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Abstract

We study risk based portfolios with an emphasis on equal risk contribution, in a
time series momentum setting. The benchmark strategies in which we compare
the equal risk contribution includes inverse volatility, minimum variance, 1/N and
60/40. We perform an out of sample horserace of all strategies in a broad asset
class environment. We then compare these portfolios to time series momentum
long-only and long-short portfolios made up of the constituents of the broad asset
classes. We find that risk based portfolios offers attractive traits mainly by
controlling risk and avoiding large drawdowns. We also find that time series
momentum portfolios add significant value with low market exposure and
moderate momentum exposure, avoiding large drawdowns. We are skeptical of
the suitability of the long-short portfolios, even though they clearly offer the best
returns.
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Chapter 1 — Introduction

1.1 Background

The optimal allocation of wealth in a portfolio is a thoroughly researched subject
in finance. The foundation of what is considered modern portfolio theory dates
back to 1952 when Markowitz (1952, 1959) provided a framework to solve the
problem of efficient asset allocation. The method has brought to light two central
principles which has since inception been at the core of finance, both in academia
and practice. The first is that diversification provides excellent risk management.
He shows that the strong point of diversification not only comes from the number
of assets in a portfolio, but also the correlations among them. The second
principle refers to how investors should consider expected return desirable and
variance of return undesirable. Hence, investors should maximize the expected
return for a given volatility. A portfolio that satisfies this is called the mean-
variance efficient. Although the method is sophisticated and powerful, it does
present difficulties in its practical implementation. Firstly, it tends to create
portfolios that are highly concentrated in a limited subset of the full set of assets
or securities (Maillard, 2008). Secondly, the proposed solution is highly sensitive
to the input parameters. According to Merton (1980), small changes to the
expected return, which by default is very difficult to estimate with accuracy, can

lead to significant variations of the portfolio composition.

Markowitz’s portfolio theory would lay the foundation for the Capital Asset
Pricing Model (CAPM) by William F. Sharpe (1964) has been at the core of asset
allocation decisions for the past fifty years. Under certain assumptions, the model
states that market-capitalization weighting is efficient for asset allocation,
meaning that for a given level of risk, any two portfolios should have the same
expected return. In practice, these assumptions do not hold because investors do
not all have homogeneous expectations and they cannot sell short without penalty
(Demey et al., 2010). Thus, the CAPM appears to be inefficient (see Haugen &
Baker, 1991 and Hsu, 2006).

In light of these discoveries, a range of risk based asset allocation strategies have

emerged. Instead of diversifying on the basis of capital invested in each asset,
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these methods aim to diversify the risk of the portfolio. The simplest of them all is
the equally weighted (EW) approach, which have only to be driven by the number
of asset classes in the investment universe. It is highly improbable that this
portfolio is efficient in a mean-variance framework as it requires that the ex-ante
expected returns and volatility are equal and that correlations among asset classes
are uniform (Braga, 2016). That said, Demiguel et al (2011) found that none of
the theoretically more robust models performed consistently better out-of sample.
Another approach is the minimum-variance (MV) portfolio, which is situated on
the mean-variance efficient frontier with the lowest possible risk. It is recognized
as being robust due to its unique solution and because it is the only mean-variance
efficient portfolio that does not incorporate expected returns. However, the
portfolio typically suffers from large drawdowns due to it being highly
concentrated in a few asset classes (Demey et al., 2010). Inverse volatility (IV),
also known as naive risk parity is a third method which derives its portfolio
weights by investing proportionally to the inverse of its volatility; it is then
normalized to guarantee the weights sum to one. This strategy is computationally
attractive because it obtains its weights with no regard to the correlation among
assets. This is what separates it from the strategy that will be the main focus of
this paper, namely equal risk contribution (ERC), also known as risk parity,
originated by Maillard et al. (2008). Roughly speaking, the resulting portfolio is
similar to a MV portfolio subject to a diversification constraint on the weights of
its components. Although such a portfolio typically exhibits attractive risk-
adjusted returns and diversification, it tends to provide somewhat low returns
because of its concentration into low-risk assets. Investors address this issue by
applying leverage to target a desired level of return and risk (Asness et. al., 2012).
However, applying leverage introduces its own risks and practical concerns. As an
alternative, we will combine the allocation scheme as proposed by the ERC
framework with a trend following filter. More precisely, our methodology follows
that of Moskowitz et al. (2012) who employ what they call time series momentum
(TSM) to select what securities to buy or sell for each period. Moskowitz et al.
(2012) relates TSM to the phenomenon known as “momentum” in the finance
literature, which is primarily cross-sectional in nature. Cross-sectional momentum
(CSM) focuses on the relative performance of securities, finding that securities

that outperformed their peers over the past three to 12 months continue to do so
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on average over the next month. TSM on the other hand selects securities based

on their absolute performance, i.e. its own past return.

1.2 Research question

The aim of this paper is to extend previous work in the area of combining risk
based allocation strategies with trend following in a multi-asset class context.

In theory, ERC appears to have very attractive qualities, however the amount of
leverage needed to get equally attractive returns presents complications to most
investors and institutions. We investigate whether combining the strategy with
TSM can be a solution to the problem. Another area of interest is whether ERC is
a superior method to IV which is the standard method to size time series
momentum positions in the finance literature. To test this, we apply all four risk
based allocation strategies to our TSM results to see which performs best both
under a long only and long-short scenario. In addition, we create benchmark
strategies without TSM to see if trend following itself is a solution to the return
problem. We also compare all these results to the average investors’ favorite

portfolio, namely the traditional 60/40 portfolio.

1.2 Motivation and contribution

Over the last two decades, investors holding the market portfolio or the 60/40
portfolio have experienced large drawdowns during the financial crisis of 2007-
2008 and the dot-com bubble. This has raised awareness around how traditional
portfolios may be insufficiently diversified. The 60/40 portfolio tries to diversify
by dividing its investments between equities and bonds, however looking at how
much each asset contributes to the overall risk of the portfolio we see how
equities dominates in terms of risk contribution. Equities are much more volatile
than bonds and when viewed from a risk perspective, the 60/40 is mainly an
equity portfolio since almost the entire variation in returns is explained by the
variation in equity markets (Asness et al., 2011). ERC addresses this issue by
diversifying by risk not by dollars. To achieve this, one typically need to invest
more in low-risk assets than high-risk assets. Consequently, overall portfolio
returns tend to be quite low. An alternative to using leverage to boost returns is to
combine the strategy with another investment strategy that specifies what to invest

in, but not how much in each asset. Rule based investment strategies such as trend
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following and momentum does this and there exist substantial literature that find
support for the concept that momentum in financial markets offer significant
explanatory power with regard to future returns across markets and asset classes
(Clare et al. 2015). Moskowitz et al. (2012), finds TSM to be superior to more
traditional momentum rules, we will therefore combine this approach with ERC.
TSM is a relatively new concept, this paper will therefore contribute with further
research on the asset-pricing anomaly that it is in a multi asset class context. To
our knowledge, little research has been done on combining the more sophisticated
weighting scheme that is ERC with momentum trading. The vast majority of the
finance literature employ IV to size momentum positions. IV differ from ERC as

it ignores correlations between assets.

The rest of this paper is organized as follows: Chapter two digs deeper into the
motivation behind the study and tries to bring forward why the issue at stake
deserves more research and attention and what possible solutions it can solve.
Discoveries from similar studies on the same subject will be highlighted and
related to the thesis. The third chapter contains the theory and will define the
relevant theories for the study and derive the mathematics behind them.
Furthermore, chapter four explains the methodology for the thesis, i.e. how we go
about solving the issue based on the above theoretical framework. Chapter five
defines the investment universe in which the strategies will be tested and provide
an overview of the data used. In chapter six we provide the results with a
discussion of our findings and how they relate to relevant literature. Finally, in

chapter seven we conclude the paper.

Chapter 2 — Literature Review

ERC is a relatively new approach to asset allocation that came out of the industry
in a response to diversification challenges faced by traditional portfolios. The
strategy takes a heuristic approach to asset allocation and has therefore not been
subject to comprehensive examinations in academic literature. However, as of late
the strategy has gained traction from fund managers. This has been reflected in an

increased interest for the approach in the academic literature. Maillard et al.

8
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(2008) was the first to derive the theoretical properties for the strategy and found
some appealing characteristics with it. These include superior diversification
benefits along with increased robustness due to its lack of dependence on
expected return. Moreover, the paper show that the ERC portfolio appears to be an
attractive alternative to MV and EW portfolios and seems to offer good trade-off
between the other two strategies regarding its absolute level of risk. The distinct
risk budgeting characteristics that the approach offers leads to increasing
diversification benefits. Chaves et al. (2011) find that the ERC strategy has a
higher Sharpe ratio than both the MV and the mean-variance optimization;
however, it does not consistently outperform an EW portfolio or a buy and hold
approach. Furthermore, the ERC portfolio exhibit more balanced risk and thus
lowers volatility over time. Anderson et al. (2012) did extensive out-of-sample
backtesting on both an unlevered and levered ERC portfolio performance relative
to other heuristic benchmark portfolios over an 85-year period (1926 — 2010).
Over this horizon the levered ERC strategy substantially outperformed the 60/40
strategy, the unlevered ERC and value-weighted strategies. However, taking into
account borrowing costs that exceed the risk-free rate, the risk parity barely
outperformed the 60/40 portfolio. Furthermore, taking trading costs into account,
it seemed that the 60/40 slightly outperformed ERC, but the results were not
statistically significant. Overall, the unlevered risk parity strategy delivered
superior risk-adjusted returns measured by the Sharpe-ratio. Poddig and Unger
(2012) examined the resilience of ERC asset allocation and shows that the
approach is more robust to changes in the input parameters. Furthermore, the ERC
portfolio has a smaller estimation error than the mean-variance optimization

model developed by Markowitz (1952).

TSM has its roots in the paper “Time series momentum” by Moskowitz et al
(2012). They use forward and future contracts from four broad asset classes
(equities, bonds, currencies and commodities) and find strong positive
predictability from a security’s own past returns for almost all contracts. It appears
as return patterns persist for one to 12 months and partially reverses over longer
horizons. This is consistent with sentiment theories of initial under-reaction and
delayed over-reaction. Further, they find that a diversified portfolio of 58
contracts provide abnormal returns with limited exposure to standard asset pricing

factors. Moskowitz et al (2012) employ the IV method in determining the
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portfolio weights. Baltas (2015) hypothesize that that the IV weighting scheme
leads to uneven risk allocation, especially under recent market conditions where
we have seen a dramatic increase in correlations between assets. He finds that an
ERC trend following portfolio outperforms an IV variant of the entire sample
period. Moreover, during the post crisis period (2009-2013), the ERC variant
excels and the Sharpe ratio more than doubles. Clare et al (2015) also finds that
combining ERC with a trend following filter enhance the performance relative to
a pure ERC strategy. There is controversy surrounding momentum and why the
price anomaly persist. Jegadeesh and Titman (1993) point to underreaction and
slow incorporation of new information by investors in explaining their findings.
This explanation implies that investors are irrational and challenge the theory of
efficient markets. Crombez (2001) proposes an alternative explanation where the
momentum effect can persist even if investors are rational and markets efficient
due to an information market imperfection in that the strength of the expert
evidence is noisy. Hence, the costly public information they reflect through the
forecasts is slowly diffused through the market and prices do not fully reflect all

costly public information.

Chapter 3 — Theoretical Framework

In this chapter, the theoretical framework for conducting the analysis will be
presented. The theory includes a general theoretical foundation of portfolio and
asset allocation theory as well as strategy and performance specific theory.
Throughout the thesis, most formulas will be computed using matrix formulas
because of its enhanced convenience. Furthermore, matrix formulas are expressed

in bold to not confuse them with the conventional formulas.

3.1 Asset allocation theoretical foundation

To understand the portfolio strategies as well as the asset allocation principles
studied in the thesis, we need some background theory. For a portfolio consisting
of n risky assets, the weight invested in each asset is denoted by X = (X4, ..., Xp),
forming a vector of weights in the portfolio. Furthermore, the portfolio satisfies

the budget constraint of being fully invested, that is Y}{L, x; = 1 and short selling

10



GRA 19502

is not allowed in the general case. Let r = (Iy, ..., I;) be the return of the assets
forming a vector of returns where the return on asset i from period [0, 1] is
- P1—Pp
1 Pio

Furthermore, we can write the return of the portfolio consisting of n assets as

n

r(x) = ZXiri

i=1
In matrix form the return of the portfolio would be
r(x) =x'r
Logarithmic returns are used throughout the thesis for the purpose of aggregating
returns over time. Because logarithmic returns aggregate across time, the

cumulative return of a particular return series at time t is

T T
Zrt = Zln(l +1)
t=1 t=1

However, noting Meucci (2010), it is important to bear in mind that logarithmic
returns do not aggregate across asset classes and that the two therefore should be
used in a consistent manner.

We have decided to express average annual returns as an arithmetic average of
returns. This is because of its superior statistical characteristics as well as to better
reflect a constant dollar-exposure investor, i.e. one that invests and withdraws
capital to keep constant exposure. The formula for arithmetic average is simply

[r; + Tripgq+...+77]

RArithmetic - T

3.2 Equal risk contribution (ERC)
3.2.1 Theory behind MRC & TRC

To understand the intuition behind equal risk contribution we turn to the
theoretical framework derived by Maillard et al. (2008). For each asset class to be
correctly accounted for in the portfolio one must define its total risk contribution
(TRC) as well as the marginal risk contribution (MRC). Take a portfolio x =

(X1,...,Xn) With n assets and variance o7 for asset i, let 0;j be the covariance

between asset i and j and X be the covariance matrix. Let 0(x) = VXTEX be the

standard deviation of the portfolio.

11
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The marginal risk contribution is the derivative of total portfolio standard
deviation with respect to x; and is the risk added to the portfolio by an infinitely

small increase in the weight of asset i. Mathematically it is defined as:

00(x) X;0% + Xi.:X{0:: X
9, 0(x) = (x) _ A% j#i%i0h _ MRC =
! 0X; o(x) VxTEx

An asset i ’s total risk contribution to the portfolio is simply its MRC multiplied by

its weight.

XX
0i(x) = x;* 05x,0(x) = TRC = Xi\/T_Z
xTEx

The risk of the portfolio is therefore the sum of the total risk contribution of each

asset.

n

o) = ) 0109

i=1

Furthermore, the optimal weight of assets x* is

x* = {x€e[0,1]"2x; = 1,%;* 0x,0(x) =X axjc(x) foralli,j}

Noting that x; - d4.0(x) = TRC = xi\/% , and denoting (¥x); as the covariance
X' 2X

matrix of portfolio x where i denotes the i row of the vector issued from the

product of X with x, we have that
x"={xe[0,1]M:2Zx; = 1,x; - (Zx); = x; - (Ex); forall i, }

The optimal portfolio construction denoted above takes into account the no short
selling constraint, indicating weights between zero and one for each asset class.
Furthermore, the sum of the weights of the individual asset classes satisfies the
budget constraint, thus sums to one. The objective function is to equalize the total
risk contribution of each asset class taking into account the covariance between
the asset classes. That is, all asset classes should have the same behavioral impact

on the portfolio risk.

12



GRA 19502

-1
Knowing that B; = 0ix/0%(x) and 0;(x) = x;B;0(x) the optimal weights x; = B‘T

Therefore, the portfolio weight is inversely related to the beta of the individual
asset classes. Note that the betas represent the covariance of each asset class with
the constructed portfolio. However, in order to estimate the beta we need the
portfolio weight, making the solution endogenous. We therefore need a numerical
algorithm to deal with the endogeneity. Maillard et al. (2008) recommends using a
sequential quadratic programming algorithm for solving the following
optimization problem:
x* = arg min f(x)
st. 1Tx=1land0<x<1

where:

£ =) ) aE0; - %02

i=1 j=1
For the thesis, the optimization problem will be solved using MATLAB'’s

function “‘fmincon” with the option of sequential quadratic programming (‘sqp’).

3.3 Benchmark investment strategies

3.3.1 60/40 Portfolio

The traditional 60/40 portfolio’s objective is to maintain a 60% weight exposure
to equities and 40% weight exposure to bonds. While this approach to asset
allocation has long traditions, because equities have historically been much more
volatile than bonds, the risk in the portfolio measured by the volatility has mainly
been driven by equities. It is still widely used among both practitioners and

private individuals.

3.3.2 Equally weighted portfolio (1/N)

The equally weighted portfolio seeks to equalize the weight of each asset class in
the portfolio. The 1/N portfolio is viewed as a naive portfolio strategy, however it
is widely used in practice and some suggest that it even outperforms optimization
strategies (DeMiguel et al. 2007).

The optimal portfolio weight in the 1/N strategy is simply:

13
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3.3.3 Inverse volatility portfolio (IV)

The Inverse Volatility (sometimes referred to as Naive Risk Parity) portfolio
seeks to weight assets by the inverse of their volatility, hence the portfolio seeks
to down weight more risky assets so that they have equal volatility impact to the

portfolio. Mathematically, the weights of the portfolio are computed as follows

1
—_Oi
=N 1

n=1g;
The Inverse Volatility portfolio is easy to compute and is therefore
computationally superior to the Equal Risk Contribution portfolio. However, it
does not account for correlations between asset classes and thereby not correctly
accounting for their risk behavior in a portfolio. Furthermore, because of this
some asset classes might be unfavorably penalized in terms of their weighting in
the portfolio. Moreover, looking at correlations between assets over time, we see

that they vary quite severely leading to differences in their impact of a portfolio

over time (see figure F & G).

3.3.4 Minimum variance portfolio (MV)

As stated earlier, the Minimum Variance portfolio is located at the leftmost of the
efficient frontier. Chopra and Ziemba (1993) among others, suggests that portfolio
weights are most sensitive to estimation errors related to the mean, while variance
and covariance estimation affect less. The minimum variance portfolio is a good
benchmark for our portfolio horserace because of the fact that it is estimated using
only the covariance matrix, thus ignoring expected returns. Minimum variance
aims to form optimal portfolio weights such that the overall portfolio variance is
minimized. This portfolio is located on the efficient frontier in the sense that it
offers the best possible return for a given level of risk. Theoretically, because it is
the minimum variance portfolio on the efficient frontier, it should also have the
lowest ex ante expected return. However, contrary to theory, the minimum
variance outperforms in many cases other asset allocation strategies and delivers
higher ex post returns. Following the theoretical framework of Clarke et. al
(2012), the objective of the minimum variance function is to minimize ex-ante

(i.e. estimated) portfolio risk. Portfolio risk is defined as

op? = XTzX
14
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Where X is an N-by-/ vector of asset weights and X is an N-by-N asset covariance

matrix. Braga (2012) proposes the following optimization program

N . N N
Min Z {u-‘,—t:rr-:l_ + Z Z WiW; 00 p;;
WL i=l i=1 j=1
J#i
Using matrix notation, we get
Min w'Zw
Wk
s.t.
we=1
w] =0
The optimization programs are quadratic programming problems and can only be
solved using a numerical iterative procedure. For that reason, the optimization

problem will be solved using MATLAB’s function ‘“‘fmincon’ with the option of

sequential quadratic programming (‘sqp’).

3.4 Time series momentum (TSM)

The underlying assumption of time series momentum is that an assets’ past
returns predicts its future returns. This means that assets that previously have risen
continue to rise and assets that have previously fallen continue to fall. We follow
the time series momentum methodology proposed by Moskowitz et al (2012). The
decision of whether to invest in a particular asset at time t is determined by the
sign of the cumulative return over a lookback period minus the most recent return.
The purpose of this thesis is not to optimize time series momentum and for those
reasons we adopt fully the optimal lookback period and holding period developed
by Moskowitz et al. (2012). They show that the optimal lookback period for most
cases is 12 months and that the optimal holding period generally is 1 month. Thus,

the TSM sign is calculated as follows:

K
TSM_sign = Z(rk) - 1%
k=1

And the return of the strategy is calculated as follows:

TSMOM,s

Teer =S8N 13, for all TSM_sign; > 0

where S; ; is security i at time t.

15
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3.4.1 Behavioral finance

The economic rationale behind time series momentum can be explained by the
field of behavioral finance. Most of the theory behind this was developed by
Kahneman and Tversky (1979) and relates to investors’ behavioral biases. For
momentum strategies to work, a security has to trade above or below its
fundamental value. A common finding in academia is that major shifts in
fundamental variables moving asset prices are met with under-reaction.
Furthermore, the price trend often overextends fundamental value due to herding
behavioral, which is the tendency for investors to buy and sell assets collectively.
This type of behavior could for example be seen leading into the dot-com bubble
0of 2000 - 2002. Anchoring is a behavioral bias relating to an investors tendency to
rely too heavily on initial information (“anchor”) in decision making. Kahneman
and Tversky (1979) finds that historical data provides a natural anchor for
investors. Furthermore, Shefrin and Statman (1985) finds that investors tend to
sell winners too early because they prefer to realize gains early and that they tend
to delay selling losers in an attempt to avoid losses, generally referred to as the
disposition effect. Kahneman and Tversky (1979) also points out that investors
tend to seek out information which they already find to be true and that they

regard recent price changes as representative of future return patterns.

3.5 Short selling

We allow for a long-short portfolio in the case of time series momentum. Further

explanation in given in the methodology chapter.

3.6 Performance measurements

Portfolio evaluation involves the determination of how a portfolio has performed
relative to some comparable benchmark. In order for the portfolio and the
benchmark to be comparable, some risk adjustment has to be performed to capture
return per unit of risk. Risk adjusted performance methods adjust the return to
take into account the differences in risk levels between the portfolio and the
benchmark. The performance evaluation methods regarded in this thesis will
capture the essence of asset allocation from a long-term investor’s perspective,

namely risk adjusted return, portfolio risk as well as risk distribution.

16
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3.6.1 Sharpe ratio

The Sharpe ratio is a portfolio evaluation measurement that computes the excess
return of an asset or a portfolio per unit of total risk. The excess return is the
return on the portfolio above the risk free rate (3 Month T-bill). Furthermore, the
total risk is the standard deviation of returns on the portfolio or asset. The
numerator captures the reward for investing in the portfolio or asset adjusted for
the risk free rate while the denominator captures the variability of returns of the
portfolio or asset (Encyclopedia of Finance). Furthermore, the Sharpe ratio is
widely used for both practitioners and scholars. As the analysis in the thesis does
not rely on expected returns because of its troubling features regarding its
estimation, it is important to notice that the Sharpe ratio is solely used as a
performance indicator using realized returns. Furthermore, it should be noted that
the ratio is sensitive to both the sample period as well as the frequency of returns
(i.e. daily, monthly, etc.) and should therefore be used primarily to decide upon
dominance with regard to the risk-return relationship between two portfolios. The
Sharpe ratio is a measure of the efficiency in terms of excess return per unit of
risk and is given by

SR(x) = %
Hence, for a portfolio with a higher Sharpe ratio than the benchmark we can
conclude that the portfolio outperformed the benchmark in terms of excess return
per unit of risk. However, we cannot say anything about the distribution of neither
returns nor risk, which might reveal additional valuable information we might
want to capture to evaluate the portfolio further. In order for us to be able to say

something about total outperformance of two portfolios we need to turn to the

maximum drawdown and rolling window returns.

3.6.2 Portfolio drawdown
While the drawdown of a portfolio does not say anything about the frequency of
losses, it is an important measure of portfolio performance because it is a measure

of capital preserved in the portfolio.

Using Chekhlov et al. (2005) for specifying maximum drawdowns we have that
for a given time interval stretching from [0,T], the maximum drawdown (MDD)

of portfolio x will be equal to:

17
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MDD(X)=Trr61ﬁ)Xt](WT - W)

3.6.3 Rolling window drawdowns

As it is an attractive trait of long-term asset allocation, we will measure the
average of rolling window drawdowns as well as the max and min of rolling
window drawdowns. Furthermore, we provide rolling window drawdowns over
the entire sample period to fully grasp the drawdown of all portfolios and
strategies That way we can measure portfolios not only on their maximum

drawdown but also in terms of their frequency of drawdowns.

3.7 Turnover and transaction cost

Transaction costs are important to consider as there typically is large variation
between the different strategies. Furthermore, a typical finding seems to be that
trading costs generally eat up excess returns of more complex strategies, leaving
them at par or even worse off than naive or simple strategies. For the purpose of
estimating transaction costs, the framework of Anderson et al. (2012) will be
used. Moreover, the budget constraint of all portfolios throughout the thesis is that
at all rebalancing dates, it needs to be fully invested, hence xT1, that is the sum of
the weights adds to one. At period t+1 the portfolio will be subject to rebalancing
due to its affection to prices, hence for any strategy, the modification of weights
needed to asset 7 at time 7 is:
%, = (1 +r1i1)Xe—1
2T X1
and the turnover required to balance is given by:

Turnover(x) = z

j

o %

Xijt — Xj,t|

Trading costs for any given strategy at time ¢ is therefore given by:
¢; = Turnover(x) - z;
where z; 1s the transaction cost measured in basis points (bp). The trading cost

adjusted returns are given by:

Ter—adj =Tt — Ct

18
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Chapter 4 — Methodology

We will construct the relevant portfolios using the appropriate theoretical
techniques developed, and using MATLAB for all computational purposes. The
portfolio construction is divided into two cases, one using the broad asset classes
(BAC), which will serve as a benchmark for both the ERC portfolio as well as the
TSM strategies. Second, we will construct time series momentum (TSM) on the
constituents of the broad asset classes, referred to as TSM strategies. The BAC
case is a horserace going back approximately 45 years with progressive adding of

asset classes. The TSM case is a horserace going back approximately 27 years.

4.1 Broad asset classes (BAC)

For the BAC case, we add asset classes progressively as they are available.
Starting in 1973/01, Dev Eqty, Us Corp Debt, Commodities and US Real Estate
are available. Global Sovereign Debt enters in 1985/12 and EM Eqty enters in
1987/12. For computational purposes, we therefore have three cases, one for four

asset classes, one for five and one for six.

4.1.1 Covariance matrix estimation BAC

The covariance matrix is estimated using an estimation window of 24 months and
rolled forward one month for each computation. All data is treated as an n x m
matrix with n being the length of the data and m being the number of asset classes.
For asset classes that have not yet entered, values are replaced with MATLAB’s
“nan”, referring to “not a number”. Furthermore, it is important to note that
cov(nan,r;¢) = nan and that the covariance matrix is symmetric. Thereby we can
easily remove all “nan” values after the covariance matrix is estimated to achieve
the proper size for each of the three cases. We have programmed a rolling window

covariance matrix in MATLAB for calculation of rolling window covariance

matrices for the entire sample period (see Appendix Matlab Code).

4.1.2 Portfolio construction BAC

All portfolios are constructed using monthly rebalancing. The purpose of this
thesis is not to develop a trading strategy, but rather to evaluate strategies.

Therefore, because all strategies are treated similarly, they are comparable. It is
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important to note that monthly rebalancing will incur higher portfolio turnover.
Furthermore, to adjust for the frequent rebalancing, we have calculated average
annual turnover for all portfolios. Performance will have to be seen in relation to
this. All returns are logarithmic and computed in excess of the risk-free rate. The
risk-free rate in our analysis is the 3-month T-Bill rate, which is de-annualized to
monthly returns. Furthermore, all portfolios are always fully invested, that is all
weights sum to one for all periods. To ensure out-of-sample testing, all estimates
are used to invest in the next period. For example, the covariance matrix based on

returns from period 1-24 is used to invest in period 25.

The 60/40 portfolio is a constant 60% weighting in developed equities and a 40%
constant weight in US corporate debt. Furthermore, 1/N is simply 1/N multiplied
by the return of the next period. For the IV portfolio, we calculate weights from
the diagonal elements of the covariance matrices used and then multiply with the
respective return in the next period. For ERC and MV, we use the rolling window
covariance matrix to minimize the respective objective function for the two
strategies using MATLAB’s “fmincon”. We then make a looped program such
that the process is carried forward to the next investable period. For a fair
comparison between all strategies we have decided not to have any restrictions on
the weights for any of the strategies. We find that ERC and MV are well
diversified during most of the sample period. However, during extreme bull or
bear markets, both tend to invest heavily in a few concentrated asset classes, thus
not making them particularly diversified. Lastly, because 60/40 & 1/N do not rely
on the covariance matrices, the returns of these strategies will be longer than that
of the others. To adjust for this, we delete the returns exceeding the length of the

other strategies.

4.2 Time series momentum

For the TSM case we use the constituents of the broad asset classes to investigate
whether we can identify winners and losers within the broad asset classes. For this
analysis, we follow closely the framework of Moskowitz et al. (2012). We have a
total of 94 indices within the six broad asset classes that we will include in the
TSM analysis. For a simpler computational process, we start our horserace where
all the securities are available (in contrast to progressive adding). There is a

somewhat equal number of securities within the broad asset classes to ensure a
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fair comparison between asset classes. Furthermore, every period we calculate the
cumulative returns for each security and subtract the last months return, consistent
with the framework of Moskowitz et al. (2012). This variable is the TSM_sign
variable in which investment decisions are based upon. We perform the TSM
filter on all strategies and size our positions according to 1/N, ERC, IV and MV

weighting scheme.

4.2.1 TSM long-only

For the TSM Long-Only case, we invest in only securities who’s TSM_sign is
positive. Furthermore, if the asset has a negative TSM_sign, we sell it and trade
into cash. The only difference in the TSM case relative to the BAC is that the
covariance matrix has to be calculated differently because the investable securities
varies with the sign of TSM_sign. All computations and objective functions are

equal.

4.2.2 Covariance matrix estimation TSM long-only

Covariance estimation for the TSM case is more complex than that of the BAC.
For each period, we invest only in the assets who’s TSM sign is positive.
However, because the covariance matrix is symmetric, we can first estimate it for
the entire sample, and then remove all rows and columns relating to securities
who’s TSM_sign is negative. This method is unproblematic to implement in
MATLAB. Furthermore, for each period we store the total number of securities in
the period as well as the number of securities with positive TSM_sign, we call this
variable w_risky assets. This weight equals the weight in risky assets and one
minus this weight equals the weight we invest in cash for each period. This way
we can calculate returns by multiplying the return of the TSM strategy with the
weight in risky assets and the return of the risk-free rate with one minus the

weight in risky assets.

4.2.3 TSM long-short

We allow for one long-short scenario with the TSM filter. We have recognized
that the variance of a short only portfolio is equal to the variance of the same
portfolio being long only. Furthermore, using the fact that the return of a strategy
is equal to the weight invested in the strategy multiplied by the return of the
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strategy, we simply calculate a long and short weight for all periods and multiply
by the returns. All optimization programs and objective functions are running on
long only objectives, however weights for the short-only portfolio are reversed
after optimization is complete. Finally, we multiply the long only and short only
returns with the net long exposure fraction for every period. This enables the
portfolio to always invest in all securities and be fully invested while allowing for
long-short positions. The main drawback of this method is that the strategies are
not always net long 100%. Performance characteristics has to be seen in relation

to the net long exposure.

4.2.4 Covariance matrix estimation TSM long-short

We know that each period, we will either go long or short, depending on the sign
of TSM sign for each security. Knowing that, we create two portfolios within
each strategy, one long only and one short only. That means that we estimate two
covariance matrices, one based on the long only securities and another based on
the short only securities. Again, this is unproblematic to implement in MATLAB
(see Appendix Matlab Code). It is important to note that all securities are used
every period and that none of the securities are used in both long only and short

only portfolios.

4.3 Performance measurement

4.3.1 Mean
The average return over a period of time is calculated using the arithmetic mean.
To annualize the mean monthly returns, we take the exponential of the monthly

return multiplied by the number of months in the period and finally subtract one.

4.3.2 Standard deviation

The standard deviation of returns is calculated by taking the sample standard
deviation of monthly returns and multiplying with the square-root of the number
of months. That is for annual standard deviation, we multiply the sample standard

deviation by the square-root of 12.
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4.3.3 Rolling window returns
Rolling window returns are calculated on a 36-month (3yr) and 60-month (5yr)
period. The rolling window returns reveals holding period returns over all 3- and

5 year holding periods for all strategies.

4.3.4 Maximum drawdown
The maximum drawdown of all portfolios are computed as the maximum loss
from a peak to a bottom for a specific portfolio through time. MDD therefore

shows the maximum drawdown of a portfolio through time and can be found in.

4.3.5 Cumulative return
Wealth plots are calculated as the cumulative sum of the logarithmic returns of a
strategy through time. All strategies within a plot have the same investment period

and length.

4.3.6 Net exposure long-short
For the purpose of estimating returns for the long-short strategy we needed to
calculate net long exposure through time. Figure shows the net exposure of all

TSM long-short strategies through time as well as the historical average.

4.3.7 Turnover and transaction costs

The turnover of each portfolio is calculated using the formula laid out in the
theory part. Furthermore, transaction costs are calculated by multiplying the
annual turnover with the average transaction cost for asset classes. We have used
transaction costs proposed by Jones and Charles (2002), amounting to an average
of 20bp. Transaction cost adjusted returns and Sharpe ratios can be found in

appendix A.

4.3.8 Correlation

Figure F shows the average pairwise correlation of the broad asset classes over
time as well as a historical average. Moreover, it is the average pairwise
correlation based on a 36-month estimation window for Dev Eqty, Us Corp Debt,

Commodities, US Real Estate, Global Sovereign Debt and EM Eqty. Figure G
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shows the correlation matrix of broad asset classes over the entire investment

period (1987/12 to 2017/06).

4.3.9 Total risk contribution

Figure K & L shows the total risk contribution of each asset class for a strategy in
the BAC case. TRC for ERC is not constant through time because relative
volatility of certain assets (say EM Eqty and Global Sovereign Debt) varies across
time. In some periods, the volatility of a certain asset will be larger than what
ERC can compensate in terms of weights. This is mainly a data issue and for
further analysis we recommend that the variance of asset classes should not be

significantly large.

4.3.10 Regression analysis

To get a better understanding of exposure of the strategies, we have performed
several regression analyses. We follow the framework of Moskowitz et al (2012)
and use Fama/French 5 Factor + UMD for US data and Fama/French 3 Factor +
WML for global data. Fama/French 3 factor + WML, see Fama and French (1993)
and Fama/French 5 factor + UMD, see Fama and French (2014), captures the
following

- Ryt — rfis the return on the market, value weighted return of all US
incorporated firms listed on NYSE, NASDAQ or AMEX excess of the
one month T-Bill rate.

- SMB (small minus big) is the average return on small stocks minus the
average return on small stocks.

- HML (high minus low) is the average return on value portfolios minus
the average return on growth portfolios.

-  RMW (robust minus weak) is the average return on robust operating
profitability portfolios minus the average return on weak operating
profitability portfolios.

- CMA (conservative minus aggressive) is the average return on
conservative investment portfolios minus the average return on
aggressive investment portfolios.

- UMD (up minus down) is the average return of winners minus the

average return of losers.
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- WML (winners minus losers) is the average returns

The following regressions are performed
Rt — rie = of + Yy MKT, + B3;SMB ¢+ B5;HML  + B5;UMD  + &

Rf. — rre = of + B} MKT, + B5;SMB, + B5;HML, + B;;RMW, + BE,CMA, + B¢;WML, + &,

Ri; — rre = of + By; DEV, + B5;CORP, + B5;COM, + B} ;USRE, + BE;GSOV, + BgEM, + &f;

4.4 Limitations

We are aware of the fact that our covariance matrices weights all observations
equally across the entire sample period. For further analysis, one should consider
adjusting the estimation to weight recent observations more heavily to reflect
proper volatility in markets, see Litterman (2003). Furthermore, for increased
robustness, one should consider the use of shrinkage estimators to adjust the

covariance matrix, see Lediot (2003).

We are aware of the uncertainty regarding liquidity and thus tradability of the
indices we have used. Some of the securities proposed might be illiquid and thus
expensive to trade in, which might alter the performance of the strategies.
Furthermore, we assume that short selling is as costly as buying securities, which

might not be the case in markets.

Chapter 5 — Data

To evaluate the potential value of combining risk based weighting schemes and
TSM to asset allocation we select six broad asset classes as represented by
reputable financial market index providers to act as benchmark strategies. The
asset classes are as follows with sources in brackets: developed economy equities
represented by MSCI World (Datastream), emerging market equities by MSCI
Emerging Markets (Datastream), global sovereign bonds by JP Morgan Global
Government Bond Index (Datastream), commodities by S&P Goldman Sachs
Commodity Index (Bloomberg) and U.S. real estate by FTSE NAREIT US Real

Estate Index (Bloomberg). We use only monthly data; all indices are in total
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return format denominated in US dollars and are unhedged. Descriptive statistics

are presented in table A and B.

Moreover, to properly implement the combined TSM and risk based weighting
strategies we select 94 individual country level indices within each broad asset
class or in the case of commodities, individual commodities. For developed
equities, we collected data from 23 markets, for emerging market equities we
collected data from 21 markets, we used 22 commodities, 11 real estate markets
and 17 sovereign debt markets. These are also in total return format and are as

follows:

For developed economy equities, we use the following country level indices
provided by MSCI (Datastream): Canada, United States, Austria, Belgium,
Denmark, Finland, France, Germany, Ireland, Israel, Italy, Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland, United Kingdom, Australia, Hong Kong,

Japan, New Zealand and Singapore.

For emerging economy equities, we use the following country level indices
provided by MSCI (Datastream): Brazil, Chile, Colombia, Mexico, Peru, Czech
Republic, Egypt, Hungary, Poland, Qatar, Russia, South Africa, Turkey, United
Arab Emirates, China, India, South Korea, Malaysia, Pakistan, Philippines and
Thailand.

For sovereign debt, we use the following country level indices provided by Bank
of America Merrill Lynch (Datastream): United States, Canada, Switzerland,
France, Australia, Netherlands, United Kingdom, Japan, Germany, New Zealand,

Sweden Italy, Ireland, Denmark, Belgium, Spain and Norway.

For commodities, we use the following commodity indices provided by S&P
GSCI (Bloomberg): Crude Oil, Brent Crude, Unleaded Gasoline, Heating Oil, Gas
Oil, Natural Gas, Aluminum, Copper, Lead, Nickel, Zinc, Gold, Silver, Wheat,
Soybeans, Cotton, Sugar, Coffee, Cocoa, Live Cattle, Feeder Cattle and Lean
Hogs.
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For real estate, we use the following country level indices provided by FTSE

EPRA/NAREIT (Bloomberg): United States, Japan, Hong Kong, Australia,

Germany, Canada, Singapore, United Kingdom, Netherlands, France and Sweden.

More detailed overview of the country level data is presented in appendix B

Chapter 6 — Results and Analysis

6.1 Broad asset classes

We start our analysis by examining the six broad asset classes making up our

benchmark portfolio for subsequent investment strategies. What follows are

graphical display of the cumulative excess returns for the broad asset classes.

Cumulative Log Returns

35

25

Figure A

Broad Asset Classes Excess Returns
T T T T T T T

Figure B

Broad Asset Classes Excess Returns

Dev Eqty
US Corp Debt
Commodities
US Real Estate

25

Dev Eqty

US Corp Debt
2r Commodities
US Real Estate
Global Sov Debt
15k EM Eqty

051

Y
Cumulative Log Retums

-05

o \,§§° & \@‘9 s r,,b& N & o Q’QP @63 @\Q
Date Date
Figure C

16 Horserace Broad Asset Classes
Min.Var

14r 1N
ERC

12r 60/40
v

Log Cumulative Returns

-0.4 :

1980 1985

1990 1995

Date

2000 2005 2010 2015

27



GRA 19502

Looking at table A, the overall mean excess return over the sample period range
from -0.55% for commodities to 8.31% for US real estate. The rest of the asset
classes provide relatively modest returns in the range of 2% and 4%. On a risk
adjusted basis US corporate debt and US real estate perform best with Sharpe
ratios of 0.49 and 0.48, respectively. Emerging market equities, US real estate and

commodities suffers from large monthly negative returns in the -30% to — 40%

range.

Table A — Performance statistics for broad asset classes (1975.02-2017.06)

The table summarizes performance statistics for each benchmark constituent. Return are reported
in excess of the risk-free rate (3-month T-bill from St. Louis FED). All numbers are annualized.
Developed equities, US corporate debt, commodities and US real estate data starts in 1973.02,
while global sovereign debt runs from 1986.01 and emerging market equities enter in 1988.01.

Performance statistics for broad asset classes (1973.02 -2017.06)

Mean return Stdev Sharpe Ratio Max Min
Dev Eqty 2.77% 14.61% 0.19 1049%  -21.14%
US Corp Debt 3.40% 6.90% 0.49 11.44% -9.36%
Commodities -0.55% 19.39% -0.03 20.08%  -33.14%
US Real Estate 8.31% 17.15% 0.48 27.00%  -38.10%
Global Sov Debt 2.28% 5.68% 0.40 6.25% -5.29%
EM Eqty 3.42% 19.42% 0.18 15.97%  -35.03%

Furthermore, table B provides comparable statistics as all asset classes are present
over the whole period from 1990 to 2017. The statistics remain relatively similar
for all asset classes except for US corporate debt. Over the period, returns
increase, volatility decreases consequently increasing the sharpe ratio from 0.49 to

0.77, due to the recession in the early 1980s.

Table B — Performance statistics for broad asset classes (1990.01-2017.06)

The table summarizes performance statistics for each benchmark constituent. Return are reported
in excess of the risk-free rate (3-month T-bill from St. Louis FED). All numbers are annualized.
All asset classes run from 1990.01. This makes them comparable to both to each other and the

strategies.

Performance statistics for broad asset classes (1990.01 -2017.06)

Mean retum Stdev Sharpe Ratio Max Min
Dev Eqty 2.26% 14.84% 0.15 10.34% -21.14%
US Corp Debt 4.02% 5.23% 0.77 6.56% -8.14%
Commodities -0.61% 20.82% -0.03 20.08% -33.14%
US Real Estate 7.46% 18.50% 0.40 27.00% -38.10%
Global Sov Debt 2.60% 6.41% 0.41 6.25% -5.29%
EM Egty 4.94% 23.28% 0.21 15.97% -35.03%
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6.2 TSM combined with risk based allocation strategies

Now, we turn to the strategies that will be applied in combination with TSM later.
To see how robust the selected risk based allocation schemes are under different
economic environments we chose to test them over the entire sample period and
compare them to the more recent period of 1990 to 2017 as can be seen in table D.
The two buy and hold strategies, 1/N and 60/40 perform worse in the more recent
sample, while the risk based strategies performs better. The volatility of the buy
and hold strategies are similar in both periods, however, returns drop resulting in
lower Sharpe ratio. On the other hand, for the risk based strategies, volatility
decreases while returns increases. This could be explained due to these strategies
typically being more concentrated in debt instruments which aligns with our
findings that US corporate debt suffers in the early 1980s. We note that the
literature on risk based strategies typically have a shorter sample period, thus
excluding this bond bear market. Moreover, the US interest rate peak in 1981 and
has since been in a negative trend. We note that the interest rate environment has a
significant impact on the strategies and consider this a potential pitfall going

forward in an increasing rate environment.

Table C — Performance statistics for benchmark strategies (1975.02-2017.06)

The table summarizes performance statistics for each risk based allocation strategy applied to the
six broad asset classes. Return are reported in excess of the risk-free rate (3-month T-bill from St.
Louis FED). All numbers are annualized. Asset classes are added progressively as they become
available.

Performance statistics for benchmark strategies on broad asset classes (1975.02 -2017.06)

Mean return ~ Stdev  Sharpe Ratio Max Min Skewnes Kurtosis
I/N 3.59% 9.73% 0.37 9.08% -22.12% -1.49 11.87
MV 2.56% 6.27% 0.41 9.67% -8.84% -0.42 7.27
v 3.38% 7.35% 0.46 6.04% -14.25% -1.16 8.94
ERC 2.09% 6.54% 0.32 10.05% -8.73% -0.37 6.85
60/40 3.02% 9.97% 0.30 7.77% -15.36% -0.70 544

Having provided some background information and the benchmark strategies, we
now move to the case of combining TSM and our risk based strategies. The
purpose of this paper is to test if adding TSM to ERC and other risk strategies can
provide a solution to their typical low returns when not applying leverage. Table

D summarizes our findings.
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Table D
Performance statistics with TSM on country level data and benchmarks (1990.01 -2017.06)

Mean return ~ Stdev  Sharpe Ratio Turnover Max Min  Skewness Kurtosis
/N 2.83% 10.36% 0.27 2571%  9.08% -22.12%  -1.6349  12.7858
I/NTSM LO 4.23% 5.93% 0.71 2631%  528%  -6.82%  -0.5309 5.1188
I/NTSM LS 5.01% 7.22% 0.69 26.31% 1040% -798%  -0.1666 5.8256
MV 3.34% 5.42% 0.62 12.11%  654%  -797%  -0.6903 6.8184
MVTSM LO 3.37% 3.10% 1.09 26.00%  2.59%  -3.10%  -0.2188 3.4981
MVTSM LS 3.87% 5.10% 0.76 26.64% 12.34% -5.47% 1.6612 17.1559
v 3.42% 6.98% 0.49 17.16%  590% -1425%  -1.3833 11.321
IVTSM LO 4.24% 5.93% 0.72 21.61%  543% -442%  -0.3398 3.9813
IVTSM LS 2.54% 3.18% 0.80 5797%  428%  -3.16%  -0.1924 5.2878
ERC 2.62% 5.86% 0.45 1294%  6.67%  -8.18%  -0.6594 6.2384
ERC TSM LO 3.81% 3.84% 0.99 21.78%  4.71%  -3.65%  -0.1636 42107
ERCTSM LS 4.47% 5.38% 0.83 23.63% 12.98% -5.63% 1.612 17.3637
60/40 2.65% 9.86% 0.27 25.73%  1.56% -1536%  -0.956 6.0956

Across, all strategies benefit significantly from the TSM filter. We start by
looking at the long only scenarios and note that mean returns for all strategies
increases, 1/N benefits the most when looking at returns, IV and ERC follows
closely, however, MV lags behind. The volatility of the returns decreases
significantly even though they by definition are low volatility strategies. The
combination of higher returns and lower volatility boost the Sharpe ratios by a
factor of approximately x2. In terms of risk-adjusted returns, MV perform the
best, closely followed by ERC, however, the returns of these two are in the lower
range.
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It is worth mentioning that the MV strategy barley improve its returns, while the
ERC strategy improves its returns by 1.19%. Since TSM indirectly implement a
market timing component, we expected to see less extreme observations for both
the maximum and minimum monthly return. It turns out that this is true, however

to a much lesser extent for the maximum observations. We suspect that the
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increased mean returns are mainly driven by avoiding large drawdown rather than
providing large positive returns. We base this argument on the observation related
to significantly decreased minimum monthly returns. We can also relate this to
figure D & E, showing that not only minimum monthly returns are lower, but
portfolio drawdowns are significantly reduced throughout.

For all long-short strategies, but IV, mean returns increase thus being the strategy
that provides the highest returns. However, the volatility increases as well, but
proportionally to the increase in returns its does not add value on a risk-adjusted
basis. Hence, Sharpe ratios decrease across. We note that the IV portfolio behaves
differently than the other portfolios. The IV portfolio effectively ignores pairwise
correlations, an explanation to this could be the dramatic increase in average
correlations following the financial crisis (see figure F). Baltas (2015) argue that
the IV portfolio leads to uneven and therefore suboptimal risk allocation under
such conditions as can be seen in figure E.
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It seems that more sophisticated methods such as ERC and MV add value under
such environments. The main benefit with the long-short strategy is that it
significantly increases returns in distressed markets that exhibit large variation in
returns. This is evident from Figure H where all long-short strategies are able
position themselves advantageously when markets turn for the worse. Allowing
short selling appears to increase returns at the cost of drawdowns. Comparing
figure D and E, drawdowns increase primarily from the financial crisis and
onwards. Adding TSM to risk strategies provides very attractive benefits to the
portfolios, however, turnover and thus transaction cost almost doubles for the MV
and ERC case to approximately 25% annual portfolio turnover. 1/N is less

affected with only moderate increase in turnover, while IV suffer the greatest (see
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appendix A). Compared to the 60/40, the main benefits of these strategies appear

to be the ability to control and lower risk.

Figure H
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Regarding the feasibility of the long-short strategies we examine both the net
exposure over time as well as the average. Because the strategy attempts to time
the market both when it is going up and down, one must expect the net exposure
to vary over time depending on the current state of the market. As can be seen in
figure I, the net exposure for the long-short strategy vary from almost being
entirely net long to 60% net short. Firstly, the variation in the exposure can
provide challenges for investors seeking a stable exposure. Furthermore, the
periods with large negative exposure may not be doable for the majority of market
participants. Even though there is a great variation in the net exposure, the
strategy has over the last 27 years been on average approximately 33% net long.
Investors that is invested in the strategy for a short period of time cannot expect
the average net exposure since the current market conditions determines the
positions. However, since markets tend to trend upwards over the long run,

investors sitting long can expect a net long exposure.

Figure 1
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6.3 On the robustness of the strategies

To get a better grasp of the portfolio performances we calculate the 36 and 60-
month rolling window returns. As opposed to the above performance analysis,
rolling window returns allows us to evaluate the performance over a wide range of
holding periods, thus putting the robustness of the strategies through a more
comprehensive test. We have chosen to compute the 36-month rolling window as
well as the 60-month return with rolling intervals of 1 month (see table E and

figure J).
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Table E
Performance statistics rolling window returns
Mean returmn Stdev Max Min
36m 60m 36m 60m 36m 60m 36m 60m
I/N 10.25% 18.00% 16.36% 19.27% 56.55% 64.45% -46.64% -27.96%

I/NTSMLO 13.57% 22.64% 13.16% 17.22% 49.77% 64.77% -12.58% -11.99%
I/NTSMLS 16.16% 26.88% 12.76% 17.14% 42.95% 67.67% -34.44% -22.67%

ERC 6.23% 11.12% 12.67% 1599% 27.78% 36.32% -40.13% -39.32%
ERCTSMLO 11.60% 1832% 853% 9.85% 32.92% 35.57% -445% -6.56%
ERCTSMLS 13.69% 22.52% 7.23% 828% 39.22% 52.75% -17.85% -11.73%

v 9.85% 16.75% 13.01% 15.45% 42.32% 54.66% -29.66% -24.35%
IVISMLO  1326% 21.09% 841% 935% 32.79% 43.64% 037% 2.22%
IVISM LS 827% 13.56% 6.71%  8.72% 23.72% 32.86% -10.96% -6.40%

MV 748% 13.07% 12.81% 16.35% 30.46% 37.30% -40.41% -40.03%
MVTSMLO 9.77% 15.14% 796% 9.12% 32.61% 3733% -6.96% -4.45%
MVTSMLS 11.51% 18.60% 7.74%  821% 36.75% 44.06% -15.94% -10.57%

60/40 7.66% 12.89% 19.11% 23.57% 61.61% 75.92% -41.84% -37.08%

For all portfolios, but the IV, average rolling window returns increase consistently
from the benchmark case through the long-only to the long-short portfolio. This is
consistent for the portfolio volatilities as well, only these are decreasing. Worth
noticing is that maximum rolling window returns for both holding periods are
quite different for the two cases. It seems that the longer you hold a strategy, the
higher maximum return you get. However, this not true for the minimum returns.
In fact, rolling window minimum returns are quite similar between the two
holding periods for ERC, IV, MV and the 60/40 portfolio suggesting that
strategies have the ability to avoid drawdowns even in the fairly short time
periods. A strategy that stands out is the [V TSM LO which both in the 36 and 60-
month case never experience negative rolling returns. During both holding
periods, all strategies except for the simple ERC have higher mean returns than

the 60/40 portfolio at a lower volatility.
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In order to assess how efficiently each of the portfolio strategies balance risk

between the asset classes we have computed total risk contribution (TRC) for all

portfolios in the benchmark strategies. For the 60/40 portfolio, the portfolio risk is

mainly driven by equities. As we can see in figure K, during certain periods the

portfolio risk tend to mimic that of a pure equity portfolio. This is of great

concern regarding the portfolios ability to diversify between stocks and bonds.
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Figure K
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From figure L, we see that the ERC and the MV portfolio are superior in
allocating risk evenly among the assets. For the IV and 1/N portfolios, the more
risky assets (developed market equities, commodities, US real estate and

emerging market equities) contribute much more to the portfolios total risk.

Figure L
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6.4 Risk factor exposures

In table F we regress the benchmark strategies on the Fama French US 5-factor +
UMD, as well as Fama French global 3-factor + WML. In panel C we regress the
respective portfolios on the benchmark constituents. From panel A, all strategies
are significantly exposed to the market factor for both the US and the global data.
60/40 and 1/N are the most exposed strategies, while ERC and MV are the least
exposed. Both for US and global data, the 60/40 portfolio is moderately
negatively exposed to the SMB factor. From panel B, MV, IV and I/N is
moderately exposed to the SMB and HML factors. Not surprisingly, in panel C,
the ERC and MV portfolio are heavily exposed to the debt instruments. ERC are
also moderately exposed to emerging market equities. IV is heavily exposed to the
debt instruments, while also being moderately exposed to all benchmark
constituents.

Table F

Panel A: Broad Asset Classes with Fama French US 5-Factor + UMD

Intercept MKT SMB HML RMW CMA UMD R?
Coefficient 0.0011  0.1360  -0.0325 -0.0044 0.0121 0.0590 0.0143 9.19%
(t-statistic)  (1.16)  (5.31**%*) (-0.98)  (-0.10) (0.28) (0.94) (0.71)
Coefficient 0.0016  0.1430  -0.0114 -0.0019 0.0244 0.0575 0.0078 12.00%

ERC

MY (t-statistic) (1.84%%) (6.14%%) (-038)  (0.05) (0.61) (1.00) (0.42)

v Coefficient 0.0002 03380  0.0318 0.0617 0.0368 0.0382 -0.0005 47.50%
(t-statistic)  (0.29) (14.52%%%) (1.06)  (1.53%) (0.93) (0.67) (-0.03)

N Coefficient  0.0015  0.5340  0.0958  0.1410 0.0046 0.0100 -0.0090 60.30%
(t-statistic)  (-1.39%) (17.76%%%) (2.46***) (2.7%*%) (0.07) (0.14) (-0.38)

coiqp  Coefficient -0.0017  0.6160  -0.0876  0.0129 -0.0028 0.0739 -0.0082 79.40%

(t-statistic) (-2.27%%) (29.87%*%) (-3.28%*%) (0.36) (-0.08) (1.47%) (-0.51)

Panel B: Broad Asset Classes with Fama French Global 3-Factor + WML

Intercept MKT SMB HML WML R?
Coefficient  0.0009  0.1660 0.0526  0.0647 0.0377 15.90%

ERC (t-statistic)  (0.95)  (7.59%%%) (1.18)  (1.59%) (1.56%)

vy Coefficient  0.0016 01680 0.0595  0.0606  0.0276 19.20%
(t-statistic)  (1.93%%) (8.46**¥) (1.48%) (1.65%%) (1.26)

[y Coefficient 0.0005 03860  0.1008 0.1330 0.0236 62.00%
(t-statistic)  (0.69) (21.92%%%) (2.83%*%) (4.10%**) (1.22)

N Coefficient -0.0014  0.6270 02090  0.1990 0.0160 75.50%
(t-statistic)  (-1.60%) (29.77%%%) (4.92%%%) (5.11%%%) (0.69)

soiqo  Coefficient  0.0004  0.6390  -0.1070  0.0105  0.0036 94.40%

(t-statistic)  (-1.13)  (69.05%*%) (-5.74%%%) (0.61)  (0.35)
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Panel C: Broad Asset Classes with Benchmark Constituents

Intercept Dev Eqty US Corp Debt  Comm US RE Sov Debt EM Eqty R?

ERC Coefficient -0.0004  -0.0227 0.5450 0.0563 0.0139 0.3750 0.3690  79.60%
(t-statistic)  (-0.99)  (-1.50%) (15.87%%*)  (8.00%**) (1.49%)  (14.05%*%)  (4.01%**)

MV Coefficient 0.0000  -0.0050 0.6170 0.0414 0.0176 0.2580 0.0309  83.40%
(t-statistic)  (0.29) (-0.39) (21.46%**)  (7.04%**)  (2.26%*)  (11.57%**%) (4.01*%*%*)

v Coefficient 0.0001 0.1090 0.3530 0.0849 0.1050 0.2740 0.0670  98.10%
(t-statistic)  (0.77) (20.23***)  (28.82%**)  (33.79%**) (31.70%**) (28.79%**) (20.39%**)

N Coefficient 0.0000  0.1667 0.1667 0.1667 0.1667 0.1667 0.1667  100.00%
(t-statistic) ~ (0.00) (146.00%**) (648.00%**) (316.00%**) (238.00***) (834.00***) (241.00%**)

60/40 Coefficient 0.0000  0.6000 0.4000 0.0000 0.0000 0.0000 0.0000  100.00%
(t-statistic)  (Inf) (Inf) (Inf) (Inf) (Inf) (Inf) (Inf)

In table G we regress the TSM long portfolios on the Fama French US 5-factor +
UMD, the Fama French global 3-factor + WML as well as the benchmark
constituents. From panel A, all strategies are moderately exposed to the market
factor with MV having the lowest exposure and 1/N having largest. Furthermore,
all strategies exhibit small, but positive momentum exposure captured by the
UMD variable. These results are consistent for the global data and the momentum
factor WML seen in panel B. In comparison to the benchmark strategy, the TSM
LO filter reduces market exposure, while increasing momentum exposure. From

panel C, ERC, MV and IV is still moderately exposed to US corporate debt.

Table G

Panel A: TSM LO with Fama French US 5-factor + UMD
Intercept MKT SMB HML RMW CMA UMD R?
Coefficient 0.00212  0.119  -0.00192 -0.00965 0.00323 0.0197 0.0408 19.30%

ERC (t-statistic) (3.60%%¥) (7.54%%%) (0.09) (-0.35)  (0.12)  (0.51) (3.27%*%)

vy Coefficient  0.0022  0.0541  -0.00838 -0.00722  0.0198  0.0383  0.0172  4.73%
(t-statistic) (4.27%%%) (3.88%%*) (-0.46) (-0.30)  (0.84)  (1.12) (1.57%)

[y  Coefficient  0.0017 ~ 0.188  0.00781 -0.0177 00279 0.048 0.0764 33.80%
(t-statistic) (2.71%%%) (11.16*%%) (0.36)  (-0.60)  (0.97)  (1.08) (5.76%**)

N Coefficient  0.0001 0278 ~ 0.0108 0.0108 -0.005l 00503 0.103 4430%

(tstatistic)  (1.35%) (13.67%%%) (0.41)  (0.31)  (-0.15)  (L.01) (6.47**¥)

Panel B: TSM LO with Fama French Global 3-Factor + WML

Intercept MKT SMB HML WML R?
Coefficient  0.0020  0.1400  0.0016  0.0301 0.0752  27.40%

ERC (t-statistic) (3.56%%%) (10.52%%%) (0.06)  (1.22)  (5.11%**)

\y  Coefficient  0.0022 00557 -0.0007 00385  0.0339  6.68%
(t-statistic) (4.27%%) (4.55%%%) (-0.03) (L.70%*) (2.51%**)

[y  Coefficient  0.0018  0.1960 -0.0279 0.0434  0.1280 41.90%
(t-statistic) (3.11%%%) (14.14%%%) (-0.99)  (1.69%*) (8.39%**)

N Coefficient  0.0006 03200 0.0294 00976  0.179 59.20%

(t-statistic)  (0.96) (20.59%*%) (0.93) (3.40%**) (10.47***)
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Panel C: TSM LO with Benchmark Constituents

Intercept Dev Eqty Corp Debt Comm US RE Sov Debt EM Eqty  R?
Coefficient 0.0021  0.0032 0.2330  0.0082 -0.0109 0.0541 0.0762 43.40%

ERC (t-statistic) (445%%%)  (0.18)  (5.88%%*) (1.04) (-1.04) (L.77%¥) (6.86%**)

sy Coefficient  0.0018 00283 02170 0.0004 0.0021 0.0792  0.0349 28.80%
(t-statistic) (4.18%%%) (-1.73%%) (6.04%%%)  (0.05)  (0.22) (2.85%*¥) (3.47%+*)

[y  Coefficient 0.0024 00591 02250 -0.0083 -0.0105 0.0473 0.0774 46.10%
(t-statistic) (4.36%%%) (2.85%%%) (4.95%%%) (-0.92) (-0.88) (1.34%) (6.07%**)

N Coefficient 0.0031 01006 00787  0.0424 -0.0173 -0.0587 0.1270 58.20%

(t-statistic) (4.85%%%) (4.19%%%) (1.49%) (4.03%%%) (-1.24) (-1.44%) (8.65%**)

In table H we regress the TSM long-short portfolios on the Fama French US 5-
factor + UMD, the Fama French global 3-factor + WML as well as the benchmark
constituents. From panel A, ERC and MV have negative exposure to the market
factor while having moderate momentum exposure. Panel B reveal similar results,
however, with negative exposure to the SMB factor as well. From panel C, ERC
and MV have negative exposure to developed equities, commodities and US real

estate while still being moderately exposed to global sovereign debt.

Table H

Panel A: TSM LS with Fama French US 5-factor + UMD
Intercept  MKT SMB HML RMW CMA UMD R?
Coefficient  0.00367 -0.109 -0.018  -0.0807 0.0488  0.0271 0.129 38.10%

ERC (t-statistic) (5.09%%%) (-5.62%%%) (-0.72) (-2.39%%%) (1.48%)  (0.57) (8.44%**)

vy Coefficient 000343 -0.129 00262 -0.066 00514  0.0267 0.101 38.90%
(t-statistic) (5.04%%%) (-7.02%%%) (-1.10) (-2.07%%) (L1.65%*) (0.59) (7.07%**)

[y Coefficient 000134 ~ 0.0383  -0.0068 -0.0279 00275 0.0288 0.083 20.00%
(t-statistic) (2.76%%%) (2.92%%%)  (-0.40)  (-1.23)  (1.24)  (0.90) (8.08***)

N Coefficient 000252  0.0304 -0.0154 -0.0576 0.0467 0.0668 024 32.50%

(t-statistic) (2.49%%%)  (1.11)  (-044) (-1.22)  (1.01)  (1.00) (11.21%**)

Panel B: TSM LS with Fama French Global 3-Factor + WML
Intercept  MKT SMB HML WML R?
Coefficient  0.0034 -0.1400  -0.1220  -0.0265 0.1880  44.90%

ERC (t-statistic) (4.99%%%) (-8.49%*%) (-3.66***%) (-0.87) (10.39%%*)

iy Coefficient  0.0033  -0.1680  -0.1100 -0.0174  0.1410  45.10%
(t-statistic) (5.00%%%) (-10.77%%%) (-3.49%%%) (-0.60) (8.23%**)

v Coefficient  0.0013  0.0279  -0.0516 0.0234  0.1260 25.30%
(t-statistic) (2.73%%%) (2.47¥%%) (-2.26%%) (1.12)  (10.16%*%)

N Coefficient  0.0019 00177 -0.1190  0.0697 03630 41.80%

(t-statistic)  (1.96%%)  (0.78)  (-2.60***) (1.66**) (14.52%%%)
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Panel C: TSM LS with Benchmark Constituents
Intercept Dev Eqty Corp Debt Comm USRE SovDebt EM Eqty R?
Coefficient 0.0038 -0.0933  -0.0037 -0.0604 -0.0683 0.1530 -0.0070 32.50%

ERC (t-statistic) (5.17%%%) (-3.37%%%)  (-0.06) (-4.98%*%) (-4.26%+*) (3.26***) (-0.41)

vy Coefficient  0.0032  -0.140 00022 -0.0655 -0.0567 0.1690 -0.0208 43.30%
(t-statistic) (5.07%%¥) (-4.34%%F)  (L0.04)  (-6.21%%%) (-4.07%%¥) (4.15%%%) (-1.41%)

y  Coefficient 0.0019 -0.0058 0.0367 -0.0217 00307 0.0616 0.0289 6.88%
(tstatistic) (3.79%%%)  (0.30)  (0.87)  (-2.58%%%) (-2.77%%¥) (1.89%*) (2.45%%)

N Coefficient 0.0045 -00182 -0.0486 -0.0278 -0.0793 00813 0.0254 527%

(t-statistic) (3.86**%) (-0.41)  (-0.50) (-1.44%) (-3.11%**¥) (1.09)  (0.94)

Chapter 7 — Conclusion

With increased awareness around weaknesses in traditional portfolio theory, a
group of risk based asset allocation strategies has gained in popularity. However,
these tend to be highly concentrated in low risk asset and for that reason typically
provide somewhat low returns, but at an attractive risk-adjusted basis. The most
common solution to the problem is to apply leverage to these portfolios in order to
tailor the investors preferred return target and desired risk level. However,
applying leverage introduces its own risks and practical concerns. We investigate
an alternative solution by combining TSM which filters out what positions to take
in each asset in the specific investment universe. We then use the framework of
the risk based allocation strategies so size the positions. We find that combining
the strategies adds significant value to all strategies with low market exposure and
moderate momentum exposure. The implied market timing traits of the strategy
contribute to control risk in already low risk portfolios by lowering volatility and
reducing drawdowns. The finance literature provides some research on the
combination of TSM and inverse volatility, however, we found that equal risk
contribution in combination with TSM can add further value, especially when

correlation between assets drift away from normal levels.
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Appendix A — Results graphs
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Performance statistics adjusted for trading costs (TC)
Mean Return TC Turnover TC adj. returns Sharpe Ratio

1/N 2.83% 20bp 25.71% 2.78% 0.27
I/NTSM LO 4.23% 20bp 26.31% 4.18% 0.70
I/NTSM LS 5.01% 20bp 26.31% 4.96% 0.69
MV 3.34% 20bp 12.11% 3.32% 0.61
MVTSM LO 3.37% 20bp 26.00% 3.32% 1.07
MVTSM LS 3.87% 20bp 26.64% 3.82% 0.75
v 3.42% 20bp 17.16% 3.39% 0.49
IVTSM LO 4.24% 20bp 21.61% 4.20% 0.71
IVTSM LS 2.54% 20bp 57.97% 2.42% 0.76
ERC 2.62% 20bp 12.94% 2.59% 0.44
ERC TSM LO 3.81% 20bp 21.78% 3.77% 0.98
ERC TSM LS 4.47% 20bp 23.63% 4.42% 0.82
60/40 2.65% 20bp 25.73% 2.60% 0.26
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Log Returns
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Log Returns
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Appendix B — Markets and inception dates
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vuineins

= |oad data/extract date & prices

= Calculate returns (continously compounded // default method @ price2ret)
mn Descriptives raw return & plot

= 1/NBAC

= 1/N Performance Characteristics BAC

= Var-Cov Estimation BAC

= Minimum Variance BAC

= Inverse Volatility BAC

= Minimum Variance Performance Characheteristics BAC

= 60/40 BAC

= 60/40 Performance Characteristics BAC

= Equal Risk Contribution BAC

m Equal Risk Contribution Performance Characteristics BAC
= Analytics Broad Asset Classes

e MOMENTUM STRATEGIES (TSM) ---------------
= |oad data/extract dates & prices TSM

= Var-Cov Matrix Estimation overlapping rolling covariance TSM
= 1/NTSMLO

= MVTSMLO

= ERCTSMLO

= [VTSMLO

m 1I/NTSMLS

= MVTSMLS

n ERC TSMLS

n IVTSMLS

m Plot TSM Strategies

= Maximum Drawdown

= Plot Maximum Drawdown

n Correlation

m Sharpe Ratio

= Net Exposure Long Short

= Rolling Window Cumulative Returns

Statistics Rolling Window 36/60m Returns

Plot Rolling Returns
Risk Contribution BAC

= Turnover & Transaction Costs
m Regression

= Histogram

--------------- BROAD ASSET CLASSES (BAC) ---erermsnses-

Load data/extract date & prices

data_load
datel = table2array(data(:,1));
pricesl = table2array(data(:,2:end));

Calculate returns (continously compounded // default method @ price2ret)

ret_raw = price2ret (pricesl);

% load risk free (rf)

rf;

r_f = log((l+r_£/100).7(1/12));

ret_excess = bsxfun(@minus, ret_raw, r_f);

Descriptives raw return & plot

$raw returns

mean_monthly raw = nanmean (ret_raw);
stdev_monthly raw = nanstd(ret_raw);
mean_annual_raw = ((l+mean_monthly raw).”12)-1;
stdev_annual_raw = sqrt(12)*stdev_monthly_ raw;
maxdd_ret_raw = min(ret_raw);

%excess returns

mean_monthly = nanmean (ret_excess);

stdev_monthly = nanstd(ret_excess);

mean_annual = ((l+mean_monthly)."12)-1;

stdev_annual = sqrt(12)*stdev_monthly;

maxdd_ret = min(ret_excess);

$export to excel

descriptives_raw_return = [mean_monthly raw; mean_annual_ raw; stdev_monthly raw; stdev_annual_raw; maxdd_ret_raw; mean monthly; stdev_monthly; mean_annt

%log cumulative returns for asset classes excluding EM Eqty & Global Debt
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J R R S ey L B L T Y]
title('Broad Asset Classes Excess Returns')

legend('Dev Eqty', 'US Corp Debt', 'Commodities', 'US Real Estate', 'Location', 'northwest')
ylabel ('Cumulative Log Returns')

xlabel ('Date')

xtickangle (45)

legend boxoff

% raw returns

figure

plot (datel(2:end, :), cumsum(ret_raw))

title('Broad Asset Classes Raw Returns')

legend('Dev Eqty', 'US Corp Debt', 'Commodities', 'US Real Estate', 'Location', 'northwest')
ylabel ('Cumulative Log Returns')

xlabel ('Date')

xtickangle (45)

legend boxoff

%log cumulative returns for all asset classes

$fix: cum(l:1,:) = 0 : excess returns

figure

plot (datel(181l:end, :),cumsum(ret_excess(180:end,:)))
title('Broad Asset Classes Excess Returns')

legend('Dev Eqty', 'US Corp Debt', 'Commodities', 'US Real Estate', 'Global Sov Debt', 'EM Egty', 'Location',

ylabel ('Cumulative Log Returns')
xlabel ('Date')
xtickangle (45)
legend boxoff

%fix: cum(l:1,:) = 0 : raw returns

figure

plot (datel(181l:end, :),cumsum(ret_raw(180:end, :)))
title ('Broad Asset Classes Raw Returns')

legend('Dev Eqty', 'US Corp Debt', 'Commodities', 'US Real Estate','Global Sov Debt', 'EM Eqty', 'Location',

ylabel ('Cumulative Log Returns')
xlabel ('Date')
xtickangle (45)
legend boxoff

1/N BAC

w_IN = (1./sum(~isnan(ret_excess),2)).*(~isnan(ret_excess));
ret_1N = nansum(w_1lN.*ret_excess,2);
In_cum ret_ 1IN = cumsum(ret_1N(25:end,1));

1/N Performance Characteristics BAC

mean_ 1N = ((l+mean(ret_1N))~"12-1);

stdev_1N = std(ret_1N)*sqrt(12);

maxdd_ 1N = min(ret_IN);

kurt_1N = kurtosis(ret_1N);

skew_1N = skewness(ret_1N);

summary_ 1N = table(mean_1N, stdev_ 1N, maxdd_1N, kurt_1N, skew_1N);

Var-Cov Estimation BAC

%Inputs (estimation window)

% Estimation window
ew = 24;
% calculate var-cov matrices @ rolling window (t+l) w/estimation window
% (ew)
sz = size(ret_excess);
covC = cell(sz(l)-(ew-1),1);
covM = zeros(sz(1l)-(ew-1),sz(2));
for n = l:sz(1)-(ew-1)
covC{n} = cov(ret_excess (0+n: (ew-1)+n,:));
covM(n, :) = covC{n} (1l,:);
end
% load var-cov matrix from excel
load('matlab thesis.mat')
clear ans i j lb naive_cumulative naive_returns port_varl ub w wl weights returns;

Minimum Variance BAC

%setting up min-var portfolio for [4 5 6] asset class
x0_1 = zeros(4,1);
x0_2 = zeros(5,1);
x0_3 = zeros(6,1);

3 upper bound portfolio weights

ub = 1;

ubl(1:4,:) = ub;
ub2(1:5,:) = ub;
ub3(1:6,:) = ub;

%> lower bound portfolio weights (for short selling allowed: 'lb = -1;')

'northwest")

'northwest')
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N
% weight constraints. For sum(weigh
Aeqgl = ones(1,4);

Aeq2 = ones(1,5);

Aeq3 = ones(1,6);

beq = 1;

=1 // Req = ones(1,N), beq = 1 for N = #

%estimation length
n_rowsl = length(varcovmatrixsl);
n_rows2 = length(varcovmatrixS2);
n_rows3 = length(varcovmatrixS3);
n_colsl = size (varcovmatrixS1l,1)/size(varcovmatrixS1,2);
n_cols2 = size(varcovmatrixS2,1) /size (varcovmatrixS2,2);
n_cols3 = size(varcovmatrixS3,1)/size(varcovmatrixS3,2);
% run fmincon (optimization program) for all covariance matrices: 4 asset case
options = optimset ('Display', 'off', 'Algorithm', 'sqgp');
for i = 1:4:n_rowsl

covl = varcovmatrixSl(i:i+3,1:4);

fun_mv = @(x1)x1'*covl*xl;

[wl mv(i:1+43,1), port_varl(i,1)] = fmincon(fun mv, x0_1,[],[],Reql,beq, 1bl,
end
port_varl(port_varl==1) = [];

% run fmincon (optimization program) for all covariance matrices: 5 asset case
for i = 1:5:n_rows2

cov2 = varcovmatrixS2(i:i+4,1:5);

fun_mv = @(x2)x2'*cov2*x2;

[w2_mv(i:1i+4,1), port_var2(i,1)] = fmincon(fun mv, x0_2,[],[],Req2,beq, 1b2,
end
port_var2 (port_var2==0) = [];

% run fmincon (optimization program) for all covariance matrices: 6 asset case
for i = 1:6:n_rows3

cov3 = varcovmatrixS3(i:i+5,1:6);

fun_mv = @(x3)x3'*cov3*x3;

[w3_mv(i:1+45,1), port_var3(i,1)] = fmincon(fun_mv, x0_3,[],[],Req3,beq, 1b3
end
port_var3(port_var3==0) = [];

port_var = [port_varl;port_var2;port_var3];

%reshape matrix

wl_mv = reshape(wl_mv, [4,155]);
5,241);
6,3311);

w2_mv = reshape (w2_mv,
w3_mv = reshape (w3_mv,
n_colsl = size(wl_mv,2
n_cols2 = size(w2_mv,2
n_cols3 = size(w3_mv,2

[
[
[
)
)
)

Inverse Volatility BAC

options = optimset('Display', 'off');
for i = 1l:4:n_rowsl

covl = varcovmatrixS1(i:i+3,1:4);

stdevl_iv = diag(sqgrt(covl));

wl_iv(i:i43,1)= 1./stdevl_iv./sum(1l./stdevl_iv);
end

% run fmincon (optimization program) for all covariance matrices: 5 asset case
for i = 1:5:n_rows2

cov2 = varcovmatrixS2 (i:i+4,1:5);

stdev2_iv = diag(sqrt(cov2));

w2_iv(i:i+4,1)= 1./stdev2_iv./sum(1l./stdev2_iv);
end

% run

con (optimization program) for all co ance matrices: 6 asset case

for i = 1:6:n_rows3

cov3 = varcovmatrixS3(i:i+5,1:6);

stdev3_iv = diag(sqrt(cov3));

w3_iv(i:i+5,1)= 1./stdev3_iv./sum(l./stdev3_iv);
end

wl_iv = reshape(wl_iv, [4,155]);
w2_iv = reshape(w2_iv, [5,24]);
w3_iv = reshape (w3_iv, [6,331]);

ret_iv = [sum(wl_iv'.*ret_excess(25:179,1:4),2); sum(w2_iv'.*ret_excess(180:203,1:5),2

In_cum ret_iv = cumsum(ret_iv);

Minimum Variance Performance Characheteristics BAC

ret_mv = [sum(wl_mv'.*ret excess(25:179,1:4),2); sum(w2_mv'.*ret_excess(180:203,1:5),2

In_cum ret_mv = cumsum(ret_mv);

mean_mv = ((l+mean(ret_mv))~"12-1);

stdev_mv = std(ret_mv) *sqrt(12);

maxdd mv = min(ret_mv);

kurt_mv = kurtosis(ret_mv);

skew_mv = skewness(ret_mv);

summary _mv = table(mean_mv, stdev_mv, maxdd mv, kurt_mv, skew_mv);

60/40 BAC

of asset classes

ubl,

ub2,

ub3,

[1, options);

[1, options);

[1, options);

); sum(w3_1iv(:,1:330)"'.*ret_excess(204:end,

); sum(w3_mv(:,1:330)"'.*ret_excess(204:end,

$),2)15

$),2)15
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bond_ret = ret_excess(:,2).*bond_w;

ret_60_40 = eqty_ret + bond_ret;
In_cum ret_60_40 = cumsum(ret_60_40(25:end,1));

60/40 Performance Characteristics BAC

mean_60_40 = ((l+mean(ret_60_40))~12-1);
stdev_60_40 = std(ret_60_40)*sgrt (12);

maxdd_60_40 = min(ret_60_40);

kurt_60_40 = kurtosis(ret_60_40);

skew_60_40 = skewness(ret_60_40);

summary_60_40 = table (mean_60_40, stdev_60_40, maxdd_60_40, kurt_60_40, skew_60_40);

Equal Risk Contribution BAC

options = optimset ('Display', 'off', 'Algorithm', 'sqgp');
%setting up risk parity portfolio for [4 5 6] asset class
x0_1 = zeros(4,1);
x0_2 = zeros(5,1);
x0_3 = zeros(6,1);

% set lb/ub // lower bound 0 // upper bound = 1
LBl = ones(1,4)*0.0001;

UBl = ones(1,4);

LB2 = ones(1,5)*0.0001;

UB2 = ones(1,5);

LB3 = ones(1,6)*0.0001;

UB3 = ones(1,6);

% for sum(weights) = 1 // Req = ones(1,N), beq = 1 for N = # of a
% classes

Aeql = ones(1,4);

Aeq2 = ones(1,5);

Aeq3 = ones(1,6);

beq = 1;

%estimation length

n_rowsl = length(varcovmatrixsl);

n_rows2 = length(varcovmatrixS2);

n_rows3 = length(varcovmatrixS3);
% run fmincon for all covariance matrices 4 asset case & run risk parity
% objective function (fun erc) ref. Roncalli (2012)
for 1 = 1:4:n_rowsl

covl = varcovmatrixS1(i:i+3,1:4);

fun_erc = @(wl_erc) MRC2(wl_erc, covl);

[wl_erc(i:i+3,1), port_var_erc_1(i,1)] = .

fmincon (fun_erc, x0_1, [], [], Aeql, beq, LB1, UBl, [], options);

for 1 = 1:5:n_rows2
cov2 = varcovmatrixS2 (i:i+4,1:5);
fun_erc = @(w2_erc) MRC2(w2_erc, cov2);
[w2_erc(i:i+4,1), port_var_erc_2(i,1)] =
fmincon (fun_erc, x0_2, [], [], Aeg2, beq, LB2, UB2, [], options);

for 1 = 1:6:n_rows3
cov3 = varcovmatrixS3(i:i+5,1:6);
fun_erc = @(w3_erc) MRC2(w3_erc, cov3);
[w3_erc(i:i+5,1), port_var_erc 3(i,1)] = .
fmincon (fun_erc, x0_3, [], [], Aeq3, beq, LB3, UB3, [], options);

end

port_var_erc_l(port_var_erc_1 == 0) = [];
port_var_erc_2(port_var_erc_2 == 0) = [];
port_var_erc_3(port_var_erc_3 == 0) = [];

port_var_erc = [port_var_erc_l;port_var_erc_2;port_var_erc_3];

Equal Risk Contribution Performance Characteristics BAC

% reshape weight matrices
wl_erc = reshape(wl_erc, [4,155]);

w2_erc = reshape(w2_erc, [5,24]);

w3_erc = reshape(w3_erc, [6,331]);

%calculate returns for risk parity

ret_erc = [sum(wl_erc'.*ret_excess(25:179,1:4),2); sum(w2_erc'.*ret_excess(180:203,1:5),2); sum(w3_erc(:,1:330)"'.*ret_excess(204:end,:),2)];
In_cum_ret_erc = cumsum(ret_erc);

%descriptives

mean_erc = ((l+mean(ret_erc))"12-1);

stdev_erc = std(ret_erc) *sqrt(12);

maxdd_erc = min(ret_erc);

kurt_erc = kurtosis(ret_erc);

skew_erc = skewness (ret_erc);

summary_erc = table(mean_erc, stdev_erc, maxdd_erc, kurt_erc, skew_erc);

Analytics Broad Asset Classes
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F R A A A R R A
hold on

plot (datel (25:end-1,:),exp(ln_cum_ret 1N)-1)

plot (datel (25:end-1,:),exp(ln_cum ret_erc)-1)

plot (datel (25:end-1,:), exp(ln_cum ret_60_40)-1)

plot (datel (25:end-1,:), exp(ln_cum ret_iv)-1)

title ('Horserace Broad Asset Classes')

legend('Min.var', '1/N', 'ERC', '60/40', 'IV', 'Location', 'northwest')
ylabel ('Log Cumulative Returns')

xlabel ('Date')

legend boxoff

MOMENTUM STRATEGIES (TSM) --

Load data/extract dates & prices TSM

datal
date2 =

table2array(data2(:,1));

prices = table2array(data2(:,2:end));

%load risk free (rf)

rfl

% calculate log returns t raw = returns // ret = exc
ret_raw = price2ret(prices);

rf = log((1+rf/100).7(1/12));

ret_exc = bsxfun(@minus, ret_raw, rf);

% inputs (holding period (j) // lookback period (p))

3 =1;

p = 12;

[m,n] = size(ret_exc);

tsm_sign = ones(m-12,n);

for i = 1:1:m-p
tsm_sign(i,1l:n) = sum(ret_raw(i:i+(p-1),:))-ret_raw(i+(p-1),:);

% TSM return/rf matrix
ret_tsm is ret minus 12 first rows % minus last row
ret_exc;

is s for risk free asset
rf_tsm = rf;

ret_raw_tsm = ret_exc;

e as ret

Var-Cov Matrix Estimation overlapping rolling covariance TSM

[n,m] = size(ret_tsm); % n = no. of dates // m = no. of assets
rolling_window = 24;

cov_tsm = nan(m*(n - rolling window + 1),m);

for 1 = rolling window:n

start_index = m*(i - rolling window) + 1; % aggregate covariance matrix start index
end_index = m* (i - rolling window +1); % aggregate covariance matrix end index
covariance_mtx = cov(ret_tsm(i-rolling window +1:i,:));
cov_tsm(start_index:end_index,:) = covariance_mtx;
end
1/NTSMLO
w_IN_tsm lo = (1./sum(~isnan(ret_tsm),2)).* (~isnan(ret_tsm));

w_1IN_tsm lo = w_1N tsm lo(25:end,:);

idx_long = tsm_sign>0;
idx_long = idx_long(rolling window-1l:end,:);

ret_long = idx_long.*ret_tsm(rolling_window+l:end, :).*w_IN_tsm lo;

idx_short = tsm_sign<0;
idx_short = idx_short(rolling window-1l:end,:);
ret_short = idx_short.*rf tsm(rolling window+l:end,:).*w_1N_tsm_lo;

ret_1IN_tsm lo = ret_long + ret_short;
ret_1IN_tsm_lo = nansum(ret_IN_tsm lo,2);

mean_1N_lo = (l+mean(ret_ 1N _tsm_lo))"12-1;
stdev_1N_lo = sqrt(12)*std(ret_IN_tsm lo);

MV TSM LO

options = optimset ('Display', 'off', 'Algorithm', 'sqgp');

w_mv_tsm_lo = zeros(m,n);
returns_mv_tsm_lo = zeros(m,n);
for i=rolling window:n-1

start_index = m*(i - rolling_window) + 1;
end_index = m* (i - rolling window +1);
covariance_mtx = cov_tsm(start_index:end_index, :);
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CUVULLGCe A s et LUty Ll
w_risky assets(i-(rolling window-1),:) = sum(~isnan(covariance _mtx(1,:)),2)/no_riskyassets;
k = sum(~isnan(covariance_mtx(1l,:)),2);

columns = isnan(covariance mtx(1l,:));

rows = isnan(covariance mtx(:,1));
covariance mtx(rows,:) = [];
covariance mtx(:,columns) = [];

% initial weight guess = 0
x0 = zeros(k,1);

% upper bound = 1

ub = ones(k,1);

% lower bound = 0

1lb = ones(k,1)*0.0001;

% weight constraints. for sum(weights) = 1 // Aeq = ones(l,N), beq = 1 for
% N = # of asset classes

Aeq = ones(1l,k);

beq = 1;

function objective // choose weights s.t. portfolio variance is minimized

fun mv = @(x)x'*covariance_mtx*x;

[w_mv_tsm lo(l:k,i-(rolling window-1)), port_var mv_lo(i-(rolling window-1),1)] = fmincon(fun mv, x0, [], [], Aeqg, beq, lb, ub, [], options);
stdev_mv_short (i-(rolling window-1),1) = sqgrt(w_mv_tsm lo(l:k,i-(rolling window-1))'*covariance mtx*w_mv_tsm lo(l:k,i-(rolling window-1)))*sqrt

$returns
returns_mv_tsm_lo = ret_raw_tsm(i+l,1:m);
returns_mv_tsm_lo(:,condition) = [];

returns_mv_tsm_lo(:,columns) = [];
a mv_lo = returns_mv_tsm_lo*w mv_tsm_lo(l:k,i-(rolling window-1));
ret_mv_tsm lo(i-(rolling window-1),1) = a mv_lo;

% For trading between cash and risky asset accoring to TSM sign, enable
ret_ mv_tsm lo = w_risky assets.*ret mv_tsm lo + (l-w_risky assets).*rf tsm(rolling window+l:end,:);

ERC TSM LO

options = optimset ('Display', 'off', 'Algorithm', 'sqgp');

w_erc_tsm_lo = zeros(m,n);
returns_erc_tsm_lo = zeros(m,n);

for i=rolling window:n-1
start_index = m*(i - rolling_window) + 1;
end_index = m* (i - rolling window +1);
covariance mtx = cov_tsm(start_index:end_index, :
no_riskyassets = sum(~isnan(covariance_mtx(1l,:)),2);
condition = tsm_sign(i-11,:) < 07
covariance_mtx(condition,:) = [];
covariance_mtx(:,condition) = [];
w_risky assets(i-(rolling window-1),:) = sum(~isnan(covariance_mtx(1,:)),2)/no_riskyassets;
k = sum(~isnan(covariance_mtx(1l,:)),2);

columns = isnan(covariance mtx(1l,:));
rows = isnan(covariance mtx(:,1));
covariance_mtx(rows,:) = [];
covariance_mtx(:,columns) = [];

% initial weight guess = 0
x0 = zeros(k,1);

% upper bound = 1

ub = ones(k,1);%*ub

% lower bound = 0

1b = ones(k,1)*0;%*1b;

% weight constraints. for sum(weights) = 1 // Aeq = ones(l,N), beq = 1 for
% N = # of asset classes

Aeq = ones(1l,k);

beq = 1;

% function objective // choose weights s.t. portfolio variance is minimized

fun_erc = @(w_erc) fm_fitnessERC(covariance mtx, w_erc);

[w_erc_tsm lo(l:k,i-23), port_var_erc_lo(i-23,1)] = fmincon(fun_erc, x0, [], [], Aeqg, beqg, lb, ub, [], options);
stdev_erc_tsm_lo(i-23,1) = sqrt(w_erc_tsm lo(l:k,i-23)"'*covariance_mtx*w_erc_tsm lo(l:k,i-23))*sqrt(12);

$returns
returns_erc_tsm_lo = ret_raw_tsm(i+l,1:m);

returns_erc_tsm_lo(:,condition) = [];
returns_erc_tsm_lo(:,columns) = [];

a_erc_lo = returns_erc_tsm_lo*w_erc_tsm_lo(l:k,i-23);
ret_erc_tsm_lo(i-23,1) = a_erc_lo;

end
For trading between cash and risky asset accoring to TSM sign, enable

% returns_minvar_tsm

ret_erc_tsm_lo = w_risky assets.*ret_erc_tsm_lo + (l-w_risky assets).*rf_tsm(rolling window+l:end,:);

IVTSMLO

w_iv_tsm_lo = zeros(m,n);
returns_iv_tsm_lo = zeros(m,n);

for i=rolling window:n-1
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covariance_mtx(condition,:) = [];
covariance_mtx(:,condition) = [];

k = sum(~isnan(covariance_mtx(1l,:)),2);
columns = isnan(covariance mtx(1l,:));
rows = isnan(covariance mtx(:,1));

covariance_mtx(rows,:) = [];

covariance_mtx(:,columns) = [];

stdev_iv_lo = diag(sqrt(covariance_mtx));

w_iv_tsm lo(1l:k,i-23) = 1./stdev_iv_lo./sum(1l./stdev_iv_lo);

%returns

returns_iv_tsm lo = ret_raw_tsm(i+l,1:m);
returns_iv_tsm lo(:,condition) = [];
returns_iv_tsm _lo(:,columns) = [];

a_iv_lo = returns_iv_tsm_lo*w_iv_tsm_lo(l:k,1-23);

ret_iv_tsm_lo(i-23,1) = a_iv_lo;
end
1/N TSM LS
w_IN_1s = (1./sum(~isnan(ret_tsm),2)).* (~isnan(ret_tsm));
w_1IN_1s = w_1IN_1s(25:end,:);

idx_long_ls = tsm sign>0;
idx_long_ls = idx_long ls(rolling window-1l:end,:);
ret_long_ls = idx_long_ls.*ret_tsm(rolling window+l:end,:).*w_1N_ls;

idx_short_ls = tsm_sign<0;
idx_short_ls = idx_short_ls(rolling window-1ll:end,:);
ret_short_ls = idx_short_ls.*ret_tsm(rolling window+l:end,:).*-w_1N_ls;

ret_1IN_tsm ls = ret_long_ls + ret_short_ls;

ret_1IN_tsm_ls = nansum(ret_IN_tsm ls,2);
mean_1N_1ls = (l+mean(ret_ 1N _tsm_ls))"12-1;
stdev_1N_1s = sqrt(12)*std(ret_IN_tsm ls);

MV TSM LS

options

= optimset('Display', 'off', 'Algorithm', 'sagp'):

3 Long Positions

w_mv_long = zeros(m,n);
returns_mv_tsm_long = zeros(m,n);

for

end

% Short

i=rolling window:n-1

start_index = m*(i - rolling_window) + 1;

end_index = m*(i - rolling_window +1);
covariance_mtx = cov_tsm(start_index:end_index, :);
no_riskyassets = sum(~isnan(covariance mtx(1,:)),2);
condition = tsm_sign(i-11,:) < 0;
covariance_mtx(condition,:) = [1;
covariance_mtx(:,condition) = [];

w_risky assets(i-(rolling_window-1),:) = sum(~1snan(covariance_mtx(l,:)),2)/no_riskyassets;
k = sum(~isnan(covariance mtx(1l,:)),2);
columns = isnan(covariance mtx(1l,:));

rows = isnan(covariance_mtx(:,1));
covariance_mtx(rows,:) = [];
covariance_mtx(:,columns) = [];

% initial weight guess = 0
x0 = zeros(k,1);

% upper bound = 1

ub = ones(k,1);

% lower bound = 0

1b = ones(k,1)*0.0001;

% weight constraints. for sum(weights) = 1 // RAeq = ones(l,N), beq = 1 for
$ N = # of asset classes

Aeq = ones(1l,k);

beq = 1;

% function objective // choose weights s.t. portfolio variance is minimized

fun_mv = @(x)x'*covariance_mtx*x;

[w_mv_long(l:k,i-(rolling window-1)), port_variance_minvar (i-(rolling window-1),1)] = fmincon(fun_mv, x0,

1,

(1,

Req,

beq,

1b,

ub,

1,

options)

stdev_mv_short (i-(rolling window-1),1) = sqgrt(w_mv_long(l:k,i-(rolling window-1))'*covariance mtx*w_mv_long(l:k,i-(rolling window-1)))*sqrt(12);

$returns

returns_mv_tsm_long = ret_raw_tsm(i+l,1l:m);

returns_mv_tsm_long(:,condition) = [];
returns_mv_tsm_long(:,columns) = [];

a = returns_mv_tsm long*w_mv_long(l:k,i-(rolling window-1));
ret_mv_tsm long(i-(rolling window-1),1) = a;

Positions

w_mv_short = zeros(m,n);

returns_1

for

mv_tsm_short = zeros(m,n);

i=rolling window:n-1

start_index = m*(i - rolling_window) + 1;
end_index = m* (i - rolling window +1);
covariance_mtx = cov_tsm(start_index:end_index, :);
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w_mv_risky_short (i-(rolling window-1),:) = sum(~isnan(covariance mtx(1,:)),2)/no_riskyassets;
k = sum(~isnan(covariance_mtx(1l,:)),2);

columns = isnan(covariance mtx(1l,:));

rows = isnan(covariance mtx(:,1));
covariance mtx(rows,:) = [];
covariance mtx(:,columns) = [];

% initial weight guess = 0
x0 = ones(k,1);

% upper bound = 1

ub = ones(k,1)*4/k;

% lower bound = 0

1b = ones(k,1)*0.3/k;

% weight constraints. for sum(weights) = 1 // Aeq = ones(l,N), beq = 1 for
% N = # of asset classes

Aeq = ones(1l,k);

beq = 1;

% function objective // choose weights s.t. portfolio variance is minimized

fun mv = @(x)x'*covariance_mtx*x;

[w_mv_short(l:k,i-(rolling window-1))] = fmincon(fun_mv, x0, [], [], Req, beqg, lb, ub, [], options);

stdev_mv_short (i-(rolling window-1),1) = sqrt(w_mv_short(l:k,i-(rolling_window-1)) '*covariance_mtx*w_mv_short (l:k,i-(rolling window-1))) *sqgrt (1:Z

$returns
returns_mv_tsm_short = ret_raw_tsm(i+l,1:m);
returns_mv_tsm_short(:,condition) = [];

returns_mv_tsm_short (:,columns) = [];
a = returns_mv_tsm_short*w_mv_short(l:k,i-(rolling window-1));
ret_mv_tsm short(i-(rolling window-1),1) = a;

end

ret_mv_tsm short = ret_mv_tsm short.*-1;
ret_mv_tsm ls = w_risky_assets.*ret_mv_tsm long + (l-w_risky_assets).*ret_mv_tsm_short;

ERC TSM LS

options = optimset ('Display', 'off', 'Algorithm', 'sqgp');

% Long Positions
w_erc_long = zeros(m,n);
returns_erc_tsm_long = zeros(m,n);

for i=rolling window:n-1
start_index = m*(i - rolling_window) + 1;
end_index = m*(i - rolling window +1);
covariance_mtx = cov_tsm(start_index:end_index, :);

condition = tsm_sign(i-11,:) < 0;
covariance_mtx (condition,:) = [];
covariance_mtx(:,condition) = [];
k = sum(~isnan(covariance mtx(1l,:)),2);

columns = isnan(covariance_mtx(1l,:));
rows = isnan(covariance mtx(:,1));
covariance_mtx (rows,:) = [];
covariance mtx(:,columns) = [];

% initial weight guess = 0
x0 = zeros(k,1);

% upper bound = 1

ub = ones(k,1);%*ub

% lower bound = 0

1b = ones(k,1)*0;%*1b;

% weight constraints. for sum(weights) = 1 // Aeq = ones(l,N), beq = 1 for
$ N = # of asset classes

Aeq = ones(1l,k);

beq = 1;

% function objective // choose weights s.t. portfolio variance is minimized

fun_erc = @(w_rp) fm fitnessERC(covariance_mtx, w_rp);

[w_erc_long(l:k,1-23), port_variance_erc(i-23,1)] = fmincon(fun_erc, x0, [], [], Aeg, beq, lb, ub, [], options);
stdev_erc_tsm lo(i-23,1) = sqrt(w_erc_long(l:k,i-23)'*covariance_mtx*w_erc_long(l:k,1-23)) *sqrt(12);

$returns

returns_erc_tsm_long = ret_raw_tsm(i+l,1l:m);

returns_erc_tsm_long(:,condition) = [];
returns_erc_tsm_long(:,columns) = [];

a = returns_erc_tsm_long*w_erc_long(l:k,1-23);
ret_erc_long(i-23,1) = a;

end

% Short Positions
w_erc_short = zeros(m,n);
returns_erc_tsm_short = zeros(m,n);

for i=rolling window:n-1
start_index = m*(i - rolling_window) + 1;
end_index = m* (i - rolling window +1);
covariance mtx = cov_tsm(start_index:end_index,:);
no_riskyassets = sum(~isnan(covariance mtx(1l,:)),2);

condition = tsm_sign(i-11,:) > 0;
covariance_mtx (condition,:) = [];
covariance_mtx(:,condition) = [];

k = sum(~isnan(covariance mtx(1l,:)),2);

columns = isnan(covariance_mtx(1l,:));
rows = isnan(covariance mtx(:,1));
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% upper bound = 1
ub = ones(k,1);%*ub

% lower bound = 0

1b = ones(k,1)*0;%*1b;

% weight constraints. for sum(weights) = 1 // Aeq = ones(l,N), beq = 1 for

% N = # of asset classes

Aeq = ones(1l,k);

beg = 1;

% function objective // choose weights s.t. portfolio variance is minimized

fun_erc = @(w_rp) fm fitnessERC(covariance_mtx, w_rp);

[w_erc_short(l:k,i-23), port_variance rp(i-23,1)] = fmincon(fun_erc, x0, [], [], Aeq, beqg, lb, ub, [], options);

stdev_erc_tsm_lo(i-23,1) = sqrt(w_erc_short(l:k,i-23) '*covariance_mtx*w_erc_short(l:k,1-23)) *sqrt(12);

$returns

returns_erc_tsm_short = ret_raw_tsm(i+l,1:m);
returns_erc_tsm_short (:,condition) = [];
returns_erc_tsm_short (:,columns) = [];

a = returns_erc_tsm_short*w_erc_short (l:k,i-23);
ret_erc_short (i-23,1) = a;

end
ret_erc_short = ret_erc_short.*-1;

ret_erc_tsm_ls = w_risky assets.*ret_erc_long + (l-w_risky assets).*ret_erc_short;

IVTSMLS

Long Positions

w_1iv_long = zeros(m,n);
returns_iv_tsm_long = zeros(m,n);
w_1iv_short = zeros(m,n);
returns_iv_tsm_short = zeros(m,n);

for i=rolling window:n-1
start_index = m*(i - rolling_window) + 1;
end_index = m* (i - rolling window +1);
covariance_mtx_long = cov_tsm(start_index:end index,:);

condition_long = tsm_sign(i-11,:) < 0;
covariance_mtx_long(condition_long,:) = [];
covariance _mtx_long(:,condition_long) = [];
k_long = sum(~isnan(covariance_mtx_long(l,:)),2);

columns_long = isnan(covariance_mtx_long(l,:));
rows_long = isnan(covariance_mtx_long(:,1));
covariance_mtx_long(rows_long,:) = [];
covariance_mtx_long(:,columns_long) = [];

start_index = m* (i - rolling window) + 1;

end_index = m* (i - rolling window +1);
covariance_mtx_short = cov_tsm(start_index:end_index,:);
condition_short = tsm sign(i-11,:) > 0;

covariance_mtx_short (condition_short,:) = [];
covariance_mtx_short(:,condition_short) = [];
k_short = sum(~isnan(covariance_mtx_short(l,:)),2);

columns_short = isnan(covariance_mtx_short(l,:));
rows_short = isnan(covariance_mtx_short(:,1));

covariance_mtx_short (rows_short,:) = [];
covariance _mtx_short (:,columns_short) = [];
% stdev

stdev_iv_long = diag(sqrt(covariance_mtx_long));
stdev_iv_short = diag(sqrt(covariance mtx_short));

$returns

returns_iv_tsm long = ret_raw_tsm(i+l,1l:m);

returns_iv_tsm long(:,condition_long) = [];

returns_iv_tsm_long(:,columns_long) = [];

w_iv_long(l:k_long,i-23) = 1./stdev_iv_long./(sum(l./stdev_iv_long)+ (sum(l./stdev_iv_short)));
a_iv_tsm_long = returns_iv_tsm long*w_iv_long(l:k_long, i-23);

ret_iv_tsm long(i-23,1) = a_iv_tsm_long;

$returns

returns_iv_tsm_short = ret_raw_tsm(i+l,1:m)

i
returns_iv_tsm_short (:,condition_short) = [];
returns_iv_tsm_short (:,columns_short) = [];
w_iv_short(l:k_short,i-23) = 1./stdev_iv_short./(sum(1l./stdev_iv_long)+(sum(l./stdev_iv_short)));
a_iv_tsm_short = returns_iv_tsm_short*w_iv_short(l:k_short,i-23);
ret_iv_tsm short(i-23,1) = a_iv_tsm_short;

end
% Short Positions

ret_iv_tsm_short = ret_iv_tsm short.*-1;
ret_iv_tsm ls = w_risky_assets.*ret_iv_tsm long + (l-w_risky_assets).*ret_iv_tsm_short;

Plot TSM Strategies

% TSM LS

figure

hold on

plot(datel (205:end, :), cumsum(ret_iv_tsm_ls))
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legend('IV TSM LS', 'IN TSM LS', 'MV TSM LS', 'ERC TSM LS',
ylabel ('Log Cumulative Returns')

xlabel ('Date"')

legend boxoff

box on

% TSM LO

figure

hold on

plot (datel (205:end, :),cumsum(ret_iv_tsm lo)
plot (datel (205:end, :),cumsum(ret_IN_tsm_ lo)
plot (datel(205:end, :),cumsum(ret_mv_tsm_lo)
plot(datel (205:end, :),cumsum(ret_erc_tsm_lo))
title ('Time Series Momentum Long Only')
legend('IV TSM LO', 'IN TSM LO', 'MV TSM LO', 'ERC TSM LO',
ylabel ('Log Cumulative Returns')

xlabel ('Date"')

legend boxoff

box on

)
)
)
)

% Plot ERC

figure

hold on

plot (datel (205:end, :), cumsum(ret_erc(180:end,:)))
plot (datel (205:end, :), cumsum(ret_erc_tsm_lo)

plot (datel (205:end, :), cumsum(ret_erc_tsm_ls)
title ('Equal Risk Contribution Strategies')

'Location’',

'Location’',

legend ('ERC', 'ERC TSM LO', 'ERC TSM LS', 'Location', 'northwest')

ylabel ('Log Cumulative Returns')
xlabel ('Date')

legend boxoff

box on

% Plot IV

figure

hold on

plot (datel (205:end, :), cumsum(ret_iv(180:end,:)))
plot (datel (205:end, :), cumsum(ret_iv_tsm_lo)

plot (datel (205:end, :), cumsum(ret_iv_tsm_ls))
title ('Inverse Volatility Strategies')

legend('IV', 'IV TSM LO', 'IV TSM LS', 'Location', 'northwest')

ylabel ('Log Cumulative Returns')
xlabel ('Date')

legend boxoff

box on

% Plot MV

figure

hold on

plot (datel (205:end, :), cumsum(ret _mv(180:end,:)))
plot (datel (205:end, :), cumsum(ret_mv_tsm_lo)

plot (datel (205:end, :), cumsum(ret_mv_tsm_ls)
title ('Minimum Variance Strategies')

legend('MV', 'MV TSM LO', 'MV TSM LS', 'Location', 'northwest')

(
ylabel ('Log Cumulative Returns')
(

xlabel ('Date')
legend boxoff
box on

% Plot 1IN
figure

hold on

plot (datel (205:end,:), cumsum(ret_1N(204:end,:)))
plot (datel (205:end, :), cumsum(ret_1IN_tsm_lo))
plot (datel (205:end, :), cumsum(ret_IN_tsm ls))
title ('l/N Strategies')

legend('1l/N', '1/N TSM LO', 'l/N TSM LS', 'Location', 'northwest')

ylabel ('Log Cumulative Returns')
xlabel ('Date')

legend boxoff

box on

Maximum Drawdown

% BAC

sret_erc

n = max(size(ret_erc));

cr = cumsum(ret_erc);

mx = 0;

for i = 1l:n

if cr(i) > mx mx = cr(i); end
dd_erc(i) = mx - cr(i);

end

$ret _mv

n = max(size(ret_mv));

cr = cumsum(ret_mv);

mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end

'northwest"')

'northwest"')
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n = max(size(ret_iv));

cr = cumsum(ret_iv);

mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end

dd_iv(i) = mx - cr(i);
end
Sret_1N

n = max(size(ret_IN));
cr = cumsum(ret_IN);
mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_1IN(i) = mx - cr(i);

end

Sret_mv

n = max(size(ret_60_40));

cr = cumsum(ret_60_40);

mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_60_40(i) = mx - cr(i);

end

% TSM lo

$ret_ 1IN _tsm lo

n = max(size(ret_IN_tsm lo));
cr = cumsum(ret_IN_tsm_lo);
mx = 0;

for i = 1l:n

if cr(i) > mx mx = cr(i); end
dd_1IN_tsm lo(i) = mx - cr(i);
end

%ret_erc tsm lo

n = max(size(ret_erc_tsm lo));
cr = cumsum(ret_erc_tsm_lo);
mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_erc_tsm lo(i) = mx - cr(i);
end

Sret_iv_tsm_lo

n = max(size(ret_iv_tsm_lo));
cr = cumsum(ret_iv_tsm_lo);
mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_iv_tsm lo(i) = mx - cr(i);
end

$ret_mv_tsm_lo

n = max(size(ret_mv_tsm lo));
cr = cumsum(ret_mv_tsm_lo);
mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_mv_tsm_lo(i) = mx - cr(i);
end

% TSM 1s

%ret 1IN tsm 1ls

n = max(size(ret_1IN_tsm_ls));
cr = cumsum(ret_IN_tsm_ls);
mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_1IN_tsm_ls(i) = mx - cr(i);
end

$ret_erc_tsm ls

n = max(size(ret_erc_tsm ls));
cr = cumsum(ret_erc_tsm_ls);
mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_erc_tsm_ls(i) = mx - cr(i);
end

$ret_iv_tsm 1s

n = max(size(ret_iv_tsm 1ls));
cr = cumsum(ret_iv_tsm_ls);
mx = 0;

for i = 1:n

if cr(i) > mx mx = cr(i); end
dd_iv_tsm_ls(i) = mx - cr(i);
end

Sret_mv_tsm_ls

n = max(size(ret_mv_tsm_ls));
cr = cumsum(ret_mv_tsm_ls);
mx = 0;

for i = 1:n
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Plot Maximum Drawdown

% BAC

figure

hold on

plot (datel (26:
plot (datel (26:
plot (datel (26:
plot (datel (26:
plot (datel (26:
ylabel ('MDD')
xlabel ('Date')
legend('60/40"',
set (gca,
title
legend boxoff
box on

'Ydir'

('Maximum Drawdown Broad Asset Classes')

'ERC',

)

)
:),dd_iv)

)

)

,dd_60_40(:,25:end))

,dd_erc)

,dd_mv)

,dd_1N(:,25:end))

IV, MV,

, 'reverse')

T1/NY,

'Location’',

'best'")

% Plot TSM lo
figure
hold on
plot (datel (205:end, :),dd 60_40(:,204:end))
plot (datel (205:end, :),dd_erc(:,180:end))
plot (datel (205:end,:),dd_iv_tsm_lo)
plot (datel (205:end, :),dd mv_tsm_lo)
plot (datel (205:end, :),dd_IN_tsm_ lo)
plot (datel (205:end, :),dd_erc_tsm_lo)
ylabel ('MDD')
xlabel ('Date')
legend('60/40', 'ERC', 'IV TSM LO','MV TSM LO', 'l/N TSM LO', 'ERC TSM LO', 'Location',
set(gca, 'Ydir', 'reverse')
title ('Maximum Drawdown TSM Long Only')
legend boxoff
box on
% Plot TSM 1s
figure
hold on
plot (datel (205:end,:),dd_60_40(:,204:end))
plot (datel (205:end, :),dd_erc(:,180:end)
plot (datel (205:end,:),dd_iv_tsm ls)
plot (datel (205:end, :),dd_mv_tsm_ls)
plot (datel (205:end, :),dd_IN_tsm ls)
plot (datel (205:end, :),dd_erc_tsm_ls)
ylabel ('MDD')
xlabel ('Date')
legend('60/40', 'ERC', 'IV TSM LS','MV TSM LS', '1/N TSM LS', 'ERC TSM LS', 'Location',
set(gca, 'Ydir', 'reverse')
title ('Maximum Drawdown TSM Long Short')
legend boxoff
box on
Correlation
% Correlation Function
% function Cor = MovCorrl (Datal,Data2, k)
% y = zscore (Data2);
% n = size(y,1);
% if (n<k)
% Cor = NaN(n,1);
% else
% x = zscore (Datal);
% X2 = x.%2;
% y2 = y."2;
% Xy = X .* y;
% A=1;
% B = ones(1,k);
% Stdx = sqrt((filter(B,A,x2) - (filter(B,A,x)."2)*(1/k))/(k-1));
B Stdy = sqrt((filter (B,A,y2) - (filter(B,A,y).~2)*(1/k))/(k-1));
% Cor = (filter(B,A,xy) - filter(B,A,x).*filter(B,A,y)/k)./((k-1)*Stdx.*Stdy);
% Cor(1l:(k-1)) = NaN;
% end
% end
ret_excess (isnan(ret_excess)) = 0;
for i = 1:5
A(:,1) = moving correlation(ret_excess(180:end,1l), ret_excess(180:end,i+l), 36);
end
for i = 2:5
B(:,i-1) = moving_correlation(ret_excess(180:end,2), ret_excess(180:end,i+1l), 36);
end
for i = 3:5
C(:,1-2) = moving_correlation(ret_excess(180:end,3), ret_excess(180:end,i+l), 36);

'best'")

'best'")
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for i = 5
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E(:,i-4) = moving correlation(ret_excess(180:end,5), ret_excess(180:end,i+l), 36);

avg_correlation = nanmean([A B C D E],2);
avg_correlation(isnan(avg_correlation)) = [];
hst_avg = mean(avg_correlation);

figure

hold on

plot (datel(216:end,:), avg_correlation, 'k')
plot (get(gca, 'xlim'), [hst_avg hst_avg], '--"')
xlabel ('Date')

legend ('Avg Pairwise Correlation BAC', 'Historical Average',

title ('Average Pairwise Asset Correlation BAC')
legend boxoff
box on

% Plot Correlation Coefficient Matrix

correl mtx = corrcoef (ret_excess(180:end,:));
figure

imagesc (correl mtx);
colormap ( (flipud(autumn)))

'Location', 'southeast')

textStrings = num2str(correl mtx(:),'%0.2f"); %# Create strings from the matrix values

textStrings = strtrim(cellstr (textStrings)); %# Remove any space padding
[x,y] = meshgrid(1l:6); %# Create x and y coordinates for the strings
hStrings = text(x(:),y(:),textStrings(:), 'HorizontalAlignment', 'center');
midvValue = mean (get(gca, 'CLim')); %# Get the middle value of the color range
textColors = repmat (correl mtx(:) > midvValue,1,3); %# Choose white or black for the
S# text color of the strings so
S# they can be easily seen over
S# the background color

set (hStrings, { 'Color'}, num2cell (textColors,2));

set (gca, 'XTick',1:6, ...

'XTickLabel', {'Dev Eqty','US Corp Debt',
'YTick',1:6,...
'YTickLabel', {'Dev Eqty','US Corp Debt',
'TickLength', [0 0]);

title('Correlation Coefficient Matrix BAC')

xtickangle (45)

box on

Sharpe Ratio

% Sharpe Ratio BAC

sr_ret_erc = ((l+(mean(ret_erc(180:end,:))))"12-

sr_ret mv = ((l+(mean(ret_mv(180:end,:))))"12-1)

sr_ret_iv = ((l+(mean(ret_iv(180:end,:))))"12-1)

sr_ret_IN = ((1l+(mean(ret_1N(204:end,:))))"12-1)
(( d

sr_ret_60_40 = 1+ (mean(ret_60_40(204:end, :))))
% Sharpe Ratio TSM LO

sr_ret 1IN _tsm lo = ((l+(mean(ret_1N_tsm_lo)
sr_ret_erc_tsm_lo =
sr_ret_iv_tsm_lo =

(
(1+ (mean (ret_iv_tsm_lo)
sr_ret_mv_tsm lo = ((

1+ (mean(ret_mv_tsm_lo)

(
(

% Sharpe Ratio TSM LS

sr_ret 1IN tsm ls = ((l+(mean(ret_1N_tsm ls)))
sr_ret_erc_tsm_ls = ((l+(mean(ret_erc tsm ls)))"
sr_ret_iv_tsm 1ls = ((l+(mean(ret_iv_tsm 1s)))"
sr_ret_mv_tsm ls = ((l+(mean(ret_mv_tsm ls)))

Net Exposure Long Short

))

(1+ (mean(ret_erc_tsm_lo)))"
)
))

%# Change the text colors

rks

%# Change the axes tick me

'Commodities', 'US Real Estate', 'Global Sov Debt', 'EM Eqty'},...

'Commodities', 'US Real Estate', 'Global Sov Debt', 'EM Eqty'},...

1)/ (std(ret_erc(180:end, :)) *sqrt (12)) ;
/(std(ret_mv(180:end, :))*sqrt(12));
/(std(ret_iv(180:end, :))*sqrt(12));
/(std(ret_1N(204:end, :)) *sqrt (12));

) *

~12-1)/ (std(ret_60_40(204:end, :)) *sqrt (12));

~12-1)/(std(ret_1IN_tsm_lo) *sqrt (12));

12-1) / (std(ret_erc_tsm_lo) *sqrt (12));

12-1)/ (std(ret_iv_tsm_lo) *sqrt (12));
~12-1)/ (std(ret_mv_tsm_lo) *sqrt (12));

~12-1)/(std(ret_1IN_tsm_ls) *sqrt (12));

12-1) / (std(ret_erc_tsm_ls) *sqrt (12));

12-1)/ (std(ret_iv_tsm_1s)*sqrt (12));
~12-1)/ (std(ret_mv_tsm_ls) *sqrt (12));

net_exposure_long_short = w_risky_ assets-(l-w_risky assets);

hst_exp = mean(net_exposure_long_short);
figure
hold on

plot (datel (205:end, :),net_exposure_long_short, 'k')

plot (get(gca, 'xlim'), [hst_exp hst_exp]l, '--'")

legend('Net Exposure', 'Historical Average', 'Location', 'southwest')

title('Net Exposure LS Strategy')
ylabel ('Net Exposure')

xlabel ('Date')

legend boxoff

box on

Rolling Window Cumulative Returns

36month

p = 36;

and tick labels
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for i = 1:1:m-p

roll ret_erc(i,l:n) = sum(ret_erc(i:i+(p-1),:));
end

% ret mv

[m,n] = size(ret_mv);

roll ret mv = ones(m-p,n);

for i = 1:1:m-p
roll ret mv(i,l:n) = sum(ret_mv(i:i+(p-1),:));
end

% ret iv
[m,n] = size(ret_iv);

roll_ret_iv = ones(m-p,n);

for i = 1:1:m-p

roll ret_iv(i,l:n) = sum(ret_iv(i:i+(p-1),:));
end

% ret 1IN

[m,n] = size(ret_1IN);

roll_ret_IN = ones(m-p,n);

for i = 1:1:m-p

roll ret 1IN(i,l:n) = sum(ret_ IN(i:i+(p-1),:));
end

% ret 60 _40

[m,n] = size(ret_60_40);
roll ret 60_40 = ones(m-p,n);

for i = 1:1:m-p
roll ret 60_40(i,1:n) = sum(ret_60_40(i:i+(p-1),:));
end

% ret IN tsm lo
[m,n] = size(ret_1N_tsm_lo);
roll ret 1IN _tsm lo = ones(m-p,n);

for i = 1:1:m-p

roll ret IN_tsm lo(i,1l:n) = sum(ret_1IN_tsm lo(i:i+(p-1),:));
end

% ret_erc_tsm_lo

[m,n] = size(ret_erc_tsm_lo);

roll ret_erc_tsm_lo = ones(m-p,n);

for i = 1:1:m-p
roll ret_erc_tsm _lo(i,1l:n) = sum(ret_erc_tsm lo(i:i+(p-1),:));
end

% ret_iv_tsm lo
[m,n] = size(ret_iv_tsm_lo);
roll ret_iv_tsm _lo = ones(m-p,n);

for i = 1:1:m-p
roll ret_iv_tsm lo(i,1l:n) = sum(ret_iv_tsm lo(i:i+(p-1),:));
end

% ret mv_tsm lo
[m,n] = size(ret_mv_tsm_lo);
roll ret mv_tsm_lo = ones(m-p,n);

for i = 1:1:m-p

roll ret mv_tsm lo(i,1l:n) = sum(ret_mv_tsm lo(i:i+(p-1),:));
end

% ret_IN_tsm ls

[m,n] = size(ret_1IN_tsm_ls);

roll ret IN_tsm ls = ones(m-p,n);

for i = 1:1:m-p
roll ret 1IN tsm 1s(i,1l:n) = sum(ret_ 1IN _tsm ls(i:i+(p-1),:));
end

% ret_erc_tsm ls
[m,n] = size(ret_erc_tsm_ls);
roll ret_erc_tsm_ls = ones(m-p,n);

for i = 1:1:m-p

roll ret_erc_tsm_ls(i,1l:n) = sum(ret_erc_tsm_ls(i:i+(p-1),:));
end

% ret iv _tsm 1s

[m,n] = size(ret_iv_tsm_ls);
roll_ret_iv_tsm 1ls = ones(m-p,n);

for i = 1:1:m-p

roll ret_iv_tsm 1s(i,1l:n) = sum(ret_iv_tsm ls(i:i+(p-1),:));
end

% ret_mv_tsm ls

[m,n] = size(ret_mv_tsm_ls);

roll ret mv_tsm ls = ones(m-p,n);

for i = 1:1:m-p
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p = 60;

$ BAC

% ret erc

[m,n] = size(ret_erc);

roll ret_erc_5 = ones(m-p,n);

for i = 1:1:m-p
roll ret_erc_5(i,l:n) = sum(ret_erc(i:i+(p-1),:));
end

% ret_mv
[m,n] = size(ret_mv);

roll ret mv_5 = ones(m-p,n);

for i = 1:1:m-p

roll ret mv_5(i,1l:n) = sum(ret_mv(i:i+(p-1),:));
end

% ret_iv

[m,n] = size(ret_iv);

roll _ret_iv_5 = ones(m-p,n);

for i = 1:1:m-p

roll ret_iv_5(i,1l:n) = sum(ret_iv(i:i+(p-1),:));
end

% ret IN

[m,n] = size(ret_1IN);

roll ret IN_5 = ones(m-p,n);

for i = 1:1:m-p
roll ret 1IN 5(i,1l:n) = sum(ret_ IN(i:i+(p-1),:));
end

% ret_60_40
[m,n] = size(ret_60_40);
roll ret_60_40_5 = ones(m-p,n);

for i = 1:1:m-p
roll ret_60_40_5(i,1:n) = sum(ret_60_40(i:i+(p-1),:));
end

% ret IN tsm lo
[m,n] = size(ret_IN_tsm_lo);
roll_ret IN_tsm lo_5 = ones(m-p,n);

for i = 1:1:m-p

roll ret 1IN _tsm lo_5(i,1:n) = sum(ret_ 1IN tsm lo(i:i+(p-1),:));
end

% ret_erc_tsm_lo

[m,n] = size(ret_erc_tsm_lo);

roll ret_erc_tsm_lo_5 = ones(m-p,n);

for i = 1:1:m-p
roll ret_erc_tsm _lo_5(i,1l:n) = sum(ret_erc_tsm lo(i:i+(p-1),:));
end

% ret iv tsm lo
[m,n] = size(ret_iv_tsm_lo);
roll ret_iv_tsm lo_5 = ones(m-p,n);

for i = 1:1:m-p

roll ret_iv_tsm lo_5(i,1l:n) = sum(ret_iv_tsm_lo(i:i+(p-1),:));
end

% ret_mv_tsm_lo

[m,n] = size(ret_mv_tsm_lo);

roll ret mv_tsm lo_5 = ones(m-p,n);

for i = 1:1:m-p
roll ret mv_tsm lo_5(i,1:n) = sum(ret_mv_tsm lo(i:i+(p-1),:));
end

% ret IN tsm ls
[m,n] = size(ret_1IN_tsm_ls);
roll ret IN_tsm ls_5 = ones(m-p,n);

for i = 1:1:m-p

roll ret 1IN tsm ls_5(i,1:n) = sum(ret_ 1IN _tsm_ls(i:i+(p-1),:));
end

% ret _erc_tsm ls

[m,n] = size(ret_erc_tsm_ls);

roll ret_erc_tsm_ls_5 = ones(m-p,n);

for i = 1:1:m-p

roll ret_erc_tsm _ls_5(i,1l:n) = sum(ret_erc_tsm ls(i:i+(p-1),:));
end

% ret_iv_tsm ls

[m,n] = size(ret_iv_tsm_ls);

roll ret_iv_tsm ls_5 = ones(m-p,n);

for i = 1:1:m-p
roll ret iv_tsm 1ls_5(i,1:n) = sum(ret_iv_tsm ls(i:i+(p-1),:));
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roll ret mv_tsm _ls_5 = ones(m-p,n);

for i = 1:1:m-p
roll ret mv_tsm 1s_5(i,1:n) = sum(ret_mv_tsm ls(i:i+(p-1),:));
end

Statistics Rolling Window 36/60m Returns

%36m
mean_rolling 36m = [mean(roll ret IN);mean(roll_ret_erc); mean(roll ret_iv); mean(roll ret mv);mean(roll_ ret_ 60_40);
mean (roll ret 1IN tsm lo);mean(roll ret_erc_tsm_lo);mean(roll ret_ iv tsm lo);mean(roll ret mv_tsm lo);0;mean(roll ret_ IN tsm ls)...
;jmean(roll ret erc_tsm ls);mean(roll ret_iv tsm ls);mean(roll ret mv_tsm 1s);0];

std_rolling_36m = [std(roll ret IN);std(roll_ret_erc); std(roll ret_iv); std(roll ret mv);std(roll_ret_60_40);
std(roll_ret 1IN tsm_lo);std(roll ret_erc_tsm lo);std(roll ret_ iv_tsm lo);std(roll ret mv_tsm lo);0;std(roll_ret 1IN tsm ls)...
;std(roll_ret_erc_tsm_ls);std(roll_ret_iv_tsm_ls);std(roll_ret mv_tsm_ls);0];

max_rolling 36m = [max(roll ret_ 1IN);max(roll ret_erc); max(roll ret iv); max(roll ret mv);max(roll ret_ 60_40);
max (roll ret 1IN tsm lo);max(roll ret erc_tsm lo);max(roll ret_iv tsm lo);max(roll ret mv_tsm lo);0;max(roll_ret 1IN tsm ls)...
;jmax(roll ret_erc_tsm_ls);max(roll_ret_iv_tsm_ls);max(roll ret mv_tsm_1s);0];

min rolling 36m = [min(roll_ret_ 1N);min(roll ret_erc); min(roll ret_iv); min(roll ret mv);min(roll_ret_60_40);
min(roll ret 1IN tsm lo);min(roll ret_erc_tsm lo);min(roll ret_iv_tsm lo);min(roll ret mv_tsm lo);0;min(roll_ret 1IN tsm_ ls)...
;min(roll ret_erc_tsm_ls);min(roll_ret_ iv_tsm_ls);min(roll ret mv_tsm_1s);0];

mean_rolling 36m = reshape(mean_rolling_36m,5,3);
std_rolling_36m = reshape(std_rolling 36m,5,3);
max_rolling 36m = reshape (max_rolling_36m,5,3);
min_rolling_36m = reshape(min_rolling 36m,5,3);

%60m

mean_rolling 60m = [mean(roll ret 1IN 5);mean(roll ret_erc_5); mean(roll ret_iv_5); mean(roll_ret mv_5);mean(roll ret 60_40_5);
mean (roll ret 1IN tsm lo_5);mean(roll ret_erc_tsm lo_5);mean(roll ret iv_tsm lo_5);mean(roll_ret mv_tsm_lo_5);0;mean(roll ret IN tsm ls_5)...
;jmean (roll ret_erc_tsm ls_5);mean(roll_ret_iv_tsm ls 5);mean(roll ret mv_tsm ls_5);01;

std_rolling_60m = [std(roll ret IN_5);std(roll ret_erc_5); std(roll ret_iv_5); std(roll ret mv_5);std(roll_ret_ 60_40_5);
std(roll_ret 1IN _tsm_lo_5);std(roll ret erc_tsm lo_5);std(roll ret_iv_tsm lo_5);std(roll_ret mv_tsm lo_5);0;std(roll_ret 1IN tsm ls_5)...
;std(roll_ret_erc_tsm _ls_5);std(roll_ret_iv_tsm ls_5);std(roll_ret mv_tsm ls_5);0];

max_rolling 60m = [max(roll ret_ 1IN 5);max(roll_ret_erc 5); max(roll ret_iv_5); max(roll ret mv_5);max(roll ret_ 60_40_5);
max (roll ret 1IN tsm lo_5);max(roll_ret_erc_tsm_lo_5);max(roll ret_iv_tsm lo_5);max(roll ret mv_tsm lo_5);0;max(roll_ret 1IN tsm 1ls_5)...
;jmax (roll ret_erc_tsm_ls_5);max(roll ret_iv tsm ls_5);max(roll_ret mv_tsm ls_5);01];

min _rolling 60m = [min(roll ret_ 1IN 5);min(roll_ret_erc_5); min(roll ret_iv_5); min(roll ret mv_5);min(roll_ret_ 60_40_5);
min(roll ret 1IN tsm lo_5);min(roll_ret_erc_tsm_lo_5);min(roll ret_iv_tsm lo_5);min(roll_ret mv_tsm_lo_5);0;min(roll_ret 1IN tsm 1ls_5)...
;min(roll ret_erc_tsm_ls_5);min(roll ret_iv_tsm ls_5);min(roll ret mv_tsm_ls_5);0];

mean_rolling 60m = reshape(mean_rolling_60m,5,3);
std_rolling 60m = reshape(std_rolling 60m,5,3);

max_rolling 60m = reshape (max_rolling 60m,5,3);
min _rolling 60m = reshape(min_rolling_60m,5,3);

Plot Rolling Returns

% Plot BAC 36month

figure
hold on
plot(datel (62:end, :),roll ret_60_40(25:end, :))
plot (datel(62:end,:),roll_ret_erc)
plot(datel (62:end, :),roll ret_iv)
plot (datel (62:end, :),roll ret mv)

)

plot (datel (62:end, :),roll ret 1IN(25:end,:))
ylabel ('Rolling 36m Returns')
xlabel ('Date')
legend('60/40', 'ERC', 'IV', 'MV', '1/N', 'Location', 'best')
title ('Rolling 36-Month Returns BAC')
legend boxoff
ylim([-0.55 0.65])
box on
% Plot TSM lo 3émonth

figure

hold on

plot (datel(241:end,:),roll_ret_60_40(204:end,:))
plot(datel(241:end,:),roll_ret_erc(180:end,:))
plot (datel(241:end,:),roll_ret_iv_tsm_lo)

plot (datel(241:end,:),roll_ret mv_tsm_lo)

plot (datel(241:end,:),roll_ret_ 1N_tsm_lo)

plot (datel(241l:end,:),roll_ret_erc_tsm_lo)
ylabel ('Rolling 36m Returns')

’
’

xlabel ('Date")

legend('60/40', 'ERC', 'IV TSM LO','MV TSM LO', 'l/N TSM LO', 'ERC TSM LO', 'Location’', 'best')
title ('Rolling Window 36-Month TSM Long Only')

legend boxoff

box on

% Plot TSM LS 3émonth

figure

hold on
plot(datel(241:end,:),roll ret 60_40(204:end,:))
plot(datel(241:end,:),roll_ret_erc(180:end,:))
plot (datel(241l:end,:),roll_ret_iv_tsm ls

plot (datel(241l:end,:),roll_ret mv_tsm ls)
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legend('60/40', 'ERC', 'IV TSM LS','MV TSM LS', '1/N TSM LS', 'ERC TSM LS', 'Location', 'best')
title ('Rolling Window 36-Month TSM Long Short')
legend boxoff
box on

% Plot BAC 60month

figure
hold on
plot (datel(86:end, :),roll ret 60_40_5(25:end,:))
plot (datel (86:end, :),roll_ret_erc_5)
plot(datel (86:end,:),roll ret_iv_5)
plot(datel(86:end,:),roll ret mv_5)
plot(datel (86:end,:),roll ret 1IN _5(25:end,:))
ylabel ('Rolling 60m Returns')
xlabel ('Date')
legend('60/40', 'ERC', 'IV', 'MV', 'l1/N', 'Location', 'best')
title ('Rolling 60-Month Returns BAC')
legend boxoff
ylim([-0.45 0.8])
box on
% Plot TSM lo 60month

figure

hold on

plot (datel (265:end, :),roll_ret 60_40_5(204:end, :))
plot (datel (265:end, :),roll_ret_erc_5(180:end,:))
plot(datel(265:end, :),roll_ret_iv_tsm_lo_5)

plot (datel (265:end,:),roll_ret mv_tsm lo_5)

plot (datel (265:end,:),roll_ret 1IN tsm lo_5)

plot (datel (265:end,:),roll_ret_erc_tsm_lo_5)
ylabel ('Rolling 60m Returns')

xlabel ('Date')

legend('60/40', 'ERC', 'IV TSM LO','MV TSM LO', 'l/N TSM LO', 'ERC TSM LO', 'Location', 'best')
title ('Rolling Window 60-Month TSM Long Only')
legend boxoff

ylim([-0.4 0.7])

box on

’
’

% Plot TSM LS 60month

figure

hold on

plot(datel (265:end,:),roll ret 60_40_5(204:end,:))
plot (datel (265:end,:),roll ret_erc 5(180:end,:))
plot (datel (265:end,:),roll_ret_iv_tsm ls_5)

plot (datel (265:end,:),roll_ret mv_tsm ls_5)

plot (datel (265:end, :),roll_ret IN_tsm 1ls_5

plot (datel (265:end, :),roll_ret_erc_tsm_ls_5)
ylabel ('Rolling 60m Returns')

’
’

xlabel ('Date')

legend('60/40', 'ERC', 'IV TSM LS','MV TSM LS', 'l/N TSM LS', 'ERC TSM LS', 'Location', 'best')
title ('Rolling Window 60-Month TSM Long Short')

legend boxoff

box on

ylim([-0.4 0.7])

Risk Contribution BAC

% 1/N
w3_1N = ones(6,331)*1/6;
k=0;

for 1 = 1:6:n_rows3
cov3 = varcovmatrixS3(i:i+5,1:6);

k=k+1;
mrc_IN(1:6,k) = (cov3*w3_1N(1:6,k))/sqrt(w3_1IN(1:6,k)"'*cov3*w3_IN(1:6,k));
trc_IN(1:6,k) = mrc_1IN(1:6,k)./sum(mrc_IN(1:6,k));

end

% 60/40

w_60_40_1 = ones(1,331)*0.6;
w_60_40_2 = ones(1,331)*0.4;
w_60_40 = [w_60_40_1; w_60_40_2];

k=0;
for 1 = 1:6:n_rows3
cov3 = varcovmatrixS3(i:i+5,1:6);
cov3 = cov3(1:2,1:2);
k=k+1;
mrc_60_40(1:2,k) = (cov3*w_60_40(1:2,k))/sqrt(w_60_40(1:2,k) '*cov3*w_60_40(1:2,k));
trc_60_40(1:2,k) = mrc_60_40(1:2,k)./sum(mrc_60_40(1:2,k));

3 Minimum Variance

k=0;

for 1 = 1:6:n_rows3

cov3 = varcovmatrixS3(i:i+5,1:6);

k=k+1;

mrc_mv(1:6,k) = (cov3*w3 _mv(1:6,k))/sqrt(w3_mv(1:6,k)"'*cov3*w3 mv(1:6,k));
trc_mv(l:6,k) = mrc_mv(l:G,k)./sum(mrc_mv(l:é,k));
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k=0;
for 1 = 1:6:n_rows3
cov3 = varcovmatrixS3(i:i+5,1:6);

k=k+1;
mrc_erc(l:6,k) = (cov3*w3_erc(l:6,k))/sqrt(w3_erc(l:6,k) " '*cov3*w3_erc(l:6,k));
trc_erc(l:6,k) = mrc_erc(l:é,k)./sum(mrc_erc(l:6,k));

end

% Inverse Volatility

k=0;
for 1 = 1:6:n_rows3
cov3 = varcovmatrixS3(i:i+5,1:6);

k=k+1;
mrc_iv(1:6,k) = (cov3*w3_iv(1:6,k))/sqrt(w3_iv(1:6,k)'*cov3*w3_iv(1:6,k));
trc_iv(1:6,k) = mrc_iv(1:6,k)./sum(mrc_iv(1:6,k));

end

% 60/40

figure

area(datel (204:end,:), trc_60_40")

ylim ([0 11);

legend ({'Dev Eqty', 'US Corp Debt'}, 'FontSize', 5, 'Location', 'southoutside','Orientation', 'horizontal')
title('Total Risk Contribution 60/40")

ylabel ('$ Risk Contribution')

xlabel ('Date"')

% IV

figure

area(datel (204:end, :), trc_iv')

ylim ([0 1]);

legend({'Dev Eqty', 'US Corp Debt', 'Comm', 'US RE', 'Glob Sov Debt', 'EM Eqty',}, 'FontSize', 5, 'Location', 'southoutside', 'Orientation’', 'horizontal'
title('Total Risk Contribution IV')

ylabel('$ Risk Contribution')

xlabel ('Date')

$ 1/N

figure

area(datel (204:end, :), trc_IN')

ylim ([0 1]);

legend({'Dev Eqty', 'US Corp Debt', 'Comm', 'US RE', 'Glob Sov Debt', 'EM Eqgty',}, 'FontSize', 5, 'Location', 'southoutside', 'Orientation', 'horizontal'
title('Total Risk Contribution 1/N')

ylabel ('$ Risk Contribution')

xlabel ('Date')

% erc

figure

area(datel (204:end, :), trc_erc')

ylim ([0 11);

legend({'Dev Eqty', 'US Corp Debt', 'Comm', 'US RE', 'Glob Sov Debt', 'EM Egty',}, 'FontSize', 5, 'Location', 'southoutside', 'Orientation’, 'horizontal'
title('Total Risk Contribution ERC'")

ylabel('$ Risk Contribution')

xlabel ('Date')

% min variance

figure

area(datel(204:end,:), trc_mv')

ylim ([0 11);

legend({'Dev Eqty', 'US Corp Debt', 'Comm', 'US RE', 'Glob Sov Debt', 'EM Egty',}, 'FontSize', 5, 'Location', 'southoutside', 'Orientation’, 'horizontal'
title('Total Risk Contribution MV')

ylabel('$ Risk Contribution')

xlabel ('Date')

Turnover & Transaction Costs

bp = 15%0.01/100;
% BAC

$ 60/40

x_60_40 = w_60_40.* (l+ret_excess(203:end,1:2)");
trading_60_40 = sum(abs((x_60_40./(sum(x_60_40)))-x_60_40));
avg_trading_60_40 = mean(trading_60_40)*12;

$ 1/N

x_IN = w_1N(203:end, :)"'.*(l+ret_excess(203:end,:)"');
trading 1IN = sum(abs((x_1IN./(sum(x_1IN)))-x_1IN));
avg_trading_ 1N = mean(trading 1N)*12;

% ERC

x_erc = w3_erc.*(l+ret_excess(203:end,:)");
trading_erc = sum(abs ((x_erc./(sum(x_erc)))-x_erc));
avg_trading_erc = mean(trading erc)*12;

s MV
x_mv = w3_mv.*(l+ret_excess(203:end,:)"');
trading mv = sum(abs ((x_mv./(sum(x_mv)))-x_mv));

avg_trading mv = mean(trading mv)*12;
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avg_trading_iv = mean(trading iv)*12;

% TSM LO
$ 1/N
x_IN_tsm lo = w_1N tsm_lo'.*(l+ret_exc(25:end,:)"');
trading_IN_tsm_lo = nansum(abs((x_lN_tsm_lo./(nansum(x_lN_tsm_lo)))—x_lN_tsm_lo));

avg_trading_ 1IN _tsm lo = mean(trading_1N_tsm_lo) *12;

% ERC

x_erc_tsm _lo = w_erc_tsm_lo(:,25:end).* (l+ret_exc(25:end,:)");

trading_erc_tsm_lo = nansum(abs((x_erc_tsm lo./(nansum(x_erc_tsm_lo)))-x erc_tsm_lo));
avg_trading_erc_tsm_lo = mean(trading erc_tsm lo)*12;

% MV

x_mv_tsm_lo = w_mv_tsm_lo(:,25:end).*(l+ret_exc(25:end,:)"');

trading mv_tsm_lo = nansum(abs((x_mv_tsm lo./(nansum(x_mv_tsm lo)))-x mv_tsm lo));
avg_trading mv_tsm lo = mean(trading_mv_tsm_lo) *12;

s IV
%x_iv_tsm_lo = w_iv_tsm_lo(:,25:end).* (l+ret_exc(25:end,:)"');
trading_iv_tsm_lo = nansum(abs((x_iv_tsm lo./(nansum(x_iv_tsm_lo)))-x_iv_tsm lo));

avg_trading_iv_tsm lo = mean(trading_iv_tsm lo)*12;

% TSM LS

$ 1/N

x_IN_tsm ls = w_1N_1s'.*(l+ret_exc(25:end,:)");

trading_ 1IN _tsm_ls = nansum(abs((x_IN_tsm ls./(nansum(x_IN_tsm 1s)))-x_ 1IN _tsm ls));
avg_trading 1IN _tsm ls = mean(trading_1IN_tsm ls)*12;

% ERC Long

x_erc_long = w_erc_long(:,25:end).* (l+ret_exc(25:end,:)");

trading_erc_long = nansum(abs((x_erc_long./(nansum(x_erc_long)))—x_erc_long));
avg_trading_erc_long = mean(trading_erc_long) *12;

% ERC Short

x_erc_short = w_erc_short(:,25:end) .* (l+ret_exc(25:end,:)"');

trading_erc_short = nansum(abs ((x_erc_short./(nansum(x_erc_short)))-x erc_short));
avg_trading_erc_short = mean(trading_erc_short) *12;

avg_trading _erc_tsm_ls = (avg_trading erc_long* (mean(w_risky_assets))+avg_trading erc_short*(l-mean(w_risky_assets)));
% MV Long

x_mv_long = w_mv_long(:,25:end).*(l+ret_exc(25:end,:)"');

trading_mv_long = nansum(abs ((x_mv_long./(nansum(x_mv_long)))-x mv_long));

avg_trading mv_long = mean(trading mv_long)*12;

% MV Short

x_mv_short = w_mv_short (:,25:end).* (l+ret_exc(25:end,:)");

trading_mv_short = nansum(abs((x_mv_short./(nansum(x_mv_short)))-x_mv_short));
avg_trading_mv_short = mean(trading_mv_short) *12;

avg_trading_mv_tsm_ls = (avg_trading_mv_long* (mean(w_risky assets))+avg_trading mv_short* (1-mean(w_risky assets)));
% IV Long

x_iv_long = w_iv_long(:,25:end)'.* (l+ret_exc(25:end, :)) .*w_risky assets;

trading_iv_long = nansum(abs (((x_iv_long./(nansum(x_iv_long))).*w_risky_ assets)-x_iv_long));

% IV Short

%_1iv_short = w_iv_short (:,25:end)'.* (l+ret_exc(25:end, :)).*(l-w_risky_assets);

trading_iv_short = nansum(abs (((x_iv_short./(nansum(x_iv_short))).* (1-w_risky assets))-x_iv_short));
avg_trading_iv_tsm ls = mean(trading_iv_short) *mean(w_risky assets) + mean(trading iv_long) * (1-mean(w_risky assets));

Regression

% import Fama French 5-Factor data US Data(1990.01)
FF5F_USDATA

% import Fama French Global 3-Factor + WML Data(1990.11)
FF3FWML

FF5F1 = FF5F1(:,2:end)/100;
FF3FWMLglobal = FF3FWMLglobal (:,2:end)/100;

% BAC

fitlm(FFS5F1, ret_erc(180:end,:))
fitlm(FF5F1, ret_60_40(204:end,:))
fitlm(FF5F1, ret mv(180:end,:))
fitlm(FF5F1, ret_iv(180:end,:))
fitlm(FF5F1, ret 1N(204:end,:))

% TSM LO
fitlm(FF5F1, ret 1IN _tsm lo)
fitlm(FF5F1, ret_erc_tsm_lo)
fitlm(FF5F1, ret_iv_tsm lo)
fitlm(FF5F1, ret _mv_tsm lo)

% TSM LS
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% BAC Global
fitlm(FF3FWMLglobal, ret_erc(190:end, :))
fitlm (FF3FWMLglobal, ret_60_40(214:end,:))

fitlm(FF3FWMLglobal, ret_mv(190:end, :

fitlm(FF3FWMLglobal,ret_iv(190:end, :

fitlm (FF3FWMLglobal, ret_1N(214:end, :

% TSM LO Global
fitlm(FF3FWMLglobal,ret 1N_tsm lo(ll:end,:))
fitlm(FF3FWMLglobal, ret_erc_tsm lo(ll:end,:))
fitlm(FF3FWMLglobal, ret_iv_tsm _lo(ll:end,:))

fitlm(FF3FWMLglobal, ret _mv_tsm lo(ll:end,:))

% TSM LS Global

fitlm(FF3FWMLglobal,ret 1N_tsm ls(ll:end,:))
fitlm(FF3FWMLglobal, ret_erc_tsm ls(ll:end,:))
fitlm(FF3FWMLglobal,ret_iv_tsm ls(ll:end,:))

fitlm(FF3FWMLglobal,ret mv_tsm ls(ll:end,:))

% BAC
fitlm(ret_excess(180:end, :),ret_erc(l56:end,:))
fitlm(ret_excess(180:end,:),ret mv(156:end, :))
fitlm(ret_excess(180:end,:),ret_iv(156:end, :))
fitlm(ret_excess(180:end, :),ret_1IN(180:end, :))

fitlm(ret_excess(180:end,:),ret_60_40(180:end, :))

% TSM LO

fitlm(ret_excess(204:end,:),ret_IN_tsm lo)
fitlm(ret_excess(204:end, :),ret_erc_tsm_lo)
fitlm(ret_excess(204:end,:),ret_iv_tsm lo)

fitlm(ret_excess(204:end,:),ret_mv_tsm_lo)

% TSM LS
fitlm(ret_excess(204:end,:),ret_IN_tsm ls)
fitlm(ret_excess(204:end, :),ret_erc_tsm_ls)
fitlm(ret_excess(204:end,:),ret_iv_tsm ls)

fitlm(ret_excess(204:end,:),ret_mv_tsm ls)

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat

pValue

(Intercept) 0.00110371579994349 0.000954167255937249 1.15673200172788
x1 0.136813939970383 0.0257547702922462 5.31217861459912
x2 -0.032520600771226 0.0333294060070407 -0.975732983790835
x3 -0.00437143352543096 0.0446065448295216 -0.097999823616418
x4 0.0120894997859588 0.0436652645972347 0.276867663518622
x5 0.0590641849324248 0.0629667206973135 0.938022248551762
x6 0.0143728487910289 0.0201885691418459 0.711930037737915

Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.0163

R-squared: 0.0919, Adjusted R-Squared 0.0751

F-statistic vs. constant model: 5.45, p-value = 2.18e-05

0.248236642883502
2.02156061094402e-07
0.32992698869718
.921993218728343
.782058816449495
.348933844047028
.477021984185569

o oo o
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Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) -0.00173116652567314 0.000764232443634099 -2.26523558387687 0.024160194137381
x1 0.616251699001763 0.0206280721888162 29.8744203220247 5.79392335424399%e-95
x2 -0.0876182616130696 0.0266949145856132 -3.28220797755578 0.00114268951092217
%3 0.0129395741699188 0.0357272465021386 0.362176642108266 0.717456873618988
x4 -0.00278128383567579 0.0349733358144798 -0.0795258379249104 0.936663628137836
x5 0.0739693469488758 0.0504326788901027 1.46669478157331 0.14343202148596
x6 -0.00822871243774654 0.0161698689959693 -0.508891719518427 0.611175559382608
Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.013
R-squared: 0.794, Adjusted R-Squared 0.79
F-statistic vs. constant model: 208, p-value = 1.07e-107
ans =
Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.00159396874882637 0.000868417517658846 1.83548663680061 0.0673528683799583
x1 0.143969684213293 0.0234402234470904 6.14199282435439 2.3929293647799%e-09
x2 -0.0114300656095414 0.0303341367559794 -0.376805369524429 0.706565669512898
x3 -0.00192599571392567 0.040597814158002 -0.0474408722210983 0.962191173331613
x4 0.0244058972523129 0.0397411255243714 0.614121943711581 0.539567046080546
x5 0.0575603438098107 0.0573079855159849 1.00440354501303 0.315935984546413
x6 0.00778951028044618 0.0183742493678685 0.423936244931338 0.671894496391113
Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.0148
R-squared: 0.12, Adjusted R-Squared 0.104
F-statistic vs. constant model: 7.36, p-value = 2.19%e-07
ans =
Linear regression model:
vy ~ 1+ xl + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.000248578443533358 0.000864016782550397 0.287700943492795 0.773760170318012
x1 0.338711142540022 0.0233214393228922 14.5235951285196 3.92198907786802e-37
x2 0.0318689445502197 0.0301804174931916 1.05594777002038 0.291781234183491
%3 0.0617678019163057 0.0403920833632421 1.52920564559233 0.12719217806504
x4 0.0368105800013493 0.0395397360282038 0.930976877920789 0.352560821472216
x5 0.0382098300154822 0.0570175753633493 0.670141263846925 0.503246563381927
x6 -0.000517553781343183 0.0182811372384603 -0.0283108088185203 0.977431743627766
Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.0147
R-squared: 0.475, Adjusted R-Squared 0.465
F-statistic vs. constant model: 48.6, p-value = 2.18e-42
ans =
Linear regression model:
y ~ 1+ x1 + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tstat pValue
(Intercept) -0.00154460652825513 0.00111505623355038 -1.38522747264239 0.16693881075782
x1 0.534622707441501 0.0300974666436426 17.7630467630879 9.96784776705024e-50
x2 0.0958971904906482 0.038949315958424 2.46210204546371 0.0143343781007649
x3 0.140886204143262 0.0521279739582405 2.70269863655405 0.00724154658884948
x4 0.00457947179200792 0.0510279777217333 0.0897443323539251 0.928546008341725
x5 0.0100094311528773 0.0735839906293985 0.136027294351148 0.891884441542961
x6 -0.00901832969240399 0.023592708435552 -0.382250716022677 0.702526789827107

Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.019

R-squared: 0.603, Adjusted R-Squared 0.595

F-statistic vs. constant model: 81.7, p-value = 8.66e-62

ans =

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6
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(Intercept)
x1
x2
x3
x4
x5
x6

0.00101846181205761
0.278811002793903
0.0108959189096202
0.0108859803555994

-0.00510408860510493

0.050342561510098
0.103405227330707

0.000755854822817276

=}

.0204019444335508
.0264022812722821
.0353355995280834
0345899533127374
.0498798289502221
.0159926126752853

o oo oo

Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.0129

R-squared: 0.443,

Adjusted R-Squared 0.433

F-statistic vs. constant model: 42.9, p-value = 2.11e-38

ans =

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

(Intercept)
x1
x2
%3
x4
x5
x6

1.3474304606029
13.6659034486635
0.412688539950489
0.308074024524407
-0.147559858174928
1.00927694760817
6.46581202397951

0.17878604818738

7.24147013489338e-34

0.680108616759928
0.758224578949569
0.882782203140716
0.313597295909297

3.72129837991786e-10

Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.0101

R-squared: 0.193,

Adjusted R-Squared 0.178

F-statistic vs. constant model: 12.9, p-value = 4.36e-13

ans =

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat pValue

0.00212289485810769 0.000589257248102671 3.6026622751661 0.000364568759683019
0.119994843617262 0.015905162300941 7.54439604870698 4.6585746962826e-13
-0.00192684461369796 0.0205829679675123 -0.0936135457597394 0.925474189642089
-0.0096577920465548 0.0275472981178689 -0.350589448200372 0.72612490543562
0.00323155266798609 0.0269659994032887 0.119838045668427 0.904685946397287
0.0197414043252977 0.0388858413755802 0.50767589505457 0.612027134708198
0.0408247404634431 0.0124676890991919 3.27444325396992 0.00117351047852314

Estimate SE tStat pValue
(Intercept) 0.00170132666218406 0.000627579285788108 2.71093501763295 0.0070680675496362
x1 0.188984423266682 0.0169395462326656 11.156404113249 1.1482027487235%e-24
x2 0.00781757872577149 0.0219215705501176 0.356615813994657 0.72161228215801
%3 -0.017701386507751 0.029338822278164 -0.603343458708827 0.546703662648528
x4 0.0279785072620471 0.0287197191049736 0.974191535780091 0.330690452075083
x5 0.0448629699261611 0.0414147617807565 1.08326036411024 0.279500844794543
x6 0.0764411355624925 0.013278518754742 5.75675171111942 1.99471590053982e-08

Number of observations: 330, Error degrees of freedom: 323

Root Mean Squared Error: 0.0107
R-squared: 0.338, Adjusted R-Squared 0.326

F-statistic vs. constant model: 27.5, p-value = 1.79%e-26

ans =

Linear regression model:

y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:
Estimate

SE

tStat

pValue

(Intercept) 0.00220738595229397
x1 0.0541215914774818
x2 -0.00838026278882426
%3 -0.00722130219063985
x4 0.019815792466082
x5 0.0383449698573546
%6 0.0172066704617549

0.000516663827825836

0.0139457292431361
0.018047253644063
.0241536146354838
.0236439288913504
.0340953084888231
.0109317348150948

o o o o

Number of observations: 330, Error degrees of freedom: 323

Root Mean Squared Error: 0.00881
R-squared: 0.0473,

Adjusted R-Squared 0.0296

F-statistic vs. constant model: 2.67, p-value = 0.0152

ans =

Linear regression model:

vy ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:
Estimate

SE

4.27238338240715
3.88087209595867
-0.464351139187382
-0.298973975515495
0.838092203590209
1.12464064872516
1.57401096466368

tsStat

2.54740149099542e-05
0.000126187667675867

0.642709013627333
0.765152168213763

0.40259866556803
0.261576396521578
0.116463869828689

pValue

(Intercept)

0.00252399757051422 0.

00101264756554463

2.49247384420141

0.0131863578085399
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x5
x6

0.0668208917887305
0.240188159642512

Number of observations:
Root Mean Squared Error:
R-squared: 0.325,
F-statistic vs. constant model:

330,
0.0173

25.9,

ans =

Linear regression model:

y~ 1+ x1+x2+ x3+ x4+ x5+ x6

Estimated Coefficients:
Estimate

Error degrees of freedom:

Adjusted R-Squared 0.312
p-value = 4.03e-25

0.0668259113145007
0.0214259138176339

323

SE

0.999924886534706
11.2101710894045

tstat

0.318095358792563

7.41818527398223e-25

pValue

(Intercept) 0.0036790424664919
x1 -0.109648364267083
x2 -0.0182301065784883
%3 -0.0807598355893602
x4 0.0488861307121208
x5 0.0271310629065054
x6 0.12901262642231

0.000722610233761925

0.0195046103977693
0.0252410357995744
0.0337814419704759
0.0330685913413477
0.047685975890688
0.015289213265423

Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.0123

R-squared: 0.381, Adjusted R-Squared 0.37

F-statistic vs. constant model: 33.2, p-value = 4.04e-31

ans =

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

5.0913235027668
-5.6216639056591
-0.722240827327524
-2.39065684821691
1.47832516382382
0.568952661652533
8.43814682826587

o

-

.05197495129869e-07
.09327206966231e-08
0.470668986895856
0.0173906425945343
0.140295241767645
0.569783660426021
.09726198010277e-15

Estimate SE tStat pValue

(Intercept) 0.00134215165531671 0.000485518959700249 2.76436507473433 0.00603085672959248
x1 0.0383215689377437 0.0131050706276098 2.92417874170077 0.00369777079113288
x2 -0.00680073540060743 0.0169593521798969 -0.40100207416347 0.688683735057555
x3 -0.0279441367913342 0.0226976173272458 -1.23114846763191 0.219163023716932
x4 0.0275987227192246 0.0222186558073208 1.24214187206281 0.215085336612895
x5 0.0288142387949147 0.0320400187058047 0.899320286279808 0.369152034429061
x6 0.0830348808499386 0.0102727619571869 8.08301420747385 1.27935073586429e-14

Number of observations: 330, Error degrees of freedom: 323

Root Mean Squared Error: 0.00828

R-squared: 0.2, Adjusted R-Squared 0.185

F-statistic vs. constant model: 13.4, p-value = 1.27e-13

ans =

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat pValue

(Intercept) 0.00343573004548229 0.000681455004663878 5.04175627439545 7.70176882686424e-07
x1 -0.129076553907117 0.0183937532968266 -7.01741247825622 1.33473108071742e-11
x2 -0.026263317618021 0.0238034688202148 -1.10333992983902 0.270700909828339
x3 -0.0660590260692693 0.0318574684110101 -2.07358052488687 0.0389105331410238
x4 0.0514829615964273 0.0311852171667007 1.6508771230043 0.0997355916784891
x5 0.0267250509307049 0.0449700895513426 0.5942850280561 0.552737503617401
x6 0.101874273857045 0.0144184380601072 7.06555546671244 9.89226716108401e-12

Number of observations: 330, Error degrees of freedom: 323

Root Mean Squared Error: 0.0116

R-squared: 0.389, Adjusted R-Squared 0.378

F-statistic vs. constant model: 34.3, p-value = 5.67e-32

ans =

Linear regression model:
vy~ 1+ xl + x2 + x3 + x4

Estimated Coefficients:

Estimate SE tstat pValue

(Intercept) 0.000869139064204338 0.000916180531566229 0.948654805749395 0.34352342685139
x1 0.166933391050321 0.0219943168304421 7.58984206407676 3.65387385061143e-13
x2 0.0526517178897173 0.0445006891508607 1.18316634853056 0.237635409295219
x3 0.0647237939897354 0.0406804246174118 1.59103044273615 0.112605760333609
x4 0.0377758631782721 0.0242418286573228 1.55829264005878 0.12016798630347
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cor v
ans =
Linear regression model:

vy~ 1+ xl + x2 + x3 + x4

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) -0.000437289287514182 0.000385608475244694 -1.13402405700936 0.257646737481661
x1 0.639158951483042 0.00925712202434241 69.0451038457004 2.79672781308014e-192
x2 -0.107538302418129 0.0187297615476138 -5.74157349225997 2.20737481741965e-08
x3 0.010519746160611 0.0171218618695271 0.61440433527464 0.539391680605558
x4 0.00356128692062502 0.010203070534268 0.349040703841466 0.727291950814313

Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.00658
R-squared: 0.944, Adjusted R-Squared 0.943
F-statistic vs. constant model: 1.33e+03, p-value = 8.19%e-196
ans =
Linear regression model:
vy~ 1+ x1 + x2 + x3 + x4
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.00160172921083404 0.000828788690736945 1.93261470473229 0.0541799362302389
x1 0.168348793454682 0.019896341846943 8.46129377700397 1.0095314299561e-15
x2 0.059561131973597 0.0402558956750409 1.47956295530956 0.139989283944743
x3 0.0606842726575569 0.036800035250313 1.64902756871791 0.100138871803928
x4 0.0276516716136695 0.021929469948052 1.26093661539347 0.208264793220056
Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.0141
R-squared: 0.192, Adjusted R-Squared 0.182
F-statistic vs. constant model: 18.8, p-value = 7.5e-14
ans =
Linear regression model:
y ~ 1+ xl + x2 + x3 + x4
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.000507105667281371 0.000734129824726455 0.690757479401309 0.490226645137147
x1 0.386367032838697 0.017623910794205 21.9228885887087 2.42305743915977e-65
x2 0.10087578709217 0.0356581285029917 2.82897031692806 0.00496926761319038
x3 0.133594935007858 0.0325969740299152 4.09838455818794 5.29795589618529e-05
x4 0.0236040786973397 0.0194248281971517 1.21514993377397 0.225218919199317

Number of observations: 320, Error degrees of freedom: 315

Root Mean Squared Error: 0.0125

R-squared: 0.62, Adjusted R-Squared 0.615

F-statistic vs. constant model: 128, p-value = 7.08e-65

ans =

Linear regression model:
vy~ 1+ x1 + x2 + x3 + x4

Estimated Coefficients:

Estimate SE tStat pValue

(Intercept) -0.00140778525111363 0.000877741596078797 -1.60387209333902 0.109744390639469
x1 0.627359996931702 0.0210715313131705 29.7728716346106 1.41166936619048e-93
x2 0.209831821465371 0.0426336345033537 4.92174368687391 1.38561638150022e-06
x3 0.199146486395457 0.0389736515922343 5.1097723271878 5.6023306869064e-07
x4 0.0160556597821139 0.0232247473553842 0.691316875763205 0.489875594505374

Number of observations: 320, Error degrees of freedom: 315

Root Mean Squared Error: 0.015

R-squared: 0.755, Adjusted R-Squared 0.752

F-statistic vs. constant model: 242, p-value = 8.62e-95

ans =

Linear regression model:
vy~ 1+ xl + x2 + x3 + x4

Estimated Coefficients:

Estimate SE tStat pValue




%3
x4
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0.0976687574296804
0.179454574678931

0.0287602995144512
0.0171385195587216

3.39595759010106
10.4708329131969

0.000771521200902448
3.2621545581145%e-22

Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.011

R-squared: 0.592, Adjusted R-Squared 0.587

F-statistic vs. constant model: 114, p-value = 4.09e-60

ans =

Linear regression model:

y ~ 1+ x1 +x2+ x3+ x4

Estimated Coefficients:
Estimate SE

tsStat

pValue

(Intercept) 0.00198021463458747 0.000556371884845049
x1 0.140475357465604 0.0133565592033623

3.55915654353915

0.000429361360236657

x2
x3
x4

0.00160246864959191
0.0301335886109129
0.0752098202866518

o o o

.0270240759836297
.0247041317086208
.0147214129065898

10.5173312472753
0.0592978146806069
1.21977930519199
5.10887241352935

2.26511641059938e-22
0.952752502357907
0.223461023532801
5.62702013155039e-07

Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.00949

R-squared: 0.274, Adjusted R-Squared 0.265

F-statistic vs. constant model: 29.7, p-value = 5.42e-21

ans =

Linear regression model:

y o~ 1+ x1 4 x2 + x3 + x4

Estimated Coefficients:

Estimate

SE

tStat

pValue

3.11426941322599
14.1356933438929
-0.990900782982008
1.68743318451218

(Intercept) 0.00180596200922021 0.000579899093363751
x1 0.196788158962484 0.0139213658767933
x2 -0.0279105425651553 0.028166838743594
%3 0.0434493649980707 0.0257487913577044
x4 0.128702909942883 0.0153439349293188

Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.00989

R-squared: 0.419, Adjusted R-Squared 0.412

F-statistic vs. constant model: 56.9, p-value = 4.4le-36

ans =

Linear regression model:

vy~ 1+ x1 +x2+ x3 + x4

Estimated Coefficients:
Estimate SE

8.38786859666364

tsStat

0.002013432835465

1.79593237165149e-35

0.322494569257854
0.0925099668801769

1.68404846847315e-15

pValue

(Intercept) 0.00218144954970085 0.000510748728959573
x1 0.0557851801785433 0.0122613054724907
x2 -0.000691681448606591 0.0248080696309624
%3 0.0385960814773034 0.0226783635440924
x4 0.0339513908445463 0.0135142395497282

Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.00871

R-squared: 0.0668, Adjusted R-Squared 0.0549

F-statistic vs. constant model: 5.63, p-value = 0.000216

ans =

Linear regression model:

y ~ 1+ x1 +x2+ x3 + x4

Estimated Coefficients:

4.27108170028069
4.54969336696669

-0.0278813087392869

1.70189005931857
2.51226794668065

Estimate

SE

tStat

2.57883117663213e-05
7.67825083611815e-06
0.977774471539409
0.089762633789132
0.0124953087689282

pvValue

(Intercept) 0.00185005775249642 0.000945576280730244
x1 0.0177973866542917 0.0227000068099882
x2 -0.119360888230761 0.0459284984644556
x3 0.0697484795549495 0.0419856603397806
x4 0.3633117540036 0.025019630291319

Number of
Root Mean
R-squared:

observations: 320, Error degrees of freedom: 315

Squared Error: 0.0161
0.418,

Adjusted R-Squared 0.411

F-statistic vs. constant model: 56.7, p-value = 5.68e-36

ans =

1.95653993252418
0.784025608594118
-2.59884150846201

1.66124526780073

14.521068048302

0.0512848487006765
0.433614233076446

0.00979387267968945

0.0976591028647807

6.24504043154122e-37
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Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 0.00343155020640408 0.000687571276108533 4.99082833393757 9.96538872091008e-07
x1 -0.140057743615702 0.0165062015281966 -8.48515894928639 8.54349498103667e-16
x2 -0.122194395660262 0.0333966882868157 -3.6588776291481 0.000296877023760795
%3 -0.026539347456156 0.0305296723769215 -0.869296831243365 0.385346674372572
x4 0.188959953753303 0.0181929046632606 10.3864642425624 6.31101605745002e-22
Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.0117
R-squared: 0.449, Adjusted R-Squared 0.442
F-statistic vs. constant model: 64.2, p-value = 1.13e-39
ans =
Linear regression model:
y ~ 1+ xl + x2 + x3 + x4
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.00128326672390199 0.000469854352530996 2.7312010987859 0.00666597845191414
x1 0.0279023402011983 0.0112795733348127 2.47370528768868 0.0138988683215173
x2 -0.0516209424469116 0.0228217493908288 -2.26191873212209 0.024383686313159
x3 0.0234286956963971 0.0208625635567964 1.12300176498514 0.262291925465768
x4 0.126297618068334 0.0124321881065101 10.1589210995125 3.69425226162075e-21
Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.00801
R-squared: 0.253, Adjusted R-Squared 0.244
F-statistic vs. constant model: 26.7, p-value = 4.4e-19
ans =
Linear regression model:
vy~ 1+ xl + x2 + x3 + x4
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.00325730076553813 0.000651667659443402 4.99840788220216 9.60933494057228e-07
x1 -0.168489441093602 0.015644280222205 -10.7700347155923 3.08009569389818e-23
x2 -0.110545838807031 0.0316527790576212 -3.49245286190484 0.000547035883212536
x3 -0.017414528104153 0.0289354730669434 -0.601840103455845 0.547713495576695
x4 0.141960764343187 0.0172429070444656 8.23299481793311 4.91158156675329%e-15
Number of observations: 320, Error degrees of freedom: 315
Root Mean Squared Error: 0.0111
R-squared: 0.451, Adjusted R-Squared 0.444
F-statistic vs. constant model: 64.8, p-value = 6.3e-40
ans =
Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) -0.000407623655631414 0.000412404193366005 -0.988408125301607 0.323641509450231
x1 -0.0227359069978335 0.0151855208404436 -1.49720956144494 0.135247773661341
x2 0.54572882479429 0.0343854427738227 15.8709262051367 4.96305344605032e-43
x3 0.0563430903251719 0.00704148806382154 8.00158855834139 1.86065655287025e-14
x4 0.0139105558765697 0.00934405143917284 1.48870711672806 0.137472749289055
x5 0.375498022378794 0.0267186430353998 14.0537834156208 7.94001565786914e-36
x6 0.0369275370165985 0.00921311514060491 4.00814886746047 7.49365688321305e-05

Number of observations: 354, Error degrees of freedom: 347

Root Mean Squared Error: 0.00756

R-squared: 0.796, Adjusted R-Squared 0.792

F-statistic vs. constant model: 225, p-value = 2.36e-116

ans =

Linear regression model:
y ~ 1+ x1 + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat pvValue

(Intercept) 9.92959764022123e-05 0.000344958681511748 0.287848898213134 0.773634246325663
x1 -0.00498149053661893 0.0127020465151759 -0.392180152282329 0.695165872568816
x2 0.617153396753262 0.0287619699151035 21.4572714794887 1.31345983808952e-65
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Number of observations: 354, Error degrees of freedom: 347
Root Mean Squared Error: 0.00633

R-squared: 0.834, Adjusted R-Squared 0.831

F-statistic vs. constant model: 290, p-value = 8.05e-132

ans

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat

pValue

(Intercept) 0.000113320377866632 0.000147295108645674 0.769342437156077
x1 0.109743999806957 0.00542369107301776 20.2341907622507
x2 0.353931168132147 0.0122811736899699 28.8190019184571
x3 0.0849846763085608 0.00251495199629876 33.7917687628362
x4 0.105792065325249 0.0033373401484845 31.6995153680364
x5 0.274740095709713 0.00954288412211041 28.7900483956578
%6 0.0670860001924686 0.00329057467753763 20.3873203821862

0.442213410613723
1.10980483649531e-60
4.36481196290114e-94

8.80090087585983e-112
1.68266681711384e-104
5.58345138626801e-94
2.67095761304557e-61

Number of observations: 354, Error degrees of freedom: 347
Root Mean Squared Error: 0.0027
R-squared: 0.981, Adjusted R-Squared 0.981
F-statistic vs. constant model: 3.05e+03, p-value = 7.38e-297
ans =
Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) -4.93724008905093e-19 3.08426094659625e-11 -1.60078546353207e-08 0.999999987236779
x1 0.166666666666667 1.13568459378727e-09 146754360.830826 0
x2 0.166666666666667 2.57159553624131e-09 64810606.6128382 0
x3 0.166666666666667 5.26614107967959%e-10 316487280.049868 0
x4 0.166666666666667 6.98816680344718e-10 238498409.317379 0
x5 0.166666666666667 1.99821603625145e-09 83407731.5180218 0
x6 0.166666666666667 6.89024303868893e-10 241887935.92741 0
Number of observations: 354, Error degrees of freedom: 347
Root Mean Squared Error: 5.66e-10
R-squared: 1, Adjusted R-Squared 1
F-statistic vs. constant model: 1.57e+l17, p-value = 0
ans =
Linear regression model:
y ~ 1+ x1 + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 1.3317808072087e-18 0 Inf 0
x1 0.6 0 Inf 0
x2 0.4 0 Inf 0
%3 1.52333121226092e-17 0 Inf 0
x4 1.43281740865119%e-16 0 Inf 0
x5 4.74364415261965e-18 0 Inf 0
x6 9.43732870506571e-17 0 Inf 0
Number of observations: 354, Error degrees of freedom: 347

R-squared: 1,
F-statistic vs.

Adjusted R-Squared 1
constant model: Inf,

p-value 0

ans

Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 0.00306564752157346 0.00063174217780249 4.85268774080795 1.8988312075994e-06
x1 0.100690614285863 0.0240197396178393 4.19199441325668 3.57415886165575e-05
x2 0.0787457939171731 0.0527619557163522 1.49247299210268 0.136551267503556
x3 0.0424382401552106 0.0105360514754798 4.02790744274321 7.02039828730666e-05
x4 -0.017310617551626 0.0139148562765483 -1.24403854467407 0.214387412455723
x5 -0.0587204870932361 0.0407088424332664 -1.44245042559233 0.150144312813881
x6 0.127613257528096 0.0147550682898497 8.6487744428729 2.47974148311431e-16

Number of observations: 330, Error degrees of freedom: 323
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ans =

Linear regression model:
vy ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 0.00211778255296412 0.000475849316389646 4.45053188062161 1.18079649030538e-05
x1 0.00322431519792295 0.0180924704390714 0.178213097475064 0.858667342982815
x2 0.233712609382928 0.0397420679530066 5.88073599137528 1.01952375797064e-08
%3 0.00822706086824349 0.00793610600687269 1.03666216921987 0.300668786242164
x4 -0.0109217480741096 0.0104811346772635 -1.0420387114958 0.298173041121705
x5 0.0541295626289001 0.0306632603038576 1.76529051681077 0.0784598068309741
x6 0.076205481895194 0.0111140104392438 6.85670418538664 3.59049983010463e-11
Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.00842
R-squared: 0.434, Adjusted R-Squared 0.424
F-statistic vs. constant model: 41.3, p-value = 2.76e-37
ans =
Linear regression model:
vy ~ 1+ xl + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.0023829861153781 0.000546258884562779 4.36237502532417 1.73295678121641e-05
x1 0.0591067200479334 0.0207695427536128 2.84583636477273 0.00471255986761401
x2 0.22595220481625 0.0456225468073404 4.9526433885952 1.1824325895496e-06
x3 -0.00834964561654467 0.00911038067255815 -0.916497994611254 0.360089523680244
x4 -0.0105587860521245 0.0120319873131141 -0.877559606517874 0.380835019995646
x5 0.0473088916843974 0.0352003833854995 1.34398796644601 0.179895535517611
x6 0.0774058695095941 0.0127585072342294 6.06700047964265 3.64511087947544e-09
Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.00966
R-squared: 0.461, Adjusted R-Squared 0.451
F-statistic vs. constant model: 46, p-value = 1.42e-40
ans =
Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 0.00180167908196286 0.00043074950654537 4.18266081466327 3.71624345929096e-05
x1 -0.0283859980376187 0.0163777112741194 -1.73320908901815 0.0840128674143999
x2 0.217176338058487 0.0359754140023446 6.03679885502731 4.31367960228964e-09
x3 0.000361479789229381 0.00718394169878971 0.0503177509486582 0.959900279746171
x4 0.00205681393606238 0.00948775890763278 0.216786066771543 0.828511930176991
x5 0.0791998859805052 0.0277570730692055 2.85332267501835 0.00460564740032753
x6 0.0349524176079888 0.010060652285406 3.47417012500182 0.000582359046652082
Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.00762
R-squared: 0.288, Adjusted R-Squared 0.275
F-statistic vs. constant model: 21.8, p-value = 1.76e-21
ans =
Linear regression model:
y ~ 1+ xl + x2 + x3 + x4 + x5 + x6
Estimated Coefficients:
Estimate SE tStat pvalue
(Intercept) 0.00446028705775563 0.00115667159995069 3.85613951094309 0.000139026771455234
x1 -0.0182301533500056 0.043978305755693 -0.414526049531722 0.678764055035118
x2 -0.0486337223098574 0.096603104683064 -0.503438501996548 0.614999159108901
x3 -0.0278030079778138 0.0192907042548553 -1.44126453915315 0.150478709212876
x4 -0.0792998235021183 0.0254770373706329 -3.11259988155163 0.00202019845671601
x5 0.0813287797090329 0.0745347763120992 1.09115212700827 0.276019222589996
x6 0.0254415511460176 0.0270154012916611 0.941742485012456 0.34702829593404
Number of observations: 330, Error degrees of freedom: 323
Root Mean Squared Error: 0.0205
R-squared: 0.0527, Adjusted R-Squared 0.0351

F-statistic vs. constant model: 3,

ans =

p-value = 0.00732
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Estimated Coefficients:
Estimate

SE

tStat

pValue

(Intercept) 0.0037662069296195
x1 -0.0933292670669107
x2 -0.00371825928794457
%3 -0.0604302305369707
x4 -0.0683674575031495
x5 0.153060976918503
x6 -0.00702410567671213

Number of observations: 330, Error degrees
Root Mean Squared Error: 0.0129

R-squared: 0.325, Adjusted R-Squared 0.313
F-statistic vs. constant model: 25.9,

ans =

Linear regression model:

y ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:
Estimate

0.000727826471476987
.0276730016549784
.0607867408676702
.0121385233377529
.0160312246051044
.0469004194862864
.0169992279558715

o

oo o oo

of freedom: 323

p-value = 3.8e-25

SE

5.17459460079363
-3.37257476548883
-0.0611689199794251
-4.97838401389586
-4.26464348090919
3.26353108554302
-0.413201452145125

tStat

4.01982212498094e-07
0.000835199655081747
0.951262512701087
1.04535810292427e-06
2.63242453661721e-05
0.00121813064617108
0.679733200239563

pvalue

(Intercept) 0.00191314683619244
x1 -0.00583243181107616
x2 0.0367458595720308
%3 -0.0217120477524952
x4 -0.0307710789234436
x5 0.0616460292925283
x6 0.028942514971318

Number of observations: 330, Error degrees
Root Mean Squared Error: 0.00893

R-squared: 0.0688, Adjusted R-Squared 0.05
F-statistic vs. constant model: 3.98,

ans =

Linear regression model:

vy ~ 1+ xl + x2 + x3 + x4 + x5 + x6

Estimated Coefficients:
Estimate

0.000505073505985884
0.0192036158545726
0.0421828190244114

0.00842350035338632
0.0111248314452153
0.03254643823833
0.0117965751442125

of freedom: 323
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p-value = 0.000739

SE

3.78785822958196
-0.303715292747193
0.871109622871952
-2.5775564600964
-2.76598158587634
1.89409448865368
2.45346760542762

tStat

0.000181194488724368
0.761540353517941
0.384341283611024

0.0103931483015949
0.00600174270577679
0.0591056896067121
0.0146765256979433

pValue

(Intercept) 0.0032110465441726
x1 -0.104339415179861
x2 -0.00218927192813147
%3 -0.0655187887420018
x4 -0.0567462614269165
x5 0.169262986544712
%6 -0.0208467886995556

Number of observations: 330, Error degrees
Root Mean Squared Error: 0.0112
R-squared: 0.433, Adjusted R-Squared 0.423

F-statistic vs. constant model: 41.2, p-val

Histogram

$Histogram Ln Returns
$BAC
figure

subplot (1,3,1); histogram(ret_1N); xlabel('l/N BAC');ylabel ('FQ');

0.000632765719227355
.0240586561242515
.0528474400313625
.0105531218651396
.0139374009669624
.0407747984324902
.0147789742821231

=}

o oo oo

of freedom: 323

ue = 3.53e-37

subplot (1,3,2); histogram(ret_IN_tsm_lo); xlabel ('1/N TSM LO');
subplot (1,3,3); histogram(ret_IN_tsm_ls); xlabel ('1/N TSM LS');

suptitle('Log Returns')

figure

subplot (1,3,1); histogram(ret_mv); xlabel ('MV BAC');ylabel ('FQ');

subplot (1,3,2); histogram(ret_mv_tsm_lo); xlabel ('MV TSM LO');
subplot (1,3,3); histogram(ret_mv_tsm_1ls); xlabel ('MV TSM LS');

suptitle('Log Returns')

figure

subplot (1,3,1); histogram(ret_iv); xlabel ('IV BAC');ylabel ('FQ');

subplot(1,3,2); histogram(ret_iv_tsm_lo); xlabel('IV TSM LO');
subplot (1,3,3); histogram(ret_iv_tsm_ls); xlabel ('IV TSM LS');

suptitle('Log Returns')

figure

subplot (1,3,1); histogram(ret_erc); xlabel ('ERC BAC');ylabel ('FQ');
subplot (1,3,2); histogram(ret_erc_tsm lo); xlabel ('ERC TSM LO');
subplot (1,3,3); histogram(ret_erc_tsm_ls); xlabel ('"ERC TSM LS');

suptitle ('Log Returns')

5.07462153305884
-4.33687628440247
-0.0414262625934623
-6.20847457077431
-4.07150957064589
4.15116672679466
-1.41057074067529

o

.56544548299612e-07
.93410080199191e-05

0.966981671315006
.64246823399872e-09
.87999619532213e-05
.23649552713765e-05

0.159333549221613

-

= oo e
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