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Abstract

The asymptotic performance of SEM tests and standard errors are influenced by two

factors: the model and the asymptotic covariance matrix Γ of the sample covariances.

Although most simulation studies clearly specify model conditions, specification of Γ is

usually limited to values of univariate skewness and kurtosis. We illustrate that marginal

skewness and kurtosis are not sufficient to adequately specify a non-normal simulation

condition by showing that asymptotic standard errors and test statistics vary substantially

among distributions whose skewness and kurtosis are identical. We argue therefore that Γ

should be reported when presenting the design of simulation studies. We show how Γ may

be exactly calculated under the widely used Vale-Maurelli transform. We suggest to plot

the elements of Γ and to report the eigenvalues associated with the test statistic. R code is

provided.

Keywords: Monte Carlo, non-normality, Vale-Maurelli, asymptotic covariance matrix,

kurtosis, structural equation modeling



ASYMPTOTIC COVARIANCE MATRIX OF VM 3

The asymptotic covariance matrix and its use in simulation studies

Introduction

The performance of procedures for structural equation modeling (SEM) can often be

studied analytically only in the asymptotic case. Therefore, Monte Carlo simulations have

for decades been a main source of information about the finite-sample performance of SEM

methods, with thousands of papers using random data generation in order to learn how

sample size, underlying distribution and level of model misspecification affect estimators

and fit statistics. Boomsma (2013) reports that almost one third of all articles published in

Structural Equation Modeling from 1994 until 2012 were pure simulation studies. The

importance of such studies does not seem to diminish. For instance, of the 18 articles in

Issues 3 and 4 in Volume 24, 2017 of Structural Equation Modeling, 16 contained simulation

studies, five of which simulated from continuous non-normal distributions, which is the

topic of the present paper.

In the present article we argue that distributional conditions in simulation studies

should be more precisely reported than is currently the practice, and we discuss procedures

that may help achieve this goal. As an example, consider the well-cited simulation paper

by Curran, West, and Finch (1996), whose two non-normal data conditions are reported as

skewness 2 and kurtosis 7 for moderate non-normality, and skewness 3 and kurtosis 21 for

severe non-normality. Although the authors inform us that data generation was done by

the popular Vale-Maurelli (VM) transform (Vale & Maurelli, 1983), and thereby indirectly

specify the underlying distribution of the data, there is at present no way to use this

information to evaluate the asymptotic performance of SEM procedures. In the present

paper we revisit the severe non-normality condition investigated by Curran et al. (1996)

and deduce the exact asymptotic rejection rates and standard errors implied by the VM

transform. We also show that under a different data generation method, but with the same

severe skewness and kurtosis values retained, the rejection rates and standard errors are

quite different.
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Non-normality in the context of SEM modeling is in essence characterised by the

sampling variability of the second-order moments, i.e. the sampling distribution of the

sample variances and covariances. In large samples, this moment vector will approximately

follow a normal distribution, with a covariance matrix that approaches the so-called

asymptotic covariance matrix Γ. Therefore, to more precisely specify the non-normal data

distribution, Γ should be reported, or some summary of it. Moreover Γ is a central

component of the formulas used to estimate standard errors and compute test statistics in

SEM. With the availability of Γ, combined with the model specification, it becomes

possible to calculate standard errors and properties of test statistics (e.g, mean value, Type

I rejection rates) that are correct asymptotically. This information sheds light on the true

degree of non-normality, that is, the exact degree to which the non-normal distribution

affects standard errors and test statistics in large samples, and separates this from

finite-sample effects.

In the present article we show how Γ may be calculated under the VM transform. As

far as we know, such a procedure has not been described before, despite the widespread

popularity of the VM transform over three decades. We exemplify the procedure for two

concrete models, where we use Γ to calculate asymptotic standard errors and properties of

test statistics. We also discuss how the essential aspects of Γ may be reported in simulation

studies, using graphs and tables. A final contribution is to contrast the VM transform with

the recently proposed independent generator (IG) transform (Foldnes & Olsson, 2016).

The IG transform does the same job as the VM transform, e.g., it makes simulation

possible from a distribution with prespeficed covariance matrix and marginal skewness and

kurtosis values. In addition it accomodates easy calculation of Γ. It is therefore of interest

to consider two distributions for which skewnesses and kurtoses are exactly equal, and to

demonstrate analytically that they imply different Γ, and therefore different asymptotic

behaviour in estimators and test statistics. Such comparisons have hitherto only been

empirically using simulations (e.g., Foldnes & Olsson, 2016; Astivia & Zumbo, 2015). Our
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findings imply that the widespread practice of specifying only marginal skewness and

kurtosis is inadequate, as it leaves out essential components of the non-normality in the

simulated data, and how these interact with the model specification.

Theory

A structural equation model posits a covariance structure for an observed

p-dimensional vector Y = (Y1, . . . , Yp)′. Let sn denote the p(p+ 1)/2 non-redundant

elements of the empirical covariance matrix based on n IID observations with the same

distribution as Y . The large-sample behaviour of tests of fit and of standard error

estimators are functions of the asymptotic covariance matrix Γ of
√
nsn, as expounded in

the seminal paper by Browne (1984), who treated the estimation of covariance models σ(θ)

in the framework of minimal discrepancy functions. These are functions F = F (s, σ) that

obey the following three conditions: F (s, σ) ≥ 0 for all s, σ; F (s, σ) = 0 if and only if

s = σ; and F is twice continuously differentiable jointly. An estimator is then obtained as

θ̂n = argmin
θ

F (sn, σ(θ)).

Note that the widely used normal-theory maximum likelihood (NTML) estimator is such a

minimal discrepancy estimator. The minimizer of the above expression, with s replaced by

its population counterpart σ0, is denoted by θ0. Under the regularity conditions listed by

(Browne, 1984), the covariance matrix of the estimated parameters obey

cov(
√
nθ̂n) −→ Ω := {∆′V∆}−1 {∆′V ΓV∆} {∆′V∆}−1

, (1)

as n→∞. Here ∆ is the p× q derivative matrix ∂σ(θ)/∂θ′ and V = −1
2
∂2F (s,σ)
∂s∂σ

, evaluated

at θ0 and σ0.

A test statistic for global model fit is obtained as Tn = nF (s, σ(θ̂)). Under correct

model specification and other assumptions presented by Shapiro (1983) and Satorra (1989),

the asymptotic distribution of Tn is a mixture of chi-squares:

Tn
D−−−→

n→∞

d∑
j=1

λjX
2
j , X1, . . . , Xd ∼ N(0, 1) IID, (2)
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where λ1, . . . , λd are the d non-zero eigenvalues of UΓ. The matrix U is defined as

U = V − V∆ {∆′V∆}−1 ∆′V .

Although these results are general, we limit ourselves in the present article to the

widely used NTML estimator and its associated test statistic TML. For this estimator, it

can be shown that V = Γ−1
N , where ΓN is the asymptotic covariance matrix under

multivariate normality. This matrix is easily calculated from the population covariance

matrix Σ, as ΓN = 2K ′p(Σ⊗ Σ)Kp, where Kp is a pattern matrix (Browne, 1974). The ⊗

symbol denotes the Kronecker product. In a given simulation condition, the model is fully

specified, so the matrices Σ, V and ∆, which all refer to the underlying model, may be

calculated, for instance using the R package lavaan, as demonstrated in Appendix A. The

final component needed to use the central results in eqs. (1) and (2) is the asymptotic

covariance matrix Γ. We next show how this matrix may be computed under two data

simulation techniques, namely the VM and IG transforms.

Calculating the asymptotic covariance matrix

Under multivariate normality there is a closed-form expression for Γ. For non-normal

distributions it is harder to obtain Γ. Yuan and Bentler (1999) proposed two classes of

non-normal distributions that may be used in simulation studies, and deduced Γ for each of

these classes. Foldnes and Olsson (2016) study a subclass of these distributions and

demonstrate its usefulness in simulations, referring to the technique as an independent

generator approach. However, the traditional workhorse in Monte Carlo evaluation of

estimators and tests of fit in covariance structure analysis has been the transform proposed

by Vale and Maurelli (1983). The VM method is implemented in almost all current

software packages as the default for generating non-normal data. Given the central role of

the VM transform for evaluating the finite-sample performance of estimators and test

statistics, it therefore seems worthwhile to investigate whether ΓVM , i.e., Γ under the VM

transform, may be obtained. Foldnes and Grønneberg (2015) derived the distribution of Y



ASYMPTOTIC COVARIANCE MATRIX OF VM 7

under VM, and investigated its underlying copula, but did not characterize ΓVM . In fact,

we are unaware of any treatment of ΓVM in the literature.

We first shortly discuss the VM transform. In the univariate case, Fleishman’s

technique for constructing a non-normal random variable Y is based on the stochastic

representation

Y = a+ bX + cX2 + dX3,

where X is a standard normal variable (Fleishman, 1978). The constants a, b, c and d are

chosen to provide Y with pre-specified mean, variance, skewness and kurtosis. The VM

method constructs a random vector Y = (Y1, . . . , Yp)′ with prespecified univariate skewness

and kurtosis values, and a prespecified target covariance matrix Σ, as

YVM =



a1 + b1X1 + c1X
2
1 + d1X

3
1

a2 + b2X2 + c2X
2
2 + d2X

3
2

...

ap + bpXp + cpX
2
p + dpX

3
p


, (3)

where X = (X1, . . . , Xp)′ is a multivariate normal random vector whose elements have unit

variance, and whose correlation matrix R is numerically determined so that Y attains its

target covariance matrix.

For a general random p-vector Y whose distribution has fourth-order moments, the

elements of Γ have the form

Γij,kl = σijkl − ΣijΣkl, (4)

where the fourth-order moments σijkl are given by

σijkl = E(Yi − µi)(Yj − µj)(Yk − µk)(Yl − µl), µm = EYm,

see eq. (2.2) in Browne (1984). Here Σij and Σkl are dictated by the simulation setup from

the target covariance matrix Σ. We therefore need to calculate σijkl associated with YVM .

We first assume, without loss of generality, that ai = −ci, so that µi = ai + ci = 0 for

i = 1, . . . , p. Also, to simplify our notation, we replace the coefficients ai, bi, ci and di by
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αi,1, αi,2, αi,3 and αi,4, respectively, for i = 1, . . . , p. Then, to determine ΓVM we need to

obtain the expectation of

YiYjYkYl =
 3∑
ni=0

αi,ni
Xni
i

 3∑
nj=0

αj,nj
X
nj

j

 3∑
nk=0

αk,nk
Xnk
k

 3∑
nl=0

αl,nl
Xnl
l

 (5)

=
3∑

ni=0

3∑
nj=0

3∑
nk=0

3∑
nl=0

αi,ni
αj,nj

αk,nk
αl,nl

Xni
i X

nj

j X
nk
k Xnl

l .

Clearly, this amounts to being able to calculate

EXni
i X

nj

j X
nk
k Xnl

l (6)

for 0 ≤ ni, nj, nk, nl ≤ 3. Note that i, j, k and l are not necessarily distinct, but may

overlap, obtaining for instance EX12
1 . The moments in eq. (6) can be calculated by the

formula of Isserlis (1918), which is based on the intermediate correlations in R. Specifically,

if ni + nj + nk + nl is an odd number, the expectation is zero. Otherwise, ni + nj + nk + nl

is an even number, and we consider all distinct ways of partitioning the set

{1, 2, . . . , ni + nj + nk + nl} into pairs. There are 1 · 3 · 5 · . . . · (ni + nj + nk + nl − 1) such

pair-partitions. Each pair-partition involves (ni + nj + nk + nl)/2 pairs. In each

pair-partition we form the product of the corresponding (ni + nj + nk + nl)/2 elements of

R. The expectation EXni
i X

nj

j X
nk
k Xnl

l is then the sum of all such products. Consider for

instance EX3
1X

2
2X

3
3X

2
4 . Here we have 1 · 3 · 5 · 7 · 9 = 945 distinct pair-partitions. However,
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many of these correspond to the same five correlations from R, so in compact form we get

EX3
1X

2
2X

3
3X

2
4 =18r1,1r1,2r2,3r3,3r4,4 + 36r1,1r1,2r2,3r

2
3,4 + 36r1,1r1,2r2,4r3,3r3,4+

9r1,1r1,3r2,2r3,3r4,4 + 18r1,1r1,3r2,2r
2
3,4 + 18r1,1r1,3r

2
2,3r4,4+

72r1,1r1,3r2,3r2,4r3,4 + 18r1,1r1,3r
2
2,4r3,3 + 18r1,1r1,4r2,2r3,3r3,4+

36r1,1r1,4r
2
2,3r3,4 + 36r1,1r1,4r2,3r2,4r3,3 + 18r2

1,2r1,3r3,3r4,4+

36r2
1,2r1,3r

2
3,4 + 36r2

1,2r1,4r3,3r3,4 + 36r1,2r
2
1,3r2,3r4,4+

72r1,2r
2
1,3r2,4r3,4 + 144r1,2r1,3r1,4r2,3r3,4 + 72r1,2r1,3r1,4r2,4r3,3+

36r1,2r
2
1,4r2,3r3,3 + 6r3

1,3r2,2r4,4 + 12r3
1,3r

2
2,4+

36r2
1,3r1,4r2,2r3,4 + 72r2

1,3r1,4r2,3r2,4 + 18r1,3r
2
1,4r2,2r3,3+

36r1,3r
2
1,4r

2
2,3.

Hence, we calculate each entry Γij,kl in ΓVM by evaluating the expectation of each

monomial by the Isserlis-formula, as exemplified above, and then taking the weighted sum

in eq. (5). A more formal description of the proposed procedure is presented in

Appendix B. There is a large number of expectations to be calculated as the

dimensionality increases. The expectation of the monomials in eq. (6) was therefore

computed by the use of an efficient formula proposed by Kan (2008). Assuming that

n = ni + nj + nk + nl is even, the formula is

EXni
i X

nj

j X
nk
k Xnl

l = 1
(n2 )!

ni∑
vi=0

nj∑
vj=0

nk∑
vk=0

nl∑
vl=0

(−1)
∑4

i=1 vi

(
ni
vi

)(
nj
vj

)(
nk
vk

)(
nl
vl

)(
h′Rh

2

)n
2

, (7)

where h = [ni

2 − vi,
nj

2 − vj,
nk

2 − vk,
nl

2 − vl]. For further implementation details, the reader

is referred to the R code in Appendix A.

For the IG approach described by Foldnes and Olsson (2016), obtaining Γ is

computationally simpler and faster than the above procedure proposed for VM. The IG

transform departs from the exact same specifications as the VM transform: pre-specified

univariate skewnesses and kurtoses, and a target covariance matrix. The observed variables

are represented as Yi = ∑s
j=1 aijXj, for i = 1, . . . , p, where the aij are constant scalars
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chosen such that Y has the target covariance matrix. The Xj, j = 1, . . . s, are mutually

independent random variables referred to as IG variables. Data simulation is done by

drawing random samples for the Xj. Each Xj is specified to follow a univariate

distribution, whose skewness and kurtosis is carefully chosen so that Y has the pre-specified

skewness and kurtosis in each marginal. The IG transform is more flexible than the VM

transform, since the user may specify which distribution, up to the skewness and kurtosis

constraints, Xj may be drawn from. Also, the choice of coefficients aij lends flexibility. For

instance, in the case s = p these coefficients are elements of some (not unique) square root

matrix A = (aij) of Σ. The independence among the Xj allows for the following closed-form

expression for Γ under an IG distribution (Browne & Shapiro, 1988, Theorem 2.1):

ΓIG = ΓN +K ′pÃCÃ
′Kp. (8)

Here Ã is the p2 × s matrix whose jth column is aj ⊗ aj, with aj being the j-th column

vector of A. C is the diagonal matrix obtained from the excess kurtosis of the IG variables.

Finally, we remark that both the VM and IG distributions are members of a single

distributional class for which Γ is computable. To the best of our knowledge, this new class

of non-normal distributions has not been discussed before in the context of VM or IG

distributions. We refer the interested reader to Appendix C.

Describing Γ and how it relates to standard errors and test statistics

Having obtained Γ in a specific simulation condition, we next consider how to

investigate this large matrix and its impact on SEM procedures. For instance, with 11

indicators, there are 11 · 12/2 = 66 non-duplicated variances and covariances. Hence Γ will

contain no less than 66 · 67/2 = 2211 non-duplicated elements. We can not therefore simply

list all the elements of Γ in a paper, except as a data-file in an online appendix. One

solution is to list only the p(p+ 1)/2 diagonal elements of Γ, which conveys information

about the large-sample variance of the variances and covariances of the simulated data.

Another option is to use graphical tools. We propose to plot each element of Γ against its
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corresponding multivariate normal value as a benchmark. That is for each element Γij,kl of

Γ, we form a pair (ΓN,ij,kl,Γij,kl), where ΓN,ij,kl denotes the corresponding (ij, kl)th element

of ΓN , i.e., the asymptotic covariance matrix of sn that would be valid if we simulated

normal data. Points lying above the line y = x will indicate higher variance and covariance

for the simulated condition, relative to the multivariate normal case. The further points

are scattered away from the "normal" line y = x, the more severe the non-normality is, in

terms of the variability of the sample covariance matrix.

The asymptotic covariance matrix Ω of the estimated parameters may be calculated

once Γ is available. The other necessary elements in eq. (1) are also obtainable, since we

have already specified the simulation condition.

Likewise, the asymptotic behaviour of TML (and derived test statistics like the

Satorra-Bentler scaled statistic) can be exactly calculated from eq. (2), by calculating U in

the population and extracting the non-zero eigenvalues of UΓ. The CDF of the resulting

mixture of chi-square variates is obtained by using Imhof’s method (Imhof, 1961), as e.g.

available in the package CompQuadForm (Duchesne & De Micheaux, 2010). Hence the

exact CDF and density curve of, e.g., TML is available, and we may calculate

asymptotically exact Type I error rates for TML in each simulated condition.

Illustration 1: Moderate non-normality

Consider the structural equation model discussed by Bollen (1989), whose path

diagram is sketched in Figure 1. There are 11 observed variables and the model has 35

degrees of freedom. The data-generating model was obtained by fixing all factor loadings

and all unique variances to unity, and all five residual covariances to 0.2. In addition the

regression of dem65 on dem60 and ind60 was fixed to 0.5 and 0.2, respectively, while the

regression of dem60 on ind60 was fixed to 0.8.

Let us assume that a researcher wants to simulate data for this population model, in

order to study how non-normality influences NTML estimation. The researcher specifies



ASYMPTOTIC COVARIANCE MATRIX OF VM 12

moderate non-normality, by requesting skewness equal to one and kurtosis equal to five in

all 11 marginal distributions. We calculated ΓN , ΓVM and ΓIG, the latter from a Cholesky

decomposition of Σ. Note that ΓVM and ΓIG are associated with distributions sharing the

same covariance matrix and the same marginal skewness and kurtosis. This means that

only 11 of the diagonal elements of ΓVM and ΓIG are forced to be equal, namely those

corresponding to Γii,ii for i = 1, . . . , 11. In fact the 2200 other elements of ΓVM and ΓIG are

not pairwise equal.

In order to confirm that our proposed procedure for calculating ΓVM was correct, we

conducted both visual and formal testing. As a visual confirmation, we simulated 500

samples from the VM transform at sample sizes n = 103, 104, 105 and 106. For each

simulated sample we computed the mean absolute percentage error (MAPE) as a distance

measure between the empirical asymptotic covariance matrix Γ̂ and ΓVM . MAPE is the

mean value of 100 · |γ̂−γ|
γ

where γ̂ and γ are corresponding elements of Γ̂ and ΓVM ,

respectively. With increasing sample size MAPE clearly decreases toward zero, as shown in

Figure 2, indicating that Γ̂ converges toward ΓVM as n increases.

A formal test for the correct specification of ΓVM may be based on the observation

that, under the null hypothesis of correct ΓVM , the quadratic form

W = n(s− σ)′Γ−1
VM(s− σ) will converge in distribution to a chi-square distribution with 66

degrees of freedom. Here s and σ refer to the sample and target covariance matrices,

respectively. Whether W has the chi-square distribution may be tested by the

Kolmogorov-Smirnov (KS) test. We simulated 10000 samples each of sample size n = 104.

The KS test statistic D = 0.0077 corresponds to a p-value of 0.59, which suggests that W

in large samples indeed follows the postulated chi-square distribution. We hence have

visual and formal support for the correctness of ΓVM .

Note that even for a large sample size of n = 106, Γ̂ has considerable variability.

Across the 500 samples, each of size n = 106, the MAPE was 1.6%, with a standard

deviation of 0.46%, see Figure 2. This means that the elements in Γ̂ may differ substantially
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from their corresponding population values in ΓVM . Replacing the true ΓVM by some

large-sample estimate Γ̂ is therefore not advisable, given the high degree of variability in Γ̂

even at large sample sizes. This variability further increases with increasing non-normality

in the data. For further analytical investigations on the difficulty of approximating ΓVM

using a very large sample, we refer the interested reader to Appendix D.

In the left- and right-hand side panels in Figure 3 we plotted the elements of ΓVM

and ΓIG, respectively, against the corresponding elements for the normal case ΓN . Due to

symmetry, in each of the Γ many elements are duplicated. In fact, the number of unique

elements in each of ΓN , ΓVM and ΓIG is respectively equal to 138, 250 and 692. Therefore

the scatterplots contain many overplotted points. Nevertheless, the panels indicates a large

degree of non-normality, with all elements in both the VM and IG non-normal conditions

taking higher values than their corresponding elements for the multivariate normal

distribution.

The relation between the two non-normal conditions might also be investigated by

plotting VM elements against IG elements, as shown in Figure 4. The plot indicates that

the elements of ΓVM are generally larger than the elements of ΓIG, and hence that the VM

distribution induces more variability in the sample variances and covariances than does IG.

Having explored the degree of non-normality as reflected by Γ, we next investigate

how the non-normality is propagated into the variance of NTML parameter estimates in

eq.(1). We calculated the asymptotic covariance matrices under the three distributional

conditions of multivariate normality, VM and IG. In practice, only the variance of each

parameter estimate are used in SEM analysis, which is located on the diagonal of Ω. In

total there are 31 free parameters. In Table 1 the asymptotic variances of
√
nθ̂ are listed

under multivariate normality, VM and IG conditions. It is clear that the NTML parameter

estimates have larger variability under non-normality. Also, the asymptotic variances of

NTML estimates differ substantially between VM and IG. One extreme case is the unique

variance associated with y8, which has a variance of 4.38 under a normal distribution, 10.29
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under the VM distribution, and 34.64 under the IG distribution.

Finally, we consider the asymptotic distribution of TML under the two non-normal

conditions. The non-zero eigenvalues of UΓVM and UΓIG are listed in Table 2. The

corresponding density functions for TML under VM and IG may be constructed from these

eigenvalues, using the method of Imhof, and are depicted in Figure 5. Under both VM and

IG, it is clear that TML is inflated relative to the reference χ2 distribution. Also, the

inflation is more pronounced under VM. Asymptotic Type I error rates under VM and IG

may also be obtained. Using TML leads to asymptotic rejection rates under VM and IG of

0.268 and 0.132, respectively.

Illustration 2: Severe non-normality

In this section we revisit the three-factor oblique model used by Curran et al. (1996),

under the severe non-normality condition of skewness 3 and kurtosis 21. Each factor has

three indicators. Population parameters consisted of factor loadings (fixed to 0.7),

uniquenesses (0.51), interfactor correlations (0.3) and factor variances (1).

In the left- and right-hand side panels in Figure 6 we plotted the elements of ΓVM

and ΓIG, respectively, against the corresponding elements for the normal case ΓN . The

panels illustrate strong deviation from non-normality, with values in the asymptotic

covariance matrix of both VM and IG exceeding the corresponding values under

multivariate normality.

We calculated ΩN , ΩVM and ΩIG from eq. (1), with diagonal elements tabulated in

Table 3. The high degree of symmetry in the model, and the homogeneous skewness and

kurtosis conditions across the marginals, lead to duplication of elements in ΓVM and to

symmetry in ΩVM , while the choice of an asymmetric A yields less symmetry in ΓIG and

ΩIG. As was the case for the previous model, both VM and IG induce much larger

variability in the NTML estimates compared to underlying multivariate normality. There

are also large differences between the variability of specific parameter estimates between IG



ASYMPTOTIC COVARIANCE MATRIX OF VM 15

and VM. For instance, the residual variances are estimated with very poor precision using

NTML under IG. The residual variance associated with x6, for instance is estimated with a

large-sample variance under IG that is 2.5 higher than the large-sample variance under

VM, and 17 times higher than the large-sample variance under multivariate normality.

The asymptotic distribution of TML under multivariate normality, the VM

distribution and the IG distribution are depicted in Figure 7. As was the case for

Illustration 1, there is a clear inflation of TML under non-normality, and it is under the VM

distribution that TML performance is most deteriorated, compared to the IG distribution.

The Type I error rates of VM and IG are, respectively, 0.489 and 0.108, calculated at the

α = 0.05 significance level.

Concluding remarks

In a proper reporting of simulation studies the population distribution should be

defined explicitly (Boomsma, 2013, p. 523). A strict interpretation of this statement would

demand the full cumulative probability distribution to be specified in each experimental

condition. However, such a level of precision is hardly feasible or desirable. In current SEM

simulation practice often a much lower level of precision is attained, by specifying

univariate skewness and kurtosis values. In the present study we demonstrated that this is

inadequate, by showing that the performance of SEM procedures vary widely among

distributions that match specifications based on skewness and kurtosis. We propose that a

reasonable middle-ground between full CDF specification and specification of only

univariate skewness and kurtosis may be achieved by reporting the asymptotic covariance

matrix Γ, or some important aspects of it. In a sense, Γ provides a fully multivariate

measure of skewness and kurtosis by providing all multivariate fourth-order moments. The

asymptotic covariance matrix is pivotal in SEM asymptotics, governing both standard

errors and fit statistics. We have proposed a procedure to calculate Γ exactly under the

popular Vale-Maurelli simulation method.
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Even in the case where a researcher is primarily interested in the small-sample

performance of estimators and test statistics the information contained in Γ is relevant,

since it is essential for understanding the data-generating process that generates the small

samples. That is, Γ contains exact population-level information that serves as a useful

contrast to the observed finite-sample performance, accentuating the difference betweeen

small and large sample sizes, while controlling for the degree of non-normality in the data.

The availability of Γ enables us to separate finite-sample effects from the effects of

the underlying non-normality encoded in Γ. This means that analytical investigations, not

relying on simulations, may be performed by calculating Γ under various distributions and

analyse the effects on standard errors and fit statistics. This comes at the expense that our

findings, although not contaminated by the inherent sampling variability of simulation

studies, is only valid asymptotically. Γ may also be useful when several models are

considered simultaneously, since it provides information about the degree of non-normality

that is separate from the model. In such situations, Γ gives a measure of non-normality

that is invariant to the details of the models.

A practical use of Γ is to include standard errors and rejection rates obtained from it

as the final row when tabulating simulation results. Such tables are abundant in simulation

studies, and typically contain rows of increasing sample sizes n. We suggest adding a row

denoted by n =∞ at the end of each table. In addition to giving interesting theoretical

information, such a row eliminates the need to simulate the very large sample sizes often

used to emulate n =∞. The practice of including an unrealistically large sample size is

time-consuming, and also yields imprecise information, especially under non-normality. For

instance, we saw in Illustration 1 that using Γ̂ to approximate Γ with a n = 106 sample on

average resulted in a mean absolute percentage error of 1.6%.

The procedures proposed in the present article have several limitations. We first note

that Γ is obtainable when data are simulated using either the VM or the IG transforms, or

by the more general distribution described in Appendix C. For other non-normal data
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simulation methods that control univariate kurtosis and skewness we are unaware of

methods for obtaining Γ. A second limitation concerns the long running times of our

prototypical implementation for calculating Γ under VM. With more than say, 15-20

observed variables the current implementation has a very long run time. We hope and

believe that our code can be improved to substantially reduce running time by taking

symmetry considerations into account. For dimensionality above 15-20 the IG approach is

still viable, since this method allows for very fast computation of Γ.

Finally, we remark that being able to calculate Γ is a clear advantage for a simulation

method due to its relation to central quantities in SEM. The fact that we have identified Γ

in the context of VM therefore adds additional value to this simulation method, which now

can be used with greater precision. Also, our analysis points to the need to identify

calculation methods for Γ also in other non-normal simulation methods.
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Parameter NORM VM IG

ind60 =˜ x2 3.29 5.77 6.62

ind60 =˜ x3 3.29 5.77 5.90

dem60 =˜ y2 1.66 3.53 3.02

dem60 =˜ y3 1.55 3.41 2.79

dem60 =˜ y4 1.66 3.53 2.74

dem65 =˜ y6 1.76 3.73 3.11

dem65 =˜ y7 1.62 3.55 2.96

dem65 =˜ y8 1.76 3.73 2.87

dem60 ˜ ind60 3.20 5.34 5.21

dem65 ˜ ind60 3.64 4.33 3.82

dem65 ˜ dem60 2.22 3.27 2.58

y1 ˜˜ y5 1.77 2.44 2.00

y2 ˜˜ y4 2.38 3.85 4.11

y2 ˜˜ y6 1.39 1.95 1.86

y3 ˜˜ y7 1.77 2.44 2.91

y4 ˜˜ y8 1.39 1.95 3.11

y6 ˜˜ y8 2.55 4.12 5.11

x1 ˜˜ x1 4.05 9.53 6.84

x2 ˜˜ x2 4.05 9.53 11.18

x3 ˜˜ x3 4.05 9.53 18.69

y1 ˜˜ y1 3.74 9.33 7.70

y2 ˜˜ y2 4.16 9.94 18.25

y3 ˜˜ y3 3.74 9.33 28.11

y4 ˜˜ y4 4.16 9.94 33.80

y5 ˜˜ y5 3.89 9.57 8.01

y6 ˜˜ y6 4.38 10.30 19.75

y7 ˜˜ y7 3.89 9.57 29.41

y8 ˜˜ y8 4.38 10.30 34.64

ind60 ˜˜ ind60 8.05 14.90 20.84

dem60 ˜˜ dem60 6.79 13.39 19.92

dem65 ˜˜ dem65 5.82 12.16 18.15
Table 1

Illustration 1. Asymptotic variance of
√
n · θ̂ for NTML under three distributions: NORM

= multivariate normal. VM = Vale-Maurelli. IG = independent generator. Both VM and

IG have marginal skewness 1 and kurtosis 5. =˜ : factor loading. ˜ : regression coefficient.

˜˜ : residual variance or covariance, or residual error variance.



ASYMPTOTIC COVARIANCE MATRIX OF VM 21

1.60 1.59 1.38 1.34 1.33 1.32 1.29 1.29 1.29 1.29 1.26 1.26

1.26 1.26 1.26 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.23 1.23

1.17 1.16 1.16 1.16 1.16 1.15 1.15 1.15 1.15 1.15 1.15

2.22 1.99 1.68 1.54 1.49 1.07 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Table 2

Illustration 1. Non-zero eigenvalues of UΓVM (upper three rows) and UΓIG (lower three

rows). Rounded to 2 decimal places.
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Parameter NORM VM IG

F1 =˜ x2 1.96 8.45 9.01

F1 =˜ x3 1.96 8.45 8.40

F2 =˜ x5 1.96 8.45 7.94

F2 =˜ x6 1.96 8.45 7.70

F3 =˜ x8 1.96 8.45 7.24

F3 =˜ x9 1.96 8.45 7.24

x1 ˜˜ x1 1.22 8.58 4.58

x2 ˜˜ x2 1.22 8.58 9.71

x3 ˜˜ x3 1.22 8.58 20.04

x4 ˜˜ x4 1.22 8.58 4.74

x5 ˜˜ x5 1.22 8.58 10.62

x6 ˜˜ x6 1.22 8.58 21.07

x7 ˜˜ x7 1.22 8.58 4.92

x8 ˜˜ x8 1.22 8.58 11.28

x9 ˜˜ x9 1.22 8.58 21.80

F1 ˜˜ F1 9.09 43.16 65.03

F2 ˜˜ F2 9.09 43.16 58.76

F3 ˜˜ F3 9.09 43.16 54.63

F1 ˜˜ F2 2.14 4.34 4.58

F1 ˜˜ F3 2.14 4.34 4.54

F2 ˜˜ F3 2.14 4.34 4.03
Table 3

Illustration 2. Asymptotic variance of
√
n · θ̂ for NTML under three distributions: NORM

= multivariate normal. VM = Vale-Maurelli. IG = independent generator. Both VM and

IG has marginal skewness and kurtosis of 3 and 21, respectively. =˜ : factor loading. ˜ :

regression coefficient. ˜˜ : residual variance or covariance, or residual error variance.
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Figure 1 . Illustration 1. Bollen’s political democracy model. dem60: Democracy in 1960.

dem65: Democracy in 1965. ind60: Industrialisation in 1960.

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

X1 X2 X3

dem60

dem65

ind60dem60

dem65

ind60



ASYMPTOTIC COVARIANCE MATRIX OF VM 24

●

●

●

●

0

10

20

30

40

103 104 105 106

Sample size

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
ag

e 
er

ro
r

Figure 2 . Illustration 1. The mean absolute percentage error between Γ̂ and ΓVM . Error

bars depict 95% confidence intervals.
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Figure 3 . Illustration 1. Left panel: Plotting elements of ΓVM against ΓN . Right panel:

Plotting elements of ΓIG against ΓN . The straight line represents y = x. The three points

marked with a 4 occur in both panels, and correspond to univariate kurtosis conditions

satisfied both for VM and IG.
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Figure 4 . Illustration 1. Plotting elements of ΓVM against ΓIG. The straight line

represents y = x. The three points marked with a 4 correspond to univariate kurtosis

conditions satisfied both for VM and IG.
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Figure 5 . Illustration 1. Density curves of TML under multivariate normality (REF), VM

and IG distributions. The vertical line represents the critical value 49.8 of the chi-square

test at the α = 0.05 significance level.
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Figure 6 . Illustration 2. Left panel: Plotting elements of ΓVM against ΓN . Right panel:

Plotting elements of ΓIG against ΓN . The straight line represents y = x.
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Figure 7 . Illustration 2. Density curves of TML under multivariate normality (REF), VM

and IG distributions. The vertical line represents the critical value 36.4 of the chi-square

test at the α = 0.05 significance level.
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Appendix A

R code

rm( l i s t = l s ( ) )

l ibrary (MASS)

l ibrary ( emulator )#quad . form , may be r e p l a c e d by b e t t e r

l ibrary (mpoly )

l ibrary (CompQuadForm)

l ibrary ( n l e q s l v )

l ibrary ( PearsonDS )

l ibrary ( psych )

l ibrary ( lavaan )

l ibrary ( ggp lot2 )

l ibrary ( reshape )

options ( s c ipen = 999)

# HELP FUNCTIONS

getSummand <− function ( s , v , sigma ){

h=s/2−v

r e s = prod ( choose ( s , v ) ) ∗ ( quad . form ( sigma , h)/2) ^(sum( s )/2)

i f (sum( v ) %% 2 == 0){

return ( r e s )

} e l s e {

return(− r e s )

}

}

momentCalc <− function ( sigma , s ) {# p r o p o s i t i o n 1 i n Kan paper .

sSum <− sum( s )

i f ( ( sSum %% 2) != 0) {

return (0 )

}

uniqueVcombis = expand . grid ( lapply ( s , function ( x ) return ( 0 : x ) ) )

l <− apply ( uniqueVcombis , 1 , getSummand , s=s , sigma=sigma )

return (sum( l )/ f a c t o r i a l ( sSum/2) )

}

# The f o l l o w i n g f u n c t i o n i s s o u r c e code from l a v a a n p a c k a g e !

getVM <− function ( skewness , ku r to s i s , sigma0 ){

COR = cov2cor ( sigma0 )

nvar <− ncol (COR)

# c h e c k s k e w n e s s

i f ( i s . null ( skewness ) ) {

SK <− rep (0 , nvar )

} e l s e i f ( length ( skewness ) == nvar ) {

SK <− skewness

} e l s e i f ( length ( skewness ) == 1L) {

SK <− rep ( skewness , nvar )

} e l s e {

stop ( " skewness ␣has␣wrong␣ length " )

}

i f ( i s . null ( ku r t o s i s ) ) {

KU <− rep (0 , nvar )

} e l s e i f ( length ( ku r t o s i s ) == nvar ) {

KU <− ku r t o s i s

} e l s e i f ( length ( ku r t o s i s ) == 1L) {

KU <− rep ( kur to s i s , nvar )
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} e l s e {

stop ( " ku r t o s i s ␣has␣wrong␣ length " )

}

f le i shman1978_abcd <− function ( skewness , k u r t o s i s ) {

system . function <− function (x , skewness , ku r t o s i s ) {

b.=x [1L ] ; c .=x [ 2L ] ; d.=x [3L ]

eq1 <− b . ∗b . + 6∗b . ∗d . + 2∗c . ∗c . + 15∗d . ∗d . − 1

eq2 <− 2∗c . ∗ (b . ∗b . + 24∗b . ∗d . + 105∗d . ∗d . + 2) − skewness

eq3 <− 24∗ (b . ∗d . + c . ∗c . ∗ (1 + b . ∗b . + 28∗b . ∗d . ) +

d . ∗d . ∗ (12 + 48∗b . ∗d . + 141∗c . ∗c . + 225∗d . ∗d . ) ) − ku r t o s i s

eq <− c ( eq1 , eq2 , eq3 )

sum( eq∗eq ) ## SS

}

out <− nlminb ( start=c (1 , 0 , 0 ) , o b j e c t i v e=system . function ,

scale=10,

control=l i s t ( trace=0) ,

skewness=skewness , k u r t o s i s=ku r t o s i s )

i f ( out$convergence != 0) warning ( " no␣ convergence " )

b . <− out$par [ 1L ] ; c . <− out$par [ 2L ] ; d . <− out$par [ 3L ] ; a . <− −c .

i f ( out$ ob j e c t i v e > 10^{−5}) {

warning ( " ! ! !Not␣ va l i d ␣ combination ␣ o f ␣skew/ ku r t o s i s " )

}

return (c ( a . , b . , c . , d . ) )

}

getICOV <− function (b1 , c1 , d1 , b2 , c2 , d2 , R) {

ob j ec t iveFunct i on <− function (x , b1 , c1 , d1 , b2 , c2 , d2 , R) {

rho=x [1L ]

eq <− rho∗ ( b1∗b2 + 3∗b1∗d2 + 3∗d1∗b2 + 9∗d1∗d2 ) +

rho∗ rho∗ (2∗c1∗c2 ) + rho∗ rho∗ rho∗ (6∗d1∗d2 ) − R

eq∗eq

}

out <− nlminb ( start=R, o b j e c t i v e=object iveFunct ion ,

scale=10, control=l i s t ( trace=0) ,

b1=b1 , c1=c1 , d1=d1 , b2=b2 , c2=c2 , d2=d2 , R=R)

i f ( out$convergence != 0) warning ( " no␣ convergence " )

rho <− out$par [ 1L ]

rho

}

# c r e a t e Fleishman t a b l e

FTable <− matrix (0 , nvar , 4L)

for ( i in 1 : nvar ) {

FTable [ i , ] <− f l e i shman1978_abcd ( skewness=SK[ i ] , k u r t o s i s=KU[ i ] )

}

#

ICOR <− diag ( nvar )

for ( j in 1 : ( nvar−1L) ) {

for ( i in ( j +1) : nvar ) {

i f (COR[ i , j ] == 0) next

ICOR[ i , j ] <− ICOR[ j , i ] <−

getICOV(FTable [ i , 2 ] , FTable [ i , 3 ] , FTable [ i , 4 ] ,

FTable [ j , 2 ] , FTable [ j , 3 ] , FTable [ j , 4 ] , R=COR[ i , j ] )

}

}

l i s t ( FTable∗ sqrt (diag ( sigma0 ) ) , ICOR)
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}

#r e p r e s e n t monomial as a m a t r i x . i n d e x i n f i r s t column , powers i n second . c o e f f and even powers are NA

s t r i p .mono <− function (mon){

mon=mon [ [ 1 ] ]

mon=mon[−which (names(mon)==" coe f " ) ]

i f (sum(mon) %% 2 !=0 )

return (NA)

my.mat= matrix (c ( as . integer (gsub ( "X" , " " , names(mon) ) ) , mon) , ncol = 2)

i f (nrow(my.mat)==0)

return (NA)#c o n s t a n t

return (matrix (my.mat [ order (my.mat [ , 1 ] ) , ] , ncol=2) )

}

coef .mono <− function (mon){#

mon=mon [ [ 1 ] ]

i f ( length (mon)==1)

return (NA)#c o n s t a n t

i f (sum(mon[−which (names(mon)==" coe f " ) ] ) %% 2 !=0 )

return (NA)

return (mon [which (names(mon)==" coe f " ) ] )

}

getGammaV2 <− function ( FTable , ICOR, sigma0 ){# r e c a l c u l a t e s monomials

d=nrow( FTable )

l i s t . o f . polynoms <− vector ( " l i s t " , d )

for ( i in 1 : d){

varname <− paste ( "X" , i , sep=" " )

polynome <− mp(paste ( FTable [ i , 1 ] , "+" , FTable [ i , 2 ] , varname ,

"+" , FTable [ i , 3 ] , varname , " ^2␣+" , FTable [ i , 4 ] , varname , " ^3 " ) )

l i s t . o f . polynoms [ [ i ] ] <− polynome

}

vech_indx <− NULL

for ( i in 1 : d) {

for ( j in ( i : d ) ) {

vech_indx <− rbind ( vech_indx , c ( j , i ) )

}

}

d . s t a r <− nrow( vech_indx )

smallGamma <− matrix (nrow=d . star , ncol=d . star , 0)# f i l l i n

for (u in ( 1 : d . s t a r ) ) {#

for ( v in (u : d . s t a r ) ) {

i <− vech_indx [ u , 1 ] ; j <− vech_indx [ u , 2 ]

k <− vech_indx [ v , 1 ] ; l <− vech_indx [ v , 2 ]

polynomial <− l i s t . o f . polynoms [ [ i ] ] ∗

l i s t . o f . polynoms [ [ j ] ] ∗

l i s t . o f . polynoms [ [ k ] ] ∗

l i s t . o f . polynoms [ [ l ] ]

monos <− monomials ( polynomial )

r e s <− NULL

for (q in 1 : length (monos ) ) {
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mon = monos [ [ q ] ] [ [ 1 ] ]

coef <− mon [ " co e f " ]

i f ( length (mon)==1){

r e s <− c ( res , coef )

next

}# s p e c i a l c a s e w i t h o n l y c o n s t a n t . t h e l a s t monomial ?

vars <− names(mon)

indx <− NULL

power <− NULL

for ( name in vars ) {

i f (name ==" coe f " )

next

indx <− c ( indx , as . integer ( s t r s p l i t (name , "X" ) [ [ 1 ] ] [ 2 ] ) )

power <− c (power , mon [ name ] )

}

r e s <−c ( res , coef ∗momentCalc (ICOR[ indx , indx ] , power) )

}

smallGamma [ u , v ] <− sum( r e s )−sigma0 [ i , j ] ∗sigma0 [ k , l ]

smallGamma [ v , u ] <− smallGamma [ u , v ]

}

}

return ( smallGamma)

}

# ILLUSTRATION 1

bo l l en .model <−

"#␣measurement␣model

ind60 ␣=~␣x1␣+␣x2␣+␣x3

dem60␣=~␣y1␣+␣y2␣+␣y3␣+␣y4

dem65␣=~␣y5␣+␣y6␣+␣y7␣+␣y8

#␣ r e g r e s s i o n s

dem60␣~␣ s t a r t ( 0 . 8 ) ∗ ind60

dem65␣~␣ s t a r t ( 0 . 2 ) ∗ ind60 ␣+␣ s t a r t ( 0 . 5 ) ∗dem60

#␣ r e s i d u a l ␣ c o r r e l a t i o n s

y1␣~ ~␣ s t a r t ( 0 . 2 ) ∗y5

y2␣~ ~␣ s t a r t ( 0 . 2 ) ∗y4␣+␣ s t a r t ( 0 . 2 ) ∗y6

y3␣~ ~␣ s t a r t ( 0 . 2 ) ∗y7

y4␣~ ~␣ s t a r t ( 0 . 2 ) ∗y8

y6␣~ ~␣ s t a r t ( 0 . 2 ) ∗y8 "

#t a r g e t c o v a r i a n c e m a t r i x

f i t= sem( bo l l en .model , data=NULL)

sigma0 = in spe c t ( f i t , " sigma . hat " )

# D e l t a

Delta <− lavaan : : : computeDelta ( lavmodel = fit@Model ) [ [ 1 ] ]

#Gamma normal

GN = 2∗ l av_matrix_dup l i c a t i on_ginv_pre_post ( kronecker ( sigma0 , sigma0 ) )

V=solve (GN)
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SW = solve ( t ( Delta ) %∗% V %∗% Delta ) #sandwich e l e m e n t

U= V−V%∗% Delta %∗% SW %∗% t ( Delta ) %∗%V

# VM t r a n s f o r m

VM <− getVM( skewness=1, ku r t o s i s =5, sigma0 )

Fleishman <− VM[ [ 1 ] ]

IntCorr <− VM[ [ 2 ] ]

# C a l c u l a t e Gamma VM.

GammaVM <− getGammaV2( Fleishman , IntCorr , sigma0 )

# ASYMPTOTIC COVARIANCE MATRIX OF PARAMETER ESTIMATES :

VMcov = SW %∗% t ( Delta ) %∗% V %∗% GammaVM %∗% V %∗% Delta %∗% SW

## E i g e n v a l u e s

VMeig = Re( eigen (U %∗% GammaVM)$va lues ) [ 1 : 3 5 ]

mycdf <− function (x , e i g ) {

1−imhof (x , e i g )$Qq

}

l =200; upper=85; s t e p s i z e = upper/ l

x=seq (0 ,upper , length . out=l )

Yvm=sapply (x , mycdf , VMeig)

yvm=Yvm

for ( i in 2 :200) {

yvm[ i ] = (Yvm[ i ]−Yvm[ i −1])/ s t e p s i z e

}

#d e n s i t y c u r v e f o r T_ML

nominal =dchisq (x , df=35)

t= data . frame ( x=x , REF=nominal , VM=yvm)

t=melt ( t , measure . vars =2:3)

p=ggplot ( t , aes (x , va lue ) )+geom_l i n e ( aes ( l i n e t yp e=variable ) )+theme_bw( )+labs (x=NULL, y=" Density " )

p+geom_v l i n e ( x i n t e r c ep t=qchisq ( 0 . 9 5 , df=35) , l i n e t yp e =21)
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Appendix B

Algorithm for Γ under the VM transform

Algorithm 1 Calculating ΓVM
Require: Target covariance matrix Σ, skewnesses s and kurtoses k

p← number of columns in Σ. p∗ ← p(p+ 1)/2

for i← 1, . . . , p do

Calculate Fleishman coefficients αi,1, αi,2, αi,3 and αi,4 to match skewness s[i] and kurtosis

k[i]

end for

Calculate intermediate correlations in R . by VM method

Construct matrix V . For ordering of elements.

for i← 1, . . . , d do

for j ← i, . . . , d do Add row (j, i) to V

end for

end for . V now has dim p∗ × 2

Initialise Γ← p∗ × p∗ matrix

for u← 1, . . . , p∗ do

for v ← u, . . . , p∗ do

i← V [u, 1], j ← V [u, 2],k ← V [v, 1],l← V [v, 2]

polynomial ← product of Fleishman polynomials i, j, k and l

g ← 0

for monomial in polynomial do

g ← g + E(monomial) . See eq. (7)

end for

g ← g − Σ[i, j] · Σ[j, i]

Γ[u, v]← g, Γ[v, u]← g,

end for

end for

return Γ
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Appendix C

A new class of distributions that embed both VM and IG

Suppose U = (U1, . . . , Ud)′ contains independent random variables U1, . . . , Ud. For a p× d

matrix A, let

X = AU

be a p-dimensional random vector. By definition of matrix multiplication, we have

Xj =
d∑
i=1

aj,iUi.

Now let

YVM−IG =



a1 + b1X1 + c1X
2
1 + d1X

3
1

a2 + b2X2 + c2X
2
2 + d2X

3
2

...

ap + bpXp + cpX
2
p + dpX

3
p


.

We are interested in calculating

σijkl = E(Yi − µi)(Yj − µj)(Yk − µk)(Yl − µl), µi = EYi,

Firstly, let us notice that

µj = EYj = aj + bjEXj + cjEX2
j + djEX3

j .

Let us focus in on EX2
j . Since Xj = ∑d

i=1 aj,iUi, we have

EX2
j = E

[(
d∑
i=1

aj,iUi

)(
d∑

k=1
aj,kUk

)]

= E
d∑
i=1

d∑
k=1

aj,iUiaj,kUk

=
d∑
i=1

d∑
k=1

aj,iaj,kEUiUk

=
d∑
i=1

d∑
k=1

aj,iaj,kI{i = j}EU2
i

=
d∑
i=1

a2
j,iEU2

i .
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This type of argument also applied to σijkl, but with more complex sums. For

example,

E[(Yj − µj)4] = E[(aj + bjXj + cjX
2
j + djX

3
j − µj)4]

can be expanded using again

Xj =
d∑
i=1

aj,iUi.

In general, calculating σijkl amounts to calculating weighted sums of expectations of the

form

E
d∏
j=1

U
αj

j

for some integers α1, . . . , αd. which by independence equals

d∏
j=1

EUαj

j .

Assuming these expectations can be calculated (a modest assumption), this means we can

calculate Γ associated with YVM−IG.
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Appendix D

On the difficulty of approximating ΓVM from a large simulated sample

In order to demonstrate the large variability inherent in estimating ΓVM , even from a very

large sample, let us consider the severe non-normality case in Illustration 2. Here ΓVM is a

45-by-45 matrix, and we focus on a specific diagonal element of ΓVM , namely the case

i = j = k = l = 1. The argument we present may be extended to any element of ΓVM ,

albeit with more complex algebraic manipulations. To obtain skewness of 3 and kurtosis of

21 a Fleishman solution is given by

Y = −0.2522994 + 0.4186101X − 0.2522994X2 + 0.1475925X3,

where X ∼ N(0, 1). We wish to estimate σ = σ1111 based on IID observations Yi for

i = 1, 2, . . . , n. The natural estimator is

σ̂ = n−1
n∑
i=1

Y 4
i = n−1

n∑
i=1

(−0.2522994 + 0.4186101Xi − 0.2522994X2
i + 0.1475925X3

i )4.

By algebraic manipulations, and by repeatedly applying the well-known formula

EX2p = 1 · 3 · 5 · . . . · (2p− 1), it follows that

Var (σ̂) = n−1Var (Y 4
i ) = n−1

(
EY 8 − (EY 4)2

)
= n−1E(−0.2522994 + 0.4186101Xi − 0.2522994X2

i + 0.1475925X3
i )8

− n−1
(
E(−0.2522994 + 0.4186101Xi − 0.2522994X2

i + 0.1475925X3
i )4
)2

= n−1
(
815106− 242

)
= n−1814530.

In other words, in order to estimate EY 4 = 24 so that the variance of the estimator is

less than one, a sample size of 814530 is required. Of course, estimating the population

parameter EY 4 = 24 with a variance of one means that the approximation σ̂ will most

likely have poor quality. Moreover, there are more than one thousand elements of ΓVM

that must be approximated using sample averages. We may conclude that approximating

all these elements to a high level of precision would require a sample size several orders of

magnitude above 106, which is too large even for modern computers.


