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Abstract

We introduce and evaluate a new class of approximations to common test statistics in

structural equation modeling. Such test statistics asymptotically follow the distribution of

a weighted sum of i.i.d. chi-square variates, where the weights are eigenvalues of a certain

matrix. The proposed eigenvalue block averaging (EBA) method involves creating blocks of

these eigenvalues and to replace them within each block with the block average. The

Satorra-Bentler scaling procedure is a special case of this framework, using one single

block. The proposed procedures applies also to difference testing among nested models. We

investigate the EBA procedure both theoretically in the asymptotic case, and with

simulation studies for the finite-sample case, under both ML and DWLS estimation.

Comparison is made with three established approximations: Satorra-Bentler, the scaled

and shifted, and the scaled F tests.

Keywords: Satorra-Bentler, fit statistics, non-normal data, structural equation

modeling
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Approximating test statistics using eigenvalue block averaging

In general, test statistics for moment structural models converge in law to the

distribution of a weighted sum of independent chi squares, under the null hypothesis of

correct model specification. More precisely, a test statistic Tn based on n observations will

obey (Shapiro, 1983; Satorra, 1989)

Tn
D−−−→

n→∞

d∑
j=1

λjZ
2
j , Z1, . . . , Zd ∼ N(0, 1) IID, (1)

where the weights λ = (λ1, . . . , λd)′ are the non-zero eigenvalues of an unknown population

matrix. Under optimal conditions, in which the estimator is correctly specified for the data

at hand, or under conditions of so-called asymptotic robustness (e.g., Shapiro, 1987;

Browne & Shapiro, 1988), the weights λj are all equal to one, and Tn converges to a

chi-square distribution. However, in most cases the weights are not equal to one, and Tn

should not be referred to a nominal chi-square distribution.

One approach to this problem is to construct a distribution that approximates the

distribution of the weighted sum in (1), and refer Tn to this approximating distribution.

That is, using characteristics of the data and the model, a distribution is constructed that

tries to emulate the distribution of ∑λjZ
2
j . Let Xapprox be a random variable that follows

this approximating distribution. Then the p-value of the test of correct model specification

is obtained as P (Xapprox > Tn), where Tn is considered fixed and the probability is with

respect to Xapprox. For instance, the scaling of Satorra and Bentler (1988) approximates the

weighted sum in (1) by setting all the weights equal to the average λ̄ = ∑d
j=1 λ̂j/d of the

estimated eigenvalues. That is, Xapprox = ∑
j λ̄Z

2
j , with p-value P (∑j λ̄Z

2
j > Tn), which can

be recasted in the more familiar form P (χ2
d > Tn/λ̄). Other recently proposed

approximations to the distribution in (1) are the scaled F distribution (Wu & Lin, 2016)

and the scaled and shifted χ2
d (Asparouhov & Muthén, 2010). The scaled-and-shifted test

statistic is closely related to the Sattertwaithe type test statistic proposed by Satorra and

Bentler (1994), and these two statistics have been reported to have similar performance
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(Foldnes & Olsson, 2015).

If λ was known, eq. (1) motivates the “oracle” p-value

pn = P

 d∑
j=1

λjZ
2
j > Tn

 , (2)

which would yield an asymptotically valid test of model fit. In a practical setting λ is

unfortunately unknown, but consistent estimates λ̂ may be obtained. This suggests the

approximation Xapprox = ∑
j λ̂jZ

2
j and the associated p-value

p̂n = P

 d∑
j=1

λ̂jZ
2
j > Tn

 . (3)

However, this consistency may come at a price, given the variability of the λ̂. In practice, it

may be better to replace the λ̂ in eq.(3) with more stable weights λ̃, obtained through

grouping the λ̂ by magnitude in blocks and calculating block averages. We refer to this

method as eigenvalue block averaging (EBA). As there are many ways to form blocks, the

EBA method yields many new approximations to the limiting distribution in (1).

Although the EBA idea is simple, to the best of our knowledge it has not been

discussed before. However, Wu and Lin (2016) investigated the full eigenvalue

approximation in (3), which technically is an EBA procedure with singleton blocks. Also,

at the other extremum, EBA with one single block is identical to the well-known

Satorra-Bentler scaling procedure. We are not aware of any literature on EBA

approximations between these two extremes. The goal of the present paper is to present

the EBA framework, and to evaluate EBA tests both asymptotically and in finite samples,

by comparing EBA to three establisthed test statistics for structural equation models.

This article is organized as follows. First, we review the literature on test statistics

for moment structural moments, followed by a section formally introducing the EBA tests.

We then illustrate the established and proposed tests on a real-world example, followed by

asymptotic and finite-sample evaluations of the tests for single and nested model testing.

The final section contains discussion and concluding remarks.
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Test statistics

A structural equation model implies a parametrization θ 7→ σ(θ), where the free

parameters in the proposed model are contained in the q-vector θ. The model has degrees

of freedom given by d = p∗ − q, where p∗ denotes the dimension of σ(θ). In covariance

structure models σ(θ) consists of second-order moments, but in more general structural

equation models the means may also be included in σ(θ). The corresponding sample

moment vector s is assumed to converge in probability to σ0 = σ(θ0), and be

asymptotically normal, i.e.,
√
n(s− σ0) D−−−→

n→∞
N(0,Γ). Here Γ is the asymptotic covariance

matrix of
√
ns. A very general class of estimators for θ0 introduced by Browne (1982, 1984)

is obtained by minimising discrepancy functions F = F (s, σ) that obey the following three

conditions: F (s, σ) ≥ 0 for all s, σ; F (s, σ) = 0 if and only if s = σ; and F is twice

continuously differentiable jointly. That is, we consider estimators obtained as

θ̂ = argmin
θ

F (s, σ(θ)).

It is well known that the widely used normal-theory maximum likelihood (ML) estimator is

such a minimal discrepancy estimator.

Minimum discrepancy estimation leads to the fit statistic Tn = nF (s, σ(θ̂)), which is

asymptotically equivalent to several other tests for model fit (Satorra, 1989). Correct

model specification and other assumptions (Shapiro, 1983) imply the convergence in

eq. (1). The weights λ1, . . . , λd are the non-zero eigenvalues of UΓ, where

U = V − V∆ {∆′V∆}−1 ∆′V , ∆ is the p× q derivative matrix ∂σ(θ)/∂θ′ evaluated at θ0,

and V = −1
2
∂2F (s,σ)
∂s∂σ

, evaluated at (σ0, σ0). Clearly, if all the λ are equal to one, then Tn

converges to a chi-square distribution with d degrees of freedom, and we are in a so-called

asymptotic robust situation. Conditions necessary for this have been been characterized

(e.g., Shapiro, 1987; Browne & Shapiro, 1988; Amemiya, Anderson, et al., 1990; Satorra &

Bentler, 1990; Mooijaart & Bentler, 1991). However, these conditions are hard to check in

practice, and currently no practical procedure exist for verifying asymptotic robustness in a
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real-world setting (Yuan, 2005, p. 118).

The scaling procedure proposed by Satorra and Bentler (1988) is defined as

TSB = Tn/ĉ, where ĉ = trace(Û Γ̂)/d. Asymptotically TSB converges to a distribution whose

expectation equals d, the expectation of the nominal chi-square distribution. In conditions

where all eigenvalues are equal, λ1 = . . . = λd, TSB will converge in distribution to a

chi-square distribution. Using TSB as a test statistic is a widely used SEM practice under

conditions of non-normal data. Simulation studies report that TSB outperforms the ML fit

statistic TML in such conditions, but that Type I error rates under TSB may become inflated

under substantial excess kurtosis in the data (Bentler & Yuan, 1999; Nevitt & Hancock,

2004; Foldnes & Olsson, 2015). Also, Yuan and Bentler (2010) demonstrated that TSB

departs from a chi-square with increasing dispersion of the eigenvalues λj, j = 1, . . . , d.

Recently Asparouhov and Muthén (2010) proposed a test statistic that agrees with

the reference chi-square distribution in both asymptotic mean and variance, obtained from

TML by scaling and shifting. This statistic is given by TSS = a · Tn + d− b, where

a =
√
d/trace

(
(Û Γ̂)2

)
and b =

√
d
(
trace(Û Γ̂)

)2
/trace

(
(Û Γ̂)2

)
. In a simulation study,

Foldnes and Olsson (2015) found that TSB and TSS tended to respectively overreject and

underreject correctly specified models.

Very recently, Wu and Lin (2016) proposed a scaled F distribution that matches the

mean, variance and skewness of ∑d
j=1 λ̂jZ

2
j , where the λ̂j are the eigenvalues of Û Γ̂. The

scaling, and the two degrees of freedom of the F distribution, are functions of ∑j λ̂j,
∑
j λ̂

2
j

and ∑j λ̂
3
j . In a simulation study, Wu and Lin (2016) found the scaled F test to perform

similarly to the Sattertwaithe type test statistic proposed by Satorra and Bentler (1994).

EBA test statistics

In this section we introduce new tests for model fit, based on the asymptotic result in

(1). The proposed methodology applies as long as the null distribution of a test statistic is

a weighted sum of independent chi squares and the weights can be estimated consistently.
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This means that the method may be used both for conventional goodness-of-fit testing of a

single proposed model, and for nested model comparison tests. Also, the tests may be

applied in a context more general than the prototypical case of TML, for instance with

diagonally weighted least squares (DWLS) estimation and model testing.

Note that the p-value p̂n in (3) is theoretically optimal when the sample size goes to

infinity. That is, since λ̂ converges to λ in probability, the difference between p̂n and the

oracle p-value pn in eq. (2) goes to zero in probability, meaning that it has zero

asymptotic bias. However, in situations with small sample sizes and highly non-normal

data the estimates λ̂j become unstable and highly variable. Since p̂n directly employs each

individual estimate λ̂j it may inherit this instability, leading to poor finite-sample

performance.

One established way of overcoming this instability is offered by the SB-test. As

previously discussed, this test estimates each λj by the grand average of all estimated

eigenvalues. Clearly, unless all the population eigenvalues are identical, this method is

inconsistent. However, the averaging process may result in less variability at the cost of

some bias.

In the present study our perspective is that of a bias-variance tradeoff, in which the

SB test and the full use of estimated eigenvalues in p̂n are viewed as extreme end points on

a spectrum. At one end of the spectrum, importance is given to stabilizing the eigenvalues,

as done in the SB test. At the other end, importance is given to asymptotic bias. We

propose intermediate solutions, referred to as EBA tests, between these two extremes.

EBA testing involves grouping the λ̂j in blocks by magnitude, and replacing them by group

averages, as we will shortly formalize mathematically below. The resulting EBA tests may

be viewed as middle-grounds between the 1-block EBA (the SB test) and the d-block EBA

in (3).

Consider first the following split-half approximation, where the lower half of the

eigenvalues constitute one block, and are replaced by their mean value, and likewise for the
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block containing upper half of the eigenvalues:

p̂n,2 = P

 d∑
j=1

λ̃jZ
2
j > Tn

 ,
where

λ̃1 = · · · = λ̃dd/2e = 1
dd/2e

dd/2e∑
j=1

λ̂j, and λ̃dd/2e+1 = · · · = λ̃d = 1
d− dd/2e

d∑
j=dd/2e+1

λ̂j.

This procedure allows the p-value approximation an additional degree of freedom compared

to the SB statistic, where all eigenvalues are estimated to be equal to each other. In

general, a class of middle-grounds between 1-block and d-block EBA can be defined as

follows. Choose cut-off integers 1 < τ1 < τ2 < · · · < τk < d with 1 ≤ k < d. Also let τ0 = 1.

Then, for τl−1 ≤ r < τl let

λ̃r = 1
τl − τl−1

∑
τl−1≤j<τl

λ̂j, (4)

and for τk ≤ r ≤ d,

λ̃r = 1
d− τk

∑
τk≤j≤d

λ̂j.

Let us denote this choice by λ̃(τ) = (λ̃1(τ), . . . , λ̃r(τ))′. The proposed p-value estimator is

then

p̂n(τ) = P

 d∑
j=1

λ̃j(τ)Z2
j > Tn

 .
The cut-offs τ defining the blocks may appear with (approximately) equal distance,

such that p̂n,3 is obtained from three (approximately) equally-sized blocks, and p̂n,4 from

four (approximately) equally-sized blocks. For instance, with d = 35 and four blocks, the

block sizes are 9, 9, 9 and 8. In the current study we investigated four EBA tests obtained

from equally-sized blocks: At one extreme is the 1-block SB test, and at the other extreme

is singleton blocks, i.e. the full use of all estimated eigenvalues. We refer to this latter test

as EBAF, whose p-value is given by (3). In between these two extremes we considered two

midde-ground tests, namely the split-half, denoted by EBA2, and the use of four blocks,

denoted by EBA4.
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Instead of insisting that the blocks should have equal sizes, another strategy is to use

a clustering algorithm. Such algorithms iteratively form blocks of eigenvalues of possibly

unequal sizes, in order to minimize the variability within each block while maximising the

between-block variance. They start with some set of blocks and then adjusts these blocks

iteratively to reduce the sum of squared deviations in each class. In the present study we

employed both the natural breaks classification of Jenks (1967), where the number of

blocks is pre-specified by the user, and a clustering method proposed by Wang and Song

(2011) where the number of blocks is chosen by an optimization algorithm. The output of

the Jenks algorithm is then the grouping of eigenvalues into the pre-specified number of

blocks. In the current study we investigated the Jenks method with 2 or 4 blocks.

Replacing the eigenvalues in each block by the block average yields the tests EBA2J and

EBA4J, respectively. The output of the Wang and Song (2011) method is the grouping of

eigenvalues into the optimal number of blocks. We denote by EBAA the test obtained by

replacing eigenvalues in each block by the block average in each of the automatically

chosen blocks.

An extension of the above framework is tests that assess nested hypotheses in SEM.

Due to its great practical importance, we here include a short discussion on this special

case. Following Satorra (1989), let H : σ = σ(θ), θ ∈ Θ and H0 : σ = σ(θ), θ ∈ Θ0 where

Θ0 = {θ ∈ Θ : a(θ) = 0} for some continuously differentiable function a. We assume that

the matrix ∂a(θ)
∂θ

has full row rank, say m. We let

θ̂ = argmin
θ∈Θ

F (s, σ(θ)), θ̃ = argmin
θ∈Θ0

F (s, σ(θ))

and Tn = nF (s, σ(θ̂)) and T̃n = nF (s, σ(θ̃)). Under H0 and the conditions of Lemma 1 (iv)

in Satorra (1989) the difference statistic converges as

T̃n − Tn
D−−−→

n→∞

m∑
j=1

αjZ
2
j , Z1, . . . , Zm ∼ N(0, 1) IID, (5)

where α1, . . . , αm are the m non-zero eigenvalues of UdΓ, where Ud = Ũ − U has rank m.

Distribution-free consistent estimators Ûd and Γ̂ for Ud and Γ are found and discussed in
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Satorra and Bentler (2001).

In the next section we illustrate the EBA procedures on a real-world data sample,

followed by a section where we evaluate, both asympotically and in finite samples, the

performance of EBA. Probabilities of the type (3) were calculated using the R package

CompQuadForm (Duchesne & De Micheaux, 2010), while model estimation and eigenvalue

extraction were done with lavaan (Rosseel, 2012).

Block-formation by clustering methods were done using R packages BAMMtools

(Rabosky et al., 2014) for the Jenks method and Ckmeans.1d.dp for the method of Wang

and Song (2011). R code demonstrating the use of these packages may be found in the

appendix.

Example

We consider data from a study (Foldnes, 2017) conducted among n = 98 students at

a business school, where items from the shortened version of the Attitudes Toward

Mathematics Inventory (Lim & Chapman, 2013) were used to model the correlation

between enjoyment of mathematics (ENJ) and self-confidence (SC) in mathematics. The

model depicted is depicted in Figure 1, which has 13 degrees of freedom.

ENJ

x1

x2

x3

x4

SC

x5

x6

x7

δ1

δ2

δ3

δ4

δ5

δ6

δ7

Figure 1 . Modeling enjoyment of mathematics and self-confidence in mathematics.

Two estimation methods, DWLS and ML, were considered, with test statistics

TDWLS = 7.90 and TML = 25.26. In each case we extracted the 13 estimated eigenvalues

from Û Γ̂. These are the weights used in EBAF, and are given in row 1 and 9 of Table 1,
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which also contains the weights used by Tn, ML, SB, EBA2, EBA2J, EBA4, EBA4J and

EBAA. For both estimation methods, SB p-values are smaller than the p-values for the

other robust tests, which is unsurprising, given the reported tendency of SB to overreject

correct models under non-normality (e.g., Foldnes & Olsson, 2015). Also, under DWLS,

the automatic EBAA test yields only one cluster, so that EBAA in that condition

coincided with SB, while under ML, EBAA has two clusters and is equivalent to EBA2.

Overall, the p-values vary moderately among the tests.

For the ML case, we also plotted the probability density function of Xapprox for SB,

SS, CF and three EBA tests in Figure 2. The p-values associated with SS and CF were

0.223 and 0.195, respectively. We see that in this real-world situation, the distributions of

CF and the three EBA tests are quite similar to each other. The SB and SS tests are seen

to be based on distributions that differ quite a lot from those of the CF and the EBA tests.

In summary, Table 1 and Figure 2 indicate that there is some variability among the

established and newly proposed tests. For a practitioner, the question remains about which

of these tests should be used for evaluating the model. As shown in the next sections, there

is unfortunately no single robust test that performs best under all possible conditions of

sample size and underlying distribution. A possible way to select a test in a given situation

is to simulate data whose distribution is close to that of the observed data. The flexible

data-generating method recently proposed by Grønneberg and Foldnes (2017) may be used

to emulate the characteristics of the observed sample. One can then observe which of the

test candidates performs best on average on the simulated data. However we consider this

idea outside the scope of the present study.

In the next section we proceed by evaluating the performance of the EBA tests and

the established robust tests by Monte Carlo, in order to gain some insight into the

systematic differences with respect to empirical Type I error control.
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0.00

0.02

0.04

0.06

0 10 20 30 40

Xapprox

de
ns

ity

Test

SB

SS

CF

EBA2

EBA4

EBAA

Figure 2 . Probability density curves of Xapprox for the case of testing a two-factor model

based on n = 98 observations with the ML estimator. Vertical line represents TML = 25.26.

The areas below curves to the right of this line correspond to p-values. SB=Satorra-Bentler.

SS=scaled and shifted. CF=scaled F. EBA2 and EBA4= eigenvalue block approximation

with 2 and 4 equally-sized blocks. EBAA= automatic eigenvalue clustering.
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Method 1 2 3 4 5 6 7 8 9 10 11 12 13 p

D
W

LS

EBAF 0.81 0.56 0.49 0.40 0.32 0.23 0.21 0.16 0.12 0.11 0.09 0.08 0.05 0.029

T 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.850

SB 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.009

EBA2 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.10 0.10 0.10 0.10 0.10 0.10 0.019

EBA4 0.56 0.56 0.56 0.56 0.26 0.26 0.26 0.13 0.13 0.13 0.08 0.08 0.08 0.025

EBA2J 0.56 0.56 0.56 0.56 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.024

EBA4J 0.81 0.48 0.48 0.48 0.26 0.26 0.26 0.10 0.10 0.10 0.10 0.10 0.10 0.028

EBAA 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.009

M
L

EBAF 5.46 2.38 2.01 1.52 1.40 1.12 1.08 0.95 0.67 0.61 0.53 0.42 0.36 0.193

T 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.021

SB 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 0.167

EBA2 2.14 2.14 2.14 2.14 2.14 2.14 2.14 0.59 0.59 0.59 0.59 0.59 0.59 0.186

EBA4 2.84 2.84 2.84 2.84 1.20 1.20 1.20 0.74 0.74 0.74 0.43 0.43 0.43 0.192

EBA2J 5.46 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 0.181

EBA4J 5.46 2.20 2.20 1.21 1.21 1.21 1.21 1.21 0.52 0.52 0.52 0.52 0.52 0.192

EBAA 5.46 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 0.181
Table 1

Estimated λj, j = 1, . . . , 13, in first row (EBAF), together with λ̃j for other methods.

DWLS= diagonally weighted least squares estimator. ML= maximum likelihood estimator.

EBAF= Full eigenvalue estimation; T = χ2 test; SB=Satorra-Bentler; EBAi=i-block

equal-size eigenvalue blocks; EBAiJ= i-block Jenks eigenvalue blocks; EBAA = automatic

eigenvalue clustering. p= p-value.
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Method

The performance of six EBA procedures and three established test statistics were

assessed, both theoretically and empirically. The EBA procedures investigated are EBAF,

EBA2, EBA4, EBA2J, EBA4J and EBAA, while the established test statistics are SB, SS

and CF. In addition we included the oracle test in (2), here denoted by OR. These test

procedures are not specifically linked to ML estimation and its associated test statistic

TML. In each evaluation case we therefore included a second estimator, namely DWLS with

its associated test statistic TDWLS.

Theoretically, asymptotic rejection rates were computed based on eigenvalues

extracted from the population matrix UΓ. This is possible due to a recently proposed

method (Foldnes & Grønneberg, 2017) that allows the exact calculation of Γ, and

consequently, of λj. For the EBA tests we solved the equation P (∑λjZ
2
j > c) = 0.05

numerically for c, and then the asymptotic rejection rate was calculated as P (∑ λ̃jZ
2
j > c),

where the λ̃j depend on the block-formation strategy.

Empirically, we conducted two simulation studies. Study 1 involves the testing of a

single correctly specified model, while Study 2 involves the testing of two correctly specified

nested models. The asymptotic and empirical rejection rates reported in the present article

were computed at the α = 0.05 level of significance.

Models

Our model is the political democracy model discussed by Bollen in his textbook

(Bollen, 1989), see Figure 3, where the residual errors are not depicted for ease of

presentation. There are four measures of political democracy measured twice (in 1960 and

1965), and three measures of industrialization measured once (in 1960). The model,

referred to asM1, has d = 35 degrees of freedom. Study 1 involves tests of correct model

specification based onM1. In Study 2, we considered testing a constrained modelM0

againstM1. M0(d = 45) is nested withinM1, and imposes ten correctly specified
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Figure 3 . Bollen’s political democracy model.
y1

y2

y3

y4

y5

y6

y7

y8

x1 x2 x3

dem60

dem65

ind60dem60

dem65

ind60

equalities on unique and residual covariances.

Data generation

In order to theoretically evaluate the performance of the test statistics, and to

evaluate the finite-sample performance of the oracle OR, the population values λ in (1)

must be exactly calculated. Recently, Foldnes and Grønneberg (2017) presented an

algorithm for obtaining Γ under distributions produced by the Vale-Maurelli (VM)

transform (Vale & Maurelli, 1983). We therefore used the VM transform in the present

study. We calculated Γ and U (for both ML and DWLS) and obtained population

eigenvalues λ under each distributional condition. Data generation was achieved by fixing

the parameters in the model, and using the model-implied covariance matrix as the target

covariance matrix for the VM transform. Two nonnormal distributional conditions,

denoted by D1 and D2, were specified by vectors containing heterogeneous skewness s and

kurtosis k for the 11 univariate marginals as follows. For D1, s = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2)

and k = (5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10). For D2, s = (2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3) and

k = (7, 7, 7, 7, 7, 21, 21, 21, 21, 21, 21). With the terminology used by Curran, West, and

Finch (1996), distributions D1 and D2 might be said to represent moderate and severe
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nonnormality, respectively. For the simulation studies, replications leading to

nonconvergence or improper solutions were removed from further analysis. In each cell we

simulated 104 replications with proper solutions, resulting in a standard error of 0.0022 for

the empirical rejection rate, given that the true Type I error rate was 0.05.

RESULTS

Asymptotic performance

Study 1. In each of six conditions (two estimators × three distributions), the 35

non-zero population eigenvalues were calculated. In Figure 4, violin plots give the

distribution of these eigenvalues in each condition. With estimator ML, eigenvalues tend to

get larger and span a larger range when moving from normality (N) via moderate

nonnormality (D1) to the severe nonnormality (D2). With estimator DWLS, the

eigenvalues are not much affected by the underlying distribution, indicating that the

large-sample distribution of TDWLS is not sensitive to the underlying distribution.

Population eigenvalues were then used to compute asymptotic rejection rates for each

test statistic, see Table 2. Since TDWLS is not distributed as a chi-square under any

distribution, TDWLS rejection rates are far off the nominal level. TML is correctly specified

for normal data, and hence has the optimal rejection rate of 0.05 under N, but has highly

inflated rejection rates under non-normality. The SB scaling yields too high rejection rates

under DWLS, but close to nominal rates under ML, even with highly non-normal data.

The SS test performs much better than SB with DWLS, and is also preferrable to SB

under ML. CF reaches almost perfect rejection rates under both DWLS and ML. The

increasing asymptotic performance in the sequence SB, SS and CF reflects that SB only

matches the first, SS the two first, and CF the three first moments of the weighted sum in

(1). The full eigenvalue approximation EBAF yields perfect asymptotic Type I error

control in all conditions, which is in line with the theory, since EBAF is a consistent test.

The other EBA methods generally lead to underrejection, especially under DWLS, with
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γ

Figure 4 . Study 1: Violin plots for the distribution of 35 population eigenvalues. MLN,

MLD1 and MLD2 refer to ML estimation under multivariate normality, moderate and

severe nonnormality, respectively. DWLSN, DWLSD1 and DWLSD2 refer to DWLS

estimation under multivariate normality, moderate and severe nonnormality, respectively.

EBA2 performing the worst, while EBA4J attains almost perfect Type I error control.

Study 2. The chi-square difference test has ten degrees of freedom, and the

corresponding oracle eigenvalues are presented in Table 3. Similar to the pattern in Figure

4, the eigenvalues are much more sensitive to the underlying distribution under the ML

estimator, compared to the DWLS estimator. With ML, the eigenvalues become larger and

more varied with increasing nonnormality.

Table 4 contains asymptotic rejection rates for nested model testing. SB overrejects

in all conditons except for ML under normality. SS overrejects very slightly, while the F

test achieves perfect rejection rates. The EBA approximations tend to underreject the null,

but less so compared to Study 1, with EBA4J achieving almost perfect Type I error control

in all conditions.
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dist T SB SS CF EBAF EBA2 EBA4 EBA2J EBA4J EBAA

D
W

LS

N 0.000 0.103 0.055 0.049 0.050 0.025 0.035 0.039 0.049 0.047

D1 0.000 0.106 0.055 0.050 0.050 0.025 0.035 0.037 0.048 0.037

D2 0.000 0.106 0.055 0.050 0.050 0.026 0.036 0.037 0.048 0.037

M
L

N 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

D1 0.347 0.056 0.051 0.050 0.050 0.047 0.049 0.049 0.050 0.050

D2 0.748 0.065 0.052 0.050 0.050 0.043 0.047 0.047 0.050 0.048
Table 2

Study 1: Asymptotic rejection rates. T=χ2 test. SB=Satorra-Bentler. SS=scaled and

shifted. CF=scaled F test. EBAF= Full eigenvalue estimation; EBAi=i-block equal-size

eigenvalue blocks; EBAiJ= i-block Jenks eigenvalue blocks; EBAA = automatic eigenvalue

clustering.

D
W

LS

N 0.620 0.364 0.315 0.276 0.253 0.234 0.191 0.183 0.128 0.073

D1 0.503 0.326 0.288 0.244 0.184 0.174 0.157 0.133 0.102 0.058

D2 0.511 0.340 0.294 0.246 0.181 0.175 0.151 0.125 0.099 0.055

M
L

N 1 1 1 1 1 1 1 1 1 1

D1 5.854 4.090 2.875 2.679 2.436 2.275 2.133 1.865 1.755 1.490

D2 11.280 7.607 4.724 3.990 3.702 3.564 3.276 2.784 2.629 2.093
Table 3

Study 2. The population eigenvalues of UdΓ, rounded to three decimal places. N= normal,

D1=moderate non-normality, D2=severe non-normality. DWLS=diagonally weigthed least

squares estimator. ML=normal-theory maximum likelihood estimator.
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dist T SB SS CF EBAF EBA2 EBA4 EBA2J EBA4J EBAA

D
W

LS

N 0.000 0.068 0.052 0.050 0.050 0.043 0.046 0.045 0.049 0.033

D1 0.000 0.070 0.052 0.050 0.050 0.043 0.047 0.045 0.049 0.032

D2 0.000 0.071 0.052 0.050 0.050 0.043 0.047 0.045 0.049 0.031

M
L

N 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

D1 0.732 0.063 0.051 0.050 0.050 0.044 0.047 0.048 0.050 0.048

D2 0.928 0.070 0.052 0.050 0.050 0.040 0.045 0.048 0.050 0.048
Table 4

Study 2: Asymptotic rejection rates. N= normal, D1=moderate non-normality, D2=severe

non-normality. DWLS=diagonally weigthed least squares estimator. ML=normal-theory

maximum likelihood estimator. T= χ2 test. SB=Satorra-Bentler. SS=scaled and shifted.

CF=scaled F test. EBAF= full eigenvalue approximation. EBAi= i-block eigenvalue

approximation. EBAiJ= i-block Jenks eigenvalue approximation. EBAA = automatic

eigenvalue clustering.
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Finite-sample performance

Study 1. Finite-sample rejection rates for testingM1 are given in Table 5. We

discuss the DWLS case first, where, generally, all test statistics are quite robust to the

underlying distribution. SB produces consistently too high error rates, at about 0.1. SS

error rates are consistently below the nominal level α = 0.05, but approaches α with

increasing sample size. Under conditions of small sample size and non-normality, SS has

rejections rates below 0.03. CF rejection rates are close to those of SS, but are consistently

lower. EBAF and CF have almost identical rejection rates across all conditions. In contrast

to SS/CF/EBAF, the two-block EBA2 consistently has rejection rates well above α, and

has poor Type I error control. EBA4 performs better than EBA2, with rejection rates

lying generally between those of SS/CF/EBAF on one hand, and EBA2 on the other hand.

EBA2J lies slightly below EBA4 in terms or rejection rates, while EBA4J performs quite

poorly with rejection rates below those of SS. EBAA has higher rejection rates than SS,

and lower than EBA2J. To sum up, the procedures with best Type I error control across all

DWLS conditions are SS, EBA4, EBA2J and EBAA.

Next we consider ML estimation, where the test statistics are more sensitive to the

underlying distribution than was the case for DWLS. Note that T yields exactly the same

rejection rates as the oracle OR, under multivariate normal data N. Under non-normality,

however, rejection rates of T become very large. SB again has inflated rejection rates,

especially under non-normality and small sample size. SS has too low rejection rates, with

especially poor performance under non-normality. Again, CF and EBAF have near

identical rejection rates across all conditions, slightly below those of SS. EBA2 has very

good Type I error control in all conditions. EBA4 outperforms SS/CF/EBAF, but still has

poorer error control than EBA2. Under non-normality, the clustering procedures EBA2J,

EBA4J and EBAA have rejection rates lower than those of EBA4. To sum up, across all

ML conditions, EBA2 by far had the best Type I error control, with EBA4 as a runner-up.

Study 2. Finite-sample rejection rates for nested model testing are given in Table 6.
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We discuss the DWLS case first. The tests are sensitive to the underlying

distribution. All tests produce rejection rates above the nominal level, especially under

non-normality. SB has the highest rejection rates. EBA2 and EBAA have lower rejection

rates. However, the group of tests SS, F, EBAF, EBA4, EBA2J and EBA4J has equal

performance across all conditions, and attains better Type I error than SB, EBA2 and

EBAA.

Under ML estimation, the situation is similar to the DWLS case, with a pattern of

high rejection rates, decreasing toward the nominal level with increasing sample size. SB

has the highest rejection rates. EBAA and EBA2 have lower rejection rates, but these are

higher than the rather similar rejection rates in the group of SS, F, EBAF, EBA4, EBA2J

and EBA4J. This group achieves the lowest rejection rates, and so represent the

best-performing tests in terms of Type I error control.
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n Distr T SB SS CF EBAF EBA2 EBA4 EBA2J EBA4J EBAA OR
D
W

LS

100

N .000 .104 .039 .035 .034 .064 .047 .044 .036 .042 .059

D1 .000 .109 .030 .025 .024 .064 .041 .034 .026 .030 .099

D2 .000 .110 .023 .020 .019 .057 .032 .025 .020 .021 .133

300

N .000 .107 .049 .044 .044 .072 .057 .054 .046 .052 .057

D1 .000 .113 .045 .039 .039 .073 .055 .051 .041 .046 .082

D2 .000 .118 .039 .033 .032 .071 .049 .043 .034 .039 .106

1000

N .000 .099 .050 .045 .045 .071 .060 .058 .046 .054 .049

D1 .000 .107 .050 .045 .045 .074 .061 .058 .047 .055 .064

D2 .000 .117 .048 .042 .042 .076 .057 .055 .044 .052 .077

M
L

100

N .078 .085 .044 .039 .039 .053 .044 .048 .040 .062 .078

D1 .277 .105 .021 .017 .016 .053 .029 .024 .018 .022 .041

D2 .516 .125 .014 .010 .009 .055 .026 .016 .010 .013 .018

300

N .059 .062 .046 .044 .044 .048 .045 .048 .045 .062 .059

D1 .317 .072 .024 .020 .020 .044 .031 .026 .022 .025 .051

D2 .617 .081 .015 .011 .011 .042 .024 .017 .012 .015 .039

1000

N .049 .050 .046 .045 .045 .047 .045 .047 .045 .050 .049

D1 .324 .059 .031 .028 .028 .043 .036 .034 .029 .034 .050

D2 .689 .066 .023 .019 .019 .043 .031 .025 .019 .024 .046
Table 5

Study 1: Rejection rates. N=normality; D1=moderate nonnormality. D2=severe

nonnormality. DWLS=diagonally weigthed least squares. ML= maximum likelihood. T=

χ2 test. SB=Satorra-Bentler. SS=scaled and shifted. CF=scaled F. EBAF= full eigenvalue

approximation. EBAi= i-block clustering. EBAiJ= i-block Jenks clustering. EBAA =

Automatic clustering. OR=oracle.
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n Distr T SB SS CF EBAF EBA2 EBA4 EBA2J EBA4J EBAA OR
D
W

LS

100

N .000 .096 .067 .065 .063 .075 .068 .069 .064 .091 .093

D1 .004 .236 .176 .171 .169 .194 .179 .179 .170 .209 .293

D2 .022 .313 .236 .231 .229 .260 .240 .237 .230 .270 .382

300

N .000 .076 .054 .052 .052 .062 .057 .058 .052 .074 .061

D1 .000 .151 .107 .104 .102 .121 .110 .111 .104 .136 .170

D2 .002 .191 .139 .136 .134 .155 .144 .141 .135 .166 .221

1000

N .000 .066 .051 .049 .049 .055 .052 .053 .049 .066 .051

D1 .000 .106 .075 .074 .073 .083 .077 .078 .074 .100 .094

D2 .000 .126 .092 .089 .088 .100 .093 .094 .089 .117 .125

M
L

100

N .071 .082 .068 .066 .066 .070 .068 .069 .067 .082 .071

D1 .627 .198 .131 .128 .126 .154 .139 .135 .127 .164 .018

D2 .855 .276 .180 .176 .172 .212 .188 .184 .173 .220 .008

300

N .054 .058 .054 .054 .054 .054 .054 .054 .054 .058 .054

D1 .682 .124 .084 .082 .080 .098 .088 .086 .082 .102 .035

D2 .886 .165 .110 .107 .105 .129 .115 .112 .105 .133 .027

1000

N .050 .052 .051 .051 .051 .051 .051 .051 .051 .052 .050

D1 .711 .084 .062 .060 .059 .069 .064 .063 .060 .073 .048

D2 .911 .111 .073 .071 .070 .087 .076 .075 .071 .087 .043
Table 6

Study 2: Rejection rates. N=normality; D1=moderate nonnormality. D2=severe

nonnormality. DWLS=diagonally weigthed least squares. ML= maximum likelihood. T=

χ2 test. SB=Satorra-Bentler. SS=scaled and shifted. CF=scaled F. EBAF= full eigenvalue

approximation. EBAi= i-block clustering. EBAiJ= i-block Jenks clustering. EBAA =

Automatic clustering. OR=oracle.
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Discussion

The performance of the established and proposed new statistics have been studied,

both asymptotically and in finite samples. The most important case for a practitioner is of

course finite-sample performance. Consistent patterns among the test procedures were

found across sample sizes and underlying distribution in both Study 1 and Study 2. For

Study 1, the results in Table 5 suggest the following grouping of tests that perform

similarly, ranked according to increasing rejection rates:

Study 1: CF/EBAF/EBA4J < SS/EBAA/EBA2J < EBA4 < EBA2 < SB,

while the results in Table 6 suggest the following grouping, ranked according to increasing

rejection rates:

Study 2: SS/CF/EBAF/EBA4/EBA2J/EBA4J < EBA2 < EBAA < SB.

Also, some general observations holding across sample size, distributions, estimators and

models might be made: SB has the highest rejection rates. CF consistently has slightly

lower rejection rates than SS. Remarkably, CF and EBAF have almost identical rejection

rates in both models, for all sample sizes, distributions and estimators. This echoes the

findings of (Wu & Lin, 2016). In general, the EBA procedures perform similarly to SS and

CF, with the exception of EBAA and EBA2, which tend to have somewhat higher rejection

rates than SS/CF, but lower than SB.

Comparing the performance of EBA2 and EBAF across the two studies, it is

noticeable that EBAF performed best in Study 2 (10 eigenvalues), while EBA2 performed

best in Study 1 (35 eigenvalues). A possible explanation for this pattern is that in Study 2

there are more sample observations for each estimated eigenvalue. Intuitively, the

eigenvalues are therefore estimated with higher precision in Study 2 compared to Study 1.

The full use of the individual eigenvalues in Study 2 is more warranted than under

conditions such as in Study 1, where there are far fewer observations per eigenvalue. In this
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latter condition it is therefore not surprising that the 2-block method is found superior to

EBAF.

We now turn to the question of evaluation. It is important to notice that there are

two, sometimes conflicting, ways of evaluating test statistics. From a practical point of

view, the important question is: How well does the test control Type I error rates? This is

the evaluation criterion in most simulation studies. However, the tests under consideration

in the present study were designed to emulate the oracle distribution in (2). So

theoretically, the important question is: How well does the test approximate the oracle? Of

course, it is hoped that these two evaluation criterions merge, and they certainly will for

very large sample sizes. However, Tables 5 and 6 demonstrate that under realistic sample

sizes, the oracle does not always achieve acceptable Type I error control. In some

conditions it might therefore happen that a test statistic does a poor job approximating

the oracle OR, but by some coincidence achieves good Type I error control. Consider for

instance the condition in Study 1 of ML estimation under severe non-normality and the

smallest sample size. Here EBA2 outperforms all the other tests by a large margin, with a

rejection rate of 0.055. However, the oracle has not yet reached its asymptotic limit of

α = 0.05, having a Type I rejection rate of only 0.018. Hence EBA2 does a very good job

of controlling Type I error rates, while failing to achieve its theoretical aim of emulating

the oracle. On the other hand, EBA2J matches the oracle rejection rate closely with a

rejection rate of 0.016, but in terms of Type I error control this is unacceptably low.

Broadly speaking, evaluation in terms of Type I error control gave the following

results. In Study 1, with d = 35 single model testing, the group SS, EBA4, EBA2J and

EBAA performed similarly, and attained the best Type I error control under DWLS, while

EBA2 clearly outperformed all other tests under ML. In Study 2, with d = 10 nested model

testing, the tests SS, CF, EBAF, EBA4, EBA2J, EBA4J performed equally well, and

better than SB, EBA2 and EBA4.

The second evaluation criterion considers how well the tests emulate the oracle. In
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Study 1, EBA2 performed the best, with the exception of DWLS under normality, where

EBA4, EBA2J and EBAA more closely matched the oracle rejection rates. In Study 2, the

oracle was best approached by EBAA under DWLS, and by CF, EBAF, EBA4J under ML.

Conclusion

Recently two test procedures, the scaled and shifted test SS (Asparouhov & Muthén,

2010), and the scaled F test CF (Wu & Lin, 2016) have been proposed based on

approximating the asymptotic distribution of a weighted sum of chi-square variates in (1).

The SS and CF procedures match, respectively, the first two and the first three moments of

the asympotic distribution, and are hence theoretically superior to the original scaling

procedure of Satorra and Bentler (1988). In the present paper we have theoretically and

empirically demonstrated, in the context of a specific model, that SS and CF outperforms

the SB procedure both for single and nested model testing. In accord with earlier

simulation studies, we therefore recommend SS and CF over the SB procedure, although

SS and CF both tend to underreject correct models. Note that this recommendation still

holds under normally distributed data.

We have also proposed new approximations to the weighted sum of i.i.d. chi-square

variates, based on arranging eigenvalues in blocks and replacing them by average values.

This introduces a whole new class of approximations to the asymptotic distribution of test

statistics in structural equation modeling. We have compared six members of this class to

the existing procedures CF and SB, both theoretically and empirically. In terms of correct

Type I error control, the new procedures perform as well as SS and CF, and in some cases

better. For instance, in the important case of ML testing a single model under

non-normality, a two-block eigenvalue approximation was found to outperform all other

statistics.

Given the established SS and CF tests, and several well-performing EBA tests, the

question then remains how one might perform model testing in a practical situation. In
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most cases, tests like CF, SS and the EBA variants, seem to result in similar model fit

evaluations, as was the case for the illustrative example in the present study. However, in

some situations the tests might assess model fit differently. In such cases it would be

recommended to report several test statistics. We suggest reporting one fixed-block and

one dynamic-block EBA procedure. For instance SS, EBA2 and EBA4J could be reported.
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Appendix

R code

# R v e r s i o n 3 . 3 . 1

l i b r a r y ( lavaan ) # Vers ion 0.5 −22

l i b r a r y (CompQuadForm) # Vers ion 1 . 4 . 2

l i b r a r y (BAMMtools) # Vers ion 2 . 1 . 6

l i b r a r y ( Ckmeans . 1 d . dp ) # Vers ion 4 . 0 . 1

#sample s i z e , skewness and k u r t o s i s

n=300L

skewness=2L

k u r t o s i s =10L

seed=1

#I l l u s t r a t i o n based on a two−f a c t o r model

# s p e c i f y p o p u l a t i o n model

p o p u l a t i o n . model <−

" f 1 =~ x1 + 0 . 8 ∗ x2 + 1 . 2 ∗ x3 +0.2∗ x4 ;

f 2 =~ x5 + 0 . 8 ∗ x6 + 1 . 2 ∗ x7 +0.2∗ x8 ; f 1 ~ ~ 0 . 5 ∗ f 2 "

#model to be est imated , has e q u a l i t y c o n s t r a i n t s on t h r e e r e s i d u a l v a r i a n c e s

my. model <− " f 1 =~ x1+x2+x3+x4 ; f 2 =~ x5+x6+x7+x8 ; "

#s i m u l a t e non−normal d a t a s e t

s e t . seed ( seed )

my. dat = simulateData ( p o p u l a t i o n . model , sample . nobs=n ,

skewness=rep ( skewness , 8 ) , k u r t o s i s=rep ( k u r t o s i s , 8) )

#ML e s t i m a t i o n

f = sem (my. model , data=my. dat )

#p v a l u e s f o r d e f a u l t NTML and SB t e s t s :

sem (my. model , data=my. dat , t e s t ="SB " )

#e x t r a c t t e s t s t a t i s t i c T

T = f i t m e a s u r e s ( f , " c h i s q " )

#Extract U∗Gamma

UG <− i n s p e c t ( f , "UGamma" )

#The e s t i m a t e d e i g e n v a l u e s

df = f i t m e a s u r e s ( f , "DF" )

e i g . hat <− Re( e i g e n (UG) $ v a l u e s [ 1 : df ] )

########

## p−v a l u e s f o r v a r i o u s t e s t s , based on e i g e n v a l u e s

########

#NTML

pNTML <− imhof (T, rep ( 1 , df ) )$Qq

#SB

pSB <− imhof (T, rep ( mean ( e i g . hat ) , df ) )$Qq

#EBAF
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pEBAF <− imhof (T, e i g . hat )$Qq

#EBA2

e i g s <− c ( rep ( mean ( e i g . hat [ 1 : c e i l i n g ( df /2) ] ) , c e i l i n g ( df /2) ) ,

rep ( mean ( e i g . hat [ ( c e i l i n g ( df /2) +1) : df ] ) , df−c e i l i n g ( df /2) ) )

pEBA2 <− imhof (T, e i g s )$Qq

#Jenks EBA2

breaks <− getJenksBreaks ( e i g . hat , k=3)

block1 <− e i g . hat [ e i g . hat <= breaks [ 2 ] ] ; b lock2=e i g . hat [ e i g . hat > breaks [ 2 ] ]

e i g s <− c ( rep ( mean ( block1 ) , l e n g t h ( block1 ) ) , rep ( mean ( block2 ) , l e n g t h ( block2 ) ) )

pEBA2J <− imhof (T, e i g s )$Qq

#EBAA

t = Ckmeans . 1 d . dp ( e i g . hat )

means <− t $ c e n t e r s

c l u s t e r s <− t $ c l u s t e r

e i g s <− sapply ( c l u s t e r s , f u n c t i o n ( x ) means [ x ] )

pEBAA <− imhof (T, e i g s )$Qq

cat ( " Simple model t e s t i n g : \n " )

p r i n t ( round ( data . frame (pNTML, pSB , pEBAF, pEBA2, pEBA2J , pEBAA) , 4 ) )

######

## Nested Model Test ing

######

#help f u n c t i o n . From lavaan s o u r c e code .

e i g e n v a l u e s _ d i f f <− f u n c t i o n (m1, m0, A. method = " exact " ) { #or d e l t a . Note that s h e l l command lavTestLRT

has exact , w h i l e l a v _ t e s t _ d i f f _ S a t o r r a 2 0 0 0 has d e f a u l t d e l t a .

# e x t r a c t i n f o r m a t i o n from m1 and m2

T1 <− m1@test [ [ 1 ] ] $ s t a t

r1 <− m1@test [ [ 1 ] ] $df

T0 <− m0@test [ [ 1 ] ] $ s t a t

r0 <− m0@test [ [ 1 ] ] $df

# m = d i f f e r e n c e between the df ’ s ’

m <− r0 − r1

Gamma <− lavTech (m1, "Gamma" ) # the same f o r m1 and m0

WLS.V <− lavTech (m1, "WLS.V" )

PI <− lavaan : : : computeDelta (m1@Model)

P <− lavTech (m1, " i n f o r m a t i o n " )

# needed ? ( yes , i f H1 a l r e a d y has eq c o n s t r a i n t s )

P . inv <− lavaan : : : lav_model_information_augment_invert (m1@Model ,

i n f o r m a t i o n = P,

i n v e r t e d = TRUE)

i f ( i n h e r i t s (P . inv , " try−e r r o r " ) ) {

cat ( " Error ! i n P . inv \n " )

r e t u r n (NA)

}

A <− lavaan : : : lav_test_dif f_A (m1, m0, method = A. method , r e f e r e n c e = "H1 " )
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APA <− A %∗% P . inv %∗% t (A)

cSums <− colSums (APA)

rSums <− rowSums (APA)

empty . idx <− which ( abs ( cSums ) < . Machine$double . eps ^ 0 . 5 &

abs ( rSums ) < . Machine$double . eps ^ 0 . 5 )

i f ( l e n g t h ( empty . idx ) > 0) {

A <− A[−empty . idx , , drop = FALSE ]

}

# PAAPAAP

PAAPAAP <− P . inv %∗% t (A) %∗% s o l v e (A %∗% P . inv %∗% t (A) ) %∗% A %∗% P . inv

g = 1

UG. group <− WLS.V [ [ g ] ] %∗% Gamma [ [ g ] ] %∗% WLS.V [ [ g ] ] %∗%

PI [ [ g ] ] %∗% PAAPAAP %∗% t ( PI [ [ g ] ] )

r e t u r n (Re( e i g e n (UG. group ) $ v a l u e s ) [ 1 :m] )

}

my. model . r e s t r i c t e d <− " f 1 =~ x1 + b∗x2 + c ∗x3+d∗x4 ;

f 2 =~ x5 + b∗x6 + c ∗x7+d∗x8 ;

x1 ~~ a∗x1 ; x2 ~~ a∗x2 ; x3 ~~ a∗x3 ; x4 ~~ a∗x4 ;

x5 ~~ a∗x5 ; x6 ~~ a∗x6 ; x7 ~~ a∗x7 ; x8 ~~ a∗x8 ; "

f . r e s t r i c t e d = sem (my. model . r e s t r i c t e d , my. dat )

#the e s t i m a t e d e i g e n v a l u e s f o r d i f f e r e n c e t e s t . 10 df .

e i g . hat =e i g e n v a l u e s _ d i f f ( f , f . r e s t r i c t e d )

#c h i s q u a r e d i f f e r e n c e

T <− f i t m e a s u r e s ( f . r e s t r i c t e d , " c h i s q " )−f i t m e a s u r e s ( f , " c h i s q " )

df <− f i t m e a s u r e s ( f . r e s t r i c t e d , "DF" )−f i t m e a s u r e s ( f , "DF" )

#NTML

pNTML <− imhof (T, rep ( 1 , df ) )$Qq

#SB

pSB <− imhof (T, rep ( mean ( e i g . hat ) , df ) )$Qq

#EBAF

pEBAF <− imhof (T, e i g . hat )$Qq

#EBA2

e i g s <− c ( rep ( mean ( e i g . hat [ 1 : c e i l i n g ( df /2) ] ) , c e i l i n g ( df /2) ) ,

rep ( mean ( e i g . hat [ ( c e i l i n g ( df /2) +1) : df ] ) , df−c e i l i n g ( df /2) ) )

pEBA2 <− imhof (T, e i g s )$Qq

#Jenks EBA2

breaks <− getJenksBreaks ( e i g . hat , k=3)

block1 <− e i g . hat [ e i g . hat <= breaks [ 2 ] ] ; b lock2=e i g . hat [ e i g . hat > breaks [ 2 ] ]

e i g s <− c ( rep ( mean ( block1 ) , l e n g t h ( block1 ) ) , rep ( mean ( block2 ) , l e n g t h ( block2 ) ) )

pEBA2J <− imhof (T, e i g s )$Qq

#EBAA
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t = Ckmeans . 1 d . dp ( e i g . hat )

means <− t $ c e n t e r s

c l u s t e r s <− t $ c l u s t e r

e i g s <− sapply ( c l u s t e r s , f u n c t i o n ( x ) means [ x ] )

pEBAA <− imhof (T, e i g s )$Qq

cat ( " \ nNested model t e s t i n g : \n " )

p r i n t ( round ( data . frame (pNTML, pSB , pEBAF, pEBA2, pEBA2J , pEBAA) , 4 ) )


