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1. Introduction

The paper introduces a new dynamic panel model for large data sets of
time series with series-specific Markov switching processes, which interact
through a network. The interaction can be local, meaning in some neigh-
bourhoods of a series-specific Markov chain; global, thus regarding all the
series; or a combination of both. The local interactions among the Markov
chains are based on a system of neighbourhoods: we assume that the state
transition of each chain depends on the previous state of the series in its
neighbourhood. Moreover, the neighbourhood system or the network struc-
ture can be known a priori by the researcher or inferred by the system.

Markov switching (MS) models have been extensively used in macroeco-
nomics and finance to extract the different phases or regimes of the market.
Originally, the MS model was applied to a univariate series Hamilton (1989),
or a small set of series, and the Markov chain was assumed with constant
transition probabilities, thus not varying over time. These assumptions
have been challenged by the recent literature. First of all, the use of large
database has been proved very important for forecasting, see e.g. Bańbura
et al. (2010) in VAR framework, Stock and Watson (2014) for turning point
application, and Casarin et al. (2015) for forecast combinations. Secondly,
time-varying MS processes provide more accurate fitting of the cycle, see
e.g. Kaufmann (2010). This is particularly true when different countries or
states are grouped in panels and time-varying interacting mechanisms are
necessary to reinforce the estimation of the regimes, see Kaufmann (2015)
and Billio et al. (2016). The solution has been to focus on medium size
panel (Billio et al. (2016)) or to use a number of Markov chains that are
smaller than the number of series (e.g., Kaufmann (2015), Hamilton and
Owyang (2012)).

We extend this literature and introduce a multivariate set-up with mul-
tiple chains where the dependence between the chains is modelled via a net-
work. Therefore, we extend the literature to allow for state-specific business
cycles and interaction effects that can also provide endogenous synchroniza-
tion of the business cycle.

More in detail, we propose a convenient parametrization of the transi-
tion matrix. We assume that the transition probabilities of each chain do
not only depend on their own past values but involve also the past regimes
of other chains in the panel and we use a linear regression to specify such
relationship. The proposed parametrization has several advantages. The
first one relates to inference aspects. The multivariate logistic transforma-
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tion, widely used in the literature to model transition probabilities, implies
a non-linear transformation of the parameters which makes the inference
task more difficult. In a Bayesian setting, the non-linear parametrization
can lead to a poor performance of the Markov Chain Monte Carlo (MCMC)
sampler used for posterior approximation (e.g., see Scott (2011)). Our en-
dogenous linear time-varying transition model instead is not exposed to
these inferential difficulties. The drawback of the linear parametrization re-
lies on the constraints one needs to introduce on the parameters, but in our
models these constraints can be easily handled through the use of standard
prior distributions defined on the parameter space.

The second advantage of the linear assumption for the time-varying
transition is that it allows us to provide some theoretical properties of our
multiple-chain model under the assumption of a broader class of interaction
mechanisms, which allow for idiosyncratic, local and global interactions
(Föllmer and Horst (2001)). In particular, the global interaction parameter
assesses the importance of common movement in all the Markov chains,
while the local one captures the commovement of a chain with the neigh-
bouring chains. In the application, we assume the neighbouring system is
generated by an endogenously given network, that is a set of nodes (the
chains) and a set of edges (pair of chains) defining the pairwise interaction
between the chains. To the best of our knowledge this is the first paper
which provides a Markov switching model with network interaction effects.
In this sense, this study contributes to the recent and expanding stream of
literature on network econometrics (e.g. Billio et al. (2012), Diebold and
Yilmaz (2015), and Diebold and Yilmaz (2014)).

The paper also contributes to the literature on Markov switching dy-
namic panels by developing an efficient MCMC algorithm for the posterior
approximation. The standard approach based on Metropolis-Hastings algo-
rithm becomes quickly inefficient due to difficulties in setting the scale of
the multivariate proposal distribution. The scale of the posterior distribu-
tion can change across different directions of the parameter space and the
handtuning of the proposal scale can be a very difficult task. To solve this
problem we consider the Metropolis adjusted Langevin (MALA) sampling
method (Girolami and Calderhead (2011)) which is exploiting the infor-
mation on the gradient of the target distribution. This method has been
successufly applied in many fields such as statistics, physics and recently
also econometrics by Burda and Maheu (2013), Burda (2015) and Virbick-
aite et al. (2015).
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To assess the effectiveness of our model, we apply it to US regional
business cycles. We collect monthly coincident indices from 50 states to
assess the importance of the global and regional components in US busi-
ness cycle synchronization. We identify the role of the global and regional
interactions in the cycle co-movement and are able to shed light on how
the co-movements propagate to the rest of the economy (see Hamilton and
Owyang (2012), Camacho and Leiva-Leon (2014), Leiva-Leon (2014)). More
specifically, we consider a panel with a network interaction based on the di-
vision into statistical regions defined by the geographical classification of
the United States Census Bureau, precisely the West, the Midwest, the
South and the North-east, and economic connections among States based
on 10-K fillings on the Securities and Exchange Commission’s EDGAR sys-
tem. Therefore, such model accounts for both geographical and economic
interconnections of the states. We compare it to a panel with only a global
interaction among the states and a model that considers geographical prox-
imity interaction. Our findings show that the model with the network of
states, and therefore global and regional interactions, receives higher sup-
port from the data than the other two models. This confirms evidence that
US states react differently to business cycle shocks. Moreover, we show that
the interaction of the network of US states cycles plays a key role in mak-
ing the slowdowns and the recessions deeper and longer, differently of what
is predicted by an aggregate index. Indeed, our model can both measure
the effects of state-specific-recessions and strengthen the consequences of a
national recession via endogenous synchronization of regional cycles. For
example, our model can proxy a mobile labour force that moves from one
state to another one depending on economic conditions, helping to identify
local features, but also amplifying national cycles. Finally, we confirm at
state level what has been documented at country level, i.e. that the un-
certainty is higher during deep recessions and this can slow the recovery
itself.

The remainder of the paper is structured into seven sections. Section
2 describes the panel Markov switching model with interacting chains and
the regime switching transition probabilities. In section 3, we discuss some
properties of the proposed model and present examples of the model out-
puts. In section 4 we provide the Bayesian estimation procedure. Section 5
studies the model in simulation exercises and section 6 applies it to regional
US business cycle. Section 7 concludes.
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2. Panel Markov switching with interacting chains

In our panel MS model with interacting chains (PMS-IC), we assume
each series tXitu, t � 1, . . . , T in a panel of N units i � 1, . . . , N , is a
conditionally linear and Gaussian process with mean and variance driven
by a unit-specific Markov chain Sit which takes value in the finite set
t0, . . . , K � 1u.

The measurement equation is written as:

Xit �
Ķ

k�1
ItkupSitq rΨ1

ikZit � σikεits, εit
iid� N p0, 1q (1)

where Z 1
it � p1, Z2it, . . . , Zmitq is a vector of covariates and Ψik am-dimensional

parameters vector. K represents the number of unobserved latent regimes
and the symbol IEpXq is the indicator function which takes value 1 if X P E
and 0 otherwise.

The pK �Kq transition matrix Pit of the i-th chain is time-varying and
has l-th row and k-th column element Pit,lk defined as:

Pit,lk � P pSit�1 � l|Sit � k, S�i,tq (2)

which represents the conditional probability that unit i moves to the regime
l P t1, . . . , Ku at time t � 1. St � pS1t, S2t, . . . , SNtq P S includes all
configurations at time t, with S � t0, . . . , K � 1uN and S�i,t � tSjt, j �
1, . . . , N ; j � iu.

Following Kaufmann (2010) and Billio et al. (2016), we assume that the
transition probabilities of each chain do not only depend on their own past
values, but involve also the past regimes of other chains in the panel. In
this paper we propose a new interaction mechanism:

Pit�1,lk � αplk � βmi,k pStq � γmk pStq (3)

with, 0   α ¤ 1, 0 ¤ β   1, 0 ¤ γ   1, interactions parameters such
that: α � β � γ � 1 and plk fixed transition probability parameter such
that

K°
k�1

plk � 1. The second term on the right-hand side represents the local
interactions mechanism and the third term defines the global interactions.
In our model, mi,k pStq is the local interaction factor and measures the
proportion of chains belonging to the neighbourhood of chain i which are
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in the state k at time t, that is:

mi,k pStq � 1
|Npiq|

¸
jPNpiq

ItkupSjtq (4)

where Npiq P N is the neighbourhood of the chain i, and N � tNpiqui�1,...,N
is a neighbourhood system withNpiq subset ofD � t1, . . . , Nu (see Brémaud
(2013), Chap. 7). G � pN , Dq is called graph or topology.

The global interaction factor mk pStq is given by the proportion of chains
in regime k at time t that is:

mk pStq � 1
N

Ņ

j�1
ItkupSjtq (5)

These specifications of the global and local interactions allow us to as-
sess the dependence among the time series in the panel. To model depen-
dence through interaction effects is appealing in many contexts. In financial
econometrics, the interactions represent linkages between financial institu-
tions and the PMS-IC synchronization has the interpretation of contagion
effects. One way of capturing these effects is via the network of connections
of the individual series. Allen and Babus (2009) provide a review of network
model application in economics and finance. Vesper (2013) complements
existing measures of systemic risk, by introducing the combination of MS
models with a latent network structure of financial institutions. In macro
perspective, our PMS-IC has the potential to analyse the co-movement of
regional business cycles. It does not only help to characterize the unit-
specific cycles but also shows the importance of a global component (global
interactions), a regional component (local interactions) and fixed time in-
dependent transitions in business cycles synchronization. In this vein, Kose
et al. (2003, 2008) document the common dynamic properties of the world
business cycles fluctuations employing a Bayesian dynamic latent factor
model. Their results suggest that the regional components play only mi-
nor role in explaining cycles fluctuations. However, recent studies suggest
that the world component is not enough to explain the business cycle syn-
chronization. Francis et al. (2017) find that when the regional component
is defined differently from simple geography, its effect becomes more im-
portant. Aastveit et al. (2015, 2016) explicitly introduce regional factors
into a global dynamic factor model. They find that both the global and
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the regional factors are relevant in explaining the business cycle variation.
Leiva-Leon (2014) proposed a new model that combines several bivariate
MS models and network of synchronisation in order to create a link of
interdependencies business cycles. However, the model cannot assess the
importance of global and regional components in the cycles fluctuations.

The behaviour of unit i of the panel at time t � 1 is influenced by an
idiosyncratic interaction, an empirical average of all the system at t and the
situation in some neighbourhood Npiq at t. For instance, an individual that
has in its network at t a high proportion of series in regime k will tend to
transit in regime k or will remain in regime k at time t � 1. α reflects the
intensity of idiosyncratic interaction from time t to time t�1 and γ reflects
the intensity of global interactions between the collection of time series from
time t to time t� 1. Parameter β captures the level of local interactions.

The transition probabilities satisfy the condition:

Ķ

k�1
Pit,lk � 1, @i P t1, . . . , Nu, @l P t0, . . . , K � 1u, @t P t1, . . . , T u

Therefore, the linear parametrization of the regime switching transition
matrix presents twofold advantages. First, the parametrizations allow for
idiosyncratic, global interactions and interaction in the neighbourhood of
the Markov chains. Hence, if the population of time series presents high
global interactions at time t then the panel MS model will more likely exhibit
episodes of contagion at time t�1. Secondly, formulating linearly over unit
specific interaction and global interaction, the new endogenous transition
matrix can be seen as solution to the usual critique to exogenous transition
matrix and as well as generalisation of the fixed transition matrix. In fact,
if the parameter α which measure the intensity of unit specific interaction is
equal to 1 then we are back to the case of exogenous fixed transition matrix.

3. Properties of the model

The use of linear parametrization to model the evolution of the endoge-
nous time-varying transition matrix insures the convergence of the Markov
processes transition probabilities to unique ergodic probabilities.

Let S � t0, 1, . . . , K � 1uN be the finite set of all configurations of St �
pSitq1¤i¤N with Sit P t0, 1, . . . , K � 1u, i � 1 . . . , N . The following result
provides a characterization of the macroscopic dynamic of the set of Markov
chains for diverging N and shows that the interacting transition kernel
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defined in equation (3) is generating a deterministic sequence of empirical
averages. These quantities can be used to find the limiting behaviour of
the set of chains as t tends to infinity and to give an interpretation to the
parameters of the transition probabilities.

The relationship between the local interactions factor and the global one
is summarised by the following. Let us define the empirical averages:

m pStq � pm0 pStq , . . . ,mK�1 pStqq 1

and the proportion of regime in some finite neighbourhood Npiq of i:

mi pStq � pmi0 pStq , . . . ,miK�1 pStqq 1

where

mk pStq � lim
NÑ8

1
N

Ņ

i�1
ItkupSitq, k � 0, 1, . . . , K � 1

mik pStq � 1
|Npiq|

¸
jPNpiq

ItkupSjtq, k � 0, 1, . . . , K � 1

with Sit is a Markov chain with transition probabilities

πipSit�1 � k|Stq � αpSitk � βmi,k pStq � γmk pStq

where
°K�1
k�0 πipSit�1 � k|Stq � 1 Then the sequence of empirical averages

of mi pStq converge to m pStq
The theoretical relationship between the global interaction factor and

the fixed transition probability matrix is given in Proposition 1.

Proposition 1. Let S∞ � tSt P S|Dmt�1u and Πp�|Stq �
±8

i�1 πip�|Stq the
product kernel of the population of chains, then

lim
NÑ8

1
N

Ņ

i�1
ItkuSit�1 � lim

NÑ8

1
N

Ņ

i�1
πi pSit�1 � k|Stq Πp�|Stq � a.s., (6)

the sequence of empirical averages satisfies almost surely the recurrence
relation

mk pSt�1q � α
K�1̧

j�0
pjkmj pStq � p1 � αqmk pStq (7)
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3.1 Examples of model outputs

and the global interaction process tm pStqutPN converges almost surely to
the unique invariant probability of the fixed transition probability matrix

P �

�
�� p01 � � � pK�1,0

...
. . .

...
p0,K�1 � � � pK�1,K�1

�
�


Proof. See Appendix A.1.
Finally, a second proposition on the convergence of the Markov chain

process of the population of time series with time-varying transition prob-
abilities is present in the following with Proof in Appendix A.2.

Proposition 2. The process tStutPN converges in law to the unique product
kernel

Πmp�|Stq �
8¹
i�1

πmip�|Stq

3.1. Examples of model outputs
Figure 1 shows how the endogenous transition probabilities vary with

the parameter α. If the fixed component of the transition probabilities is
larger than the global interaction term at time t (Figure 1 right) then the
probability to stay in one state or to switch to another state is increasing
with α.

In the opposite case, if the fixed component of the transition probabilities
is less than the global interaction at time t (Figure 1 left) then the time-
varying transition probability is decreasing with respect to α. It comes out
that in presence of important global interactions and persistence over time,
the PMS-IC model exhibits a large scale globalisation of episodes of one
regime.
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3.1 Examples of model outputs

Figure 1: Different shapes of the time varying probabilities Pit,lk � αPlk � γmt,k at a
given time t as function of α. Note that in this case the presence of local interaction is
not allowed, β � 0.

α

Pit,lk

plk   mt,k

mt,k

Plk

1

1
α

Pit,lk

plk ¡ mt,k

mt,k

Plk

1

1

In order to give a qualitatively description of the dynamic behaviour of
our PMS-IC model, we provide some simulated examples. We isolate the
contribution of the global and local interaction mechanism and specify six
parameter settings which are summarized in Table 1.

Settings label α β γ

Setting 1 (No interaction) 1.00 0.00 0.00
Setting 2 (Weak global interaction) 0.70 0.00 0.30
Setting 3 (Strong global interaction) 0.30 0.00 0.70
Setting 4 (Weak local interaction) 0.70 0.30 0.00
Setting 5 (Strong local interaction) 0.30 0.70 0.00
Setting 6 (Both local and global interaction) 0.50 0.25 0.25

Table 1: Parameter values of idiosyncratic, global and local interaction mechanisms.

The difference between the six settings is on the choice of the underlying
parameters α, β and γ. We distinguish six cases. In Model 1, all the inter-
actions are null and the overall effect is given by the fixed component of the
transition matrix. We assume a weak global interaction among the Markov
chains for Model 2 and a stronger one for Model 3. On the other side, we
consider a weak global interaction among the Markov chains for Model 4
and a stronger one for Model 5. The global and local effect are simulated in
Model 6 assuming for them an equal weight. In all the experiments, we con-
sider a population of 50 time series following PMS-IC generated with 5000
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3.1 Examples of model outputs

time horizon. Furthermore, we assume the following model specification
with three regimes (ie, K � 3):

Xit �
Ķ

k�1
ItkupSitq rµik � σikεits, εit

i.i.d.� N p0, 1q

for i � 1, . . . , 50 and t � 1, . . . , 5000, and the fixed transition compo-
nent:

P �
�
� 0.98 0.02 0.00

0.01 0.98 0.01
0.00 0.02 0.98

�

 (8)

µi1 � �2, µi2 � 0, µi3 � 2, σi1 � .3, σi2 � .05, σi3 � .3
Note that the ergodic probability associate with P is πi � p.25 .5 .25q.

11



3.1 Examples of model outputs

(a) Setting 1: no interaction (b) Setting 2: weak global interactions

(c) Setting 3: strong global interactions (d) Setting 4: weak local interactions

(e) Setting 5: strong local interactions (f) Setting 6: both local and global interac-
tions

Figure 2: Population of 50 time series for different settings (different panels). For each
setting, the top plot is a heat-map of the time series. In each plot, colors blue mean
that the series is in expansion regime; colors green refer to moderate expansion regime
and colors red refer to recession regime. For each setting: the bottom plot describes the
evolution of the global interaction chain of the linear time varying transition matrix over
simulations together with the horizontal lines given by the elements of theoretic ergotic
probabilities of the fixed transition matrix.

Figure 2 shows the different impact of the parameter values on the level
of synchronization among the series. Indeed, the second aspect we study is
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3.1 Examples of model outputs

the convergence of the global interaction chain to the invariant transition
matrix of the fixed transition matrix. Figure 2 highlights the ability of our
PMS-IC model to account for various degree of synchronization of chains.
The value of α, β and γ corresponding to our six parameters settings were
carefully chosen in order to represent a wide variety of possible interactions.
A look at the heat-maps shows that the level of synchronization has aug-
mented with the level of the local and global parameters. In all the different
cases, the convergence to the ergodic of the fixed transition probabilities is
reached with different speed.

The shape of the time varying transition is given in Figure 3. Without
loss of generality, we present only the simulation of the probabilities to stay
in regime 1, regime 2 and regime 3 for the first unit in the panel. The
evidence emerging from these plots is that the global and local parameters
play an important role: the higher the levels of these parameters the higher
the volatility of the time varying transition probabilities is.
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3.1 Examples of model outputs

(a) Setting 1: no interaction (b) Setting 2: weak global interactions

(c) Setting 3: strong global interactions (d) Setting 4: weak local interactions

(e) Setting 5: strong local interactions (f) Setting 6: both local and global interac-
tions

Figure 3: Evolution of elements of both fixed and time varying transition matrices for
the first chain of the panel for each setting. Colours blue is for P1t,11; colors green refer
P1t,22 and colors red refer to P1t,33. For all plots, horizontal black lines represent the
fixed transition probabilities defined in equation (8).

We provide a Monte Carlo estimate of the synchronization level for dif-
ferent values of the local and global interactions parameters. We use the
bivariate concordance index of Harding and Pagan (2002) to assess the im-
pact of the local and global parameters on the synchronization of chains.
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3.1 Examples of model outputs

This index describes the fraction of times that two chains i and j spend in
the same phase. Let us represent it by the following equation:

ci,j � 1
T

Ţ

t�1

K�1̧

k�0
ItkupSitqItkupSjtq (9)

The relationship between the local and global interactions parameters
and the level of synchronization among the chains can be measured by:

c � 2
NpN � 1q

Ņ

i�1

Ņ

j�i�1
ci,j (10)

which is in the unit interval. The closer the value of c is to one the greater
the extent of synchronization within the panel of series.

A panel of 200 series is simulated from our PMS-IC using the settings
presented for the underlying specification detailed in equation (8). A system
of three neighbourhoods is designed for the model with only local interac-
tions. The neighbours selected are made up with 4, 16 and 24 units. Figures
4a and 4b reveal that the rate of synchronization increases with the size of
the neighbourhood and the value of β as well as γ. Hence, the level of syn-
chronization is positively related to the parameter β (resp. γ) that reflect
the importance of common movement with the unit-specific chains in the
neighbourhood (resp. of the importance of common movement in all the
unit-specific chains).

(a) 0 ¤ β ¤ 1 (b) 0 ¤ γ ¤ 1

Figure 4: Relationship between the local parameter β, the global parameters γ and the
synchronization of chains. The vertical axis represents the value taken by c as a function
of β the local interaction parameter for panel (a) and as a function of γ the global
interaction parameter for panel (b). The horizontal axis represents the value of α.
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4. Bayesian inference

4.1. Likelihood function and prior distributions
Let θ � pµ1, . . . , µK , σ1, . . . , σK , vecpP1q1, . . . , vecpPNq1, α, β, γq be the

vector of parameters with µl � pµ1l, . . . , µNlq, σl � pσ1l, . . . , σNlq. Let us
define ξk,it � ItkupSitq, and ξk,it indicates the regime k that the observation
Xit belongs to. By using the sequential factorization of the likelihood, the
complete likelihood of the PMS-IC model is:

LpX1:T , S1:T | θq �
N¹
i�1

T¹
t�1

K¹
l�1

K¹
k�1

fpXit|Sit, θqξl,itP ξl,itξk,it�1
it,lk

�
N¹
i�1

T¹
t�1

K¹
l�1

K¹
k�1

p2πσ2
ilq�

ξl,it
2 expt� ξl,it2σ2

il

pXit � µilq2u

pαPlk � βmit,k � γmt,kqξl,itξk,it�1

(11)

In order to complete the specification of the Bayesian model, we discuss
the prior choice. A variety of priors can be used to estimate the panel
Markov switching model. We consider conjugate priors which are based on
proper distributions. We assume conjugate independent priors for the unit
specific parameters:

µil � N pmil, τ
2
ilq (12)

σ2
il � IGpαil, βilq (13)

pPl1, . . . , PlKq � Dirpδ1, . . . , δKq (14)
pα, β, γq � Dirpϕ1, ϕ2, ϕ3q (15)

with l � 1, . . . , K and i � 1, . . . , N , where IGpα, βq denote the inverse
gamma distribution with parameters: α and β and Dirpδ1, . . . , δKq the K
dimensional Dirichlet distribution with parameters: δ1, . . . , δK .

One of the main problems of Bayesian analysis using Markov switching
processes, is the non-identifiability of the parameters. That is, the posterior
distributions of parameters of Markov switching model resulting is invari-
ant to permutations in the labelling of the parameters, if this latter follow
exchangeable priors. Consequently, the marginal posterior distributions for
the parameters are identical for each switching component and the sym-
metry of the posterior distributions affect the MCMC simulation and the
interpretation of the labels switch. For more details about the effects that
label switching and non-identification have on the results of a MCMC based
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4.2 Posterior simulation

Bayesian inference, see among other Celeux (1998), Frühwirth-Schnatter
(2001), and Frühwirth-Schnatter (2006). One way to address the label
switching problem is to consider under some specific condition the permuta-
tion sampler proposed by Frühwirth-Schnatter (2001). Another alternative
is to impose identification constraints on the parameters. This practice is
widely used in macroeconomics because it is naturally related to the in-
terpretation of the different states (e.g. recession and expansion) of the
business cycle. We follow the latter approach and impose identification
restrictions that µi1 ¤ µi2 ¤, . . . ,¤ µiK .

4.2. Posterior simulation
The posterior distribution in a general form follows the following rule:

πpθ | X,Sq9LpX,S | θqppS | X, θqπpσqπpµq (16)

where πpθ | Xq is the posterior distribution, Lpq the completed likelihood
function and πpθq the prior distribution. We develop a sampling algorithm
based on conditional posterior distributions. Full details of the Algorithm
are provided in Appendix C. The model in equation (1) is estimated by
adapting the multi-move Gibbs-sampling procedure for Bayesian estimation
of Markov switching models presented in Frühwirth-Schnatter (2006). The
Gibbs sampler iterates according to the following steps:

1. Draw S
pdq
i from fpSpdqi | X, θpd�1qq, i � 1, . . . , N .

2. Draw pα, β, γqpdq, from fppα, β, γqpdq | X,Spdq, ppit,l1, . . . , pit,lKqpd�1qq.
where Spdq � pSpdq1 , . . . , S

pdq
N q.

3. Draw ppl1, . . . , plKqpdq from fpppl1, . . . , plKqpdq | X,Spdq, pα, β, γqpd�1qq,
i � 1, . . . , N , l � 1, . . . , K.

4. Draw µ
pdq
il ,from fpµpdqil | X,Spdqi , σ

pd�1q
il , i � 1, . . . , N , l � 1, . . . , K.

5. Draw σ
pdq
il , from fpσpdqil | X,Spdqi , µ

pd�1q
il q i � 1, . . . , N , l � 1, . . . , K.

4.3. Gibbs iterations mains issues
Firstly, the multi-move sampling of the hidden state cannot be directly

implemented:
1. the full conditional posterior distribution of the unit specific hidden

state depends on proportionality factor that need to be taken into
account by introducing Metropolis-Hastings adjustment, where

2. the proposal distribution is identical to forward filtering backward
sampling (FFBS) of the states.

17



4.3 Gibbs iterations mains issues

Secondly, the standard sampler based on independent proposal poorly
estimates the parameter pα, β, γq:

1. the posterior distribution of pα, β, γq is prior dependent, and
2. a straightforward implementation of Metropolis-Hastings algorithm

with the proposal distribution equal to the prior distribution becomes
inefficient, resulting in high rate of acceptance followed by poor mixing
of the chain.

In the following section we present a Metropolis adjusted Langevin sampling
algorithm as an efficient option to solve the issues described above when
using independent proposal. In this case, the Gibbs sampler changes slightly
according to the following steps:

1. Draw S
pdq
i from Metropolis-Hastings adjusted FFBS (see Appendix

D).
2. Draw pα, β, γqpdq, from Metropolis adjusted Langevin algorithm (MALA)

.
3. Draw ppl1, . . . , plKqpdq from fpppl1, . . . , plKqpdq | X,Spdq, pα, β, γqpd�1qq,
i � 1, . . . , N , l � 1, . . . , K by using a Metropolis-Hastings algorithm.

4. Draw µ
pdq
il ,from fpµpdqil | X,Spdqi , σ

pd�1q
il , i � 1, . . . , N , l � 1, . . . , K.

5. Draw σ
pdq
il , from fpσpdqil | X,Spdqi , µ

pd�1q
il q i � 1, . . . , N , l � 1, . . . , K.

We simulate pα, β, γq from f
�
α, β, γ|X1�T , S1�T , θ�pα,β,γq

�
where the prior

is chosen to be Dirichlet Dirpϕ1, ϕ2, ϕ3q. Since by definition pα, β, γq P
r0; 1s3; when dealing with random walk proposals we need to use transfor-
mation of α, β and γ to the real line which introduces a Jacobian factor into
the acceptance probability of the MALA. We assume

α � 1
1 � expp�α1q , β �

1
1 � expp�β1q , γ �

1
1 � expp�γ1q

For the MALA we need the partial derivatives of the complete log-likelihood
with respect to the transformed parameters (see Appendix E).

The proposal mechanism of the MALA is given by the following equation

ω� � ωn � ε2

2 M∇ωl pωnq � ε
?
Mzn (17)

where ω � pα, β, γq1, l � logtLpX,S, θqu is the complete data joint log-
likelihood, ε is the integration step and z � N p0, 1q. M is a preconditioning
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matrix which helps to circumvent issues that appear when the elements of
ω have very different scales or if they are strongly correlated.

?
M can

be obtained via Cholesky decomposition such that M � UU 1 and
?
M �

U . The convergence to invariant distribution ppωq is ensure by employing
Metropolis acceptance probability after each integration step. The proposal
density is

qpω�|ωnq � N tω�|µpωn, εq, ε2Iu
with µpωn, εq � ωn � ε2

2 ∇ωL pωnq and acceptance probability of standard
form if given by mint1, ppω�qqpωn|ω�q{ppωnqqpω�|ωnqu. The choice of the
preconditioning matrix does not follow any systematic and principled man-
ner. For instance, Christensen et al. (2005) showed that a global level of
preconditioning can be inappropriate for the transient phase of Markov pro-
cess.

5. Simulation experiments

We simulate data in the six parameter settings described in section 3.1
(see Table 1 for parameter settings) in order to assess the efficiency of the
MCMC algorithm for the posterior approximation.

We assess the efficiency using the mean square error (MSE) for the
parameters and the hidden states.

Setting label Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

The unit-specific regression parameters (in total 50 parameters for each regime)
µ.,1 1.323e-02 6.144e-04 0.762e-03 0.866e-03 8.078e-04 6.954e-04
µ.,2 1.977e-02 0.750e-04 0.009e-03 0.009e-03 0.161e-04 0.119e-04
µ.,3 0.357e-02 4.031e-04 0.731e-03 0.632e-03 4.402e-04 9.807e-04
σ.,1 0.740e-03 4.000e-04 0.001e-03 0.313e-03 5.044e-04 0.000e-04
σ.,2 0.120e-03 1.600e-04 0.000e-04 0.005e-03 0.090e-04 0.000e-04
σ.,3 0.109e-03 2.000e-04 0.000e-04 0.757e-03 2.013e-04 0.001e-04

Idiosyncratic, local and global parameters
pα, β, γq 1.976e-07 3.5535e-04 5.5682e-04 1.540e-02 3.09e-02 4.110e-02

The unit-specific Markov chains (in total 50 parameters for each regime)
Regime 1 5.000e-04 1.200e-03 2.000e-03 1.400e-03 1.600e-03 1.900e-03
Regime 2 1.300e-04 2.200e-03 3.800e-03 2.100e-03 2.100e-03 2.800e-03
Regime 3 6.000e-04 1.600e-03 2.400e-03 1.200e-03 2.200e-03 1.600e-03

Table 2: Mean square error (MSE) for the parameters estimated using the proposed
MCMC algorithm for the PMS-IC model.

MSE is evaluated on 5000 iterations after convergence (1000 draws).
Table 2 reports for each model the average MSE for the 50 units in our
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panel.
The first evidence is that the precision of the inference of the unit-specific

regression parameters decreases with the parameters β and γ. The second
evidence is that precision of the inferences of the unit-specific Markov chains
increases with the parameters β and γ.

6. US States coincident indices

We apply our model to US States business cycles and network of States.
Not all the US States are identical and, for example, the recent US financial
crisis has shown that some States were heavily affected by the crisis, e.g.
Michigan, and other States were basically not affected, such as Texas that
benefited from high oil prices in 2009 and 2010. Furthermore, the US labour
force is often considered to be mobile and keen to change from one region
to another one when economic situations differ across places. This can
strengthen the regional effect by creating network of States that attract
population and other States that loose population. We believe our model
is very suitable to investigate such mechanisms.

We work with the US states monthly coincident indices datasets pro-
duced by the Federal Reserve Bank of Philadelphia. The database covers
50 States of US and our sample dates from October 1979 to June 2010. For
each State an index of business cycle diffusion is available. The State-level
diffusion indices are constructed on the scale -100 to 100 where a negative
number is related to the spread of national recession and the positive one
to national expansion. Owyang et al. (2005) apply a Bayesian univariate
independent Markov switching model to the same dataset.

In order to check the importance of the local and global interactions
across the US states, we consider three settings. The first setting assumes
only global interactions among the US states coincident indices. This model
implies that accounting for specific regional business cycle effects is not
important for the aggregate country cycle. The second setting considers a
local chain for each State composed by neighbouring States. This group
is then different for each State and implies that networks among boarder
States is a relevant information for the country cycle. The third setting
considers the US in four large statistical regions defined by the United States
Census Bureau, the West, the Midwest, the South and the North-east and
creates local chains based on the economic relationship among them. We
follow Bernile et al. (2017), Bernile et al. (2015) and Garcia and Norli
(2012) and use firm-level information based on the 10-K fillings on the
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Securities and Exchange Commission’s EDGAR system to identify economic
connections among US states.1 In this model, the network is among four
different geographical regions and possible exchanges among nodes of some
of the four regions.

To sum up, the first setting discards regional business cycles and the last
two settings allow different level of grouping, the first one only geographi-
cal proximity, the second one geographical and economic networks, and can
provide several interesting findings on how each State relates with neigh-
bours and similar entities. Figure 5 provides the structure of the networks
in the two models. The average number of connections (average degree) in
the geographical proximity network is 4.36; on the contrary, the economic
network is more dense with average degree of 13.12. Moreover, the former
network exhibits one connected component; whereas the latter one shows
three connected components. Following both degree and eigenvector cen-
trality the most central nodes in the economic network are Rhode Island
(RI) and Vermont (VT), whereas in the geographical proximity network are
Missouri (MO) and Tennessee (TN) following the degree and Colorado (CO)
and Missouri following eigenvector centrality (see Table 4 in Appendix F).
In the economic network Rhode Island and Vermont plays a central role in
connecting West and North-east regions. We also notice that the compo-
nents of the second network do not necessarily correspond to the standard
United States Census Bureau geographical regions because we also account
for economic connections among States. For example, Wisconsin (WV) in
the Midwest is connected to West region; Washington (WA) in the West is
connected only to states in the South region; Wyoming (WY) in the West
is connected only to states in the Midwest region.

1The federal securities laws require companies issuing publicly publicly traded secu-
rities to disclose information on an ongoing basis. Notably, Section 13 or 15(d) of the
Securities Exchange Act of 1934 requires companies with more than 10 million dollars
in assets and whose securities are held by more than 500 owners to file an annual report
(Form 10-K) providing a comprehensive overview of the company’s business and finan-
cial condition. As in Bernile et al. (2017), we do not make explicit assumption about
the nature of the economic connections but count the number of times a U.S. state is
cited in items 1, 2, 6 and 7 of the 10-K fillings. Such items are design to focus on firm’s
economic activities. By comparing information for firms in two different states, we derive
an economic network between the two states.
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Panel A: Geographical Proximity
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Panel B: Economic Network
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Figure 5: Panel A: Geographical proximity network; panel B: economic network. Lines
indicate connections between pairs of nodes (colored circles). Thicker circles mean that
a node has a larger number of connections. Colors indicate USCB geographical regions:
light blue for North-east; orange for Midwest; pink for South; green for West. Label for
each state is provided in the nodes.
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To discriminate among the models K � 1, 2, 3 we use a Bayes factor
approach based on the marginal likelihood:

BFij � ppy|K � iq
ppy|K � jq

where ppy|K � iq and ppy|K � jq is the marginal likelihood for models i and
j, and ij. If BFij ¡ 1, model i will be preferred; if BFij   1, model j will
be preferred. Therefore, the model with maximum marginal (log-)likelihood
among K � 1, 2, 3 is preferred.

The results presented in Table 3 favour the hypothesis that both global
and local interactions of the cycles prevail. The model with network of geo-
graphical and economic regions presents the highest marginal log-likelihood;
the model with geographical proximity the second highest, even if the dif-
ference with model 2 is large. Therefore, data support the modeling of
regional chains and the regional component becomes substantially more
important when defined differently from a geographical proximity perspec-
tive and based of network of States depending on economic regions with
stronger connections.

Marginal
log-likelihood

α β γ

Setting 1: Only
global

interactions

879.726 0.724 – 0.276

(0.712, 0.733) – (0.267, 0.288)
Setting 2:

Regions defined
by the

neighbouring
States

1.1990e+03 0.1590 0.8293 0.0116

(0.1492, 0.1700) (0.8159, 0.8405) (0.0035, 0.0279)
Setting 3:

Regions defined
by economic
relationship

8.6951e+03 0.0281 0.9702 0.0016

(0.0260, 0.0307) (0.9668, 0.9726) (0.0009, 0.0031)

Table 3: Comparison in terms of marginal log likelihood between different PMS-IC on
the US states regional data. In parenthesis the 95% high posterior density interval

We investigate what are the consequences of the network structure and
their interactions on global and States cycles. Figure 6 plots the global in-
teraction of recessions of the US-States business cycles obtained from model
3 together with the diffusion index of the US national cycle phases published
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by the Federal Reserve Bank of Philadelphia. Our proposed PMS-IC with
global and local interactions of cycles is able to capture all the national
recessions given by the NBER. The national diffusion index also captures
the same downturn points, however, our model shows that the degree of
synchronization of the US states cycles plays an important role in making
the slowdowns and the recessions deeper and longer than the FED diffu-
sion index reveals. Our model is also faster in calling recession than the
aggregate diffusion index and in the five recessions defined by the NBER
our model assigns 70%-80% probability of recession in the first quarter of
the defined recession period. The diffusion index in all cases gives lower
probability at the same period. In exiting the recessions, the two indices
provide more similar evidence.

Few more words require the recent US financial crisis. The US financial
crisis has been different from the previous ones for its duration, deepness,
real and financial consequences. It has been a global and wide spread crisis
across the States. The global and regional components explain a substantial
portion of the cyclical movements for most States. The linkages between the
financial institutions increase the strength of the connections of the States.
Our global and local interaction factors catch such effects and show that
global and local connections can strengthen the consequences of a national
recession.

Figure 6: Evolution of the global interactions factor (solid line) from the PMS-IC model
and the diffusion index of the Federal Reserve of Philadelphia (dashed line). Gray bars
represent the US national recession periods following the official dating of the National
Bureau of Economic Research (NBER)
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About the properties of the States cycles, the scatter plot in Figure 7 of
the estimated mean growth rates and volatilities shows a clear separation
between the two phases of the regional cycles. The regression line shows a
negative relationship between the State diffusion index mean growth rates
and their volatilities during recessions. On the contrary in the expansion
regime the volatilities are quite low and they are positively correlated with
the mean growth rates. Moreover, Table 5 in the Appendix F shows that for
every State, the expansion growth rate is positive and the recession growth
rate is negative. And the volatilities of the recession growth rates are always
higher than the ones of expansion regimes. Therefore, we document that
typical evidence for aggregate county cycle, see, for example, Anas et al.
(2007) and Billio et al. (2016), is also valid for regional cycles.

Figure 7: Estimations of monthly State-level coincident index mean growth rates and
volatilities with the Bayesian PMS-IC model. The horizontal axis represents the mean
growth rates and the vertical axis the volatilities. Sample period: October 1979 to
December 2015 (month on month). The label of the US-States is added for clarity
purpose

7. Conclusion

This paper models the idea that there might be interaction mechanisms
among a population of time series. These interactions can either be local
(i.e. in some neighbourhoods) or global (i.e. for all the units in the panel).
To investigate these interactions, we propose a new dynamic panel Markov
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switching model with interacting chains (PMS-IC) and provide an efficient
Markov Chain Monte Carlo algorithm for the posterior approximation.

We introduce linear time-varying transition probabilities for the unit-
specific Markov chains. These transition probabilities linearly depend on
three factors. The first factor, the fixed transition matrix, assumes that
all the series share a time independent common movement. The second
factor, the local interaction factor, assumes that each unit-specific Markov
chain shares a time dependent common movement with its neighbours. The
third factor, the global interaction factor, assumes that all the unit-specific
Markov chains share a time dependent common movement.

The Markov Chain Monte Carlo algorithm for the posterior approxima-
tion follows a four steps algorithm: (1) run a Metropolis-adjusted Forward-
Filtering Backward-Sampling for the hidden states; (2) apply a Metropolis
adjusted Langevin (MALA) sampling method for (α, β, γ); (3) use a stan-
dard Metropolis-Hastings step to draw the fixed transition probabilities;
and (4) draw the unit-specific regression parameters from their posterior
distributions.

We illustrate the usefulness of our PMS-IC model by conducting simu-
lation exercises and a regional business cycle application. Our simulation
experiments show that the proposed model is able to capture several levels
of synchronization. The empirical macro application concerns US regional
business cycles. The estimation reveals that a geographical and economic
interaction factor plays an important role in the US regional business cy-
cles. Both local and global interactions prevail and models that include both
factors result in faster and deeper recessions than those models that only
relying in a global factor, such as the FED diffusion index. Moreover, our
model correctly captures all the national recessions defined by the NBER.
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A. Properties of the PMS-IC

A.1. Proof of Proposition 1
Without loss of generality let assume K=2. Define Wit,1 � Sit � µit

where µit � πit pSt, 1q and St P S∞. Then tWit,1ui¥1 is a sequence of in-
dependent random variables, conditioning on Ft�1 � σ ptSuuu¤t�1q, such
that EpWit,1|Ft�1q � 0 and VpWit,1|Ft�1q � µitp1 � µitq which satisfies
8°
i�1

µitp1�µitq
i2

  8. Then by the strong law of large numbers it follows that
N°
i�1

Wit,1 converge a.s. to zero for N Ñ 8 (see Williams (1991), p. 118,
Theorem 12.8).

From the previous result we have

mt�1,1 � lim
NÑ8

1
N

Ņ

i�1
πit pSt, 1q (18)

� lim
NÑ8

1
N

Ņ

i�1
pSitαp11 � p1 � Sitqαp01 � βmit,1 � γmt,1q

� pmt,1αp11 � p1 �mt,1qαp01 � p1 � α � γqmt,1 � γmt,1q .

The limits of the recursion can be easily find by setting mt � m� and solving
the equation

m� � α pm�p11 � p1 �m�qp01q � p1 � αqm�

in m�.

A.2. Proof of Proposition 2
See Föllmer and Horst (2001).

B. Linear time varying transition mechanism

We assume a linear parametrization of the transition probabilities. The
transition matrix Pit of unit i at time t is linear with respect to the fixed
transition matrix P , the local interactions indices mit,k, k � 1, . . . , K, and
the global interactions index mt,k, k � 1, . . . , K.

We define a global interaction mechanism as a map

mt,k pS1t, . . . , SNtq : ∆N
r0,1sK ÝÑ ∆r0,1sK
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where ∆r0,1sK is the standard K-dimensional simplex. The local interaction
is defined as a map

mit,k pS1t, . . . , SNtq : ∆|Npiq|

r0,1sK ÝÑ ∆r0,1sK

where |Npiq| is the cardinal of the set Npiq of neighbourhood of unit i,
i � 1, . . . , N .

The matrix representation of the linear time varying transition proba-
bilities is:

P pSit|Sit�1q � Pit � αP � β1Kmit pS1t, . . . , SNtq � γ1Kmt pS1t, . . . , SNtq ,

0   α ¤ 1, 0   β ¤ 1, 0   γ ¤ 1, α� β � γ � 1

We denote 1K �

�
�� 1

...
1

�
�
, mt pS1t, . . . , SNtq � pmt,1, . . . ,mt,Kq, mit pS1t, . . . , SNtq �

pmit,1, . . . ,mit,Kq, with mt,l � 1
N

N°
j�1

ItlupSjt�1q , @k � 1, . . . , K

P the fixed transition probabilities matrix is defined by

P �

�
�� P11 � � � P1K

...
. . .

...
PK1 � � � PKK

�
�


where Plk represents the fixed conditional probability that unit i moves from
the latent regime k at time t � 1 to the latent regime l at time t. So then,
Plk ¥ 0, Plk � PpSit � l|Si,t�1 � kq.

C. Parameter conditional distributions

1. The posterior distribution of the regime dependent intercept µil (where
l � 1, . . . , K and i � 1, . . . , N) according to the likelihood in equation
(11) and the prior in equation (12) has a normal distribution with
density function:
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	�1
.

We defined Til � tt � 1, . . . , T |Sit � lu, Til � cardpTilq, X1:T �
pX1, . . . , XT q and S1:T � pS1, . . . , ST q. The notation θ�r indicates
that element r is excluded from the vector θ.

2. The posterior distribution of the regime dependent volatility σil (where
l � 1, . . . , K and i � 1, . . . , N) according to the likelihood in equation
(11) and the prior in equation (13) has inverse gamma distribution
with density function:

lf pσil|X1:T , S1:T , θ�σilq9
�

1
σ2
il
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il
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¹
tPTil
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il
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tPTil

1
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tβil �
¸
tPTil
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9IG

�
αil � Til, βil �

¸
tPTil

pXit � µilq2
�

3. The posterior distribution of each l-th row of the transition matrix
Pl,1:K � pPl1, . . . , PlKq according to the likelihood in equation (11)
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and the prior in equation (14) density function:
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4. The posterior distribution of pα, β, γq according to the likelihood in
equation (11) and the prior in equation (15) density function:

f
�
α, β, γ|X1�T , S1�T , θ�pα,β,γq
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D. Forward-filtering backward-sampling (FFBS) algorithm

The FFBS algorithm also known as multi-move sampling, is needed to
sample from the joint posterior distribution fpSi,1:T |S�i,1:T , X1:T , θq. By
means of dynamic factorization, the full conditional distribution of the unit
specific hidden state is

PpSi,1:T |S�i,1:T , X1:T , θq � PpSiT |S�i,1:T , X1:T , θqPpSi,1:T�1|SiT , S�i,1:T , X1:T , θq

� PpSiT |S�i,1:T , X1:T , θq
T�1¹
t�1

PpSi,t|Si,t�1:T , S�i,1:T , X1:T , θq

9PpSiT |S�i,1:T , X1:T , θq
T�1¹
t�1

PpSi,t�1|Si,t, S�i,tqPpSi,t|S�i,1:T , X1:t, θq
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�
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T�1¹
t�1

PpSi,t|S�i,1:t, X1:t, θq
��

T�1¹
t�1

PpSi,t�1|Si,t, S�i,t, θq
�

With this factorization, a Metropolis-Hasting (MH) procedure is needed to
take into account the proportionality factor with the FFBS algorithm as
proposal for the unit specific hidden state. The filtering probability for unit
i at time t, t � 1, . . . , T , algorithm gives the prediction probability, the one
step-ahead forecast density and the updated probability.
The prediction probability for l � 1, . . . , K is:

PpSit � l|S�i,1:t, X1:t�1, θq �
Ķ

k�1
PpSit � l|Sit�1 � k, S�it�1q

�PpSi,t�1 � k|S�i,1:t�1, X1:t�1, θq

�
Ķ

k�1
Pit�1,klPpSi,t�1 � k|S�i,1:t�1, X1:t�1, θq

(19)

where Pit�1,lk is the conditional probability that unit i moves from regime
k at time t � 1 to regime l at time t. S�i,t � tSjt, j � 1, . . . , Nj � iu. We
initialize for t � 1, PpSi,0 � k|X0, θq to be equal to the ergodic probabilities.
The filtered probability for all l � 1, . . . , K is computed as:

PpSit � l|S�i,1:tX1:t, θq9PpSit � l|S�i,1:t�1, X1:t�1, θq.fpXit|Sit � l, X1:t�1, θq
� PpSit � l|S�i,1:t�1, X1:t�1, θqN pµil, σ2

ilq
(20)

The smoothing probabilities are obtained recursively and backward in
time, once all the filtered probabilities PpSit � l|X1:t�1, θq for t � 1, . . . , T
are calculated. If t � T , smoothing probability and filtered probability are
equal.
For t � T �1, T �2, . . . , 1 and for all k � 1, . . . , K the smoothing algorithm
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proceeds as follows:

PpSit � l|S�i,1:T , X1:T , θq �
Ķ

k�1
PpSit � l, Sit�1 � k|S�i,1:T , X1:T , θq

�
Ķ

k�1
PpSit � l|Sit�1 � k, S�i,1:T , X1:t, θqPpSit�1 � k|S�i,1:T , X1:T , θq

�
Ķ

k�1

pit,lkPpSit � l|S�i,1:T , X1:t, θqPpSit�1 � k|S�i,1:T , X1:T , θq°K
j�1 pit,jkPpSit � j|S�i,1:T , X1:t, θq

E. Metropolis-adjusted Langevin algorithm (MALA)

The implementation of the MALA requires some necessary expressions
which we discuss in this section. We consider the logistic transformation
on the parameter plk, k � 1, . . . , K, α, β and γ to deal with restrictions on
parameters space.

α � 1
1 � expp�α̃q

β � 1
1 � expp�β̃q

γ � 1
1 � expp�γ̃q

plk � 1
1 � expp�p̃lkq

where p̃lk, k � 1, . . . , K, α̃, β̃ and γ̃ take value in the set of the real numbers.
The derivatives of the parameter α, β and γ with respect to the logistic
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transformation are:

dα

dα̃
� expp�α̃q
p1 � expp�α̃qq2 � αp1 � αq

dβ

dβ̃
� expp�β̃q�

1 � expp�β̃q�2 � βp1 � βq

dγ

dγ̃
� expp�γ̃q
p1 � expp�γ̃qq2 � γp1 � γq

dplk
dp̃lk

� expp�p̃lkq
p1 � expp�p̃lkqq2

� plkp1 � plkq

The partial derivatives of the complete data log-likelihood

L � logLpX1:T , S1:T , θq �
Ņ
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Ķ
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Ķ

l�1

�
�ξl,it2



logp2πσ2
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�
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�pXit � µilq2pξl,itξk,it�1qlogpαplk � βmit,k � γmt,kq (21)

with respect to the transformed parameters are
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where for ease of presentation we defined

A � plk
αplk � βmit,k � γmt,k

B � mit,k

αplk � βmit,k � γmt,k

C � mt,k

αplk � βmit,k � γmt,k

D � α

αplk � βmit,k � γmt,k
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F. Additional empirical results

State Geographical Degree Degree Eigencentrality Eigencentrality
Region Geo Prox USCB Net Geo Prox USCB Net

Alabama South 4 16 0.31 1.00
Alaska West 1 13 0.03 0.43
Arizona West 5 13 0.49 0.43
Arkansas South 6 16 0.65 1.00
California West 4 13 0.23 0.43
Colorado West 7 8 0.80 0.16
Connecticut NorthEast 3 13 0.10 0.43
Delaware South 3 16 0.17 1.00
Florida South 2 16 0.13 1.00
Georgia South 5 16 0.33 1.00
Hawaii West 1 13 0.05 0.43
Idaho West 6 13 0.47 0.43
Illinois MidWest 5 11 0.57 0.18
Indiana MidWest 4 11 0.37 0.18
Iowa MidWest 6 11 0.65 0.18
Kansas MidWest 4 11 0.59 0.18
Kentucky South 7 16 0.76 1.00
Louisiana South 3 16 0.26 1.00
Maine NorthEast 1 8 0.02 0.16
Maryland South 4 16 0.29 1.00
Massachusetts NorthEast 5 8 0.14 0.16
Michigan MidWest 3 11 0.21 0.18
Minnesota MidWest 4 11 0.33 0.18
Mississippi South 4 16 0.38 1.00
Missouri MidWest 8 11 1.00 0.18
Montana West 4 13 0.36 0.43
Nebraska MidWest 6 11 0.77 0.18
Nevada West 5 13 0.40 0.43
New Hampshire NorthEast 3 8 0.07 0.16
New Jersey NorthEast 3 8 0.16 0.16
New Mexico West 5 8 0.55 0.16
New York NorthEast 5 13 0.20 0.43
North Carolina South 4 16 0.33 1.00
North Dakota MidWest 3 11 0.24 0.18
Ohio MidWest 5 11 0.41 0.18
Oklahoma South 6 16 0.72 1.00
Oregon West 4 13 0.25 0.43
Pennsylvania NorthEast 6 8 0.35 0.16
Rhode Island NorthEast 2 20 0.06 0.52
South Carolina South 2 16 0.13 1.00
South Dakota MidWest 6 11 0.56 0.18
Tennessee South 8 16 0.79 1.00
Texas South 4 16 0.40 1.00
Utah West 6 13 0.63 0.43
Vermont NorthEast 3 20 0.11 0.52
Virginia South 5 16 0.50 1.00
Washington West 3 16 0.15 1.00
West Virginia South 4 16 0.33 1.00
Wisconsin MidWest 5 13 0.45 0.43
Wyoming West 6 11 0.66 0.18

Table 4: Statistics, including degree and eigencentrality, for each node of the geographical
proximity network and USCB network. Geographical regions in which each State is
classified are also provided.
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State µi1 Bayesian CI µi2 Bayesian CI σi1 Bayesian CI σi2 Bayesian CI

Alabama -0.153 (-0.191, -0.115) 0.345 (0.330, 0.360) 0.247 (0.228, 0.266) 0.147 (0.140, 0.154)
Alaska -1.032 (-1.125, -0.942) 0.234 (0.201, 0.266) 0.260 (0.210, 0.317) 0.367 (0.350, 0.383)
Arizona -0.067 (-0.115, -0.016) 0.629 (0.600, 0.659) 0.356 (0.333, 0.380) 0.235 (0.221, 0.250)
Arkansas -0.068 (-0.095, -0.040) 0.356 (0.342, 0.371) 0.187 (0.173, 0.201) 0.134 (0.127, 0.140)
California 0.002 (-0.024, 0.027) 0.380 (0.369, 0.391) 0.184 (0.172, 0.197) 0.095 (0.090, 0.101)
Colorado -0.095 (-0.134, -0.055) 0.425 (0.410, 0.442) 0.230 (0.213, 0.248) 0.143 (0.135, 0.151)
Connecticut -0.111 (-0.139, -0.083) 0.349 (0.333, 0.367) 0.182 (0.170, 0.196) 0.150 (0.142, 0.159)
Delaware -0.084 (-0.113, -0.051) 0.409 (0.390, 0.429) 0.221 (0.206, 0.237) 0.176 (0.167, 0.186)
Florida -0.001 (-0.057, 0.059) 0.425 (0.413, 0.438) 0.396 (0.367, 0.426) 0.116 (0.110, 0.123)
Georgia -0.108 (-0.150, -0.067) 0.453 (0.432, 0.474) 0.263 (0.244, 0.284) 0.196 (0.186, 0.207)
Hawaii -0.072 (-0.101, -0.044) 0.416 (0.386, 0.443) 0.211 (0.199, 0.223) 0.163 (0.150, 0.177)
Idaho -0.216 (-0.290, -0.152) 0.526 (0.507, 0.543) 0.410 (0.381, 0.442) 0.144 (0.135, 0.155)
Illinois -0.230 (-0.267, -0.193) 0.334 (0.316, 0.350) 0.251 (0.232, 0.271) 0.149 (0.141, 0.157)
Indiana -0.410 (-0.477, -0.346) 0.359 (0.338, 0.379) 0.414 (0.380, 0.449) 0.193 (0.184, 0.203)
Iowa -0.199 (-0.244, -0.153) 0.331 (0.314, 0.346) 0.295 (0.274, 0.316) 0.150 (0.142, 0.158)
Kansas -0.280 (-0.347, -0.208) 0.306 (0.283, 0.329) 0.303 (0.274, 0.332) 0.198 (0.187, 0.209)
Kentucky -0.255 (-0.303, -0.209) 0.344 (0.325, 0.361) 0.303 (0.280, 0.329) 0.174 (0.165, 0.183)
Louisiana -0.483 (-0.585, -0.387) 0.280 (0.249, 0.308) 0.373 (0.336, 0.411) 0.235 (0.220, 0.251)
Maine -0.209 (-0.255, -0.162) 0.509 (0.475, 0.544) 0.373 (0.351, 0.396) 0.293 (0.275, 0.313)
Maryland -0.160 (-0.198, -0.123) 0.378 (0.356, 0.399) 0.223 (0.204, 0.241) 0.191 (0.180, 0.201)
Massachusetts -0.158 (-0.196, -0.119) 0.379 (0.360, 0.398) 0.224 (0.206, 0.241) 0.171 (0.162, 0.182)
Michigan -0.651 (-0.762, -0.539) 0.427 (0.392, 0.462) 0.714 (0.661, 0.772) 0.346 (0.327, 0.366)
Minnesota -0.048 (-0.076, -0.018) 0.359 (0.346, 0.373) 0.204 (0.189, 0.220) 0.127 (0.120, 0.134)
Mississippi -0.223 (-0.261, -0.190) 0.352 (0.330, 0.374) 0.209 (0.194, 0.225) 0.191 (0.181, 0.202)
Missouri -0.171 (-0.205, -0.138) 0.325 (0.307, 0.343) 0.216 (0.201, 0.232) 0.160 (0.151, 0.168)
Montana -0.373 (-0.421, -0.319) 0.378 (0.356, 0.401) 0.338 (0.314, 0.365) 0.212 (0.201, 0.224)
Nebraska -0.085 (-0.118, -0.054) 0.335 (0.320, 0.350) 0.198 (0.183, 0.214) 0.140 (0.133, 0.147)
Nevada -0.294 (-0.372, -0.211) 0.634 (0.611, 0.656) 0.515 (0.474, 0.553) 0.204 (0.193, 0.216)
New Hampshire -0.079 (-0.132 , -0.028) 0.484 (0.460 , 0.508) 0.277 (0.256 , 0.299) 0.205 (0.194 , 0.218)
New Jersey -0.093 (-0.123 , -0.064) 0.347 (0.331 , 0.365) 0.216 (0.200 , 0.232) 0.156 (0.147 , 0.164)
New Mexico -0.083 (-0.140 , -0.018) 0.351 (0.333 , 0.371) 0.243 (0.221 , 0.265) 0.155 (0.147 , 0.163)
New York -0.100 (-0.131 , -0.069) 0.270 (0.259 , 0.281) 0.186 (0.172 , 0.201) 0.100 (0.095 , 0.106)
North Carolina -0.122 (-0.159 , -0.084) 0.421 (0.406 , 0.437) 0.250 (0.232 , 0.271) 0.145 (0.137 , 0.153)
North Dakota -0.040 (-0.066 , -0.015) 0.291 (0.278 , 0.303) 0.148 (0.137 , 0.161) 0.119 (0.114 , 0.126)
Ohio -0.376 (-0.491 , -0.265) 0.297 (0.275 , 0.319) 0.688 (0.634 , 0.749) 0.206 (0.196 , 0.217)
Oklahoma -0.352 (-0.404 , -0.300) 0.308 (0.286 , 0.329) 0.291 (0.265 , 0.319) 0.213 (0.202 , 0.225)
Oregon -0.188 (-0.272 , -0.107) 0.536 (0.510 , 0.561) 0.465 (0.432 , 0.503) 0.146 (0.130 , 0.162)
Pennsylvania -0.166 (-0.204 , -0.130) 0.304 (0.288 , 0.320 0.248 (0.230 , 0.266) 0.149 (0.140 , 0.158
Rhode Island -0.368 (-0.422 , -0.312) 0.356 (0.333 , 0.382) 0.308 0.282 , 0.336) 0.225 (0.212 , 0.236)
South Carolina -0.219 (-0.263 , -0.171) 0.417 (0.396 , 0.438) 0.293 (0.270 , 0.315) 0.202 (0.192 , 0.213)
South Dakota -0.060 (-0.090 , -0.027) 0.382 (0.367 , 0.396) 0.197 (0.181 , 0.213) 0.135 (0.128 , 0.142)
Tennessee -0.123 (-0.177 , -0.074) 0.362 (0.345 0.379) 0.243 (0.222 , 0.264) 0.137 (0.128 0.145)
Texas -0.111 (-0.147 , -0.073) 0.406 (0.392 , 0.420) 0.216 (0.198 , 0.234) 0.134 (0.127 , 0.141)
Utah 0.001 (-0.030 , 0.032) 0.466 (0.453 , 0.480) 0.230 (0.214 , 0.245) 0.126 (0.119 , 0.133)
Vermont -0.146 (-0.195 , -0.095) 0.481 (0.452 , 0.510) 0.335 (0.312 , 0.358) 0.243 (0.229 , 0.258)
Virginia -0.081 (-0.106 , -0.054) 0.410 (0.394 , 0.426) 0.176 (0.163 , 0.191) 0.146 (0.137 , 0.154)
Washington -0.132 (-0.171 , -0.092) 0.355 (0.341 , 0.370) 0.224 (0.205 , 0.243) 0.137 (0.130 , 0.144)
West Virginia -0.186 (-0.231 , -0.139) 0.336 (0.320 , 0.353) 0.290 (0.267 , 0.314) 0.150 (0.143 , 0.158)
Wisconsin -0.680 (-0.885 , -0.474) 0.396 (0.361 , 0.432) 1.100 (0.998 , 1.201) 0.325 (0.303 , 0.347)
Wyoming -0.770 (-1.004 , -0.532) 0.366 (0.344 , 0.386) 0.989 (0.878 , 1.108) 0.213 (0.199 , 0.226)

Table 5: PMS-IC estimations coefficient for the US-States coincident indices.
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