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COVARIANCE MODEL SIMULATION USING REGULAR VINES

(ACCEPTED IN PSYCHOMETRIKA)

STEFFEN GRØNNEBERG AND NJÅL FOLDNES

Abstract. We propose a new and �exible simulation method for non-normal

data with user-speci�ed marginal distributions, covariance matrix and certain

bivariate dependencies. The VITA (VIne To Anything) method is based on

regular vines and generalises the NORTA (NORmal To Anything) method.

Fundamental theoretical properties of the VITA method are deduced. Two

illustrations demonstrate the �exibility and usefulness of VITA in the context

of structural equation models. R code for the implementation is provided.

1. Introduction

Multivariate data simulation is the main tool in evaluating the �nite-sample per-

formance of estimation methods and goodness-of-�t measures in structural equation

modeling (SEM). This paper proposes a new method for simulating non-normal

random vectors with a pre-speci�ed covariance matrix and pre-speci�ed univari-

ate marginal distributions. The method is very �exible and yields a large class

of multivariate distributions, and is based on the statistical concept of a regular

vine (R-vine). R-vines combine certain bivariate distributions that jointly de�ne

a multivariate distribution. In the proposed method, we search for bivariate dis-

tributions so that the resulting R-vine has a given covariance matrix and given

univariate marginals. We refer to the new method as VITA (VIne To Anything).

VITA supports highly non-normal features, such as tail dependence and deviations

from symmetry not supported by elliptical distributions. In practice, this means

that VITA may be used in simulation studies where a high level of control of mul-

tivariate non-normality is needed. We also illustrate how the �exibility of VITA

allows a user to simulate data that resemble a given real-world sample. A VITA im-

plementation conducted in the R (R Core Team, 2015) environment, and relying on

the VineCopula package (Schepsmeier et al., 2015), is included in the supplementary

material.

The present article is structured as follows. After an overview of related litera-

ture, we proceed to Section 2, where we brie�y review copula and R-vine theory,

and introduce the VITA algorithm. We also state a theorem implying that VITA

is well-behaved, with a proof provided in the appendix. Section 3 contains two
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2 STEFFEN GRØNNEBERG AND NJÅL FOLDNES

illustrative examples of the VITA method. The �rst example, in Section 3.1, is a

�ve-dimensional factor model where we specify normal marginals and interpolate

between a fully multivariate normal distribution and a regular vine constructed by

the VITA method. We illustrate that the normal-theory based likelihood ratio (NT-

LR) statistic is not robust to multivariate non-normality, even when the marginals

are exactly normal. In Subsection 3.2 we identify a regular vine that emulates

the well-known Holzinger-Swineford nine-dimensional dataset. We use non-normal

marginals and consider two sets of bivariate copulas, one containing only normal

copulas, and one containing a mixture of non-normal copulas determined by the

data. We illustrate that the two resulting distributions, although sharing the same

marginals and covariance matrix, di�er with respect to the performance of the NT-

LR statistic. In these two illustrations we employ a new and simple interpolation

idea that allows us to investigate the transition from established covariance simu-

lation techniques to VITA. The concluding section contains a discussion of VITA.

1.1. An overview of related methods. A well-known method for simulating

data with pre-speci�ed covariance matrix and univariate marginals is the NORTA

(NORmal To Anything) method of Cario & Nelson (1997) and Li & Hammond

(1975). This method is popular in the time series and computer science literature,

but has to our knowledge not been employed much in the SEM literature (a notable

exception is the PhD thesis of Boomsma (1983)). In SEM the technique of Vale &

Maurelli (1983) is the most widely used non-normal simulation method. The Vale-

Maurelli (VM) approach is implemented in software packages like Mplus (Muthén

& Muthén, 2012), EQS (Bentler, 2006) and lavaan (Rosseel, 2012), and Monte

Carlo studies have employed the VM technique for data generation over a span of

several decades (e.g., Bentler & Tong, 2013; Fouladi, 2000; Curran et al., 1996). The

VM technique only allows the speci�cation of univariate moments, in addition to

the covariance matrix, while NORTA supports near arbitrary marginals. However,

the NORTA method has a Gaussian/normal1 dependence structure, formalized by

the simulated random vector's copula. This limits its applicability for simulation

studies focusing on the �nite sample performance of statistical methods for non-

normal data. The situation is similar for the VM method. Foldnes & Grønneberg

(2014) showed theoretically that the VM method produces data with either an

exact or near-exact Gaussian copula, and illustrated by Monte Carlo that this might

result in overly optimistic evaluations of the performance of normal-theory based

maximum likelihood estimation in SEM under non-normal data conditions. Hence,

the evaluation of the �nite sample behaviour of statistical techniques using VM

or NORTA may be skewed in favour of methods that work well with data having

a Gaussian dependence structure. Recently Foldnes & Olsson (2016) proposed a

1We use the terms �Gaussian� and �normal� interchangeably.
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simulation method with non-Gaussian dependence, but with little control over the

copula and the marginals beyond matching moments.

A simple copula-based approach to non-normal data simulation has recently

been proposed by Mair et al. (2012). Their two-stage method allows simulation

from a large class of distributions with non-Gaussian copulas. The basic idea is to

�rst freely choose a multivariate copula and univariate marginals. The resulting

distribution will not match the target covariance matrix, and this is remedied by

applying a linear transformation to the simulated data. This assures that the

simulated data match the pre-speci�ed covariance matrix. However, it will also

transform both the marginals and the copula. Hence, the approach proposed by

Mair et al. (2012) does not yield control neither over the marginals, nor over the

underlying copula. For instance, it is not clear how to use their approach to simulate

data whose univariate marginals are normally distributed and whose underlying

copula is non-normal. This task is achievable with VITA, which gives complete

control of the marginals and considerable control of the underlying copula.

Our simulation technique extends the NORTA methodology to the class of regu-

lar vines. While NORTA starts with a normal vector, our proposed method starts

with a regular vine (R-vine). The original motivation for vines in Joe (1996) and

Bedford & Cooke (2002) was partly to generalize certain properties of the Gaussian

distribution and to nest the Gaussian distribution as a special case. It is therefore

natural to connect covariance models with vines. However, this connection has

not yet been fully studied for general non-elliptical copulas. Exceptions are Biller

(2009) and Erhard & Czado (2009). Erhard & Czado (2009) use a vine-based data

generating process with prescribed Pearson covariance matrix in the speci�c con-

text of discrete Poisson margins and restrict attention to so-called C-vines. The

copula-based Vector AutoRegressive To Anything (VARTA) method of Biller (2009)

is much closer to the present work, but aims at simulating covariance-based time

series models, and also restrict attention to C-vines and a small class of copulas.

Since Biller (2009) is working in a time-series context, stationarity of the resulting

vectorial time series must be ful�lled. This imposes di�cult-to-check restrictions

on the C-vine copula structure which limits the applicability of the technique in its

current form. While the time-series focus of Biller (2009) presents some practical

limitations for the VARTA method, it does logically nest the VITA method for sim-

ulating a multivariate time series with only one time-period, provided that VARTA

is extended to R-vines. However, Biller (2009) does not provide theoretical results

for the behaviour of the criterion function underlying the VARTA algorithm, in

contrast to the analysis of VITA presented in this article.

Finally, we note that vine copulas are often employed in multivariate simulation

studies where the focus is not on covariance modeling, but instead on properties

such as tail dependency and asymmetry. In these studies a simulation approach for
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vines is to �x values of a dependence measure, such as Spearman's ρ or Kendall's

τ , on each edge of the vine, and then do sensitivity analyses of tail properties by

choosing di�erent bivariate copula families with the same value of the dependence

measure. However, the present study has another focus, where covariance values

are to be kept �xed. Our aim is to adapt the vine framework for this setting.

2. Covariance model simulation using regular vines

In Sections 2.1 and 2.2 preliminary theory is presented. Our algorithm is then

presented in Section 2.3.

2.1. Basic copula theory and brie�y on the NORTA method. We refer to

the monograph by Joe (2014) for a thorough review of copula theory, and limit

ourselves here to some basic de�nitions. Sklar (1959) noticed that a full description

of a random vector X = (X1, X2, . . . , Xd)
t may be obtained by separating the

marginals from the dependence structure,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

where C is a copula of X, that is, a distribution on [0, 1]d with uniform marginals.

In the case of continuous marginal distributions the copula is unique.

Suppose given univariate margins F1, F2, . . . , Fd and a family Cθ of copulas in-

dexed by some parameter θ ∈ Θ ⊆ Rp. Let F−1
j (t) := inf{x : Fj(x) ≥ t} for

1 ≤ j ≤ d. If Fj is continuous, F−1
j coincides with the unique quantile function. If

U := (U1, U2, . . . , Ud)
′ ∼ Cθ,

that is, if U has the cdf Cθ, then

X := (F−1
1 (U1), F−1

2 (U2), . . . , F−1
d (Ud))

′

has marginal distributions F1, F2, . . . , Fd and copula Cθ. Let µi denote the ex-

pectation of Xi, for i = 1, . . . , d. Then the covariances are given by σi,j(θ) :=

Eθ[F−1
i (Ui)F

−1
j (Uj)] − µiµj . When the univariate marginals are �xed, the covari-

ance matrix Σ(θ) := (σi,j(θ))1≤i,j≤d of X depends only on the bivariate copulas.

In particular, the Gaussian copula is de�ned as follows. Let (Z1, Z2) denote a

bivariate Gaussian vector with standard normal marginals and correlation ρ, and

let Φ(·) denote the standard univariate Gaussian cumulative distribution function.

Then the bivariate Gaussian copula with parameter θ = ρ is the distribution of

the vector (Φ(Z1),Φ(Z2)). This naturally extends to higher dimension d > 2, in

which case the Gaussian copula is parametrised by a vector θ containing all pair-

wise correlations between the elements of (Z1, . . . , Zd). The fundamental idea of

the NORTA method is to let {Cθ : θ ∈ Θ} be the class of all Gaussian copulas, and

then select θ so that the covariance matrix Σ(θ) is correct.

We note that while any population covariance matrix can be reproduced using

Gaussian distributions, this is no longer the case when one changes the marginals
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Figure 1. A �ve-dimensional regular vine.

even when still using a Gaussian copula. For a thorough discussion of the restric-

tions imposed on a covariance structure by �xing the univariate marginals, see Joe

(2006).

2.2. On regular vines. R-vines form a �exible class of distributions, described

and proved to exist in full generality in Bedford & Cooke (2002). A precursor

to Bedford & Cooke (2002) is Joe (1996). Currently, R-vines is an active �eld of

statistical research, with an increasing amount of applications in many �elds. See

Joe (2014) for an authoritative presentation.

In SEM, we are used to specify the pairwise dependencies among variables in

terms of covariances. Instead of unconditional covariances, R-vines on d variables

require the speci�cation of d− 1 unconditional bivariate copulas and d(d− 1)/2−
(d − 1) conditional bivariate copulas. Hence, R-vines involve specifying the same

number, d(d − 1)/2, of bivariate connections, as there are pairwise covariances

between the d variables (excluding variances). Hence we may determine an R-vine

for a given covariance matrix by matching each bivariate copula in the R-vine to

one and only one speci�c covariance.

We illustrate a speci�c R-vine on d = 5 variables in Figure 1. Note that there are

ten edges in the R-vine, the same number as there are pairs of variables. That is,

each pair of variables is represented by an edge in the R-vine. The edges in the �rst

tree represent unconditional bivariate copulas. At the higher levels, the edges rep-

resent bivariate copulas of certain conditional distributions. Each edge corresponds

to a copula linking two distributions on a lower level through conditioning. We can

now fully specify an R-vine copula by supplementing the graphical representation
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in Figure 1 with speci�cations of the �ve univariate marginals and the ten bivariate

copulas, which are the copulas of conditional distributions. For instance, in tree

T4, the edge 25|134 refers to the copula of (X2, X5) conditional on (X1, X3, X4).

As an example, we can specify that all univariate marginals are standard normal,

and that all bivariate copulas belong to the family of Clayton copulas. This family

is parametrised by a single dependency parameter. The R-vine and the marginals

are then combined to fully specify a 5-dimensional distribution after each of these

dependency parameters are �xed.

We now proceed with a technical de�nition of R-vines. A tree on a set of nodes

is an acyclic connected graph.

De�nition 1. (1) V = (T1, . . . , Td−1) is an R-vine on d elements if

(A) T1 is a tree with nodes N1 = {1, . . . , d} and a set of edges denoted E1.

(B) For i = 2, . . . , d− 1, each Ti is a tree with nodes Ni = Ei−1 and edge

set Ei.

(C) For i = 2, . . . , d− 1 and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2},
the proximity condition #(a ∩ b) = 1 must hold, where # denotes the

cardinality of a set.

(2) (F,V, B) is an R-vine copula speci�cation if F = (F1, . . . , Fd) is a vector

cumulative distribution functions, V is a d-dimensional R-vine and B =

{Be : i = 1, . . . , d− 1; e ∈ Ei} is a set of copulas with Be being a bivariate
copula CDF.2

(3) A parametric R-vine copula speci�cation is a class of R-vine copula speci-

�cations {(F,V, Bθ) : θ ∈ Θ}, where Θ is a subset of Rq for some q.

De�nition 2. The complete union of an edge ei ∈ Ei is the set

Uei := {n1 ∈ N1 : there exists a ej ∈ Ej , j = 1, . . . , i− 1,

with n1 ∈ e1 ∈ e2 ∈ · · · ∈ ei−1 ∈ ei} ⊆ N1.

For an edge e = {a, b}, the conditioning set is De := Ua ∩ Ub. The conditioned
variables associated with e are ce,a = Ua \De and ce,b = Ub \De.

We say that a joint distribution F of a random vector (X1, . . . , Xd) realizes

the R-vine copula speci�cation (F,V, B), if, �rstly, the univariate marginals of F

correspond to F. Secondly, for each edge e = {a, b}, let i = cek,a, j = cek,b. Then Be

is the bivariate copula of the conditional distribution function Fe|De
of Xi and Xj ,

given (Xk : k ∈ De). See Bedford & Cooke (2002) for the existence and uniqueness

of F . A consequence of the R-vine construction is that vine distributions always

ful�l the so-called �simplifying assumption�, namely that the copula of Fe|De
is

2The notation B is a mnemonic for bivariate.



COVARIANCE MODEL SIMULATION USING REGULAR VINES 7

functionally independent of the values in the conditioning variables in De, for all

edges e. Some consequences of this is discussed in Hobæk Ha� et al. (2010).

Finally, given an edge e ∈ El in an R-vine V, there corresponds a subvine V(e)

whose edge set consists of all the edges in V whose complete union is contained in

the complete union of e. This result is given in the appendix.

2.3. The VITA algorithm. The VITA algorithm traverses the given R-vine edge

by edge in a speci�ed order that has to ful�l the following condition.

De�nition 3. A valid order O is a sequence of unique elements (ek : k =

1, . . . , d(d − 1)/2), where ek ∈ El for some l. Moreover, for l ≥ 2 and ek = {a, b},
there exists 1 ≤ m,n ≤ k − 1 such that a = em and b = en.

If this conditions holds, then each edge e in the sequence is connecting nodes that

have already been processed by VITA. A canonical valid order is to �rst include all

edges in T1 and all edges in T2, and so forth, where the speci�c order within each

tree is arbitrary.

The VITA algorithm runs through a loop of length d(d − 1)/2, as dictated by

a valid edge order O. Each step corresponds to an edge ek, and it is su�cient to

consider the sub-vine associated with ek. Let i = cek,a, j = cek,b. Suppose copula

parameters θe1 , . . . , θek are given for all edges up to k. From this sequence we can

pick the copula parameters for each edge in the sub-vine V(ek). Not all param-

eters in θe1 , . . . , θek correspond to copulas in V(ek), but for notational simplicity,

we ignore this redundancy and write Ci,j(ui, uj ; θe1 , . . . , θek) for the unconditional

copula of (Xi, Xj), i.e., the coordinates of a random vector that realizes the R-vine

copula speci�cation induced by V(ek). Note that this unconditional copula is dif-

ferent from Be, whenever e is not in T1. Let Θek be the parameter space of Bek,θek .

For �xed θe1 , . . . , θek−1
, de�ne the function Iek : Θek 7→ R via

(1) Iek(θek) =

∫ 1

0

∫ 1

0

F−1
i (ui)F

−1
j (uj) dCi,j(ui, uj ; θe1 , . . . , θek)− µiµj − Σi,j .

The crucial step in VITA is to solve the equation Iek(θek) = 0, and hence ensure

that the corresponding covariance is attained.

In Algorithm 1 the VITA algorithm is presented. It assumes that the user has

speci�ed univariate marginal CDFs Fi for each variable Xi, i = 1, . . . , d, with �nite

second order moments, and target covariance matrix Σ. Note that variances of each

margin are given by the diagonal of Σ, and must be compatible with the marginals

F1, . . . , Fd. Also, the user has speci�ed an R-vine V with bivariate copula families

Be,θe for each edge e. These bivariate copulas have dependence parameters θe that

needs to be determined by VITA, so that the resulting distribution has the user-

speci�ed target covariance matrix Σ. The order in which parameters are determined

follows the user-speci�ed valid order O.
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Algorithm 1 VITA

1: procedure VITA(F,V, B,O,Σ)
2: for k ← 1, . . . , d(d− 1)/2 do

3: θek ← argminθek
|Iek(θek ; θek−1

, . . . , θe1)| from eq. (1)

4: εek ← |Iek(θek ; θek−1
, . . . , θe1)|

5: end for

6: return (θe1 , . . . , θed(d−1)/2
), (εe1 , . . . , εed(d−1)/2

)

7: end procedure

The following theorem, whose proof is presented in the appendix, establishes the

continuity and monotonicity of the criterion function θe,k 7→ Iek(θek ; θek−1
, . . . , θe1),

when the bivariate copulas all have just one parameter. Note that its increasing

mapping requirement holds for all popular one-parameter bivariate copulas (Joe,

2014).

Theorem 1. Suppose for any edge e in V that Θe ⊂ R and that θe 7→
Be,θe(u1, u2) is an increasing mapping for each (u1, u2) ∈ (0, 1)2. Suppose further

the conditional quantile function of Xi for i ∈ Ue, conditioned on Xj = xj for j 6= i

and all j ∈ Ue, is changing continuously with respect to θe and (xj : j 6= i, j ∈ Ue).
Finally, suppose that each marginal Fj has �nite 2+ε-moments for some ε > 0 and

that we are given a valid order O. Then the criterion function is continuous and

monotonously increasing.

A consequence of the continuity and monotonicity of the criterion functions is

that any solution is unique, if it exists. Hence, if VITA can attain the target

covariance matrix, then any valid search order O will �nd the unique solution.

That is, we may use a canonical search order.

If a solution exists that can be found by following the sequence in O, then all

errors εe1 , . . . , εed(d−1)/2
will be equal to zero. Exactly which covariance matrices

that are supported by VITA is currently unknown. However VITA will always result

in a distribution with a covariance matrix as close as possible to the given target.

In the case where the VITA covariance matrix is not exactly equal to the target,

i.e. not all the εek are equal to zero, a linear transformation can be applied to the

VITA vector that guarantees correct target covariance (Mair et al., 2012). This

will distort the marginals and change the copula. However, if the VITA covariance

matrix is su�ciently close to the target covariance matrix, the distortion caused by

the linear transformation is small, being close to the identity transformation.

Note that we cannot in practice exactly evaluate the integral in each VITA step.

In our implementation, we evaluate this integral by Monte Carlo integration, using

the VineCopula package (Schepsmeier et al., 2015). The technical details of using
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Monte Carlo to approximate a criterion function in the optimisation step are non-

trivial. Homem-de Mello & Bayraksan (2014) is one of many surveys on the topic,

with many useful references. We consider the treatment of this issue outside the

scope of the paper.

VITA determines the bivariate dependencies sequentially. As we move up in

the tree structures, the numerical routine becomes more and more computationally

demanding, even though the numerical optimisation is always with respect to a low-

dimensional (often unidimensional) parameter. With current computer speed and

for high dimensions (say, d ≥ 10) VITA nevertheless needs considerable running

time to determine the full vine distribution, in its current prototype implementa-

tion. Since the computationally demanding steps can easily be parallelised, VITA

will tackle also higher-dimensional cases in future implementations. It is also im-

portant to notice that once VITA has terminated, fast simulation from the resulting

vine distribution is available, provided the bivariate copulas in the R-vine have fast

implementation of conditional quantile functions. This is the case for all commonly

used copula families.

The generality of VITA will increase as new bivariate copula families are in-

troduced in the literature. A long list of copulas is presented in Chapter 4 of

the monograph Joe (2014). Classical copulas such as the Joe and Clayton copu-

las express only positive dependence. However, these copulas may be rotated to

allow for negative dependence as well. Since all standard copula classes include

the independence copula, it is possible to glue together unrotated and rotated cop-

ula families, such that the constructed copula family supports both positive and

negative dependence, in a continuous manner.

Finally, we mention that starting values for the minimization step of VITA can

easily be obtained for those one-parameter copula families that can be parametrized

by a dependency measure such as Kendall's tau, through setting the starting value

to that which is induced by the normal copula case: If the vine distribution were

to consist solely of normal copulas and normal marginals, it is parametrized by

the means and variances of the marginals and the partial correlations of ce,a, ce,b

conditioned on De for each edge e with algorithms to pass between the correlation

matrix and the partial correlations given in Chapter 6.15 of Joe (2014). Once these

partial correlations are �xed, one can compute the induced Kendall's tau τe of each

of the partial correlations ρe parameterizing the bivariate normal copula for edge

e via the formula τe = 2π−1 arcsin(ρe), see Joe (2014, Section 4.3.1). The starting

value for the search for θe of the actual copula Be for edge e is then the parameter

that induces a Kendall's tau equal to τe.
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X1 X2 X3 X4 X5

δ1 δ2 δ3 δ4 δ5

F1 F2

Figure 2. Factor model.

3. Illustrations

We provide two illustrations of the VITA method. In both illustrations, the

obtained VITA distribution is then used to study the sensitivity of the NT-LR

statistic to varying degrees of non-normality. The NT-LR statistic is used to evalu-

ate model �t and is of central importance in SEM practice. It is reported by default

in all SEM software packages. We use a new and simple interpolation technique

that allows us to move from current simulation practices to VITA simulation, in a

continuous manner. Model estimation and vine calibration were respectively done

with the lavaan (Rosseel, 2012) and VineCopula (Schepsmeier et al., 2015) packages.

Source code is provided as online supplementary material.

3.1. On the NT-LR test for a factor model with exactly normal margins.

Consider a simple factor model with two factors and �ve indicator variables, as

depicted in Figure 2. A data-generating process is obtained from this model by �x-

ing all �ve factor loadings to 0.95, the factor variances to one, and the correlation

between F1 and F2 to 0.90. The choice of high factor loadings and factor corre-

lation was motivated by the fact that the non-Gaussian copulas we will consider

are farthest away from the Gaussian copula under strong dependence. Low factor

loadings and correlation would lead to weak dependence, which would imply that

the Gaussian and non-Gaussian cases are quite similar. The variances of the errors

δi are �xed so that the Xi, i = 1, . . . , 5, have unit variance. This gives the following

target covariance matrix for X = (X1, X2, X3, X4, X5)′:

Σ =


1.000 0.902 0.812 0.812 0.812

0.902 1.000 0.812 0.812 0.812

0.812 0.812 1.000 0.902 0.902

0.812 0.812 0.902 1.000 0.902

0.812 0.812 0.902 0.902 1.000


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Next we pre-specify the marginals of the Xi, i = 1, . . . , 5, to be standard normal.

That is, Fi = Φ for i = 1, . . . , 5. There are many distributions on �ve variables with

standard normal marginals and covariance matrix Σ. One such distribution is the

Gaussian distribution with zero mean vector and covariance matrix Σ. This is the

distribution that NORTA produces, in the special case of normal marginals. To the

best of our knowledge, no existing simulation procedure, besides VITA, is able to

produce distributions with normal marginals and a non-normal copula, targeting a

given covariance matrix. The parametric R-vine copula speci�cation we choose was

discussed in Section 2.2. We constructed three R-vines based on three bivariate

copula families. The �rst vine was de�ned with all ten bivariate copula families

Be,θe belonging to the Clayton family. The Clayton copula is parametrised by the

dependence parameter θe ∈ (0,∞). The VITA procedure runs through each edge

in trees T1, T2, T3 and T4 and determines θe in each case. The R-vine is depicted

in Figure 3, with calibrated Clayton parameters for each edge. The numerical

integration routine is only approximate, so, for instance, the calibrated Clayton

parameters for the unconditional pairs (1, 2) and (4, 5) in T1 are not exactly equal.

The true parameters for these edges must be equal, since the covariances in Σ

corresponding to these pairs are identical. The Clayton copula is tail asymmetric,

with lower, but not upper, tail dependence. In the second vine speci�cation we

reversed the situation with respect to the direction of tail dependence, setting all

ten bivariate copulas to belong to the Gumbel family of copulas. This family has

upper, but not lower, tail dependence. The third vine was speci�ed with all bivariate

copulas belonging to the Student t family of copulas with �ve degrees of freedom,

which is tail symmetric, and has strong upper and lower tail dependence.

After calibration of the Clayton, Gumbel and Student t R-vines we assessed their

accuracy in reproducing the target covariance matrix by evaluating the asymptoti-

cally distribution-free (ADF) statistic TADF (Browne, 1984) in large samples. The

procedure, suggested by Mair et al. (2012), speci�es a model with no free parame-

ters, by �xing all parameters so that the model-implied covariance matrix is equal

to Σ. The model is ��tted" in standard SEM software to large samples drawn from

the calibrated vine, and TADF is calculated in each sample. If the vine reproduces

Σ, then TADF is asymptotically distributed as a chi-square with 15 degrees of free-

dom. So we can test the calibrated VITA structure by simulating large samples

from it, and check whether the rejection rate is close to the nominal level. We

ran 1000 replications, each with sample size n = 104. In each sample, TADF was

calculated using the lavaan package (Rosseel, 2012). The empirical rejection rate

for the ADF test at the α = 0.05 nominal level, was 0.065, 0.061 and 0.056 for

the Clayton, Gumbel and Student t copulas, respectively, none of which are signi�-

cantly di�erent from 0.05. We conclude that all three calibrated R-vines reproduce

Σ accurately.
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Figure 3. The calibrated VITA Clayton parameter θe, for each edge e.

Let us next evaluate the sensitivity of the NT-LR statistic to the underlying

copula, as we move from a fully Gaussian copula to the non-Gaussian copula implied

by each of the three R-vine speci�cations. We do this by the following interpolation

scheme. Consider distributions whose stochastic representation are obtained as

an interpolation between the Gaussian random vector X and the VITA random

vector Y , both with standard normal marginals. That is, for some 0 ≤ α ≤ 1 and

independently distributed X and Y , consider the following random vector:

(2) Q(α) =
√

1− α ·X +
√
α · Y.

Due to the independence between X and Y , and the fact that both X and Y have

the covariance matrix Σ, it follows that Q(α) also has covariance matrix Σ, with

marginals that are standard normally distributed. At one end of the interpolation,

for α = 0, we obtain a normally distributed vector Q(0). At the other end of the in-

terpolation, with α = 1, the resulting vector Q(1) comes from VITA. Consequently,

we have a smooth transition starting with the multivariate normal case for α = 0,

and moving increasingly toward the VITA vector at α = 1. If the NT-LR statistic

is sensitive to an increasingly non-normal copula, even while holding the marginals

�xed to the univariate normal distribution, we would expect the rejection rates of

the NT-LR statistic to deviate more and more from the nominal level as α increases

from 0 to 1. We conducted a simulation study, where the factor model depicted in

Figure 2 was estimated for each level of α and for each sample size. We let α move

from 0 to 1 in 10 discrete steps, under two sample sizes: n = 100 and n = 1000.

In each cell we replicated 2000 samples from each of the three distributions and

collected the rejection rate of the NT-LR statistic at the nominal 5% level. Figure
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4 depicts the rejection levels against α, together with 95% con�dence intervals. At

α = 0, the multivariate normal case, rejection rates are close to the nominal 5%

level in all conditions. For all three VITA distributions, the rejection rates increase

as we approach α = 1, where data are generated completely from Clayton, Gumbel

or Student t R-vines. This shows that the NT-LR statistic is sensitive to the under-

lying copula. The Clayton and Gumbel R-vines result in rejection rates at n = 100

of 17% and 12%, respectively, and at n = 1000 of 13% and 12%, respectively. For

the strongly tail dependent and tail symmetric Student t bivariate copula, however,

the resulting R-vine yields much higher rejection rates of 24% and 28%, for n = 100

and n = 1000, respectively. This suggests that tail dependency may be more of a

challenge to NT-LR robustness than tail asymmetry.

To accentuate this e�ect, we repeated the process with a Student t R-vine, spec-

i�ed in the same manner as above, but with a degree of freedom equal to 2.01. The

resulting VITA was deemed to accurately reproduce the target covariance, with the

ADF resulting in a rejection rate of 0.065% with 1000 replicated samples of sample

size 2 · 104. The rejection rate of NT-LR at sample size 1000 was 73.7%. Note

that while this copula is very far away from the Gaussian copula, and is a rather

extreme example most likely never encountered in real data, the covariance model

and the standard assumptions underlying its estimation via the (quasi) Gauss-

ian MLE (e.g. described in Satorra, 1989) hold. Speci�cally, note that since the

marginals have �nite moments of all (positive integer) orders, the Hölder inequality

[E|
∏d
j=1Xi|r]1/r ≤

∏d
j=1[E|Xi|pj ]1/pj where r > 0, pj > 0 and

∑d
j=1 p

−1
j = r−1,

implies that also the full R-vine distribution has �nite multivariate moments of all

orders.

3.2. Revisiting the Holzinger-Swineford data. The data consists of mental

ability test scores of 301 seventh- and eighth-grade children. Only 9 out of the

original 26 tests are included. The CFA model consists of three latent variables,

each with three indicators, as depicted in Figure 5. We wish to simulate data with

a distribution that is close to the true, but unknown data-generating distribution,

and with the same covariance matrix as the estimated model-implied covariance

matrix when �tting the factor model to the Holzinger-Swineford data using the

Gaussian maximum-likelihood estimator. We denote this target covariance matrix

by Σ.

In order to identify a distribution which closely resemble those found in the

original dataset and having the desired covariance matrix, the following procedure

was followed. First, we determine univariate marginals that model the observed

marginals fairly accurately. The main purpose here is to illustrate, so we pro-

ceed by simply visually inspecting the histograms of each Xi and �tting suitable

distributions to the data using the marginal maximum likelihood estimator. The

estimated distributions were then re-scaled to achieve the variance same as given by
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Figure 4. Rejection rates of the NT-LR statistic at sample size

n = 100 and n = 1000. Error bars represent 95% con�dence

intervals. α = 0 corresponds to a multivariate normal distribution,

while α = 1 corresponds to a VITA distribution with bivariate

copulas belonging to families Clayton, Gumbel or Student t with

5 degrees of freedom.
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Figure 5. Holzinger-Swineford factor model.
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Figure 6. Histograms of nine variables from the Holzinger-

Swineford sample, together with density curves of the �tted distri-

butions.

Σ. These adjustments were all quite small. The result is shown in Figure 6, where

the histograms of the observed data is shown together with density curves for the

�tted distributions. For X1, X2, X3, X6 and X7 we �tted a gamma distribution,

while X4 was �tted with a logistic distribution. The remaining variables, X5, X8

and X9, were �tted with a normal distribution.

Secondly, we �t an R-vine copula speci�cation to the Holzinger-Swineford data.

This involves to determine an appropriate R-vine, and then to choose a bivariate
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Figure 7. The �rst two trees in RV1. Copulas: N=Normal,

J=Joe, C=Clayton, G=Gumbel, F=Frank.

copula family for each edge in the R-vine. The third step is to run VITA to calibrate

the parameter for each of the bivariate copulas.

Dissmann et al. (2013) describe a way to carry out the second step, implemented

in the RVineStructureSelect function from the VineCopula package (Schepsmeier

et al., 2015). We used this routine with the following one-parameter copula families:

Gaussian, Clayton, Gumbel, Frank and Joe. We refer to the resulting R-Vine as

RV1, whose �rst two trees are depicted in Figure 7. The edges are annotated with

the chosen family of bivariate copula. In total, RV1 has 12 Gaussian, 6 Clayton, 3

Gumbel, 11 Frank and 4 Joe bivariate copulas.

The accuracy of RV1 to reproduce the target covariance matrix Σ was assessed

by the ADF test. We replicated 1000 samples from RV1, each with a sample size

of n = 104. The empirical rejection rate was 0.062, fairly close to the nominal 0.05,

so we deem RV1 to accurately reproduce Σ. We conclude that VITA allows us to

simulate from a distribution mimicking the empirical distribution in the Holzinger-

Swineford sample, and whose covariance matrix is identical to the model-implied

covariance matrix obtained from �tting the factor model in Figure 5 to this sample.

Finally, to compare RV1 with NORTA, we construct a new R-vine RV2 with the

same vine structure and the same marginals as RV1, but with only normal bivariate

copulas. This means that the aggregated nine-dimensional copula is normal, and

hence that RV2 is equivalent to NORTA. The accuracy of RV2 was assessed with

the ADF procedure, with an empirical rejection rate of 0.060 over one thousand

replications.

RV1 and RV2 share the same covariance matrix and marginals, but di�er with

respect to underlying copula. However, this di�erence may not be substantial, given

that many of the bivariate copulas in RV1 are in fact normal. In particular, six

of the eight unconditional pairs in T1 are normal. To investigate whether the NT-

LR statistic is a�ected by the transition from NORTA (RV2) to VITA (RV1), we

again employed the interpolation scheme from eq. (2), where α = 0 and α = 1
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Figure 8. Rejection rates of the NT-LR statistic at sample sizes

n = 100 and n = 1000. Error bars represent 95% con�dence

intervals. α = 0 corresponds to NORTA, while α = 1 corresponds

to VITA.

corresponds to NORTA and VITA, respectively. We simulated 104 samples of

sample size n = 100 and n = 1000, at each of the twenty discrete values of α,

and estimated the rejection rate of the NT-LR test at the nominal 5% level. The

empirical rejection rates as a function of α are depicted in Figure 8. As expected, the

NT-LR test performs signi�cantly worse under the VITA distribution than under

the NORTA distribution, in both sample size conditions. However, the increase in

rejection rates is not as substantial as in the previous illustration. Also, in contrast

to the example in Section 3.1, NT-LR is here sensitive to sample size, with closer-

to-nominal rejection rates for the larger sample size. One might speculate that this

may be due to the asymptotic robustness of NT-LR in this particular situation.

However, this seems not to be the case, since additional simulations with sample

size n = 2 · 104 and 104 replications, yielded rejection rates of 0.072 and 0.084 for

NORTA and VITA, respectively.

4. Discussion

The VITA method has applications in all �elds where covariance simulation is of

interest. In the present article we have restricted our attention to the continuous

case, but it can be easily seen that the same methods apply to categorical ordinal

data. Applications includes assessing the �nite sample behaviour of asymptotic

techniques, robustness studies, power studies and parametric bootstrap techniques.

In the present paper we have considered two illustrations on the robustness of

the NT-LR statistic in SEM. Both illustrations demonstrate that specifying only
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marginal skewness and kurtosis is insu�cient in SEM robustness studies, contrary

to common practice in many Monte Carlo studies. Also, even when fully specify-

ing the marginal distributions, the NT-LR statistic is sensitive to the underlying

copula. This illustrates that Monte Carlo studies in SEM would bene�t from simu-

lating from a more �exible class of distributions than the often-used Vale-Maurelli

distribution class. With the Vale-Maurelli method, the univariate marginals are

Fleishman polynomials, and the copula is basically normal (Foldnes & Grønneberg,

2014). The VITA method allows the speci�cation of more varied study designs,

with a high level of control of the simulated vector. This includes control of both

the copulas and of the univariate marginal distributions. A user that wishes to con-

trol univariate skewness and kurtosis, may use VITA in conjunction with Fleishman

polynomial marginals. However, VITA equally supports other distributions, e.g.,

the Pearson (Pearson, 1895) and Johnson families (Johnson, 1949), which also al-

lows the speci�cation of skewness and kurtosis.

It seems that some of the rules of thumb in current SEM practice, based on

studies using the quite in�exible Vale-Maurelli simulation method, should be fur-

ther tested and validated under more realistic conditions by using VITA. This is

particularly important in conditions with highly correlated variables, where the

copula of VITA will be far from the Gaussian copula. When the correlation is

weak, results based on other simulation methods will likely be similar to results

derived from using VITA. In our second example we show VITA can be used to

emulate such a realistic condition.

The �exibility in VITA, that is, the choice of marginals, R-vine, copula families

and a valid edge order, may appear daunting to a practitioner. Such a practitioner

may either wish to simulate data with characteristics derived from a given real-

world sample, or wish to de�ne a simulation mechanism with pre-speci�ed features

described in a Monte Carlo design. The �rst case is illustrated in Section 3.2, and

where the R-vine speci�cation can be found through statistical methods, such as the

model selection strategy of Dissmann et al. (2013). For the second case a starting

point would be to use a canonical R-vine, known as a C-vine, or alternatively a

so-called D-vine (Joe, 2014). Also a canonical edge order could be chosen. The

choice of bivariate copulas and the marginals must then be speci�ed in the Monte

Carlo design.
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Appendix A. Technical results

Lemma 1. Let the edge e belong to an R-vine V. Then V(e) is an R-vine.

Proof. The proximity condition is automatically satis�ed, since each edge e = {a, b}
in V(e) also belongs to V. Also, since the edges in V(e) also belongs to V, there
can be no cycles in V(e). Finally, let e1 = {a, b} be an edge in Tj(e). Then, by the

proximity condition, e1 corresponds to a sub-tree T1, of Tj−1(e) with two edges,

a and b. Moreover, due to connectedness, e1 shares a common node, say b, with

some edge e2 = {b, c} in Tj(e), unless Tj(e) is exhausted. Corresponding to e2 is a

sub-tree T2 of Tj−1(e) that shares edge b with T1. Hence there is a path from a to

c in Tj−1(e). �

Proof of Theorem 1. Let ek be the k'th edge in the orderO, and let cek,a = i, cek,b =

j. We �rst show that Iek(θek) is increasing. By Theorem 8.65 in Joe (2014), the

CDF Fij of (Xi, Xj) is increasing in θek since θek 7→ Bek,θek is increasing. Hence

Iek(θek) is increasing by the Hoe�ding identity Cov (Xi, Xj) =
∫∞
−∞

∫∞
−∞[Fi,j(x, y)−

Fi(x)Fj(x)] dx dy. Theorem 8.65 omits the lowest tree T1 from its statement, but

here the result is immediate by the Hoe�ding identity since Ci,j = Be.

We now show continuity by generalizing Lemma 3 in Cario & Nelson (1997) (see

also Lemma A.2 in Cario & Nelson, 1996): they use a stochastic representation

speci�cally for the normal case, while ours is general. Let ϑek = (θe1 , θe2 , . . . , θek−1
),

so that (θe1 , θe2 , . . . , θek) = (ϑek , θek). Note that ϑek is algebraically independent of

θek . Let δ = |Uek | be the cardinality of Uek . Suppose without loss of generality that
Uek = {1, 2, . . . , δ} and that i = δ − 1 and j = δ. We now show continuity through

showing that for any countable sequence {θek,n}n≥1 ⊆ Θek with limn→∞ θek,n = θek
we have limn→∞ E(ϑek

,θek,n)XiXj = E(ϑek
,θek )XiXj . We use the multivariate quan-

tile transform of O'Brien (1975) (see Section 3 of R ü schendorf (2009) for a helpful

discussion of this transformation). Let F−1
1,...,δ;ϑek

,θek,n
be the joint distribution in-

duced by the parametric R-vine speci�cation of V(ek) with parameters (ϑek , θek),

and let F−1
j|1,...,j−1;ϑek

,θek,n
be the conditional quantile function of F−1

1,...,δ;ϑek
,θek,n

of

the j'th variable, conditioned on the 1st through j − 1'th variables.

Let X(ϑek , θek,n) := (X1(ϑek , θek,n), . . . , Xδ(ϑek , θek,n))′ where the coordinates

are de�ned recursively through X1(ϑek , θek,n) := F−1
1,ϑek

,θek,n
(U1) and Xj(ϑe,n) :=

F−1
j|1,...,j−1;ϑek

,θek,n
(Uj |X1(ϑek , θek,n), . . . , Xj−1(ϑek , θek,n)) for 2 ≤ j ≤ d, where

U1, U2, . . . , Uδ ∼ U [0, 1] and independent. The multivariate quantile transform then

gives X(ϑek , θek,n) ∼ F1,2,...,δ;ϑek
,θek,n . Also let X = (X1, . . . , Xδ)

′ := X(ϑek , θek)

so that X ∼ F1,...,δ;ϑek
,θek

. We now show that for each 1 ≤ j ≤ d we have

limn→∞Xj(ϑek , θek,n) = Xj(ϑek , θek) a.s. (almost surely, i.e. with probability

one), which implies that limn→∞X(ϑek , θek,n) = X(ϑek , θek) = X a.s. We proceed

by induction. Firstly, θe 7→ F−1
1;ϑek

,θek,n
(u1) is assumed to be continuous. Hence,
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limn→∞X1(ϑe,n) = limn→∞ F−1
1;ϑek

,θek,n
(U1) = F−1

1;ϑek
,θek

(U1) = X1 a.s. by con-

tinuity. Let 2 ≤ j ≤ δ and assume limn→∞Xi(ϑek , θek,n) = Xi a.s. for 1 ≤
i ≤ j − 1. By assumption, (θe, x1, . . . , xj−1) 7→ F−1

j|1,...,j−1;ϑek
,θek,n

(uj |x1, . . . , xj−1)

is continuous. Hence, we complete the induction argument by concluding that

limn→∞Xj(ϑek , θek,n) = limn→∞ F−1
j|1,...,j−1;ϑek

,θek,n
(Uj |X1(ϑe,n), . . . , Xj−1(ϑe,n))

= Xj a.s. Let
W−−−−→

n→∞
denote convergence in distribution. The a.s. convergence im-

plies X(ϑek , θek,n)
W−−−−→

n→∞
X(ϑek , θek), implying (Xδ−1(ϑek , θek,n), Xδ(ϑek , θek,n))′

W−−−−→
n→∞

(Xδ−1, Xδ)
′. The continuous mapping theorem (Billingsley, 1995, Theorem

29.2) implies that Xδ−1(ϑek , θek,n)Xδ(ϑek , θek,n)
W−−−−→

n→∞
Xδ−1Xδ. Theorem 25.12

of Billingsley (1995) (i.e. uniform integrability and weak convergence implies mo-

ment convergence) and his eq. (25.13) (a moment condition which implies uniform

integrability) shows that if supn E|Xδ−1(ϑek , θek,n)Xδ(ϑek , θek,n)|1+ε < ∞, then

we can transfer convergence in distribution to moment-convergence, and we get

limn→∞ E(ϑek
,θek,n)XiXj = E(ϑek

,θek )XiXj . And by the Cauchy-Schwarz inequal-

ity and the moment assumption, we have

sup
n

E|Xδ−1(ϑek , θek,n)Xδ(ϑek , θek,n)|1+ε/2

≤ sup
θek∈Θek

∫
[0,1]d

|F−1
i (ui)F

−1
j (uj)|1+ε/2 dCi,j(u;ϑek , θek) ≤ sup

θ∈Θ
Eθ|XiXj |1+ε/2

≤ sup
θ∈Θ

√
Eθ|Xi|2+ε

√
Eθ|Xj |2+ε =

√∫
R
|x|2+ε dFi(x)

√∫
R
|x|2+ε dFj(x) <∞,

where the equality follows since the copula-parametrisation does not change the

marginals. This �nishes the proof.

�
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