in finance as weights. Relative finance wage in each country is constructed as the average wage in Finance divided by the average wage in the non-farm, non-finance private sector. The financial deregulation index is the sum of 7 deregulation indices: Directed Abiad, Detragiache, and Tressel (2008), and are available until 2005.

Figure 2: Finance Relative Wage

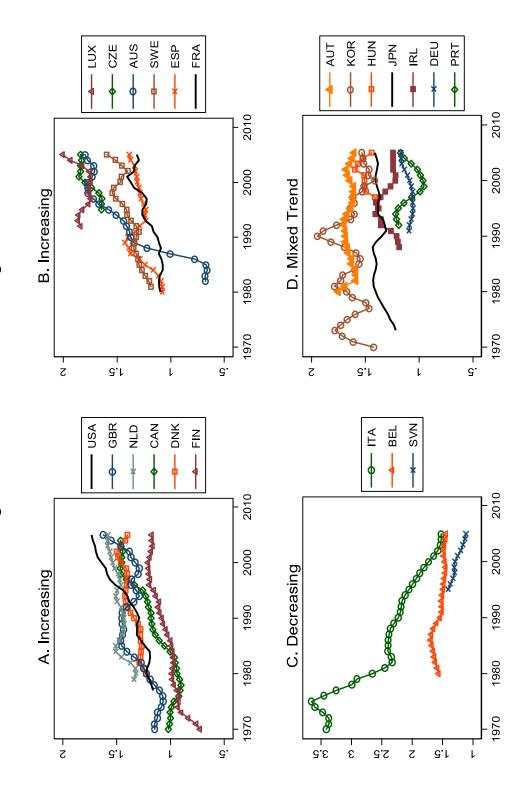

wages are computed by dividing employee compensation by hours worked. Data: EU KLEMS until 2005; STAN from 2006 and on. Norway series uses only STAN data. See complete details in text. Series are three-year moving averages. Panels A and B group countries that exhibit an increasing trend. Notes: Finance relative wage is the average wage in finance divided by the average wage in the non-farm, non-finance private sector. Average Panel C groups countries that exhibit a decreasing trend, and Panel D groups countries that exhibit a mixed trend.

Figure 3: Finance Excess Wage

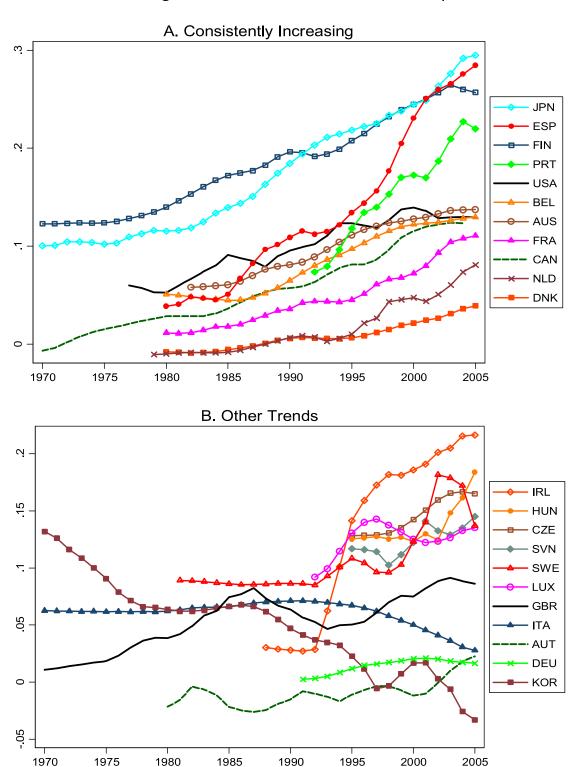
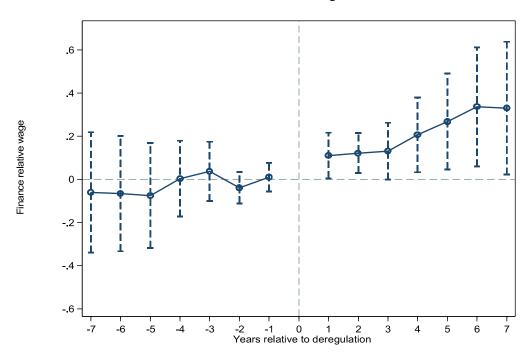

KLEMS. Series are three-year moving averages. Panels A and B group countries that exhibit an increasing trend in the finance relative wage. Panel C Notes: The finance excess wage is the finance relative wage minus the benchmark wage. The benchmark assumes equal skilled and unskilled wages groups countries that exhibit decreasing finance relative wages, and Panel D groups countries that exhibit a mixed trend in finance relative wages. in finance and in the non-farm, non-finance private sector (NFFP), and allows for skill composition differences in finance versus NFFP. Data: EU

Figure 4: Finance Relative Skilled Wage

the non-farm, non-finance private sector. Average wages are computed by dividing employee compensation by hours worked. Data: EU KLEMS. The are three-year moving averages. Panels A and B group countries that exhibit an increasing trend. Panel C groups countries that exhibit a decreasing definition of skilled workers in the EU KLEMS is consistent across countries, and implies a university-equivalent bachelors degree or greater. Series Notes: Finance relative skilled wage is the average wage of skilled workers in finance relative to the average wage of skilled workers in the rest of trend, and Panel D groups countries that exhibit a mixed trend.


Figure 5: Finance Relative Skill Intensity

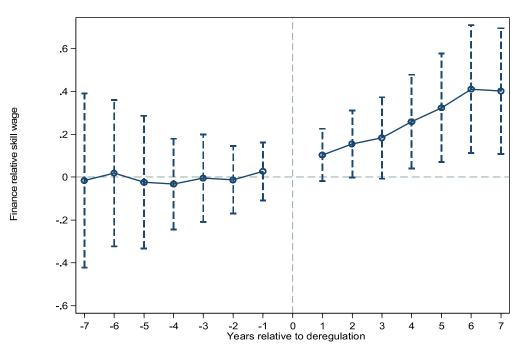

Notes: Finance relative skill intensity is the share of skilled workers in finance relative to the share of skilled workers in the rest of the non-farm, non-finance private sector. These shares are computed using hours worked. Data: EU KLEMS. The definition of skilled workers in the EU KLEMS is consistent across countries, and implies a university-equivalent bachelors degree or greater. Series are three-year moving averages. Panel A groups countries that exhibit an increasing trend. Panel B groups countries that exhibit a mixed trend.

Figure 6: Finance Relative Wages around Major Deregulation Events

A. Finance Relative Wage

B. Finance Relative Skilled Wage

Notes: The figures report the regression coefficients (and confidence intervals, marked by dashed bar "whiskers") for a set of indicators for years before and after the biggest deregulation event for each country. The biggest deregulation event for each country is the year with the largest increase in its deregulation index. We regress relative wages (Panel A: finance relative wage, Panel B: finance relative skilled wage) on country dummies, year dummies and a set of indicators for years before and years after the biggest deregulation event for each country. Minus 7 indicates seven or more years before, and plus 7 indicates seven or more years after. We use robust standard errors for computing confidence intervals.

Luxembourg Netherlands

Portugal

Slovenia

Sweden

Average

United Kingdom

United States

Spain

0.019

-0.009

0.040

0.086

0.093

0.057

0.131

0.018

0.120

0.118

0.144

0.110

0.056

0.128

0.095

0.141

0.093

0.231

0.155 0.293

0.135

0.085

0.129

0.133

A. Finance Relative	Wage												
			Le	vels			-			Chai	nges		
	1975	1985	1995	2005	2007	2010		1975-1985	1985-1995	1995-2005	2005-2007	1985-2007	2007-2010
Australia	1.34	0.61	1.69	1.97				-0.73	1.08	0.28		1.36	
Austria	1.74	1.65	1.69	1.70	1.69	1.66		-0.09	0.04	0.01	-0.01	0.03	-0.02
Belgium	1.62	1.75	1.66	1.59	1.59	1.56		0.12	-0.08	-0.08	0.00	-0.16	-0.02
Canada*	1.21	1.28	1.35	1.59				0.07	0.07	0.24		0.31	
Czech Republic			1.78	2.10	2.13	2.04				0.32	0.04	0.35	-0.09
Denmark	1.29	1.29	1.45	1.55	1.59	1.63		0.00	0.16	0.10	0.04	0.29	0.04
Finland	1.12	1.20	1.36	1.33	1.38	1.35		0.09	0.16	-0.03	0.05	0.18	-0.03
France	1.49	1.31	1.48	1.62	1.64	1.60		-0.17	0.17	0.14	0.02	0.33	-0.04
Germany	1.41	1.38	1.45	1.57	1.61	1.58		-0.03	0.07	0.12	0.04	0.23	-0.03
Hungary			1.51	1.89	2.14	1.85				0.38	0.25	0.63	-0.29
Ireland	1.86	1.53	1.64	1.51	1.70			-0.33	0.10	-0.12	0.18	0.17	
Italy	3.15	2.02	2.11	1.96	2.07	1.95		-1.14	0.09	-0.15	0.11	0.06	-0.12
Japan	1.53	1.66	1.73	1.66	1.66			0.13	0.07	-0.07	0.00	0.00	
Korea	2.48	1.79	1.63	1.34	1.37			-0.69	-0.16	-0.29	0.04	-0.42	
Luxembourg	1.23	1.90	1.99	2.39	2.47			0.67	0.09	0.40	0.09	0.58	
Netherlands	1.28	1.48	1.60	1.79	1.86	1.86		0.20	0.12	0.19	0.07	0.38	-0.01
Norway	1.21	1.23	1.34	1.60	1.70	1.69		0.02	0.12	0.25	0.10	0.47	-0.01
	2.80	2.31	2.68	2.73	1.70	1.03		-0.49	0.12	0.05	0.10	0.47	-0.01
Portugal	2.80	2.51			1.61	1.40		-0.49	0.57		0.10		0.13
Slovenia	1.50	4.04	1.57	1.51	1.61	1.48		0.25	0.07	-0.06	0.10	0.04	-0.13
Spain	1.58	1.84	1.90	2.21	2.25			0.25	0.07	0.30	0.04	0.41	
Sweden	1.50	1.29	1.39	1.52	1.55			-0.21	0.10	0.13	0.03	0.26	
United Kingdom	1.39	1.76	1.30	1.55	1.77			0.37	-0.46	0.25	0.22	0.01	
United States	1.13	1.24	1.55	1.90	1.95	1.88		0.11	0.32	0.35	0.05	0.72	-0.08
Average	1.617	1.525	1.646	1.763	1.787	1.702		-0.091	0.125	0.118	0.073	0.290	-0.065
B. Finance Relative	Skilled Wage												
-			vels		_			anges		_			
	1975	1985	1995	2005		1975-1985	1985-1995		1985-2005				
Australia		0.61	1.59	1.83			0.98	0.23	1.21				
Austria		1.60	1.63	1.59			0.03	-0.04	0.00				
Belgium		1.69	1.48	1.45			-0.21	-0.03	-0.24				
Canada*	0.95	1.06	1.24	1.48		0.11	0.18	0.23	0.41				
Czech Republic			1.66	1.85				0.19	0.19				
Denmark		1.25	1.41	1.39			0.16	-0.02	0.13				
Finland	0.92	0.98	1.21	1.18		0.06	0.22	-0.03	0.20				
France	0.52	1.04	1.25	1.33		0.00	0.21	0.08	0.29				
Germany		1.04	1.06	1.15			0.21	0.10	0.10				
			1.41	1.13				0.10					
Hungary									0.08				
Ireland			1.47	1.28				-0.19	-0.19				
Italy	3.68	2.39	2.09	1.53		-1.29	-0.30	-0.56	-0.86				
Japan	1.27	1.40	1.44	1.41		0.13	0.04	-0.03	0.02				
Korea	1.83	1.60	1.60	1.57		-0.23	0.00	-0.03	-0.03				
Luxembourg			1.81	2.11				0.30	0.30				
Netherlands		1.53	1.47	1.56			-0.06	0.09	0.03				
Portugal			1.19	1.18				-0.01	-0.01				
Slovenia			1.40	1.10				-0.30	-0.30				
Spain		1.22	1.22	1.41			-0.01	0.20	0.19				
Sweden		1.29	1.41	1.64			0.12	0.23	0.35				
United Kingdom	1.05	1.49	1.26	1.65		0.44	-0.22	0.39	0.17				
United States		1.21	1.41	1.74			0.20	0.34	0.53				
Average		1.358	1.441	1.496			0.089	0.056	0.117				
C. Finance Relative	Skill Intensity	٧											
		Lev	vels				Cha	anges					
-	1975	1985	1995	2005	-	1975-1985	1985-1995		1985-2005				
Australia		0.061	0.113	0.136			0.052	0.023	0.075				
Austria		-0.019	-0.009	0.026			0.010	0.035	0.045				
Belgium		0.045	0.096	0.131			0.051	0.035	0.086				
Canada*	0.015	0.036	0.083	0.131		0.021	0.031	0.040	0.087				
	0.013	0.030				0.021	0.040						
Czech Republic		0.000	0.128	0.162			0.010	0.034	0.034				
Denmark		-0.006	0.006	0.041			0.012	0.035	0.047				
Finland	0.122	0.174	0.204	0.240		0.052	0.030	0.036	0.066				
rance		0.021	0.045	0.101			0.025	0.056	0.081				
Germany			0.012	0.017				0.005	0.005				
Hungary			0.124	0.182				0.058	0.058				
reland			0.142	0.226				0.084	0.084				
taly	0.062	0.065	0.066	0.024		0.003	0.001	-0.042	-0.041				
lapan	0.100	0.003	0.218	0.303		0.042	0.001	0.042	0.161				
Korea	0.089	0.142	0.031	-0.046		-0.022	-0.035	-0.077	-0.112				
Luvembourg	0.005	0.000	0.031	-0.046 0.1/11		-0.022	-0.033	0.077	0.112				
LUXEMPOURG													

Notes: The table reports wages and skill intensity in finance relative to the nonfarm, non-finance private sector (NFFP) in different years and the changes between those years. The total change is the sum of changes in the preceding three columns. Skilled workers are consistently defined across countries as those who hold a university-equivalent bachelors degree or more. *
Data for Canada in 2005 is missing and is replaced in this table by data for Canada in 2004. Data: EU KLEMS until 2005; STAN from 2006 and on. Norway series uses only STAN data. See complete details in text.

0.043

0.027

0.104

0.025

-0.006

0.036

0.030

0.011

0.075

0.111

0.036 0.149

0.025

0.029

0.001

0.038

0.011

0.102

0.111

0.036 0.253

0.050

0.024

0.036

0.059

C. Activities auxiliary to financial intermediation

		Lev	/els			Cha	nges	
•	1975	1985	1995	2005	1975-1985	1985-1995	1995-2005	1985-2005
Australia*	1.06	0.59	1.37	1.46	-0.46	0.78	0.09	0.86
Austria*		1.77	1.77	1.76		-0.01	0.00	-0.01
Belgium*	1.75	1.90	1.91	1.77	0.16	0.01	-0.14	-0.14
Canada								
Czech Republic			1.83	2.22			0.39	
Denmark*	1.32	1.30	1.37	1.47	-0.02	0.07	0.11	0.17
Spain*	1.63	1.92	2.09	2.88	0.28	0.17	0.79	0.97
Finland*	1.05	1.13	1.29	1.25	0.08	0.16	-0.04	0.12
France*		1.40	1.51	1.64		0.11	0.13	0.24
Germany			1.42	1.55			0.13	
Hungary			1.71	2.06			0.36	
Ireland	0.98	0.82	1.07	1.42	-0.16	0.26	0.35	
Italy								
Japan	1.63	1.77	1.75	1.72	0.13	-0.01	-0.03	
Korea	2.35	1.94	1.59	1.44	-0.41	-0.35	-0.15	
Luxembourg			2.05	2.32			0.28	
Netherlands			1.58	1.91			0.32	
Portugal			2.74	2.81			0.06	
Slovenia			1.53	1.42			-0.11	
Sweden*	1.40	1.21	1.34	1.67	-0.20	0.13	0.33	0.47
United Kingdom*	1.46	1.90	1.45	1.80	0.45	-0.45	0.35	-0.10
United States*	0.88	1.05	1.24	1.46	0.17	0.19	0.22	0.41
Average of 10*		1.42	1.53	1.72		0.12	0.18	0.30

		Lev	/els			Cha	nges	
_	1975	1985	1995	2005	1975-1985	1985-1995	1995-2005	1985-2005
Australia*	1.70	0.58	2.26	1.92	-1.12	1.68	-0.34	1.34
Austria*		1.36	1.48	1.38		0.11	-0.09	0.02
Belgium*	1.38	1.58	1.66	1.77	0.20	0.08	0.12	0.20
Canada								
Czech Republic			1.40	1.74			0.34	
Denmark*	1.04	1.15	1.52	1.63	0.11	0.37	0.11	0.48
Spain*	1.52	1.72	1.61	1.64	0.19	-0.11	0.03	-0.08
Finland*	1.28	1.36	1.31	1.27	0.08	-0.05	-0.04	-0.09
France*		1.22	1.46	1.57		0.24	0.11	0.35
Germany			1.59	1.75			0.16	
Hungary			1.27	1.24			-0.03	
Ireland	2.16	1.75	2.89	1.74	-0.41	1.14	-1.15	
Italy								
Japan	1.52	1.68	1.77	1.61	0.15	0.10	-0.16	
Korea		1.43	2.20	1.45		0.77	-0.75	
Luxembourg			2.32	2.69			0.37	
Netherlands			1.76	1.75			0.00	
Portugal			2.71	2.51			-0.20	
Slovenia			1.94	1.32			-0.62	
Sweden*	1.61	1.44	1.46	1.32	-0.17	0.02	-0.14	-0.12
United Kingdom*	1.42	1.93	1.30	0.93	0.51	-0.63	-0.37	-1.01
United States*	1.06	1.21	1.45	1.66	0.15	0.24	0.20	0.45
Average of 10*		1.36	1.55	1.51		0.19	-0.04	0.15

		Lev	vels			Cha	nges	
	1975	1985	1995	2005	1975-1985	1985-1995	1995-2005	1985-2005
Australia*	2.28	0.74	2.18	3.10	-1.54	1.44	0.92	2.36
Austria*		1.44	1.20	1.07		-0.24	-0.13	-0.36
Belgium*	0.92	0.85	0.81	1.20	-0.07	-0.04	0.38	0.34
Canada								
Czech Republic			1.57	1.73			0.16	
Denmark*	1.25	1.57	1.52	1.60	0.33	-0.06	0.08	0.02
Spain*	0.96	1.20	1.13	0.59	0.23	-0.07	-0.54	-0.61
Finland*		1.44	2.52	1.78		1.09	-0.74	0.35
France*		0.89	1.26	1.41		0.38	0.15	0.53
Germany			1.12	1.16			0.04	
			0.00				4.50	

Hungary			0.60	2.17			1.56	
Ireland	9.12	4.83	1.65	1.74	-4.29	-3.18	0.08	
Italy								
Japan								
Korea			1.56	1.21			-0.35	
Luxembourg			1.54	2.50			0.95	
Netherlands			1.54	1.44			-0.10	
Portugal			2.92	3.43			0.52	
Slovenia			1.68	1.29			-0.39	
Sweden*	1.93	1.47	1.50	1.29	-0.46	0.03	-0.22	-0.19
United Kingdom*	1.22	1.29	1.01	1.52	0.07	-0.29	0.51	0.23
United States*		2.29	2.99	4.14		0.70	1.15	1.85
Average of 10*		1.32	1.61	1.77		0.29	0.16	0.45

Notes: The table reports wages for subsectors within finance relative to the nonfarm, non-finance private sector (NFFP) in different years and the changes between those years. * countries included in the Average of 10 are marked with an asterisk; these countries have data on all components from 1985 and on. The boxes adjacent to panels A to C contain information on the composition of each financial subsector. More detail is provided in the text appendix. Data: EU KLEMS.

Central banking

• Other monetary intermediation

Includes monetary intermediation of monetary institutions other than central banks. Included are the activities of banks, discount houses, savings banks, and also specialized institutions granting credit for house purchase that also take deposits.

Financial leasing

 Other credit granting Includes financial intermediation primarily concerned with making loans by institutions not involved in monetary intermediation, including the granting of consumer credit, the provision of long term finance to industry, and money lending outside the banking system. The granting of credit for house purchase by specialized institutions that do not also take deposits is included in this class.

• Other financial intermediation n.e.c.

Includes other financial intermediation primarily concerned with distributing funds other than by making loans. This includes investment in securities (e.g. shares, bonds, bills, unit trust units, etc.) including dealing for own account by securities dealers, investment in property where this is carried out primarily for other financial intermediaries (e.g. property unit trusts) and

Life insurance

This class includes life insurance (including reinsurance) and other long term insurance, with or without a substantial savings element, involving the collection and investment of funds.

 Pension funding
This class includes the provision of retirement incomes, including activities involving the collection and investment of funds. Exclusions: Funding and administration of compulsory social security programmes are classified in class 7530 (Compulsory social security activities).

Non-life insurance

*Non-ine insurance This class includes insurance (including reinsurance) of non-life business (e.g. accident, fire, health, property, motor, marine, aviation, transport, pecuniary loss and liability insurance).

Administration of financial markets

Administration of financial markets
 Includes the operation and supervision of financial markets other than by public authorities and includes the activities of stock exchanges and other bodies that regulate or supervise the activities of financial markets including exchanges for commodity futures contracts.

Security dealing activities

Includes dealing in financial markets on behalf of others (e.g. stock broking) and related activities.

Activities auxiliary to financial intermediation n.e.c.

Includes all activities auxiliary to financial intermediation not classified elsewhere, including financial advisers, mortgage advisers and brokers, bureaux de change, etc.

- Exclusions: Insurance agents' and other activities closely related to

- Excusions: Insurance agents and oner activities closely related to insurance and pension funding are classified in "Activities auxiliary to insurance and pension funding" below. Business brokerage activities (i.e. arranging for the purchase and sale of small and medium-sized businesses, including professional practices) and patent brokerage activities (arranging for the purchase and sale of patents) are classified "Other business activities n.e.c.".

• Activities auxiliary to insurance and pension funding Includes activities of insurance agents, average and loss adjusters,

		Lev	rels			Chai	nges	
-	1975	1985	1995	2005	1975-1985	1985-1995	1995-2005	1985-200
Australia*	65.1	66.4	60.6	53.9	1.3	-5.9	-6.7	-12.6
Austria*	67.5	67.6	66.7	65.5	0.1	-1.0	-1.1	-2.1
Belgium*	56.3	56.6	56.5	56.8	0.2	-0.1	0.4	0.3
Canada								
Czech Republic			73.4	55.4			-18.0	
Denmark*	72.3	75.0	72.8	68.4	2.7	-2.2	-4.5	-6.6
Spain*	80.5	82.4	69.9	58.4	1.9	-12.5	-11.4	-23.9
Finland*	82.0	82.5	75.0	68.4	0.5	-7.5	-6.6	-14.1
France*	65.8	65.1	60.7	58.7	-0.7	-4.4	-2.0	-6.4
Germany			63.5	57.9			-5.6	
Hungary			67.1	63.8			-3.3	
Ireland	62.5	61.3	63.3	64.7	-1.2	2.0	1.4	
Italy			64.0	60.3			-3.7	
Japan	61.1	59.2	58.0	59.3	-1.9	-1.2	1.3	
Korea	100.0	86.2	70.1	65.3	-13.8	-16.1	-4.9	
Luxembourg			81.8	70.6			-11.2	
Netherlands	61.3	62.3	56.8	56.3	0.9	-5.4	-0.6	
Portugal			71.6	70.7			-0.8	
Slovenia			64.7	63.6			-1.1	
Sweden*	67.9	69.6	66.7	56.7	1.7	-3.0	-10.0	-13.0
United Kingdom*	58.1	55.7	54.0	57.5	-2.4	-1.8	3.6	1.8
United States*	56.4	47.2	42.4	46.3	-9.2	-4.8	3.9	-0.8
Average of 10*		66.8	62.5	59.1		-4.3	-3.4	-7.8

B. Insurance and pe	ension funding	g, except com	puisory social	security			
		Le	vels			Cha	nges
	1975	1985	1995	2005	1975-1985	1985-1995	1995
Australia*	22.3	22.0	18.9	19.7	-0.3	-3.1	C
Austria*	31.2	29.4	28.9	24.1	-1.8	-0.5	-4
Belgium*	23.8	22.8	19.7	18.7	-1.1	-3.0	-3
Canada							
Czech Republic			16.5	18.1			1
Dames and A	27.7	22.0	22.5	24.4	2.0	0.2	,

Belgium*	23.8	22.8	19.7	18.7	-1.1	-3.0	-1.0	-4.1
Canada								
Czech Republic			16.5	18.1			1.6	
Denmark*	27.7	23.8	23.5	24.1	-3.9	-0.3	0.6	0.3
Spain*	12.2	9.9	13.7	16.3	-2.3	3.9	2.6	6.5
Finland*	18.0	15.9	22.9	23.7	-2.1	7.0	0.8	7.8
France*	18.9	19.3	20.3	20.4	0.4	1.0	0.1	1.1
Germany			19.5	19.4			-0.1	
Hungary			26.8	30.0			3.2	
Ireland	31.3	32.3	26.5	23.5	1.0	-5.7	-3.0	
Italy			7.9	6.7			-1.2	
Japan	38.9	40.8	42.0	40.7	1.9	1.2	-1.3	0.0
Korea		13.8	21.6	23.2		7.9	1.5	9.4
Luxembourg			4.5	8.8			4.3	
Netherlands	20.8	19.1	20.1	19.4	-1.7	1.0	-0.7	
Portugal			14.7	14.6			-0.1	
Slovenia			17.6	27.3			9.6	
Sweden*	26.4	24.1	25.0	26.7	-2.4	0.9	1.7	2.6
United Kingdom*	24.9	23.5	22.7	19.1	-1.4	-0.8	-3.6	-4.4
United States*	43.6	43.1	44.8	39.3	-0.6	1.7	-5.5	-3.8

23.2

C Activities	auviliary to	financial	intermediatio	n

23.4

Average of 10*

		Lev	/els			Cha	nges	
•	1975	1985	1995	2005	1975-1985	1985-1995	1995-2005	1985-2005
Australia*	12.6	11.5	20.5	26.4	-1.0	9.0	5.9	14.9
Austria*	1.3	2.9	5.3	10.3	1.6	2.3	5.1	7.4
Belgium*	19.8	20.7	23.1	24.5	0.8	2.4	1.3	3.8
Canada								
Czech Republic			8.9	25.3			16.4	
Denmark*	1.5	1.3	4.9	7.6	-0.3	3.7	2.7	6.3
Spain*	7.3	7.4	16.4	24.9	0.1	9.0	8.5	17.5
Finland*		1.6	2.1	7.9		0.5	5.8	6.3
France*	15.3	15.5	19.2	21.0	0.2	3.7	1.9	5.6
Germany			17.0	22.7			5.8	
Hungary			6.1	7.5			1.4	
Ireland	6.3	9.7	12.2	10.6	3.4	2.6	-1.7	0.9
Italy			28.1	33.0			4.9	
Japan								0.0
Korea			8.2	11.4			3.2	3.2
Luxembourg			13.6	20.6			7.0	
Netherlands	17.9	18.6	23.1	24.0	0.8	4.4	0.9	
Portugal			13.7	14.6			0.9	
Slovenia			17.6	9.1			-8.6	
Sweden*	5.7	6.3	8.3	16.7	0.7	2.0	8.3	10.3
United Kingdom*	17.0	20.8	23.4	23.4	3.8	2.6	0.0	2.6
United States*		9.8	12.8	14.4		3.0	1.6	4.6
Average of 10*		9.8	13.6	17.7		3.8	4.1	7.9

Notes: The table reports wages for subsectors within finance relative to the nonfarm, non-finance private sector (NFFP) in different years and the changes between those years. * countries included in the Average of 10 are marked with an asterisk; these countries have data on all components from 1985 and on. The boxes adjacent to panels A to C contain information on the composition of each financial subsector. More detail is provided in the text appendix. Data: EU KLEMS.

Central banking

Other monetary intermediation

Includes monetary intermediation of monetary institutions other than central banks. Included are the activities of banks, discount houses, savings banks, and also specialized institutions granting credit for house purchase that also take deposits.

Financial leasing

 Other credit granting Includes financial intermediation primarily concerned with making loans by institutions not involved in monetary intermediation, including the granting of consumer credit, the provision of long term finance to industry, and money lending outside the banking system. The granting of credit for house purchase by specialized institutions that do not also take deposits is included in this class.

• Other financial intermediation n.e.c.

Includes other financial intermediation primarily concerned with distributing funds other than by making loans. This includes investment in securities (e.g. shares, bonds, bills, unit trust units, etc.) including dealing for own account by securities dealers, investment in property where this is carried out primarily for other financial intermediaries (e.g. property unit

• Life insurance

1995-2005 1985-2005

-5.3

-4.8

-0.8

This class includes life insurance (including reinsurance) and other long term insurance, with or without a substantial savings element, involving the collection and investment of funds.

 Pension funding
This class includes the provision of retirement incomes, including activities involving the collection and investment of funds. Exclusions: Funding and administration of compulsory social security programmes are classified in class 7530 (Compulsory social security activities).

Non-life insurance

*Non-ine insurance This class includes insurance (including reinsurance) of non-life business (e.g. accident, fire, health, property, motor, marine, aviation, transport, pecuniary loss and liability insurance).

Administration of financial markets

Includes the operation and supervision of financial markets other than by public authorities and includes the activities of stock exchanges and other bodies that regulate or supervise the activities of financial markets including exchanges for commodity futures contracts.

· Security dealing activities

Includes dealing in financial markets on behalf of others (e.g. stock broking) and related activities.

Activities auxiliary to financial intermediation n.e.c.

Includes all activities auxiliary to financial intermediation not classified elsewhere, including financial advisers, mortgage advisers and brokers,

elsewhere, including infaltural autisers, mortgage autisers and order bureaux de change, etc.

- Exclusions: Insurance agents' and other activities closely related to insurance and pension funding are classified in "Activities auxiliary to insurance and pension funding" below. Business brokerage activities (i.e. arranging for the purchase and sale of small and medium-sized businesses, including professional practices) and patent brokerage activities (arranging for the purchase and sale of patents) are classified "Other business activities n.e.c."

Activities auxiliary to insurance and pension funding Includes activities of insurance agents, average and loss adjusters,

Table A4: Correlations for Level and Predictive Regressions

			Non-bank						International					Interest
	Finance relative	:	domestic	Bank domestic	Household bank Corporate bank	Corporate bank	Financial	Deregulation	capital	:		Banking	: - -	rate
	ICI intensity	Domestic credit	credit/GDP	credit/GDP	credit/GDP	credit/GDP	globalization	Index	restrictions	Privatization	Entry barriers	supervision	Directed credit	control
Finance relative ICT intensity	П													
Domestic credit/GDP	0.13	1												
Non-bank domestic credit/GDP	0.03	0.87	П											
Bank domestic credit/GDP	0.22	0.46	-0.04	1										
Household bank credit/GDP	0.29	0.03	-0.36	0.71	1									
Corporate bank credit/GDP	90:0	0.64	0:30	0.75	0.08	1								
Financial globalization	0.47	0.04	-0.27	0.57	0.76	0.10	П							
Deregulation Index	0.38	0.28	0.08	0.43	0.59	0.07	0.76	1						
International capital restrictions	0.27	0.35	0.23	0:30	0.31	0.14	0.49	0.82	1					
Privatization	0.05	0.33	0.21	0:30	0.52	-0.01	0.39	0.63	0.49	П				
Entry barriers	0.54	0.15	-0.09	0.48	0.56	0.15	0.75	0.76	0.51	0.23	1			
Banking supervision	0.29	0.25	0.07	0.40	0.52	0.07	0.62	0.84	0.58	0.46	0.65	1		
Directed credit	0.37	00:00	-0.10	0.17	0.53	-0.20	0.61	0.78	0.56	0.53	0.65	0.57	П	
Interest rate control	0.25	0.19	0.03	0.32	0.32	0.17	0.63	0.72	09:0	0.22	0.50	0.51	0.43	7

B. Correlations across variables in changes (t-3,t)	inges (t-3,t)													
			Non-bank						International					Interest
	Finance relative		domestic	Bank domestic	Household bank	Household bank Corporate bank	Financial	Deregulation	capital			Banking		rate
	ICT intensity	Domestic credit	credit/GDP	credit/GDP	credit/GDP	credit/GDP	globalization	Index	restrictions	Privatization	Entry barriers	supervision	Directed credit	control
Finance relative ICT intensity	1													
Domestic credit/GDP	0.08	1												
Non-bank domestic credit/GDP	-0.12	0.58	П											
Bank domestic credit/GDP	0.21	0.65	-0.25	1										
Household bank credit/GDP	0.21	0.54	-0.22	0.85	1									
Corporate bank credit/GDP	0.17	0.57	-0.20	0.87	0.49	П								
Financial globalization	0.14	0.21	-0.02	0.26	0.15	0.29	П							
Deregulation Index	-0.29	0.03	0.04	0.00	-0.09	0.08	0.03	1						
International capital restrictions	-0.18	-0.05	-0.04	-0.03	-0.08	0.03	0.02	0.63	н					
Privatization	-0.03	-0.08	-0.10	0.00	0.07	-0.06	-0.01	0.28	-0.02	1				
Entry barriers	-0.17	0.05	0.05	0.01	-0.12	0.13	0.03	0.61	0.32	0.07	П			
Banking supervision	-0.15	0.00	-0.05	0.05	0.01	0.05	-0.11	0.44	0.11	0.13	0.20	1		
Directed credit	-0.11	-0.06	-0.08	0.01	-0.03	0.04	60:0	0.56	0.29	0.05	0.31	0.10	1	
Interest rate control	-0.14	0.10	0.13	-0.01	-0.12	0.10	0.08	0.45	0.18	-0.07	0.03	-0.09	0.16	1

Notes: Statistics are computed for 356 observations for 15 countries. The range for t is 1976-2005. Wage, skill and ICT variables are calculated based on EU KLEMS data. Domestic credit towers all forms of credit to the non-financial sector on a gross level, except for credit to the world Development Indicators database. Bank domestic credit data are from Jorda, Schularick and Taylor (2014), except for Austria and Korea where the data are from the Bank World Development Indicators database. Bank domestic credit to households versus corporations is given in Jorda, Schularick and Taylor (2014). Financial globalization is logiforeign assets + liabilities/GDP), data are from Lane and Milesi-Ferretti (2007). Statistics on the financial reform indices are reported in Table 3. In Panel A correlation coefficients that are strictly greater than 0.11 are statistically significant at the 5% level; in Panel B correlation coefficients that are strictly greater than 0.11 are statistically significant at the 5% level; in Panel B correlation coefficients at conventional levels.

Table A5: Finance Relative Wages: Robust Standard Errors versus Clustered Errors at the Country Level

	(1)	(2)	(3)	(4)	(5)	(6)
A. Level regressions. Dependent Variable:	Finance relative wage	Finance skilled relative wage				
inancial deregulation index, t-3	0.408	0.32				
obust standard errors	(0.133)	(0.154)				
tandard errors with country-level clustering	(0.616)	(0.631)				
inance relative ICT intensity, t-3	0.287	0.991				
obust standard errors	(0.219)	(0.244)				
tandard errors with country-level clustering	(0.618)	(0.927)				
inancial globalization, t-3	0.257	-0.0769				
obust standard errors	(0.0556)	(0.0633)				
tandard errors with country-level clustering	(0.0994)	(0.145)				
Domestic credit/GDP, t-3	0.265	0.528				
obust standard errors	(0.0713)	(0.0797)				
standard errors with country-level clustering	(0.329)	(0.424)				
bservations	356	341				
umber of countries	15	15				
-squared, within	0.303	0.211				
3. Predictive regressions. Dependent Variable: Char	nges from t to t+3 in		Finance re	lative wage	Finance skilled	d relative wage
			OLS	IV	OLS	IV
hange in financial deregulation, t-3 to t			0.393	0.971	0.452	0.876
obust standard errors			(0.111)	(0.200)	(0.134)	(0.178)
tandard errors with country-level clustering			(0.142)	(0.318)	(0.150)	(0.302)
hange in finance relative share of ICT in capital sto	ock, t-3 to t		-0.436	-0.0923	-0.452	-0.0404
obust standard errors			(0.309)	(0.261)	(0.330)	(0.289)
tandard errors with country-level clustering			(0.263)	(0.311)	(0.286)	(0.300)
hange in financial globalization, t-3 to t			0.0504	0.0295	0.142	0.00844
obust standard errors			(0.0441)	(0.0586)	(0.0538)	(0.00519)
tandard errors with country-level clustering			(0.0633)	(0.0902)	(0.0666)	(0.0119)
hange in domestic credit/GDP, t-3 to t			-0.127	-0.165	-0.161	-0.0171
obust standard errors			(0.0779)	(0.0645)	(0.0825)	(0.00728)
tandard errors with country-level clustering			(0.0517)	(0.111)	(0.0636)	(0.106)
bservations			293	293	278	278
Observations Jumber of countries			293 15	293 15	278 15	278 15

Notes:

Table A6a: Finance Relative Wage First Stage Regressions

Instrumented, Dependent Variable: Change in financial deregulation, t-3 to t

Instrument: Financial deregulation, t-3

	(1)	(2)
	Relative wage regression sample	Relative skilled wage regression sample
Financial deregulation, t-3	-0.363***	-0.516***
	(0.0934)	(0.0851)
Change in finance relative share of ICT in capital stock, t-3 to t	-0.318*	-0.217
	(0.189)	(0.200)
Change in domestic credit/GDP, t-3 to t	0.0690	0.0308
	(0.0553)	(0.0683)
Change in financial globalization, t-3 to t	0.0207	0.0240
	(0.0336)	(0.0372)
Observations	293	278
R-squared	0.248	0.275
Notes: This table shows the results of first stage regressions corresponding to the second stage regressions	onding to the second sta	ige regressions

Lane and Milesi-Ferretti (2007). The sample ends in 2005. Robust standard errors in parentheses. *** p<0.01, ** reported in columns 2 and 4 of Table 7. All regressions include country and year fixed effects. Deregulation data are from Abiad, Detragiache and Tressel (2008). The dependent variables as well as relative ICT use in finance is Development Indicators database. Financial globalization is log(foreign assets + liabilities/GDP), data are from calculated from EU KLEMS database. Domestic credit is normalized by GDP, data from the World Bank World p<0.05, * p<0.1.

Table A6b: False First Stage Regressions

	(1)	(2)	(3)	(4)	(2)	(9)
	Relative v	Relative wage regression sample	n sample	Relative skille	Relative skilled wage regression sample	ssion sample
Dependent Variable: Changes from t-3 to t in	Relative share of ICT	Domestic credit	Financial globalization	Relative share of ICT	Domestic credit	Financial globalization
Financial deregulation, t-3	0.0499	0.0836	-0.0967	0.0549	0.0414	-0.0442
	(0.0286)	(0.204)	(0.171)	(0.0332)	(0.255)	(0.201)
Change in financial deregulation, t-3 to t	-0.0902***	0.106	0.258	-0.0916**	0.0748	0.293
	(0.0300)	(0.105)	(0.260)	(0.0315)	(0.100)	(0.279)
Change in domestic credit/GDP, t-3 to t	0.00383		0.321*	0.00163		0.349*
	(0.0387)		(0.176)	(0.0400)		(0.189)
Change in financial globalization, t-3 to t	0.00108	0.103**		0.00216	0.113*	
	(0.0206)	(0.0461)		(0.0215)	(0.0531)	
Change in finance relative share of ICT in capital stock, t-3 to t		0.0613	0.0543		0.0255	0.105
		(0.627)	(1.015)		(0.627)	(1.011)
Observations	293	293	293	278	278	278
R-squared	0.526	0.191	0.300	0.510	0.174	0.313
Number of countries	15	15	15	15	15	15

Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, Korea, Netherlands, Portugal, Sweden, United States. Robust standard columns are the results corresponding the to the column 1 in Table A6a (sample of relative finance wages), whereas the last three columns show the results using the sample as in column 2 of Table A6a (sample of relative finance skilled wage). All regressions include country and year fixed effects. Deregulation data are from World Bank World Development Indicators database. Bank domestic credit data are from Jorda, Schularick and Taylor (2014), except for Austria and Korea where relative share of ICT, domestic credit, and financial globalization. In addition, we add three year changes in deregulation index to all specifications. The first three the data are from the Bank World Development Indicators database. Financial globalization is log(foreign assets + liabilities/GDP), data are from Lane and Milesi-Ferretti (2007). The sample ends in 2005. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, deregulation index. Here, instead of three year changes in deregulation as dependent variable, we use three other dependent variables: three year changes in Abiad, Detragiache and Tressel (2008). Relative ICT use in finance is calculated from EU KLEMS database. Domestic credit is normalized by GDP, data from the Notes: This table shows the results of "false" first stage regressions, where we pretend to instrument for variables other than three year changes in the errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A7: Country Interaction Terms

	Non-bank domestic	Bank non-interest	Stock market	OTC turnover/Stock	OTC turnover/GDP	Global financial	Bank Concentration	Revenue-based	Profit-based	Employment
	credit/GDP	income share	capitalization/GDP	market turnover		center indicator^		competition index	competition index	protection index
Australia	0.76	0.49	0.64	0.25	0.12	1	54.9	0.27	0.16	1.17
Austria	0.31	0.30	0.13	0.19	90.0	0	87.9	0.73	0.19	2.75
Canada	0.44	0.46	1.04	0.14	90.0	1	44.4	0.74	0.14	0.92
Czech Republic	90.0	0.47	0.11	0.10	0.07	0	70.9	0.67	0.11	3.31
Germany	0.34	0.36	0.22	90.0	90.0	1	68.9	0.80	0.13	2.65
Denmark	0.26	0.28	0.29	0.33	0.17	0	82.3	0.42	0.25	2.16
Finland	0.16	0.38	0.31	0.04	0.04	0	97.0	98.0	0.05	2.45
United Kingdom	0.31	0.64	1.03	0.93	0.48	1	61.8	0.59	0.13	1.03
Italy	0.34	0.37	0.15	0.03	0.02	0	53.2	0.77	0.14	2.76
Japan	1.81	0.25	0.67	0.07	0.04	1	42.5	0.50	0.18	1.70
Korea	0.04	0.38	0.32	0.01	0.01	1	67.1	0.53	0.22	3.04
Netherlands	0.24	0.24	09'0	0.13	0.10	0	82.8	0.76	0.18	2.91
Portugal	0.18	0.36	0.14	0.03	0.04	0	52.5	0.76	0.15	4.58
Sweden	0.28	0.33	0.55	0.10	0.07	0	96.0	0.45	0.09	2.80
United States	1.33	0.39	0.79	0.04	0.04	1	20.1	0.46	0.22	0.26
Average	0.46	0.38	0.46	0.16	0.09	0.47	65.5	0.62	0.16	2.30
Std. Dev.	0.49	0.10	0.32	0.23	0.11	ı	21.6	0.17	0.05	1.11
B. Standardized valu	B. Standardized values (= [country value-average]/std.dev.	rage]/std.dev.)								
Australia	0.62	1.04	0.53	0.38	0.22		-0.49	-2.04	0.16	-1.02
Austria	-0.31	-0.76	-1.05	0.13	-0.25	ı	1.04	0.62	0.58	0.41
Canada	-0.03	0.74	1.80	-0.10	-0.29	ı	-0.98	0.70	-0.37	-1.24
Czech Republic	-0.81	0.87	-1.12	-0.28	-0.23	ı	0.25	0.30	-0.88	0.91
Germany	-0.23	-0.21	-0.78	-0.45	-0.31	i	0.16	1.05	-0.53	0.32
Denmark	-0.40	-0.99	-0.55	0.70	0.68	i	0.78	-1.16	1.73	-0.13
Finland	-0.61	-0.03	-0.50	-0.53	-0.42	i	1.46	1.38	-1.98	0.14
United Kingdom	-0.30	2.53	1.77	3.34	3.39	ı	-0.17	-0.21	-0.43	-1.14
Italy	-0.24	-0.13	-0.98	-0.58	-0.60	1	-0.57	98.0	-0.26	0.42
Japan	2.75	-1.25	0.63	-0.41	-0.43	1	-1.06	-0.69	0.50	-0.54
Korea	-0.85	0.01	-0.45	-0.66	-0.74	ı	0.08	-0.50	1.27	99.0
Netherlands	-0.44	-1.33	0.41	-0.14	0.05	i	0.80	0.78	0.37	0.55
Portugal	-0.56	-0.19	-1.00	-0.56	-0.45	1	-0.60	0.79	-0.11	2.05
Sweden	-0.37	-0.45	0.25	-0.29	-0.18		1.41	-0.97	-1.30	0.45
United States	1.78	0.13	1.03	-0.53	-0.44	1	-2.10	-0.92	1.27	-1.84

States; data from Global Financial Centres Index, produced by the think-tank Z/Yen. Bank non-interest income share, Stock market capitalization, Stock market turnover, Revenue-based competition index and Profit-based competition index Domestic credit covers all forms of credit to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators database. Bank domestic credit Schularick and Taylor (2014), except for Austria and Korea where the data are from the Bank World Development Indicators database. Non-bank domestic credit is total domestic credit minus bank credit. Bank non-Notes: The table reports country-level values that are used to interact with financial regulation and deregulation in regressions. The regressions use standardized values of these values, which are reported in the lower part of the table. commissions and other operating income. OTC turnover data are from Bank of International Settlements. The Global financial center indicator takes value 1 for Australia, Canada, Germany, United Kingdom, Japan, South Korea, United data are from the Financial Development Dataset, World Bank. The sample ends in 2005. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech interest income share is income generated by noninterest related activities as a percentage of total bank income; noninterest related income includes net gains on trading and derivatives, net gains on other securities, net fees and Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, Korea, Netherlands, Portugal, Sweden, United States. A Global financial center indicator is not standardized. Robust standard errors in parentheses.

Table A7: Country Interaction Terms

C. I callson conference	Non-honk domostic		declared of the	Jac. 2/		leienenit ledel		Lead of the Co.	Local Libert	Anna ann an Innan 7
	credit/GDP	income share	capitalization/GDP	market turnover	OTC turnover/GDP	center indicator	Bank Concentration	competition index	competition index	protection index
Non-bank domestic	1.00							-	-	
Bank non-interest	-0.18	1.00								
Stock market	0.44	0.41	1.00							
OTC turnover/Stock market turnover	-0.09	0.6200*	0.4870*	1.00						
OTC turnover/GDP	-0.11	0.6171*	0.4859*	*08860	1.00					
Global financial center indicator^	er 0.5156*	0.41	0.6262*	0.21	0.20	1.00				
Bank Concentration	-0.6495*	-0.25	-0.42	90.0	90:0	-0.6321*	1.00			
Revenue-based competition index	-0.43	-0.10	-0.34	-0.22	-0.20	-0.36	0.23	1.00		
Profit-based competition index	0.29	-0.33	0.04	0.01	-0.03	0.23	-0.35	-0.4494*	1.00	
Employment protection index	-0.5851*	-0.38	-0.7953*	-0.39	-0.35	-0.6630*	0.4852*	0.4505*	-0.19	1.00
D. Spearman correlation coefficients	ion coefficients									
	Non-bank domestic credit/GDP	Bank non-interest income share	Stock market capitalization/GDP	OTC turnover/Stock market turnover	OTC turnover/GDP	Global financial center indicator^	Bank Concentration	Revenue-based competition index	Profit-based competition index	Employment protection index
Non-bank domestic credit/GDP	1.00									
Bank non-interest income share	0.04	1.00								
Stock market capitalization/GDP	0.5277*	0.26	1.00							
OTC turnover/Stock market turnover	0.23	0.08	0.29	1.00						
OTC turnover/GDP	0.03	60.0	0.19	*9906.0	1.00					
Global financial center indicator^	er 0.5577*	0.43	0.6804*	0.05	-0.06	1.00				
Bank Concentration	-0.6154*	-0.29	-0.43	0.22	0.33	-0.6186*	1.00			
Revenue-based competition index	-0.26	-0.09	-0.36	-0.41	-0.38	-0.28	0.17	1.00		
Profit-based competition index	0.17	-0.34	0.10	0.05	-0.10	0.19	-0.31	-0.4439*	1.00	
Employment protection index	-0.7478*	-0.33	-0.7357*	-0.44	-0.22	-0.6186*	0.41	0.31	-0.14	1.00

other operating income. OTC turnover data are from Bank of International Settlements. The Global financial center indicator takes value 1 for Australia, Canada, Germany, United Kingdom, Japan, South Korea, United States; data from Global Domestic credit covers all forms of credit to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators database. Bank domestic credit data income share is income generated by noninterest related activities as a percentage of total bank income; noninterest related income includes net gains on trading and derivatives, net gains on other securities, net fees and commissions and are from Jorda, Schularick and Taylor (2014), except for Austria and Korea where the data are from the Bank World Development Indicators database. Non-bank domestic credit is total domestic credit minus bank credit. Bank non-interest Notes: The table reports country-level values that are used to interact with financial regulation and deregulation in regressions. The regressions use standardized values of these values, which are reported in the lower part of the table. Financial Centres Index, produced by the think-tank Z/Yen. Bank non-interest income share, Stock market capitalization, Stock market turnover, Revenue-based competition index and Profit-based competition index data are from the Financial Development Dataset, World Bank. The sample ends in 2005. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, Korea, Netherlands, Portugal, Sweden, United States. A Global financial center indicator is not standardized. Robust standard errors in parentheses.

Table A8: Finance Skilled Relative Wages---Interactions with Deregulation

(10)

(6)

(8)

<u>-</u>

(9)

(2)

4

(3)

(2)

(1)

				A. De	A. Dependent Variable: Finance skilled relative wage	ance skilled relative v	/age			
Interaction variable (standardized, except in column 6):	Non-bank domestic credit/GDP	Bank non-interest income share	Stock market capitalization/GDP	OTC turnover/Stock market turnover	OTC turnover/GDP	Global financial centre indicator^	Employment protection index ^^	Bank concentration	Revenue-based competition index	Profit-based competition index
Financial deregulation index, t-3 * interaction variable	-0.0135	0.407***	0.711***	0.274***	0.246***	1.030***	-0.964***	-0.0317	-0.474***	-0.0140
	(0.0859)	(0.0706)	(0.0872)	(0.0646)	(0.0615)	(0.157)	(0.0866)	(0.0860)	(0.0568)	(0.0483)
Financial deregulation index, t-3	0.323	0.203	0.540***	0.192	0.244	-0.275*	0.0578	0.327	-0.270*	0.326
	(0.211)	(0.163)	(0.153)	(0.215)	(0.217)	(0.164)	(0.124)	(0.228)	(0.152)	(0.220)
Finance relative ICT intensity, t-3	0.990***	1.091***	1.130***	***666.0	0.962***	1.145***	0.917***	1.035***	0.950***	0.981***
	(0.295)	(0.274)	(0.232)	(0.282)	(0.281)	(0.277)	(0.222)	(0.282)	(0.289)	(0.316)
Financial globalization, t-3	-0.0754	-0.0537	-0.0391	-0.0613	-0.0692	0.0378	*0.0967*	-0.0789	-0.0282	-0.0801
	(0.0718)	(0.0620)	(0.0556)	(0.0636)	(0.0647)	(0.0711)	(0.0553)	(0.0715)	(0.0622)	(0.0707)
Domestic credit/GDP, t-3	0.539***	0.593***	0.196**	0.499***	0.504***	0.219**	0.205**	0.519***	0.284***	0.532***
	(0.144)	(0.107)	(0.0804)	(0.103)	(0.106)	(0.0991)	(0.0840)	(0.131)	(0.103)	(0.119)
Observations	341	341	341	341	341	341	333	341	341	341
Number of countries	15	15	15	15	15	15	14	15	15	15
R-squared	0.731	0.780	0.821	0.754	0.751	0.785	0.838	0.731	0.791	0.731
				B. Dependent Va	B. Dependent Variable: Changes from t to t+3 in finance skilled relative wage	to t+3 in finance skill	ed relative wage			
Interaction variable (standardized, except in column 6):	Non-bank domestic credit/GDP	Bank non-interest income share	Stock market capitalization/GDP	OTC turnover/Stock market turnover	OTC turnover/GDP	Global financial centre indicator^	Employment protection index ^^	Bank concentration	Revenue-based competition index	Profit-based competition index
Change in financial deregulation, t-3 to t * interaction variable	0.249**	0.249***	0.272***	0.161**	0.158**	0.278	-0.412***	0.277***	-0.248***	-0.188*
	(0.116)	(0.0786)	(0.0897)	(0.0735)	(0.0706)	(0.222)	(0.147)	(0.103)	(0.0877)	(0.103)
Change in financial deregulation, t-3 to t	0.222*	0.185	0.228**	0.169	0.188	0.0813	0.123	0.242**	0.157	0.288**
	(0.118)	(0.115)	(0.115)	(0.129)	(0.125)	(0.133)	(0.117)	(0.119)	(0.107)	(0.128)
Change in finance relative share of ICT in capital stock, t-3 to t	-0.454	-0.496*	-0.514*	-0.439	-0.423	-0.535*	-0.451	-0.581*	-0.472	-0.335
	(0.296)	(0.299)	(0.292)	(0.297)	(0.296)	(0.321)	(0.280)	(0.304)	(0.308)	(0.303)
Change in financial globalization, t-3 to t	0.0396	0.0170	0.0284	0.0310	0.0312	0.0243	0.0278	0.0168	0.0152	0.0348
	(0.0605)	(0.0614)	(0.0611)	(0.0609)	(0.0609)	(0.0598)	(0.0602)	(0.0604)	(0.0596)	(0.0598)
Change in domestic credit/GDP, t-3 to t	-0.149**	-0.154**	-0.147**	-0.157**	-0.157**	-0.154**	-0.133*	-0.146**	-0.120*	-0.178**
	(0.0680)	(0.0715)	(0.0712)	(0.0708)	(0.0708)	(0.0700)	(0.0699)	(0.0694)	(0.0709)	(0.0694)
Observations	278	278	278	278	278	278	274	278	278	278
Number of countries	15	15	15	15	15	15	15	15	15	14
R-squared	0.467	0.472	0.471	0.464	0.464	0.460	0.479	0.471	0.472	0.463

Notes: All regressions include country fixed effects and year fixed effects. In Panel A the right hand side variables are lagged three periods. In Panel B the right hand side variables are the three-year changes (from 1-3 to t) for each variable. Deregulation data are from Abiad, Detragiache includes net gains on trading and derivatives, net gains on other securities, net fees and commissions and other operating income. OTC turnover data are from Bank of International Settlements. The Global financial centre indicator takes value 1 for Australia, Canada, Germany, United Kingdom, Japan, South Korea, United States; data from Global Financial Centres Index, produced by the think-tank 2/Yen. Bank non-interest income share, Stock market capitalization, Stock market turnover, Revenue-based competition index and Profit-based competition index data are from the Financial Development Dataset, World Bank. The sample ends in 2005. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, and Tressel (2008). The dependent variable as well as relative ICT use in finance are calculated from EU KLEMS database. Domestic credit covers all forms of credit to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators database. Bank domestic credit data are from Jorda, Schularick and Taylor (2014), except for Austria and Korea where the data are from the Bank World Development Indicators database. Non-bank domestic credit is total domestic credit minus bank credit. Financial globalization is log(foreign assets + liabilities/GDP), data are from Lane and Milesi-Ferretti (2007). Bank non-interest income share is income generated by noninterest related activities as a percentage of total bank income; noninterest related activities Italy, Japan, Korea, Netherlands, Portugal, Sweden, United States. A Global financial center indicator is not standardized. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A9: Finance Relative Wages and Relative Skilled Wages---Interactions with Anglo-Saxon Dummy

	(1)	(2)	(3)	(4)
			Changes fr	om t to t+3
Dependent Variable:	Finance relative wage	Finance relative skilled wage	Finance relative wage	Finance relative skilled wage
Financial deregulation index, t-3 * interaction variable	1.095***	1.419***		
	(0.0848)	(0.113)		
Financial deregulation index, t-3	-0.160	-0.234*		
	(0.113)	(0.122)		
Finance relative ICT intensity, t-3	0.578***	1.273***		
	(0.184)	(0.236)		
Financial globalization, t-3	0.226***	-0.0655		
	(0.0485)	(0.0505)		
Domestic credit/GDP, t-3	0.201***	0.411***		
	(0.0613)	(0.0818)		
Change in financial deregulation, t-3 to t * interaction variable			1.044***	0.796***
			(0.190)	(0.208)
Change in financial deregulation, t-3 to t			-0.0311	-0.0702
			(0.122)	(0.133)
Change in finance relative share of ICT in capital stock, t-3 to t			-0.585**	-0.546*
			(0.251)	(0.284)
Change in financial globalization, t-3 to t			0.0347	0.0146
			(0.0584)	(0.0609)
Change in domestic credit/GDP, t-3 to t			-0.0842	-0.126*
			(0.0660)	(0.0719)
Observations	356	341	293	278
Number of countries	15	15	15	15
R-squared	0.851	0.848	0.473	0.488

Notes: All regressions include country fixed effects and year fixed effects. In columns 1 and 2 the right hand side variables are the three-year changes (from t-3 to t) for each variable. In the last two columns, the right hand side variables are the three-year changes (from t-3 to t) for each variable. Deregulation data are from Abiad, Detragiache and Tressel (2008). The dependent variable as well as relative ICT use in finance are calculated from EU KLEMS database. Domestic credit covers all forms of credit to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators database. Financial globalization is log(foreign assets + liabilities/GDP), data are from Lane and Milesi-Ferretti (2007). The Anglo-Saxon dummy takes value 1 for Australia, Canada, United Kingdom, United States. The sample ends in 2005. The sample of 15 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, Korea, Netherlands, Portugal, Sweden, United States. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A10: Descriptive Statistics for and Correlations for Bank Concentration Regressions

A. Descriptive Statistics								
	Mean	S.D.	Min	p10	p25	p50	p75	06d
Finance relative wage (t)	1.72	0.33	1.30	1.41	1.53	1.61	1.89	2.08
Finance skilled relative wage (t)	1.47	0.23	0.98	1.16	1.19	1.50	1.64	1.76
Finance relative ICT intensity (t-3)	0.27	0.18	-0.06	0.10	0.18	0.25	0.30	0:20
Domestic credit/GDP (t-3)	1.39	0.67	0.42	0.56	1.01	1.38	1.65	2.14
Financial globalization (t-3)	1.12	0.58	0.05	0.43	09.0	1.26	1.51	2.06
Log bank concentration (t-3)	-0.41	0.39	-1.46	-1.05	-0.53	-0.33	-0.13	0.00
B. Correlations								
			Non-bank					
	Finance relative	Domestic credit	domestic	Bank domestic	Household bank Corporate bank	Corporate bank	Financial	Bank
	ICI IIITEIISITÀ		credit/GDP	credit/GDF	credit/GDP	credit/GDP	gionalizationi	concentration
Finance relative ICT intensity	1							
Domestic credit/GDP	-0.14	1						
Non-bank domestic credit/GDP	-0.06	0.89	1					
Bank domestic credit/GDP	-0.17	0.15	-0.31	1				
Household bank credit/GDP	-0.10	-0.25	-0.55	69.0	П			
Corporate bank credit/GDP	-0.12	0.45	0.09	0.77	0.12	1		
Financial globalization	0.18	-0.49	-0.69	0.49	0.78	0.04	1	
Bank concentration	0.19	-0.61	-0.76	0.36	0.27	0.27	0.39	1

log(foreign assets + liabilities/GDP), data are from Lane and Milesi-Ferretti (2007). Statistics are computed for 60 observations for 16 countries. The range for t is 2000-2005. The Notes: Bank concentration is the log of the share of the largest three banks; data from the World Bank. Domestic credit covers all forms of credit to the non-financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators database. Bank domestic credit data are from sample of 16 countries is determined by ICT data availability in the EU KLEMS data; these countries are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, domestic credit minus bank credit. The split of bank domestic credit to households versus corporations is given in Jorda, Schularick and Taylor (2014). Financial globalization is Schularick and Taylor (2014), except for Austria and Korea where the data are from the Bank World Development Indicators database. Non-bank domestic credit is total United Kingdom, Italy, Japan, Korea, Netherlands, Portugal, Sweden, United States, Slovenia. All correlations above 0.3 are statistically significant.

Table A11: Bank Concentration & Finance Relative Wages, 2000-2005

	(1)	(2)	(3)	(4)
Dependent Variable:	Finance relative wage	itive wage	Finance skilled relative wage	relative wage
Bank concentration, t-3	0.145**	0.132**	0.199***	0.194**
	(0.0535)	(0.0532)	(0.0716)	(0.0723)
Finance relative share of ICT in capital stock, t-3		-0.488**		-0.511*
		(0.207)		(0.281)
Financial globalization, t-3		-0.0128		-0.0660
		(0.0701)		(0.0952)
Domestic credit/GDP, t-3		-0.0128		-0.0462
		(0.0364)		(0.0494)
Observations	09	09	09	09
R-squared, within	0.329	0.282	0.260	0.340
Number of countries	16	16	16	16

Ferretti (2007). The sample is from 1997 (start of bank concentration data) to 2005. These regressions include 16 countries (15 are: Australia, Austria, Canada, Czech Republic, Germany, Denmark, Finland, United Kingdom, Italy, Japan, Korea, Netherlands, financial sector on a gross level, except for credit to the government, which is on a net basis; data from the World Bank World Development Indicators database. Financial globalization is log(foreign assets + liabilities/GDP), data are from Lane and Milesicountries in our previous regressions plus Slovenia for which deregulation data was not available). The sample of 16 countries concentration is the log of the share of the largest three banks; data from the World Bank. The dependent variables as well as relative ICT use in finance are calculated from EU KLEMS database. Domestic credit covers all forms of credit to the non-Notes: All regressions include country and year fixed effects. The right hand side variables are lagged 3 periods. Bank Portugal, Slovenia, Sweden, United States. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table A12: Missing Observations on Finance Immigrants

A. Skilled Immigrants

	Origin									_
Destination	AUS	AUT	DNK	FIN	HUN	IRL	ITA	LUX	PRT	Total
AUS	0	0	0	0	0	0	0	1	0	1
DNK	0	0	0	0	0	0	0	1	0	1
ESP	1	0	0	1	1	0	0	1	0	4
FIN	0	0	0	0	1	0	1	1	1	4
HUN	0	0	1	1	0	1	0	1	1	5
PRT	0	1	0	0	1	0	0	0	0	2
Total	1	1	1	2	3	1	1	5	2	17

A. Unskilled Immigrants

	Origin									
Destination	AUS	AUT	DNK	ESP	FIN	HUN	IRL	LUX	SWE	Total
AUS	0	0	0	0	0	0	0	1	0	1
CAN	0	0	0	0	0	0	0	1	0	1
ESP	0	1	0	0	0	1	0	0	0	2
FIN	0	0	0	1	0	0	1	0	0	2
HUN	1	0	1	0	1	0	1	1	1	6
IRL	0	0	1	0	0	0	0	1	0	2
PRT	0	0	0	0	1	1	0	0	0	2
SWE	0	0	0	0	0	0	0	1	0	1
Total	1	1	2	1	2	2	2	5	1	17

Notes: The table reports missing (those with the value of zero) bilateral observations in the OECD immigration data for the finance sector. Although there are 17 missing observations for each type of worker employed in finance, these missing observations overlap in only 7 cases.