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Abstract

We consider a model in which shareholders provide a risk-averse CEO with risk-
taking incentives in addition to effort incentives. We show that the optimal contract
protects the CEO from losses for bad outcomes and is convex for medium outcomes
and concave for good outcomes. We calibrate the model to data on 1,707 CEOs and
show that it explains observed contracts much better than the standard model with-
out risk-taking incentives. When we apply the model to contracts that consist of
base salary, stock, and options, the results suggest that options should be issued in
the money. Our model also helps us rationalize the universal use of at-the-money
options when the tax code is taken into account. Moreover, we propose a new way
of measuring risk-taking incentives in which the expected value added to the firm is
traded off against the additional risk a CEO has to bear.
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1. Introduction

Can the inclusion of risk-taking incentives in the standard model of executive compensation

rationalize observed compensation practice? Hall and Murphy (2002) and Dittmann and

Maug (2007) demonstrate that the standard Holmström (1979) model cannot explain the

observed compensation contracts. In this paper, we show that including risk-taking incen-

tives in the Holmström (1979) model provides a better fit empirically to the observed con-

tract. Specifically, we assume that shareholders take into account both effort incentives and

risk-taking incentives when designing the compensation contract. Our model predicts simi-

lar patterns to those in the observed compensation contracts which emphasize “carrots”

over “sticks”: Firms pay a flat wage for large stock price decreases and provide incentives

only for medium and high stock price ranges.

Risk-taking incentives are important in CEO compensation contracts, because equity

compensation exposes CEOs to firm-specific risk. Risk-averse CEOs will want to reduce

the firm risk, even if this destroys value. Therefore, we need risk-taking incentives to induce

the CEO to take risks that benefit well-diversified shareholders (Haugen and Senbet, 1981;

Smith and Stulz, 1985). Indeed, empirical evidence suggests that risk-taking incentives mat-

ter for CEOs’ actual risk-taking (see, e.g., Knopf, Nam, and Thornton, 2002; Coles,

Daniel, and Naveen, 2006; Low, 2009; Acharya, Amihud, and Litov, 2011).

In our model, the CEO not only exert costly effort but also determines the firm’s strat-

egy. We capture these dimensions by assuming that the CEO affects both the mean and the

volatility of future firm value. If the contract does not provide sufficient risk-taking incen-

tives, the risk-averse CEO chooses a strategy that avoids risk and depresses the firm value.

The best way for shareholders to mitigate this inefficiency is to provide both effort and

risk-taking incentives by rewarding good outcomes and not punishing bad outcomes. While

high stock prices are a clear indicator of good performance, low stock prices are ambigu-

ous: they can be indicative of low effort (which is undesirable) or of extensive risk-taking

(which is good, provided that the CEO leans toward inefficiently low risk).

The optimal contract in our model differs markedly from the one in the standard model

without risk-taking incentives. As shown in Dittmann and Maug (2007), the standard

model predicts a concave optimal contract that emphasizes “sticks” rather than “carrots”

and that includes large penalties for stock price decreases and small gains for stock price

increases. The result is driven by the decreasing marginal utility so that it becomes ineffi-

cient to make CEO pay very sensitive to performance at high levels of wealth. By compari-

son, our model predicts similar patterns as in the observed compensation contracts that

emphasize “carrots”: Firms pay a flat wage for poor performance, a convex wage for

medium performance, i.e., increasing wealth for higher stock prices, and a concave wage

for high performance. This result is driven by two forces. First, the risk-taking incentives

are provided to a risk-averse agent by making the contract more convex for medium out-

comes (see Ross, 2004). Second, a decreasing marginal utility leads to the contract being

concave for high outcomes.

We calibrate our model to a sample of 1,707 CEOs of US firms and generate the optimal

compensation contract for each individual. Then, we compare optimal contracts to observed

contracts and find that our model can explain observed contracts much better than the stand-

ard model without risk-taking incentives. In particular, the average distance, i.e., the expected

absolute value between the observed contract and the optimal contract, is 5.4% for our

model when compared with 16.1% for the model without risk-taking incentives.
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We also apply our model to contracts that consist of base salary, stock, and options,

and we establish that in-the-money options are preferable to the portfolio of stock and at-

the-money options that we observe in practice. In our sample, the median strike price

should be 55.4% of the firm’s stock price when issued. Compared with the observed portfo-

lio contract, this in-the-money option contract provides higher incentives at the center of

the distribution and lower incentives in the tails of the distribution. If we take into account

the tax penalties that apply to in-the-money options in the USA, we achieve optimality of

the observed portfolio contract for a majority of the CEOs in our sample. Therefore, the

universal use of at-the-money options, which is often seen as evidence for managerial rent-

extraction (see Bebchuk and Fried, 2009), is consistent with efficient contracting if the tax

code is taken into consideration.1

This paper makes several contributions to the literature. First, while it has been known

for some time that risk-taking incentives can explain convex contracts, we are the first to

calibrate such a model.2 We bridge the gap between theoretical and empirical research by

testing the quantitative, and not just the qualitative, implications of different models. This

calibration also contributes to the recent literature on the calibrations of contracting mod-

els.3 Second, we propose a new way of measuring risk-taking incentives that better

describes the trade-off between the expected firm value and the additional risk a CEO has

to take. Empirical studies usually measure risk-taking incentives as “vega”, i.e., the change

in the manager’s wealth with respect to the change in the firm’s stock return volatility.

However, the effect of “vega” can be mitigated by high “delta”, i.e., the change in the man-

ager’s wealth with respect to the change in the firm’s stock price. Our measure, called risk

avoidance, combines both “vega” and “delta”. Third, we provide an alternative approach

to the empirical literature that suffers from endogeneity, where firm risk and managerial

1 We are not the first to show that at-the-money options can be part of the optimal contract.

Specifically, Hall and Murphy (2000) already make this point for a partial principal–agent model. We

generalize their argument. We solve a complete principal–agent model and calibrate it to the data.

2 Lambert (1986) and Core and Qian (2002) consider discrete volatility choices, where the agent must

exert effort to gather information about investment projects. Feltham and Wu (2001) and Lambert

and Larcker (2004) assume that the agent’s choice of effort simultaneously affects the mean and

the variance of the firm value distribution, so they reduce the two-dimensional problem to a one-

dimensional problem. Two other papers (and our model) work with continuous effort and volatility

choice: Hirshleifer and Suh (1992) analyze a rather stylized principal–agent model and solve it for

special cases. Flor, Frimor, and Munk (2014) consider a similar model to ours, but they work on the

assumption that stock prices are normally distributed while we work with the lognormal distribu-

tion. Hellwig (2009), Sung (1995), and Ou-Yang (2003) solve models with continuous effort and vola-

tility choice, but Hellwig (2009) assumes that the agent is risk-neutral and Sung (1995) assumes

that the principal can observe (and effectively set) volatility. Ou-Yang (2003) considers delegated

portfolio management and assumes that the principal can infer what the portfolio value would

have been if the optimal strategy had been implemented; in our model, the principal does not know

this benchmark. Manso (2011) considers a class of Bayesian decision models which make the

agent uncertain about the true distribution of pay-offs of the available actions. He also establishes

that optimal contracts must not punish bad outcomes when risk-taking (innovation) needs to be

encouraged. None of these authors have calibrated their models.

3 See Dittmann and Maug (2007); Gabaix and Landier (2008); Edmans, Gabaix, and Landier (2009);

Dittmann, Maug, and Spalt (2010); Dittmann, Maug, and Zhang (2011); and Dittmann, Maug, and

Spalt (2013).
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incentives are simultaneously determined in the compensation design. We model the endo-

geneity directly and demonstrate that the provision of risk-taking incentives is consistent

with efficient contracting. Fourth, our setting captures a multitasking problem where a

CEO exerts costly effort and determines the firm’s volatility. The principal takes into

account how the incentives to undertake one task affect the incentives to undertake other

tasks.4

We acknowledge that alternative explanations may account for the convexity in the

observed contract.5 The only alternative model that can be readily calibrated to the data is

that of Dittmann, Maug, and Spalt (2010), where CEOs are assumed to be loss-averse. We

calibrate this model to our data and show that our model is more robust than the loss-

aversion model to changes in the preference parameters. As a further robustness check, we

introduce the threat of dismissal into the CEO’s wealth contract and show that omitting CEO

dismissals biases our risk-avoidance measure downwards. We discuss other limitations of our

model and offer several conjectures on how the optimal contract can change when dynamic

elements, such as gradual vesting, new grants, and contract renegotiation, are introduced.

Our analysis proceeds as follows. In the next section, we present our model and derive

the shape of the optimal contract. Section 3 contains the calibration method. In a nutshell,

we search for the cheapest contract that provides the manager with the same incentives and

the same utility as the observed contract. Section 4 describes the construction of the data

set. In Section 5, we present our main results. Section 6 analyzes the optimal strike price in

a standard option contract. Section 7 provides robustness checks, Section 8 discusses the

limitations of the model, and Section 9 presents our conclusions. The appendixes contain

some technical material.

2. Optimal Contracting with Risk-Taking Incentives

2.1 Model

Our model is in the spirit of Holmström (1979), i.e., there are two points in time and the

principal cannot observe the agent’s actions. At time t¼ 0 the contract between a risk-

neutral principal (the shareholders) and a risk-averse agent (CEO) is signed, and at time

t¼T the contract period ends. At some point during the contract period ð0;TÞ, the agent

4 Holmström and Milgrom (1991) model a multitasking problem where the agent needs to divide his

effort between different tasks. They show that expanding effort on one task increases the marginal

cost of effort on the other task. Our model allows the agent to exert costly effort to affect the mean

and costless effort to affect the volatility of the stock price. Dewatripont and Tirole (1999) model a

direct conflict between tasks where two agents are hired to search for information about the pros

and cons of a decision. In our model, there is no direct conflict between the agent’s influence on

the mean and volatility of the stock price.

5 Inderst and Müller (2005) explain options as instruments that provide outside shareholders with

better liquidation incentives. Edmans and Gabaix (2011) and Edmans et al. (2012) show that convex

contracts can arise in dynamic contracting models. Peng and Röell (2014) analyze stock–price

manipulations in a model with multiplicative CEO preferences and find convex contracts for some

parameterizations. Dittmann, Maug, and Spalt (2010) show that optimal contracts are convex if

CEOs are loss-averse. Chaigneau and Sahuguet (forthcoming) model indexed options as a device

for retaining CEOs. Innes (1990) shows that stock options can be optimal in a model with limited

liability and risk neutrality of both the principal and the agent. Chaigneau (2013a) explains the struc-

ture of CEO incentive pay with decreasing relative risk aversion.
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simultaneously makes two choices. He chooses effort e 2 ½0;1Þ which results in private

costs C(e) for the agent and which affects the firm’s expected value EðPTÞ. Extending the

work of Holmström (1979), we explicitly allow the CEO to choose the firm’s stock return

volatility r which also affects the firm’s expected value EðPTÞ. We refer to r interchange-

ably as “firm risk”. We follow Innes (1990) in assuming that the agent can destroy output

without any cost. Therefore, the wage scheme wð:Þmust be non-decreasing.

2.1.a. Volatility

Volatility can be seen as being a choice of strategy or investment.6 We assume that volatility

cannot be contracted upon as a CEO could arbitrarily raise the level of volatility. He could,

for instance, make the firm riskier by investing free cash flows in speculative assets or by

taking a short position in some risky trades without changing the firm’s core strategy.7 As a

consequence, the manager’s wealth WT ¼ wðPTÞ only depends on the end-of-period stock

price PT.

We assume that there is a first-best firm volatility r�� that maximizes the firm value

(given effort e). If the agent wants to reduce the risk to some value below r��, he can do so

in two ways. He can either drop some risky but profitable projects (e.g., an R&D project),

or he can take some further action that will reduce the risk but also the profits (e.g., costly

hedging). In both cases, a reduction in volatility r leads to a reduction in firm value EðPTÞ.

2.1.b. Production

After the contract details have been disclosed, we can write EðPTÞ ¼ f ðe; rÞ, where f is a

production function. Therefore, we assume that f ðe; rÞ is increasing and concave in r as

long as r < r��je. In the region above r��je, the production function f ðe; rÞ is weakly

decreasing in r; it is flat if the agent can take on additional risk at no cost (e.g., with finan-

cial transactions). Finally, we assume that the production function f ðe;rÞ is increasing and

concave in e (given volatility r). One advantage of our model is that we do not have to

6 We think of the strategy as a combination of many different actions that affect issues such as proj-

ect choice, mergers and acquisitions, capital structure, and financial transactions. For instance,

one part of the strategy could be an R&D project that increases value and risk. Another part could

be financial hedging of some input factors which reduces value and risk. Due to its richness, we

do not model the agent’s choice of strategy in detail. Instead, the undiversified and risk-averse CEO

himself is interested in a low volatility, as the disutility he suffers from taking an extra unit of risk

outweighs the utility he gains from the increase in wealth obtained from the extra unit of risk. We

assume that the CEO will choose a strategy that minimizes the firm risk r given the expected value

E ðPT Þ or, equally, one that maximizes the expected value E ðPT Þ given the risk r.

7 More precisely, the observed volatility robs is equal to the productive volatility r which is depicted

in Figure 1 and an unproductive volatility r1. If the volatility is omitted from the contract, r1 ¼ 0 and

the observed volatility robs is equal to the productive volatility r (which we consider in the paper).

If the volatility was included as part of the contract, the agent would choose the unproductive vola-

tility r1 larger than zero, more precisely, r1 ¼ r� � r, where r� is the target volatility from the

shareholders’ optimization problem, thereby circumventing the solution. There are more arguments

for the assumption that it is not possible to contract upon volatility. For example, the stock price

volatility over the period [0; T) does not necessarily match the risk of the project; for instance, if the

CEO is induced to be active in the M&A market which involves constantly surveying the situation

and being ready for any forthcoming M&A activity. It may be that no opportunity for an appropriate

M&A activity arises until T and therefore the volatility in [0; T) is low.
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assume a specific functional form for how the firm value changes with firm risk. We only

need to assume that the production function is increasing and concave in risk for risk levels

below first best.

We assume that the end-of-period stock price PT is lognormally distributed:

PT uje; rð Þ ¼ f e; rð Þexp � r2

2
T þ u

ffiffiffiffi
T
p

r

� �
; u � N 0; 1ð Þ: (1)

The market value of the firm at time t¼0 is P0ðe; rÞ ¼ EðPTðuje; rÞÞ exp f�rf Tg, where rf

is the risk-free rate.8 Therefore, we can write EðPTÞ ¼ P0ðe;rÞ exp frf Tg ¼ f ðe; rÞ:

PT uje;rð Þ ¼ P0 e; rð Þexp ðrf �
r2

2

� �
T þ u

ffiffiffiffi
T
p

rg ; u � N 0; 1ð Þ: (2)

2.1.c. Utility function

The manager’s utility is additively separable in wealth and effort and has a constant relative

risk aversion (CRRA) with parameter c with respect to wealth WT:

U WT ; eð Þ ¼ V WTð Þ � C eð Þ ¼W1�c
T

1� c
� C eð Þ: (3)

If c¼ 1, we define VðWTÞ ¼ ln ðWTÞ. The costs of effort are assumed to be increasing and

convex in effort, i.e., C0ðeÞ > 0 and C00ðeÞ > 0. We normalize Cð0Þ ¼ 0. There is no direct

cost associated with the manager’s choice of volatility. Volatility r affects the manager’s util-

ity indirectly via the stock price distribution and the utility function Vð:Þ. Finally, we assume

that the manager has outside employment opportunities that give him expected utility
�
U.

2.2 Optimal Contract

As incentives for a risk-averse CEO are costly, shareholders implement a level of volatility

r� � r�� as well as a given effort e� and solve the following optimization problem:

max
WT

E½PT �WTðPTÞje�;r�� (4)

subject to
dWTðPTÞ

dPT
� 0 for all PT (5)

E½VðWTðPTÞÞje�;r�� � Cðe�Þ �
�
U (6)

fe�; r�g 2 argmax fE½VðWTðPTÞÞje; r� � CðeÞg: (7)

8 We follow Dittmann and Maug (2007) and Dittmann, Maug, and Spalt (2010) and assume that either

there is no premium for systematic risk or the firm has no exposure to systematic risk, so that the

risk-free rate rf is the appropriate stock return. This assumption allows us to abstract from the

agent’s portfolio problem, because in our model the only alternative to an investment in the own

firm is an investment at the risk-free rate. We effectively reduce a two-dimensional problem where

one innovation drives the systematic and another innovation the unsystematic risk to a one-

dimensional problem. If we allowed the agent to earn a risk premium on the shares of his firm, he

could value these above their actual market price, because investing into his own firm is then the

only way of earning the risk premium. Our assumption effectively means that all risk in the model is

firm-specific.
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Hence, shareholders choose the wage schedule WTðPTÞ that minimizes the contracting costs

subject to three constraints: The monotonicity constraint (5), the participation constraint

(6), and the incentive compatibility constraint (7). We replace Equation (7) with its first-

order conditions. Appendix A contains a discussion of the validity of the first-order

approach

dE VðWTðPTÞÞ½ �
de

� dC

de
¼ 0; (8)

dE VðWTðPTÞÞ½ �
dr

¼ 0: (9)

We call Condition (8) the effort incentive constraint and Condition (9) the volatility incen-

tive constraint.

Proposition 1. (Optimal contract): The optimal contract that solves the shareholders’ prob-

lem (4), (5), (6), (8), and (9) has the following functional form:

dVðW�
TÞ

dWT

� ��1

¼
c0ðrÞ þ c1ðrÞln PT þ c2ðrÞðln PTÞ2 if lnðPTÞ > �

c1ðrÞ
2c2ðrÞ

c0ðrÞ �
ðc1ðrÞÞ2

4c2ðrÞ
if lnðPTÞ � �

c1ðrÞ
2c2ðrÞ

:

8>>><>>>: (10)

where c0ðrÞ; c1ðrÞ, and c2ðrÞ depend on the distribution of PT and the Lagrange multipliers

of the optimization problem, with c2ðrÞ > 0. For CRRA, we obtain

W�
T ¼

c0ðrÞ þ c1ðrÞln PT þ c2ðrÞðln PTÞ2
h i1=c

if lnðPTÞ > �
c1ðrÞ
2c2ðrÞ

c0ðrÞ �
ðc1ðrÞÞ2

4c2ðrÞ

" #1=c

if lnðPTÞ � �
c1ðrÞ
2c2ðrÞ

:

8>>>><>>>>: (11)

The proof of Proposition 1 and full expressions for parameters c0ðrÞ; c1ðrÞ, and c2ðrÞ
can be found in Appendix B. To develop an intuition for the optimal contract (11), it is

instructive to look first at the optimal contract without any risk-taking incentives. This con-

tract has the form fWT ¼ ðc0 þ c1ln PTÞ1=c and is globally concave as long as c � 1 (see

Dittmann and Maug (2007) for a problem with exogenous r). The comparison with WT

¼ ðc0ðrÞ þ c1ðrÞln PT þ c2ðrÞðln PTÞ2Þ1=c shows that risk-taking incentives are provided by

the additional quadratic term c2ðrÞðln PTÞ2. This term makes the contract more convex and

limits its downside, two features that make risk-taking more attractive for a risk-averse

agent. To satisfy the monotonicity constraint, the downward-sloping part of the wage func-

tion due to the quadratic term is replaced by a flat wage. The resulting contract (11) is flat

below some threshold ~P ¼ exp f� c1ðrÞ
2c2ðrÞg, increasing and convex for some region above this

threshold, and finally concave, because the concavity of the logarithm dominates the con-

vexity of the quadratic term asymptotically.9

9 The concavity of the contract at the high stock prices follows from our assumption that stock price

is lognormally distributed. If we replace this assumption of the concave likelihood ratio with a lin-

ear likelihood ratio, such as the gamma distribution, the concavity may not appear for high levels

of the stock price. We checked this for the gamma distribution: for high stock prices, the contract

is convex when c < 1.
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2.3 Risk-Taking Incentives in our Model

In the empirical literature on executive compensation, risk-taking incentives are usually

measured by the vega of the manager’s equity portfolio, i.e., by the partial derivative of the

manager’s wealth with respect to his own firm’s stock return volatility.10 An exception is

Lambert, Larcker, and Verrecchia (1991) who work with what we call the “utility-adjusted

vega”, i.e., the partial derivative of the manager’s expected utility with respect to stock

return volatility. However, there is another effect of volatility on managerial utility that

has, to the best of our knowledge, been ignored in the empirical literature on risk-taking

incentives. If the CEO has too little incentive to take risks, a rise in volatility increases the

firm value and, due to the CEO’s equity portfolio, also increases the managerial utility.

Conversely, if he has too much risk-taking incentive, a further rise in volatility decreases

the firm value and therefore also decreases the managerial utility. In this subsection, we

derive this result formally from our model, and propose a new measure of risk-taking incen-

tives that combines the two effects.

In our model, risk-taking incentives are described in the volatility incentive constraint

(9). Substituting dPT

dr from Equation (2) and rearranging Equation (9) yields

PPSua dP0

dr
¼ ��ua; (12)

where PPSua :¼ E
dVðWTÞ

dWT

dWT

dPT

PT

P0

� �
; (13)

and �ua :¼ E
dVðWTÞ

dWT

dWT

dPT
PT �rT þ u

ffiffiffiffi
T
p� 	� �

: (14)

Here, PPSua is the utility-adjusted pay-for-performance sensitivity, or the utility-adjusted

delta, which measures how much the manager’s expected utility rises for a marginal stock

price increase. Likewise, �ua is the utility-adjusted vega, i.e., the marginal increase in the

manager’s expected utility for a marginal increase in volatility—assuming that the firm

value P0 stays constant.

The first-order condition (12) equates the marginal benefits to the marginal costs of an

increase in volatility from the agent’s point of view. Figure 1 shows benefits and costs as a

function of r. The benefit, represented by the solid line, stems from the response of the

firm value to an increase in volatility: dP0=dr is increasing for low r < r�� and weakly

decreasing for high r > r��. Consequently, PPSuadP0=dr is increasing for low values of r

and decreasing for high values. The cost, represented by the dashed line, is due to the

decrease in the manager’s utility ��ua with volatility, as managers are assumed to be risk-

averse. When the volatility incentive constraint (12) is binding, the two lines cross and

the two effects cancel out at r�. At this point where the level of volatility is optimally

chosen by the CEO, we have dP0=dr >0 and �ua < 0 in Equation (12). This point lies to

the left of the maximum of the solid line, because the manager is risk-averse as his stock

and option compensation exposes him to firm-specific risk. If the manager were risk-

neutral, it would lie exactly at the maximum of the solid line, i.e., at the level that maxi-

mizes firm value.

10 See, among others, Guay (1999); Rajgopal and Shevlin (2002); Knopf, Nam, and Thornton (2002);

Habib and Ljungqvist (2005); and Coles, Daniel, and Naveen (2006).
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The agent will increase volatility, if and only if, the benefits of increasing volatility out-

weigh its cost, i.e., if

PPSua dP0

dr
> ��ua () dP0

dr
1

P0
> � �ua

PPSua

1

P0
: (15)

Therefore, we define the incentives to avoid risk as

q :¼ � �ua

PPSua

1

P0
> 0: (16)

Equation (16) defines a hurdle rate: The CEO will take a new project only if it increases the

firm value by q times the percentage increase in the firm risk. Consider a project that would

increase the firm risk by one percentage point, e.g., from 30% to 31%, and let q¼2. Then,

the agent will take this project only if it increases the firm value by at least 2%. All positive

NPV projects that generate less than a 2% increase in firm value for each percent of addi-

tional risk will thus be ignored. Although our model predicts that q > 0, it may be possible

that observed practices deviate from this prediction. When q < 0, the agent has incentives to

take on risky projects with negative NPV. In the above example of a project that increases the

firm risk by one percentage point, q ¼ �2 means that the agent is willing to undertake this

project as long as it does not destroy more than 2% of the firm value. If q¼ 0, the CEO is

indifferent to firm risk and will therefore implement all profitable projects, irrespective of

their riskiness. We refer to q as risk avoidance, and to�q as risk-taking incentives.

Our main conceptual result is that the utility-adjusted vega alone is not the best measure

of risk-taking incentives, but that it should be scaled by the utility-adjusted delta. To under-

stand why this scaling is necessary, first consider the case where vega is negative, and so the

manager wishes to avoid risky, positive NPV projects. However, this effect is mitigated if

the CEO has a high delta as this means that he gains from taking positive NPV actions.

Figure 1. The figure depicts benefits (PPSuadP0=dr) and costs (��ua) as a function of r (see Equation

(12)) for a stylized contract. PPSua is the utility-adjusted pay-for-performance sensitivity, or the utility-

adjusted delta, which measures how much the manager’s expected utility rises for a marginal stock

price increase. �ua is the utility-adjusted vega, which captures the marginal increase in the manager’s

expected utility for a marginal increase in volatility—assuming that firm value P0 stays constant.
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Second, consider the case where vega is positive, and thus the manager has an incentive to

take risky projects, even if they have negative NPV. Once more, this effect is mitigated if

the CEO has a high delta as it means that he will be hurt by taking negative NPV actions.

Regardless of the sign of vega, the incentives to take too little or too much risk are offset by

a high delta, so the measure of risk-taking incentives depends on the ratio of vega to delta.

3. Calibration

In this section, we present formulae for the calibration of the optimal or model contract

(11) to the data. We assume that shareholders want to implement a certain action fe�;r�g
in the observed contract. We effectively suppose that the firm has already induced the opti-

mal level of CEO effort and firm risk as these are orders of magnitude higher than the cost

of incentivizing the CEO, which is then left for the calibration method to verify.11 Under

this assumption, we can reformulate the shareholder’s optimization problem (4), (5), (6),

(8), and (9) as follows:

min
c0 ;c1 ;c2

E½W�
TðPT jc0; c1; c2Þ� (17)

subject to E½VðW�
TðPT jc0; c1; c2ÞÞ� � E½VðWd

TðPTÞÞ� (18)

PPSuaðW�
TðPT jc0; c1; c2ÞÞ ¼ PPSuaðWd

TðPTÞÞ (19)

qðW�
TðPT jc0; c1; c2ÞÞ ¼ qðWd

TðPTÞÞ; (20)

where Wd
TðPTÞ ¼ ðW0 þ /dÞ expðrf TÞ þ nd

SPT þ nd
Omax fPT � Kd;0g is the observed con-

tract (d for “data”) that we construct from the data as described in Section 4. Equations

(17)–(20) can be calibrated to the data.

We derive Equations (17)–(20) as follows. First, as the principal is risk-neutral, it does

not matter whether he maximizes Equation (4) or minimizes Equation (17). Second, we

rewrite the effort incentive constraint (8) so that the left-hand side of the equation does not

contain any quantities that we cannot compute and the right-hand side does not contain the

wage function:

PPSuaðWTðPTÞÞ ¼ E
dVðWTÞ

dWT

dWT

dP0

� �
¼ C0ðeÞ

dP0

de

: (21)

Under the hypothesis that the model is descriptive of the data (i.e., the optimal contract ful-

fills all the incentive constraints and the participation constraints), the effort incentive con-

straint in our calibration problem can be written as Equation (19). Third, for the volatility

incentive constraint (9), Equations (15) and (16) imply that

qðWTðPTÞÞ ¼
dP0

drobs

1

P0
: (22)

11 This calibration method has first been used by Dittmann and Maug (2007). It corresponds to the

first stage of the two-stage procedure in Grossman and Hart (1983). We cannot repeat this task

for alternative effort/volatility levels, because this would require knowledge of the production and

cost functions. Therefore, we cannot analyze the optimal level of effort or volatility, which is the

second stage in Grossman and Hart (1983).
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Note that this equation once more separates quantities that we cannot compute (dP0=drobs)

from quantities that depend on the shape of the optimal contract (q). Therefore, we likewise

obtain Equation (20). Fourth, for the participation constraint (6), we first note that it is

restricted by the condition / � �W0. Therefore, we can shift the wage function downward

until it binds or / ¼ �W0 holds. The participation constraint can likewise be written as

Equation (18).

Intuitively, we search for the contract WTðPT jc0; c1; c2Þ with a shape (11) that achieves

three objectives. First, it provides the same effort and risk-taking incentives for the agent as

the observed contract (conditions (19) and (20)). Second, it provides the agent with the

same utility as the observed contract (condition (18)), and, third, it is as cheap as possible

for the firm (objective (17)). If our model is correct and descriptive of the data, the cheapest

contract found in this optimization will be identical to the observed contract. If the new

contract differs substantially, we can reject the hypothesis that contract shape (11) is opti-

mal, because it is possible to find a cheaper contract that leads to the same effort and the

same volatility as the observed contract. In this case, either the compensation practice is

inefficient or the model is incorrect. In both cases, the model is not descriptive of the

data.12

4. Data Set

To construct approximate CEO contracts, we start with the most recent compensation con-

tract of all CEOs in ExecuComp during the fiscal years 2007–2012. We include all CEOs

from the fiscal year 2012, plus those from 2007 to 2011 who are not covered in any later

years. We start from the year 2007 because the new reporting standards on option grants

allow us to obtain all necessary information for each option grant and to calculate accurate

option portfolios for each CEO. We stop at the fiscal year 2012 because this was the latest

year for which data were available on ExecuComp at the time of our analysis. Our selection

process ensures that no CEO is counted twice and that there are as many CEOs as possible.

As a robustness check, we also perform our main analysis for each individual year between

1997 and 2012 and the findings are qualitatively the same. Let us denote the year we

selected as t. We first identify all persons in the database who were CEOs during the full

year t and executive of the same company in t – 1. This leaves us with 2,623 CEOs. We cal-

culate the base salary / (which is the sum of salary, bonus, other compensation, non-equity

incentive plan compensation, and the change in pension value and non-qualified deferred

compensation earnings from ExecuComp) from year t, and take information on stock and

option holdings from the end of the fiscal year t – 1. We subsume bonus payments under

the base salary, because previous research has shown that bonus payments are only weakly

related to firm performance (see Hall and Liebman, 1998).

We take the firm’s market capitalization P0 from the end of the fiscal year t – 1. While

our formulae above abstract from dividend payments for the sake of simplicity, we take

dividends into account in our empirical work and use the dividend rate d from t – 1. We

estimate the firm’s stock return volatility r from daily CRSP stock returns over the fiscal

12 Edmans et al. (2012) consider a risk-averse CEO in continuous time with multiplicative utility, not

additive utility as in Equation (3). In the empirical implementation, we have the advantage that the

additive utility disposes of the cost function. However, the multiplicative utility keeps the cost

function. Other models (DeMarzo and Sannikov, 2006; Zhu, 2013) consider risk-neutral CEOs.
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year t and drop all firms with fewer than 220 daily stock returns on CRSP. We use the

CRSP/Compustat Merged Database to link ExecuComp with CRSP data. The risk-free rate

is set to the US government bond yield with five-year maturity from the January of year t.

Many CEOs in our sample have more than one option grant in their option portfolio.

In this case, we aggregate this portfolio into one representative option. This aggregation is

necessary to arrive at a parsimonious wage function that can be calibrated to the data. Our

model is static and therefore cannot accommodate option grants with different maturities.

The representative option is determined so that it has a similar effect to the actual option

portfolio on the agent’s utility, his effort incentives, and his risk-taking incentives. More

precisely, we calculate the number of options nO, the strike price K, and the maturity T so

that the representative option has the same Black–Scholes value, the same option delta, and

the same option vega as the estimated option portfolio. Hence, we solve the following sys-

tem of three equations in three variables:

nO � BSðP0;K;T;r; rf Þ ¼
P

in
i
O � BSðP0;K

i;0:7Ti;r; rf Þ

nO � deltaðP0;K;T;r; rf Þ ¼
P

in
i
O � deltaðP0;K

i; 0:7Ti;r; rf Þ

nO � vegaðP0;K;T;r; rf Þ ¼
P

in
i
O � vegaðP0;K

i; 0:7Ti;r; rf Þ;

where ni
O, Ki, and Ti are the number, the strike price, and the maturity of the ith option in

the CEO’s option portfolio. We take into account the fact that most CEOs exercise their

stock options before maturity by multiplying Ti by 0.7 before calculating the representative

option (see Huddart and Lang, 1996; Carpenter, 1998).13

We need a wealth estimate for the utility functions: We approximate the non-firm

wealth W0 of each CEO from the ExecuComp database by assuming that all historic cash

inflows from salary and the sale of shares minus the costs of exercising options have been

accumulated and invested year after year at the one-year risk-free rate. We assume that the

CEO had zero wealth when he entered the database (which biases our estimate downward)

and that he has not consumed since then (which biases our estimate upward).14 To arrive at

meaningful wealth estimates, we discard all CEOs who do not have a history of at least five

years (i.e., from t – 5 to t – 1) on ExecuComp. During this period, they need not be a CEO.

This procedure results in a data set with 1,707 CEOs. In Section 7.1, we will show that the

potential survivorship bias has a limited effect on our results. For the observed contract we

obtain: Wd
TðPTÞ :¼ ðW0 þ /Þerf T þ nSPT þ nOmax fPT � K;0g.

Table I, Panel A, provides an overview of our data set. The median CEO owns 0.35%

of the stock of his company and has options on an additional 0.50%. The median base sal-

ary is $2.02 million, and the median non-firm wealth is $19.1 million. The representative

option has a median maturity of 4.4 years and is in the money with a moneyness (K=P0) of

84.3%. Most stock options are granted at the money in the USA (see Murphy, 1999), but

13 In these calculations, we use the stock return volatility for the lagged fiscal year (with at least 220

daily stock returns on CRSP) and, for the risk-free rate, the US government bond yield with five-

year maturity from the January of year t. Data on risk-free rates have been obtained from the

Federal Reserve Board’s website. For CEOs who do not have any options, we use K ¼ P0 and

T ¼ 10 (multiplied by 0.7) as these are typical values for newly granted options.

14 These wealth estimates can be downloaded for all years and all executives in ExecuComp from

http://personal.eur.nl/dittmann/data.html. They have also been used by Dittmann and Maug (2007)

and Dittmann, Maug, and Spalt (2010).
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Table I. Description of the data set

This table displays mean, median, standard deviation, and the 10% and 90% quantile of the var-

iables in our data set. Stock holdings nS and option holdings nO are expressed as a percentage

of all outstanding shares. Panel A describes our sample of 1,707 CEOs in the augmented year

2012. Panel B displays descriptive statistics for risk avoidance q from Equation (16) for six differ-

ent values of the CRRA-parameter c. Panel C compares 1,526 executives in the ExecuComp uni-

verse who are CEOs in 2012 and 1,196 ExecuComp CEOs in 2012 who are included in our

sample. The last two columns of Panel C display the p-values of the two-sample t-test and the

two-sample Wilcoxon test. Panel D summarizes the data coverage and statistics for corporate

governance variables for the augmented year 2012, including the entrenchment index

(E-index), the total ownership stake of all independent compensation committee members

(CC-ownership), institutional ownership, and the presence of a 5% institutional blockholder.

Panel A: Data set with 1,707 US CEOs

Variable Mean Standard deviation 10% quantile Median 90% quantile

Stock (%) nS 1.53% 4.43% 0.04% 0.35% 3.18%

Options (%) nO 0.86% 1.10% 0.00% 0.50% 2.17%

Base salary ($m) / 3.04 3.43 0.71 2.02 6.52

Value of contract ($m) p0 78.8 852.5 3.9 16.0 84.1

Non-firm wealth ($m) W0 59.8 349.0 4.7 19.1 88.6

Firm value ($m) P0 7,749 23,562 287 1,778 15,990

Strike price ($m) K 10,422 149,733 263 1,475 12,814

Moneyness (%) K/P0 109.7% 218.9% 44.1% 84.3% 151.3%

Maturity (years) T 4.7 2.5 2.0 4.4 7.0

Stock volatility (%) r 40.1% 38.0% 17.9% 33.5% 62.6%

Dividend rate (%) d 1.42% 2.17% 0.00% 0.62% 3.80%

CEO age (years) 56.9 6.9 48 57 65

Past 5-year stock return (%) 1.3% 16.8% �16.9% 1.6% 19.3%

Panel B: Risk avoidance in the full sample

c Observation Mean Standard

deviation

10%

quantile

Median 90%

quantile

Proportion

with q > 0

0.5 1,707 0.09 0.53 �0.53 0.06 0.67 59.1%

1 1,707 0.44 0.73 �0.33 0.31 1.31 75.3%

2 1,707 0.97 1.00 �0.03 0.75 2.27 88.7%

3 1,707 1.36 1.18 0.11 1.11 2.95 94.1%

4 1,707 1.67 1.32 0.25 1.40 3.49 95.6%

6 1,707 2.14 1.51 0.47 1.87 4.18 97.6%
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after a few years they are likely to be in the money. This is the reason why the representa-

tive option grants are in the money for two-thirds of the CEOs in our sample.

We report descriptive statistics for the risk-avoidance measure q in our sample for six

values of risk aversion c in Table I, Panel B. Appendix C contains all the necessary formulae

to calculate q.15 For all six values of c, ranging from 0.5 to 6, risk avoidance q is positive

for the majority of CEOs; for c � 3 it is positive for 94.1% of all CEOs. This suggests that

the majority of CEOs will not adopt a project that increases firm risk if it leads to a drop in

firm value. Therefore, the risk-avoidance measure is consistent with our result that the com-

pensation contracts chosen by the firm do not make CEOs risk-seeking. For c¼3, the aver-

age q is 1.36, and the median is 1.11. This implies that the average CEO in our sample

passes up risky positive NPV projects if they increase the firm value by less than 1.36% per

percentage points of additional volatility.

Although risk avoidance q is zero in the first-best optimum, it is positive in the second-

best optimum as risk-taking incentives are costly (cf. Figure 1). It is difficult to judge, how-

ever, what a plausible optimal level for q may be, because this depends on the availability

of profitable risky projects: A firm that only has a few such projects will not benefit much

from an increase in risk-taking incentives. Nevertheless, a median q of 1.11 for c¼3

Panel C: Comparison of the ExecuComp universe and our sample in 2012

ExecuComp Universe

1,526 CEOs

Our Sample

1,196 CEOs

Difference

(p-value)

Variable Mean Median Mean Median Mean Median

Stock (%) nS 1.82% 0.35% 1.53% 0.35% 0.10 0.93

Options (%) nO 1.12% 0.48% 0.77% 0.41% 0.00 0.04

Fixed salary ($m) / 3.01 2.01 3.22 2.15 0.11 0.02

Firm value ($m) P0 8,001 1,761 8,789 1,984 0.41 0.01

Age 56.5 56 56.7 56.0 0.47 0.36

Return 2007–2011 (%) 0.2% 0.6% 0.7% 1.1% 0.50 0.15

Panel D: Corporate governance variables for the augmented year 2012

Coverage Statistics

Number % Mean Standard

deviation

10%

quantile

Median 90%

quantile

Data from Institutional Shareholder Services (formerly RiskMetrics)

E-index 1,523 89% 2.2 1.2 1 2 4

CC-ownership 1,289 76% 0.32% 1.90% 0.00% 0.03% 0.49%

Data from Thomson Reuters Form 13F institutional holdings

Institutional ownership 1,591 93% 81% 18% 58% 86% 99%

Presence of a 5% blockholder 1,544 90% 0.92 0.27 1 1 1

15 These measures of risk avoidance can be downloaded for all years and all executives in

ExecuComp from http://personal.eur.nl/dittmann/data.html.
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appears large when one takes into account that CEO pay typically constitutes only about

1.0% of the firm value (see the median of “value of contract” and “firm value” in Table I,

Panel A). We agree that these values are high, but also note that they do necessarily follow

from our assumptions that CEOs have CRRA preferences with c¼3, which is high.16 We

still use c¼3 as the base case in this paper because it is a standard choice, and we provide

robustness checks for c ¼ 0:5 and c¼ 6. This range includes the risk-aversion parameters

used in previous research.17

We require that all CEOs in our data set are included in the ExecuComp database for the

years t – 5 to t, and this requirement is likely to bias our data set toward surviving CEOs,

namely those who are richer and work in bigger and more successful firms. Table I, Panel C,

compares the full ExecuComp universe of 1,526 CEOs in 2012 and the 1,196 ExecuComp

CEOs in 2012 that are included in our sample. The two-sample t-test and the Wilcoxon test

show that, compared with the larger sample, our CEOs hold a smaller portion of options rel-

ative to the total outstanding shares (0.35% less), receive higher salaries ($0.21m more), and

work in bigger firms (an addition of $780m of firm value). However, there is no statistical

significance in CEO stock holdings, CEO age, and the past five-year stock returns, indicating

that our sample does not have a bias toward older CEOs and more successful firms. In a

robustness check below, we show that the effect of the selection bias is negligible.

Panel D of Table I displays the corporate governance variables which will be discussed

in the next section. We construct four corporate governance variables using two data sour-

ces, namely Institutional Shareholder Services (formerly RiskMetrics) and Thomson

Reuters Form 13F institutional holdings. E-index is a measure of CEO entrenchment, fol-

lowing the definition of Bebchuk, Cohen, and Ferrell (2009). CC-ownership measures the

total percentage of ownership of all independent compensation committee members.

Institutional ownership captures the percentage of shares held by institutional owners.

Blockholder measures whether there is an institutional owner who holds 5% shares or

more. The data coverage of the corporate governance variables for our sample ranges from

76% to 90%. A median firm has an E-index of 2, 0.03% ownership for all compensation

committee members, 81% institutional ownership, and at least one blockholder.

5. Empirical Results

5.1 Calibration Results

Figure 2 shows our calibration results for a representative CEO.18 The solid line represents

the model contract W�
T which solves the optimization problem (17)–(20), and the dotted

16 Graham, Harvey, and Puri (2013) show that CEOs are less risk-averse than the population average,

so that the CRRA-parameter c might be considerably below 3. Faccio, Marchica, and Mura (2011)

show that major shareholders might not be well diversified and might therefore want to take less

risk than would be optimal in a model with risk-neutral shareholders. Their findings suggest that

shareholders do not intend to reduce risk avoidance q to zero, but to some other positive value.

17 Lambert, Larcker, and Verrecchia (1991) use values between 0.5 and 4. Carpenter (1998) and Hall

and Murphy (2000) use c¼ 2. Hall and Murphy (2002) use c¼ 2 and 3.

18 For each parameter (observed salary /d , observed stock holdings nd
S , observed option holdings

nd
O , wealth W0, firm size P0, stock return volatility r, time to maturity T, and moneyness K=P0) and

for each CEO, we calculate the absolute percentage difference between individual and median

value. We then calculate the maximum difference for each CEO and select the CEO for whom this

maximum difference is the smallest.
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line is the observed contract Wd
T . The figure shows the CEO’s end-of-period wealth WT as a

function of the end-of-period stock price PT, which we express as a multiple of the

beginning-of-period stock price P0. The model contract with risk-taking incentives protects

the CEO from losses. It provides the CEO with a flat wealth of $29.7m if the stock price

falls below 56% of the initial stock price. Compared with the observed contract, limiting

the penalties to the CEO for poor outcomes provides better (i.e., cheaper) risk-taking incen-

tives than rewarding good outcomes. In the region between 56% and 93%, the contract is

increasing and convex. For larger stock prices, the contract is concave. The reason for the

concavity is the CEO’s decreasing marginal utility: the richer the CEO, the less interested

he is in additional wealth.

As a benchmark, we also calibrate the model contract without risk-taking incentives from

Dittmann and Maug (2007); this is shown by the dashed line in Figure 2. For this purpose,

we solve the optimization problem (17)–(19) without the volatility incentive constraint (20)

and use the contract shape W�
TðPT jc0; c1Þ ¼ ðc0 þ c1ln PTÞ1=c. We call this contract the

benchmark contract or the CRRA contract, while we refer to the contract from the full model

as the RTI contract or, more precisely, the CRRA-RTI contract. Figure 2 shows that the

benchmark contract is globally concave and puts the agent’s entire wealth at risk.

Since the results may be sensitive to c, we repeat our analysis for c ¼ 0:5 and c¼ 6 in

Figure 3. Both plots show that the model contract with risk-taking incentives generates a

much better fits to the observed contract than the model without risk-taking incentives,

especially when c ¼ 0:5. In addition, we find the same pattern as in Figure 2, i.e., that the

optimal contract protects the CEO against bad outcomes when the stock price falls below

45% of the scaled stock price for c ¼ 0:5 and 56% for c¼6, respectively. When the stock

price is above 45%, the contract for c ¼ 0:5 is convex until it reaches 186%, at which point
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Figure 2. The figure shows end-of-period wealth WT for the observed contract (dotted line), the opti-

mal CRRA contract with risk-taking incentives (solid line), and the optimal CRRA contract without risk-

taking incentives (dashed line) for a representative CEO whose parameters are close to the median of

the sample. The parameters are / ¼ $1:51m, nS ¼ 0:31%, and nO ¼ 0:69% for the observed contract.

Initial non-firm wealth is W0 ¼ $24:9m, P0 ¼ $1:5bn, r ¼ 24:1%; K=P0 ¼ 81%, T¼ 4.5 years, rf ¼ 0:8%,

and d ¼ 2:8%. All calculations are for c¼ 3.
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it turns concave. When c¼ 6, the contract is convex in the region between 56% and 78%,

and concave for a higher stock price.

Both Figure 2 and Figure 3 suggest that the model with risk-taking incentives (solid line)

fits the observed contract (dotted line) much better than the model without risk-taking incen-

tives (dashed line). To quantify this visual impression, we calculate for both models the aver-

age distance between the contract W�
T predicted by the model and the observed contract Wd

T :

D1 ¼ E
jW�

T PTð Þ �Wd
T PTð Þj

Wd
T PTð Þ

!
: (23)

We recognize that the observed contract we construct in Section 4 is a stark simplification

of the contracts used in practice, especially because typical contracts contain several grants

of stock options with different maturities and different strike prices. Therefore, contracts

are in general not piecewise linear with just one kink but have a more complicated shape.

To address this caveat, we consider a second distance metric

D2 ¼ E
jW�

TðPTÞ �Wsmth
T ðPTÞj

Wsmth
T ðPTÞ

!
; (24)

where Wsmth
T ðPTÞ sums up the expected value of the sum of the base salary and all stock

and option grants held by the CEO. For an option grant that has a maturity longer than T,

this is just the Black–Scholes value for the remaining maturity, given PT. For a grant that

has a maturity shorter than T, we calculate the expected value of the option at maturity

given P0 and PT and assume that this amount is invested at the risk-free rate for the remain-

ing time between maturity and T. In this way, we obtain a smooth contract for all CEOs

who have at least two different option grants. For CEOs with only one option grant,

Wsmth
T ðPTÞ ¼Wd

TðPTÞ. We explain the construction and calculation of Wsmth
T in more detail

in Appendix D. For the representative CEO shown in Figure 2, the distance D1 is 1.5%

(D2 ¼ 1:8%) for the contract with risk-taking incentives and 6.7% (D2 ¼ 5:7%) for the

contract without risk-taking incentives.

Figure 3. Both plots show end-of-period wealth WT for the observed contract (dotted line), the optimal

CRRA contract with risk-taking incentives (solid line), and the optimal CRRA contract without risk-tak-

ing incentives (dashed line) for the same representative CEO as in Figure 2. The plots only differ in the

value of parameter c, with c ¼ 0:5 for the left plot and c¼ 6 for the right plot.
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Table II, Panel A, shows the results for all the CEOs in our sample. The left side of the

table describes the model contract with risk-taking incentives (CRRA-RTI model) for three

values of CRRA parameter c. We do not tabulate the parameters c0, c1, and c2, as they can-

not be interpreted independently of each other. Instead, the table shows the mean and the

median of some key variables that describe the contract. These variables include the two

distance measures D1 and D2 from Equations (23) and (24) and the manager’s minimum

wealth (min W�
TðPTÞ) scaled by non-firm wealth W0. In addition, the table shows two prob-

abilities. First, the kink quantile is the probability that the contract pays out the minimum

wage in the flat region of the contract; formally, this is Pr ðlnðPTÞ � � c1

2c2
Þ from Equation

(11). Second, the inflection quantile is the probability mass below the point where the con-

tract curvature changes from convex to concave. Finally, the table also shows risk avoid-

ance q from Equation (16).

Table II demonstrates that the model contract provides the agent with comprehensive

downside protection. For c¼3, the median minimum wealth is 1.3 times the initial wealth

W0. None of the CEOs in our sample have a minimum wealth lower than their observed

non-firm wealth W0. The variable Kink quantile shows that the contract pays out the mini-

mum wage for the worst 21.6% of all outcomes in the median. The median inflection quan-

tile is 47.5%, so that the contracts are convex for mediocre performance between the

21.6% and the 47.5% quantile and concave for good performance above the 47.5%

quantile.

Table II, Panel A, also shows the savings firms could realize by switching from the

observed contract to the model contract. These savings are defined as

savings ¼ ½EðWd
TðPTÞÞ � EðW�

TðPTÞÞ�=EðWd
TðPTÞÞ:

For c¼3, the mean (median) savings are 10.3% (4.4%). The mean distance D1 between

the observed contract and the model contract is 5.4%, and the mean distance D2 is 6.3%.

For lower values of risk aversion c, we obtain a better fit: for c ¼ 0:5, the average distance

D1 is only 2.3%. Contracts are then convex over a larger range of stock prices from the

10.3% quantile to the 74.6% quantile for the median CEO. Conversely, we find a worse fit

for higher values of risk aversion c. The region of convexity shrinks relative to our bench-

mark case c¼ 3, and the distance to the observed contract increases according to all meas-

ures. By construction, the savings from recontracting are smaller for lower c.19

The right side of Table II displays the results for the benchmark model without any risk-

taking incentives (CRRA model). It shows that the average risk avoidance in this model is

4.91 (for c¼ 3) and is therefore much higher than in the model with risk-taking incentives,

where it is 1.37. The benchmark contract does not contain any downside protection, so the

CEO can potentially lose all his wealth. Moreover, it is globally concave for all CEOs if

19 For c¼ 0, the risk premium disappears and the problem becomes degenerate. The compensation

mix cannot then be determined as it does not matter. Numerically, these problems already occur

for c ¼ 0:5, when we have convergence for only (1,151/1,707) 67% of our observations (see the

last line in Table II, Panel A). We also experience numerical problems for c¼ 6 for (1,124/1,707)

66% of our observations. The reason is that dV ðWT Þ=dWT ¼ W 1�c
T , so that for high values of c

we obtain very low values of marginal utility, even though we scale all dollar values by the firm’s

stock price. To learn more from the cases when the algorithm fails to converge, we provide more

discussion in Appendix E on whether there are some differences between CEO/firms/contract

where we obtain convergence and those where we do not.
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Table II. Optimal CRRA contracts with and without risk-taking incentives

This table describes the optimal contracts according to the CRRA-RTI model from Equation (11)

and the CRRA model from Dittmann and Maug (2007) for three different values of the CRRA

parameter c. The table displays the mean and the median of seven measures that describe the

optimal contract. The two distance metrics D1 and D2 are defined in Equations (23) and (24).

Savings are the difference in compensation costs between the observed contract and the opti-

mal contract expressed as a percentage of the costs of the observed contract. Minimum wealth

is the lowest possible payout of the contract expressed as a multiple of the CEO’s non-firm

wealth W0. The kink quantile is the point where the contract shape starts to increase, and the

inflection quantile is the point where it turns from convex to concave. Both the kink quantile

and the inflection quantile are expressed as probabilities. Risk avoidance q is from Equation

(16). Panel A displays these statistics for all CEOs in our sample. Panel B shows results for those

CEO-c-combinations where we obtain the convergence for both models.

Panel A: All results

CRRA-RTI model CRRA model

c ¼ 0.5 c ¼ 3 c ¼ 6 c ¼ 0.5 c ¼ 3 c ¼ 6

Distance D1 Mean 2.3% 5.4% 7.2% 13.0% 16.1% 21.9%

Median 1.7% 4.0% 5.5% 9.6% 13.4% 17.0%

Distance D2 Mean 4.8% 6.3% 7.7% 11.7% 13.9% 20.9%

Median 3.0% 5.0% 5.5% 9.1% 10.9% 16.3%

Savings Mean 0.7% 10.3% 20.3% 3.8% 17.7% 33.0%

Median 0.1% 4.4% 13.9% 1.2% 10.7% 30.5%

Minimum wealth Mean 1.5 1.5 1.3 0.0 0.0 0.0

Median 1.3 1.3 1.2 0.0 0.0 0.0

Prop < 1 48.9% 0.0% 27.8% 100.0% 100.0% 100.0%

Kink quantile Mean 18.7% 25.9% 24.2% 0.0% 0.0% 0.0%

Median 10.3% 21.6% 20.5% 0.0% 0.0% 0.0%

Inflection quantile Mean 64.8% 48.6% 39.5% 0.0% 0.0% 0.0%

Median 74.6% 47.5% 37.0% 0.0% 0.0% 0.0%

Risk avoidance q Mean 0.14 1.37 1.94 1.68 4.91 11.40

Median 0.10 1.12 1.70 1.36 4.98 13.05

Observations 1,151 1,658 1,124 1,695 1,441 1,051

Panel B: Results where numerical routine converges for both models

CRRA-RTI model CRRA model

c ¼ 0.5 c ¼ 3 c ¼ 6 c ¼ 0.5 c ¼ 3 c ¼ 6

Distance D1 Mean 2.3% 5.4% 6.6% 14.0% 15.9% 15.9%

Median 1.7% 4.2% 4.9% 10.1% 13.4% 13.9%

Distance D2 Mean 4.9% 6.3% 6.8% 12.7% 13.6% 15.5%

Median 3.1% 5.2% 4.9% 9.4% 10.9% 13.2%

Savings Mean 0.7% 9.3% 15.2% 4.3% 16.3% 30.7%

Median 0.1% 4.2% 8.8% 1.3% 10.7% 26.4%

Observations 1,149 1,402 694 1,149 1,402 694

Risk-Taking Incentives in Executive Compensation 1823



c � 1, so that the kink quantile and the inflection quantile are both zero. Due to conver-

gence problems, the sample size in Table II, Panel A, is not the same for the two sets of

results. Therefore, we once more report the numbers in Panel B for the subsample of CEOs

for whom we obtain convergence for both models. This panel shows that the model with

risk-taking incentives approximates observed contracts much better than the benchmark

model. For c¼3, the average distance D1 is 16.1% for the benchmark model when com-

pared with 5.4% for the RTI model. The savings from recontracting are also much higher

for the benchmark model than for the RTI model. The benchmark model suggests that

shareholders leave 17.7% of the contracting costs on the table while the RTI model puts

this number at only 10.3%. These numbers suggest that risk-taking incentives play an

important role in observed compensation contracts. Observed contracts appear to be mark-

edly more efficient when risk-taking incentives are taken into account.

A natural question to ask is how firm value would increase if the CEO counterfactually

chose higher risk. Indeed, firm value P0 and risk r are related. Ceteris paribus, in the region

where r < r�� (see Figure 1), firm value is increasing in risk. If the CEO chose a marginally

higher risk, the firm value would increase. If we had a functional form of P0ðe;rÞ, we could

make predictions about the firm value. However, we merely assume that P0ðe;rÞ is increas-

ing and concave in r as long as r < r�� and therefore we can make no precise prediction.

5.2 Risk Avoidance and Deviations from the Optimal Contract in Sample Splits

Table III displays median risk avoidance together with median distance D1 for several sub-

samples. When we split the sample into banks and non-banks, the median of risk avoidance

for non-bank firms is larger than for banks. This is in line with John, Saunders, and Senbet

(2000) and Chaigneau (2013b) who show that it can be optimal for bank shareholders to

design a CEO contract with excess risk-taking incentives when they are partially protected

by deposit insurance and too-big-to-fail implicit guarantees. However, banks still have a

sizable positive median risk avoidance of 0.84. This conclusion is also true when we go

back in time and consider the data for 2006 (not shown in the table). Our model suggests

that risk-taking incentives in banks were not excessive from the perspective of bank share-

holders, but they might still be excessive from a social perspective. Moreover, the result for

median distances suggests that contracting is more efficient in banks than in non-bank

firms.

Table III also shows the split according to the book and market leverage within non-

bank firms.20 Our model does not include leverage and bankruptcy is thus impossible. The

model could be generalized to include modest amounts of leverage so that the probability

of bankruptcy is negligible. We assume that the incentives are set before the CEOs make

both the leverage and the project decisions. An increase in leverage constitutes a redistribu-

tion of wealth from bondholders to shareholders and increases the equity risk.21 We do

indeed find that risk avoidance in the subsample with low leverage is higher than in the

20 Shue and Townsend (forthcoming) find causal evidence that a positive change in the CEO option

grant increases the leverage. We calculate book leverage as (total long-term debt þ total debt in

current liabilities)/total assets and market leverage as (total long-term debt þ total debt in current

liabilities)/(total assets þ market equity � book equity) where book equity is the sum of stockhold-

ers’ equity, deferred taxes, and investment tax credit minus preferred stock.

21 Note that we keep on referring to firm risk in other parts of the paper, but in this context it would

be more precise to talk about equity risk.
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subsample with high leverage. The result for the distances shows that contracting is more

efficient in the sample with high leverage. This is consistent with Jensen’s (1986) argument

that debt markets help to discipline managers, e.g., by removing free cash flows.

Moreover, we compare risk-avoidance measures and distances with the E-index. A low

E-index can be interpreted as a measure of good governance. We find that risk avoidance q

is 22% higher for more entrenched CEOs (E-index), which is consistent with the hypothesis

that entrenchment can have adverse effects on management behavior and incentives. This

could also be due to other factors; for instance, risk-taking is less important in some firms,

such as more mature firms, which take fewer risks and which tend to have more entrenched

CEOs. For the distances, we have, as expected, more efficient contract arrangements for

firms whose E-index is low.

Finally, the risk avoidance is 39% higher for firms with higher ownership among the

compensation committee members (CC-ownership), and it is 52% higher when there is an

institutional owner who holds 5% shares or more. For the distances, we find that contract-

ing is more efficient for firms with low CC-ownership, low institutional ownership, and no

5% blockholders. This finding seems counterintuitive, but can be explained by the finding

by Faccio, Marchica, and Mura (2011) that large shareholders might not be well diversified

and therefore take less risk than would be optimal in a model with risk-neutral sharehold-

ers. Since our model does not allow for risk-averse principals, it overstates the savings for

firms with undiversified large shareholders. It is also possible that our corporate governance

proxies are correlated with some other variables that are driving the contract efficiency. For

example, shareholders may appoint a blockholder to the compensation committee only

Table III. Risk avoidance and model fit for some sample splits on leverage and governance

This table considers sample splits on whether the company in question is a bank (SIC codes

6000-6099 and 6200-6299) or a non-bank (any SIC codes except for 6000-6999), and a median

split of market leverage, book leverage, the entrenchment index (E-index), the total ownership

stake of all independent compensation committee members (CC-ownership), institutional own-

ership, and the presence of a 5% blockholder. This table shows median risk avoidance q from

Equation (16) and median distance D1 from Equation (23). The table also displays the p-values

of the two-sample Wilcoxon test. All calculations are for c ¼ 3.

Variable Subsamples Median q in Wilcoxon Median D1 in Wilcoxon Observation

S1 S2 S1 S2 S1 S2 S1 S2

Banks Yes No 0.84 1.16 0.00 3.0% 4.4% 0.00 126 1,318

Market leverage j
non-bank

High Low 1.10 1.22 0.04 4.0% 4.8% 0.00 660 652

Book leverage j
non-bank

High Low 1.07 1.24 0.00 4.1% 4.6% 0.04 660 653

E-Index High Low 1.22 1.00 0.01 4.4% 3.8% 0.00 517 918

CC-ownership High Low 1.25 0.90 0.00 4.7% 3.3% 0.00 608 609

Institutional

ownership

High Low 1.16 1.11 0.60 4.5% 3.8% 0.00 749 750

Presence of a 5%

blockholder

Yes No 1.11 0.73 0.01 4.0% 3.1% 0.01 1347 110
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when there is a more entrenched and powerful CEO. If the effect of the CEO’s influence

outweighs the effect of the blockholder, then we would expect firms with blockholders on

the compensation committee (higher CC-ownership) to have less efficient contracts.

6. Application: Optimal Strike Prices

In this section, we analyze the implications of the RTI model for optimal strike prices in a

standard option contract. Therefore, we consider contracts that have the same structure as

the stylized contract in Section 4, consisting of fixed salary /, the number of stock nS, and

the number of options nO with the strike price K:

W lin
T ¼ /þ nSPT þ nOmax fPT � K; 0g:

For each CEO, we solve the optimization problem (17)–(20) with W lin
T instead of W�

T ,

where the principal’s choice variables are /, nS, nO, and K.22

Table IV describes our results for five values of c: 0.5, 2, 3, 4, and 6. In all cases, the RTI

model predicts that the median CEO does not hold any stock. Instead, the median CEO

would have more options (þ70% for c¼ 3; compare Table IV with Table I) and a larger base

salary (þ68%). For 97% of the CEOs in our sample, the strike price in the model contract is

lower than that in the observed contract. While the moneyness of the observed contract is

84.3% in the median in Table I, it is 46.7% for the model contract. If we assume that

observed option grants have been issued at the money and have moved into the money only

because of the general stock price increase in the years before year t, our results imply that

options should have been issued 55.4% (¼46.7%/84.3%) in the money.

The general picture is that the stock and option holdings in the observed contract are

replaced by option holdings that are considerably deeper into the money. As options are

less valuable than shares, this exchange is accompanied by an increase in the base salary, so

that the new contract provides the same expected utility to the agent as the observed con-

tract. The savings generated by switching to the model contract are limited, however. The

22 We need a few additional restrictions, so that the problem is well defined. First, we assume that

the number of shares nS is non-negative. We allow for negative option holdings nO and negative

salaries /, but we require that nO > �nS exp fdTg and / > �W0 to prevent negative payouts.

Negative option holdings or negative salaries are rarely seen in practice, but they are certainly

possible. A negative salary would imply that the firm requires the CEO to invest this amount of his

private wealth in firm equity. We do not allow for negative stockholdings, because compensation

could then become non-monotonic in stock price, which violates one of the assumptions of our

model.

We also need to restrict the strike price K, because options and shares become indistinguish-

able if K approaches zero, and the problem is poorly identified if K is small. We work with two

lower bounds for K. We first solve the numerical problem with the restriction K=P0 � 20%. If we

find a corner solution with K=P0 ¼ 20%, we repeat the calibration with a lower bound

K=P0 � 10%. If the second calibration does not converge, we use the (corner) solution from the

first step.

In many cases, the objective function in our problem is rather flat around the optimal solution.

In order to check whether an interior solution with n�S > 0 is indeed the optimal solution, we

repeat our calibration with the additional restriction nS ¼ 0 whenever we obtain a solution with

n�S > 0 in the original problem. For our empirical analysis, we always use the solution with the

lowest costs.
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median firm would save just 2.1% of the contracting costs for c¼3, and the average is

5.7%. This is hardly a savings potential that would trigger shareholder activism or take-

overs. The comparatively small savings imply that a portfolio of stock and at-the-money

options constitutes a good substitute for in-the-money options. The numerical flip side of

low savings is that the objective function (after taking into account the constraints) is rather

flat. While this is certainly a complication when it comes to solving the model numerically,

it is not a problem of our model but rather a result.

Figure 4 illustrates our main results. It shows the wealth function W lin
T ðPTÞ of the

observed contract and the model contract for one CEO in our sample. This CEO is not rep-

resentative of our sample; for the representative CEO, the two contracts are more difficult

to distinguish visually. The three arrows in Figure 4 illustrate the main features of the model

contract when compared with the observed contract that consists of a portfolio of stock

and at-the-money options. The first feature of the model contract is that it provides less

punishment when performance is poor than the observed contract, which improves the

risk-taking incentives. On the other hand, the model contract also gives fewer rewards

when performance is good (feature 2), which reduces the risk-taking incentives. Effort

incentives, on the other hand, are reduced by both features (1) and (2). Moving the strike

price more into the money (feature 3), however, increases the effort incentives and offsets

the effect of features (1) and (2). Therefore, the model contract moves some of the effort

incentives from the tails of the distribution to its center. Finally, it should also be noted that

Table IV. Optimal contracts that consist of salary, stock, and options

This table describes the optimal piecewise linear contract for five different values of the CRRA

parameter c. The table displays the mean and the median of the four contract parameters: base

salary /*, stock holdings nS*, option holdings nO*, and the moneyness, i.e., the option strike

price K* scaled by the stock price P0. Savings are the difference in compensation costs between

observed contracts and optimal contracts as a percentage of total (observed) pay. The number

of observations varies across different values of c due to numerical problems and because we

exclude all CEO-c-combinations for which the observed contract implies negative risk-avoid-

ance q from Equation (16).

c ¼ 0.5 c ¼ 2 c ¼ 3 c ¼ 4 c ¼ 6

Salary /* Mean 3.57 5.93 6.01 6.27 5.89

Median 2.11 3.41 3.39 3.36 3.18

Stock nS* Mean 0.75% 0.69% 0.59% 0.67% 0.54%

Median 0.00% 0.00% 0.00% 0.00% 0.00%

Options nO* Mean 1.43% 1.44% 1.25% 1.13% 0.88%

Median 1.00% 0.97% 0.85% 0.73% 0.57%

Moneyness K*/P0 Mean 71.5% 56.6% 54.6% 55.7% 48.7%

Median 59.9% 48.8% 46.7% 44.1% 38.8%

Prop. < K/P0 95.7% 96.7% 97.0% 96.6% 97.3%

Savings Mean 0.3% 3.0% 5.7% 8.2% 13.2%

Median 0.1% 0.9% 2.1% 3.7% 7.8%

Observations 620 1,151 1,208 1,173 991
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features (1) and (2) make the model contract less risky than the observed contract.

Therefore, the agent demands a lower risk premium and the model contract is cheaper for

shareholders. The same effects can be found for the general optimal contract depicted in

Figure 2.

In-the-money options are rare in US compensation practice. One potential reason for

this is that the US tax system discriminates strongly against in-the-money options (see

Walker, 2009). In the remainder of this section, we therefore describe the optimal option

contract if realistic taxes are taken into account. According to IRC Section 409A, income

from in-the-money options is subject to a 20% penalty tax that has to be paid by the execu-

tive at the time of vesting. Shares, at-the-money options, or out-of-the-money options are

not subject to this additional tax. Moreover, in-the-money options (like restricted stock) do

not automatically qualify as performance-based pay under IRC Section 162(m) and there-

fore count toward the $1 million per executive that are tax-deductible at the firm level.

However, this rule can easily be circumvented by subjecting in-the-money options to spe-

cific performance criteria. Therefore, in the following analysis, we concentrate on the 20%

penalty tax from Section 409A and ignore the potential effects of Section 162(m).23

We repeat our numerical analysis for c¼ 3 with a 20% tax penalty on in-the-money

options. We assume that this tax must be paid if, and only if, the actual strike price is lower

than the observed strike price, so we effectively assume that all options in the observed

Figure 4. The figure shows end-of-period wealth WT as a function of the end-of-period stock price PT

for the observed contract (thin gray line) and the optimal piecewise linear contract (thick black line) for

one CEO in our sample. The arrows indicate the three main features of the optimal contract relative to

the observed contract: (1) it punishes very bad outcomes less, (2) it rewards very good outcomes less,

and (3) the strike price of the option grant is lower. The parameters for this CEO are / ¼ $1:5m, nS

¼ 0:3%; nO ¼ 0:69% for the observed contract. Initial non-firm wealth is W0 ¼ $25 m, P0 ¼ $1; 526m,

r ¼ 24:1%, and K=P0 ¼ 80:6%, T¼ 4.54 years, rf ¼ 0:8%; d ¼ 2:84%, and c¼ 3.

23 In addition, Section 409A requires that the difference between the stock price and the strike price

be recognized as income at the time of vesting, rather than on exercise. Thus, this rule acceler-

ates income recognition from the exercise date to the vesting date (see Alexander, Hirschey, and

Scholz, 2007). Our model does not distinguish between exercise date and vesting date, so we can-

not model this effect.
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contract have been issued at-the-money. If the 20% tax were not taken into account, the

mean tax revenues from issuing in-the-money stock options would be $3,602,000.

However, if the tax is taken into account, the mean tax revenues will be $1,258,000. The

mean deadweight loss is 5.7%�2.1%¼ 3.6% (i.e., the savings if no taxes are taken into

account, minus the savings if the 20% are taken into account). In this setting, we find that

the 74.6% of the 1,686 CEOs for whom our algorithm converges have exactly the same

optimal contracts (including salary, number of stock, and options) as the observed contract.

None of the numbers listed in this paragraph are shown in the tables.

Many other countries (including the UK, Canada, Germany, and France) discourage the

use of in-the-money options, so the USA is not an exception (see Walker, 2009).24 A poten-

tial reason is that in-the-money options induce some costs that are not included in our

model and that justify government intervention. Our results in Table IV show that the use

of in-the-money options is associated with large increases in the base salary. These might be

difficult to explain to shareholders and the general public, and might cause social unrest

and higher wage demands. A commitment to using only at-the-money options would

reduce the CEO’s base salary, and our analysis shows that the costs of such a commitment

are rather low (compare the savings in Table IV).

7. Robustness Checks

7.1 Sample Selection Bias

Our data set is subject to a moderate survivorship bias, as we require that CEOs are covered

by the ExecuComp database for at least five years. Panel C of Table I indicates that smaller

firms are underrepresented in our data set and our CEOs have lower option holdings (due

to the larger number of outstanding shares) and higher salaries which are usually associated

with larger firm size. To see how the bias toward bigger firms affects our results, we divide

Table V. Model fit for subsamples

This table shows mean distance D1 from Equation (23) for quintiles formed according to four

variables: CEO option holdings, fixed salary, initial non-firm wealth W0, and firm value P0. The

risk-aversion parameter c is set equal to 3. The last row shows the p-value of the two-sample

Wilcoxon signed rank test that the average D1 is identical in Quintile 1 and Quintile 5.

Quintile Options (%) Fixed salary (in $m) Wealth W0 (in $m) Firm value P0 (in $m)

Mean D1 Mean D1 Mean D1 Mean D1

1 0.01% 4.1% 0.68 6.7% 4.5 7.1% 295 5.1%

2 0.19% 4.0% 1.30 6.0% 10.8 6.2% 863 5.7%

3 0.50% 5.3% 2.03 5.1% 19.2 5.0% 1,848 5.4%

4 1.02% 6.1% 3.25 5.1% 35.7 4.3% 4,407 5.1%

5 2.58% 7.2% 7.93 3.9% 229.0 4.1% 31,360 5.4%

p-Value Q1–Q5 0.00 0.00 0.00 0.82

24 Australia is the only country for which we could find evidence that in-the-money options are com-

monly used. See Rosser and Canil (2004).
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our sample into quintiles according to four variables: CEOs’ option holdings, fixed salary,

CEOs’ non-firm wealth W0, and firm value P0. Table V displays the average distance D1

for these subsamples. The last line shows the p-value of the Wilcoxon test for the hypothesis

that the average distance is identical in the first and the fifth quintile. This analysis is done

for c¼ 3.

The table shows that the model fit is worse for CEOs with larger option holdings, lower

salaries, and lower non-firm wealth. For the 20% largest CEO option holdings, the 20% low-

est salaries, and the 20% least wealthy CEOs, we find an average distance of 7.2%, 6.7%,

and 7.1% respectively, compared with 5.4% for the full sample (see Table II). Given that our

sample is biased toward wealthier CEOs with smaller option holdings and higher salaries, the

average distance in the unbiased sample would be somewhat higher than shown in Table II.

We find no significant difference in the average distance along the firm value dimension,

thereby suggesting that the effect of the selection bias toward large firms is negligible.

Altogether, the effect of the sample selection bias on our results is therefore small.

7.2 Robustness Check for 1997–2012

So far, we have used the augmented year 2012 data set for our analyses. As a robustness

check, we repeat our main analysis for each individual year between 1997 and 2012. The

sample for this robustness check starts from the fiscal year 1997, because the wealth esti-

mate for a CEO needed for the utility function requires at least five years of history and

ExecuComp database only starts in 1992. Before 2006, the proxy statement does not dis-

close any complete data on previously granted options. Therefore, we estimate each CEO’s

option portfolio with the method proposed by Core and Guay (2002). From 2006 onwards,

we are able to obtain all necessary information for each option grant and calculate accurate

option portfolios for each CEO. For the years before 2006, we do not take into account

pension benefits, because they are not available in ExecuComp and are difficult to compile.

Pensions can be regarded as negative risk-taking incentives (see Sundaram and Yermack,

2007; Edmans and Liu, 2011), so that we overestimate the risk-taking incentives in

observed contracts.

We take c¼3 and apply the same calibration procedure for the CRRA-RTI model as in

Table II, Panel A. The results are summarized in Table VI. First of all, the means and

medians for all variables listed in the table are of similar magnitude to those in Table II,

Panel A, indicating that our findings are independent of the sample period. Second, two dis-

tance measures D1 and D2 and savings are relatively high for the periods 1998–2002 and

2007–09, suggesting that our model is a better fit to the CEO contract in normal times than

during periods of crisis (e.g., IT bubbles or the recent financial crisis).

7.3 CEO Dismissals

Our model does not incorporate any CEO dismissals. However, when the past stock price

performance is poor, the CEO is likely to lose his position and suffers a negative shock to

his wealth and human capital (e.g., Coughlan and Schmidt, 1985; Kaplan, 1994; Fee and

Hadlock, 2004; Kaplan and Minton, 2012; Peters and Wagner, 2014; Jenter and Kanaan,

2015). The fact that there is no CEO dismissal within our model is of particular concern for

our analysis in that an important element of perceived risk for the CEO is missing.

Therefore, we address these shortcomings here by introducing the threat of dismissal into

the CEO’s wealth function.
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Specifically, we follow Dittmann and Maug (2007) and estimate a logit regression for

CEO dismissals. The dummy variable for CEO dismissal is equal to one if a CEO who is in

the data set in 2008 leaves the company within five years and ExecuComp records

“resigned” as the reason for leaving. We regress this dummy variable on the five-year stock

return from 2008 to 2012.25 Then, we use these parameters of the logistic function to esti-

mate the probability of CEO dismissal as a function of terminal stock returns pðPT=P0Þ.
We assume that the CEO loses all his compensation in the event of dismissal, which is most

likely an overstatement since severance pay is ignored here. That is, we redefine the end-of-

period wealth (compare Wd
T on page 10) as

Wd
T ¼W0 expðrf TÞ þ ð1� pðPT=P0ÞÞð/d expðrf TÞ þ nd

SPT þ nd
Omax fPT � Kd;0gÞ: (25)

We rerun the analysis in Table I, Panel B, and compute the risk avoidance using the new

definition of Wd
T . The results are summarized in Table VII. Comparing the numbers in this

table with those in Table I, we can see that risk avoidance with the threat of dismissal is

slightly higher than that without the threat of dismissal for all levels of risk aversion. For

example, for c¼3, the median risk avoidance is 1.17 which is 5% higher than 1.11 when

CEO dismissal is absent. Therefore, omitting CEO dismissals biases our risk-avoidance

measure downwards, though the difference is not particularly large. However, we assume

that the CEO loses everything when dismissed, even though Yermack (2006) argues that

managers receive partial compensation for their dismissal. If we take severance pay into

account, the bias in our risk-avoidance measure will be even smaller.

Table VII. Risk avoidance with CEO dismissals

This table displays descriptive statistics for risk avoidance q from Equation (16) for six different

values of the CRRA-parameter c. In order to specify the probability of dismissal, we estimate a

logit regression in which the dependent variable is equal to one if a CEO who is in the data set

in 2008 leaves the company within the next five years and if ExecuComp records “resigned” as

the reason for leaving. We regress this dummy variable on the five-year stock return from 2008

to 2012. The parameter estimates (standard errors) are �3.743 (0.163) for the intercept and

�0.358 (0.144) for the slope. The risk avoidance is then calculated using Equation (25).

c Observation Mean Standard

deviation

10% quantile Median 90% quantile Proportion

with q > 0

0.5 1,707 0.10 0.53 �0.51 0.08 0.70 60.4%

1 1,707 0.47 0.74 �0.30 0.33 1.35 77.7%

2 1,707 1.02 1.02 0.01 0.81 2.32 90.2%

3 1,707 1.42 1.20 0.15 1.17 3.06 94.7%

4 1,707 1.74 1.33 0.28 1.47 3.57 95.8%

6 1,707 2.23 1.53 0.52 1.97 4.35 97.9%

25 If we regress the dummy variable on the five-year abnormal return, which is the difference

between the five-year gross stock return and the five-year market return as in Dittmann and

Maug (2007), we get exactly the same result. We keep the gross return as the regressor for its

simplicity.
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7.4 Optimal Contracts When CEOs Are Loss-Averse

Dittmann, Maug, and Spalt (2010) propose an alternative model without risk-taking incen-

tives where the manager is loss-averse. They also calibrate the model to the data and show

that it fits the data well. In this section, we therefore compare the CRRA-RTI model and

the loss-aversion model (henceforth: LA model) and investigate whether the LA model can

be further improved by taking into account risk-taking incentives.

7.4.a The standard loss-aversion model

Loss-aversion preferences are given by (see Tversky and Kahneman, 1992)

VLAðWTÞ ¼
ðWT �WRÞa if WT �WR

�kðWR �WTÞb if WT < WR
; where 0 < a; b < 1 and k � 1:

(
(26)

Here, WR is the agent’s reference wealth level. Payouts above this level are coded as gains,

while those below this level are coded as losses. The agent is risk-averse toward gains and

risk-seeking over losses, and losses receive a higher weight than gains (k > 1). The utility

ULAðWT ; eÞ ¼ VLAðWTÞ � CðeÞ then replaces Equation (3). Following Dittmann, Maug,

and Spalt (2010), we use a ¼ b ¼ 0:88 and k ¼ 2:25 and parameterize reference wealth WR

by WR
t ¼W0 þ /t�1 þ h �MVðnS

t�1;n
O
t�1;PtÞ; where MVð:Þ denotes the market value of last

year’s stock and option portfolio evaluated at this year’s market price. Reference wealth

therefore equals the sum of non-firm wealth W0, last year’s fixed salary /, and a portion h

of today’s market value of the stock and options held during the last period. Dittmann,

Maug, and Spalt (2010) show that the model fits the data best for h ¼ 0:1, and we therefore

consider three values of h: 0.1, 0.5, and 0.9.

Table VIII, Panel A, displays our results for the LA model for three different values of

reference wealth as parameterized by h. In addition to the mean and the median of the

two distance metrics D1 and D2, and the savings, the table shows the average probability

that the terminal payout is zero (the “jump quantile”), the inflection quantile where the

contract changes from convex to concave, and risk avoidance q. We find that the LA

model with h ¼ 0:1 approximates the observed contract better than the CRRA-RTI model

with c¼3. The median distance D1 is 2.3% for the LA model with h ¼ 0:1, when com-

pared with 4.0% for the CRRA-RTI model (see Table II).26 For higher reference wealth,

however, the LA model is considerably worse than the RTI model for any of the risk-

aversion parameters considered (c ¼ 0:5, 3, and 6). The reason is that the probability that

the CEO ends up with zero wealth is low only for very low reference points: for h ¼ 0:5,

the average jump quantile is 3% and for h ¼ 0:9 it is 11.8%, when compared with 0.6%

for h ¼ 0:1. Therefore, we conclude that the LA model is superior only for a rather spe-

cific choice of parameterization. In contrast, the CRRA-RTI model offers a reasonable

approximation of the observed contract that is more robust to changes in the preference

parameter.

26 Across all models and all specifications, the CRRA-RTI model with c ¼ 0:5 has the best fit.

However, we do not regard the CRRA model with c ¼ 0:5 as reasonable, because the model then

implies unrealistic portfolio decisions. A CEO with c ¼ 0:5 would borrow heavily and invest much

more than his entire wealth into the market portfolio.
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Table VIII. Optimal LA contracts with and without risk-taking incentives

Panel A describes the optimal contract according to the LA model from Dittmann, Maug, and

Spalt (2010) for three different levels of reference wealth WR parameterized by h. Panel B

describes the optimal contracts according to the LA-RTI model. The table displays the mean

and the median of six measures that describe the optimal contract. The two distance metrics D1

and D2 are defined in Equations (23) and (24). Savings are the difference in compensation costs

between the observed contract and the optimal contract expressed as a percentage of the costs

of the observed contract. Jump quantile is the point where the contract features a jump from

the lowest possible payout to some payout above the reference wealth. Inflection quantile is

the point where the contract turns from convex to concave. Both the jump quantile and the

inflection quantile are expressed as probabilities. Risk avoidance q is from Equation (16). The

number of observations varies across different values of h due to numerical problems.

Panel A: Optimal LA contracts without risk-taking incentives

h ¼ 0.1 h ¼ 0.5 h ¼ 0.9

Distance D1 Mean 4.5% 12.4% 29.6%

Median 2.3% 8.5% 26.5%

Distance D2 Mean 5.1% 11.6% 27.1%

Median 2.4% 8.5% 24.5%

Savings Mean 1.0% 4.9% 14.6%

Median 0.1% 3.6% 13.8%

Jump quantile Mean 0.6% 3.0% 11.8%

Median 0.0% 1.4% 9.8%

Inflection quantile Mean 100% 100% 100%

Median 100% 100% 100%

Risk avoidance q Mean 0.16 0.45 2.34

Median 0.03 0.19 2.17

Observations 1,472 1,259 971

Panel B: Optimal LA contracts with and without risk-taking incentives

LA-RTI model LA model

h ¼ 0.1 h ¼ 0.5 h ¼ 0.9 h ¼ 0.1 h ¼ 0.5 h ¼ 0.9

Distance D1 Mean 13.4% 16.5% 57.7% 14.4% 16.9% 40.5%

Median 9.1% 15.2% 50.4% 10.2% 15.9% 42.8%

Distance D2 Mean 13.8% 15.1% 50.0% 14.0% 15.5% 37.2%

Median 11.9% 13.4% 41.1% 11.1% 14.5% 37.4%

Savings Mean 4.9% 6.4% 8.1% 3.0% 6.7% 8.8%

Median 1.6% 6.5% 8.3% 2.1% 6.8% 8.8%

Jump quantile Mean 1.5% 2.0% 2.4% 5.2% 5.2% 18.1%

Median 0.6% 0.0% 0.0% 3.3% 4.6% 18.1%

Inflection quantile Mean 100% 100% 100% 100% 100% 100%

Median 100% 100% 100% 100% 100% 100%

Observations 43 152 59 43 152 59
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7.4.b Risk-taking incentives in the loss-aversion model

We follow similar procedures as in Dittmann, Maug, and Spalt (2010) to derive the shape

of the optimal loss-aversion contract that takes risk-taking incentives into account in the

Online Appendix. We refer to this contract by the acronym LA-RTI.

The results are shown in Table VIII, Panel B, which is similar to Table II, Panel B.

The table shows that the probability that the CEO ends up with zero wealth is much

lower for the LA-RTI model compared with the LA model. For h ¼ 0:5, this probability

decreases from 5.2% to 2% on average. Removing the punishment for poor outcomes

increases the risk-taking incentives, and the LA-RTI model has a slightly better fit than

the LA model if h � 0:5. For h ¼ 0:9, however, the average distance metrics are higher

for the LA-RTI model than for the LA model. The number of observations displayed in

this table is quite small, due to the difficulty of solving the optimization problem

numerically. Altogether, we therefore conclude that the LA-RTI model does not offer

any significant improvement over the LA model, because the risk avoidance is low in

Table VIII, Panel A. For h ¼ 0:1 in particular, the average risk avoidance is 0.16 and the

median risk avoidance is 0.03.

7.5 Constant Absolute Risk Aversion

The CEO’s attitude to risk is central to our model. So far, we have assumed that CEOs

exhibit CRRA. To see whether our results are robust to alternative assumptions regarding

CEO risk aversion, we repeat our analysis from Table II with CARA, so that VCARAðWTÞ
¼ � exp ð�gWTÞ replaces VðWTÞ in Equation (3).

All our results continue to hold with CARA utility (see Table IA.1 in the Online

Appendix). In particular, the CARA-RTI model generates a much better fit than the CARA

model as it guarantees a minimum payout that is always higher than the CEO’s non-firm

wealth, and it is convex for intermediate payouts and concave for good payouts. According

to the two distance measures, CRRA-RTI dominates CARA-RTI.

8. Limitations of the Model

8.1 The Convexity of Contracts

Our model predicts that contract payoffs are concave in firm value when the firm value

is high. The observed contract is different from this prediction, since CEOs’ payout is

never concave when it is paid in long positions in stock and options. To evaluate how

much our model prediction W�
T deviates from the observed contract Wsmth

T ðPTÞ (which is

the expected value of the sum of the base salary and all stock and option grants held by

the CEO; see Appendix D), we take the following approach to capture the convexity and

the deviation. First, we summarize the convexity of the model contracts by tabulating

the proportion of the model contracts that are convex at the xth percentile of PT

(denoted by Px% hereafter). Second, we compare the convexity of the model contracts

with that of the observed contracts by taking the difference between the second deriva-

tive of the model contracts W�
TðPTÞ at PT ¼Px% and the second derivative of the

observed contracts Wsmth
T ðPTÞ at PT ¼Px%. Third, we calculate the average distance

between the model contract W�
T and the observed contract Wsmth

T for the right tail of the

distribution:
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Dx%
2 ¼ EPT�Px%

jW�
TðPTÞ �Wsmth

T ðPTÞj
Wsmth

T ðPTÞ

!
: (27)

In Table IX, we tabulate three measures described above for the 80th; 90th, and 95th percen-

tile of the firm value. First, for c¼ 3, the proportion of model contracts that are convex

decreases from 11.2% at P80% to 0.8% at P95%. Second, 0.7% of the contracts are more con-

vex than the observed contract for c¼3 at P80% and the number goes down slightly to 0.1%

P95%. Third, the median deviation for the top 20% of PT when c¼3 counts for 35.2% of the

total deviation for the whole distribution of PT as measured by the distance D2. This number is

19.6% for the top 5% of PT. Finally, the table also shows that the deviation at the right tail of

the distribution is of less concern when the risk aversion is low. However, the deviation can be

quite sizable when the risk aversion increases. In the next subsection, we offer some specula-

tions on dynamic contracting issues, which could potentially explain part of the deviation.

8.2 The Dynamics of Contracts

One limitation of our analysis is that our model is static and only considers two points in

time: the time of contract negotiation and the time when the final stock price is realized.

We are aware that other events that are not specified in our model might occur between

these two time points. Specifically, our model does not include any new grants, gradual

vesting, or contract renegotiation.

Our model faces the challenge that the initial optimal contract may lose its incentive effect

over time in a dynamic world. One way of restoring CEO incentives is to award new grants

and another is to renegotiate the contract. First, when a firm performs poorly after the initial

incentives are provided, the option will be deep out of the money and will provide few incen-

tives. A potential solution is to issue new option grants at the money. An alternative way is to

renegotiate the contract and lower the exercise price of the out-of-the-money options

(Acharya, John, and Sundaram, 2000; Brenner et al., 2000), but it is controversial as it seems

Table IX. The convexity of CRRA contracts with risk-taking incentives

This table describes the convexity of the optimal contracts according to the CRRA-RTI model

from Equation (11) for three different values of the CRRA parameter c. Px% denotes the xth per-

centile of PT. The distance metrics Dx%
2 is defined in Equation (28).

c ¼ 0.5 c ¼ 3 c ¼ 6

Proportion of the model

contracts that are convex at Px%

x ¼ 80 54.1% 11.2% 1.1%

x ¼ 90 44.2% 3.1% 0.3%

x ¼ 95 28.1% 0.8% 0.2%

Proportion of the model

contracts that are more convex

than the observed contracts at Px%

x ¼ 80 49.1% 0.7% 0.0%

x ¼ 90 32.0% 0.2% 0.0%

x ¼ 95 19.6% 0.1% 0.0%

Median (D2
x%/D2) x ¼ 80 27.6% 35.2% 52.0%

x ¼ 90 18.2% 25.7% 41.5%

x ¼ 95 10.2% 19.6% 27.4%

Observations 1,151 1,658 1,124
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to reward the CEO for failure. Second, when a firm performs extremely well, the options will

be well into the money and will resemble stock that provide few or no risk-taking incentives.

In this scenario, firms may give additional option grants to introduce convexity into the con-

tract. In both cases, contract renegotiation or the inclusion of new grants can introduce more

convexity into the contract and this would align our model better to the data. This leads to a

lower measure of risk avoidance and a greater pay-for-performance sensitivity.

Core and Guay (1999) provide empirical evidence that firms use new equity grants to

move CEOs toward their optimal incentive levels. They estimate a cross-sectional model of

CEO incentives and take the residual of this model to predict any new grants to executives

in the following year. They do not consider risk-taking incentives and risk aversion. An

alternative modeling approach would be to estimate an appropriate cross-sectional model

similar to that of Core and Guay (1999). It would likely increase the precision of our risk-

avoidance measure, increase the convexity of our model, and thus, increase the degree to

which the theory lines up with the data.

In a dynamic setting on the theoretical side, single-period contracts can encourage the

CEO to engage in short-termism by inflating the current stock price at the expense of long-

term firm value (see, e.g., Goldman and Slezak, 2006; Peng and Röell, 2008, 2014). One

remedy is to introduce gradual vesting of equity grants. For example, Edmans et al. (2012)

proposed a “Dynamic Incentive Account” in which a fraction of the incentive account is

paid to the CEO every year and the remainder remains escrowed in order to deter myopia.

Furthermore, the CEO regularly sells stock and exercises options to keep up his consump-

tion. Zhu (2016) shows that “bonus banks” that pay out a fraction of bonuses to the man-

ager each period also help to deter myopia. Chaigneau (2015) models how progressive

learning about firm value as a result of exogenous shocks can explain the multiple vesting

horizons that are commonly seen in practice. In our model, we constrain short-termism and

myopic behaviors by imposing longer vesting periods. However, lengthening the vesting

periods can be costly. Peng and Röell (2014) argue that long-term compensation potentially

exposes the manager to risk outside his control and he thus needs to be compensated for

bearing this additional risk. Therefore, allowing gradual vesting would make the optimal

contract cheaper and give a lower level of risk avoidance.

9. Conclusions

We argue that shareholders take risk-taking incentives into account when designing CEO con-

tracts, because CEOs are often heavily exposed to firm-specific risk through their large stock

and option holdings and bear the employment risk. If CEOs are risk-averse, then they will

want to reduce the firm’s risk, even if doing so destroys its value. We contribute to the litera-

ture by introducing risk-taking incentives into the standard contracting model. Specifically, the

CEOs in our model do not only exert costly effort but also determine the firm’s strategy so

that they affect both the mean and the volatility of future firm value. Our calibration analysis

demonstrates that the extended model explains the observed executive compensation contracts

significantly better than the standard model without risk-taking incentives. We also propose a

new measure of risk-taking incentives that captures the trade-off between the expected value

added to the firm and the additional risk a CEO must take. This measure essentially combines

both the utility-adjusted vega and the utility-adjusted delta.

In this paper, we do not argue how strong those risk-taking incentives provided by firms

should be. Instead, we take the observed strength of risk-taking incentives as given and search
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for the cheapest contract that will provide those incentives. Lambert, Larcker, and Verrecchia

(1991); Carpenter (2000); Ross (2004); and Lewellen (2006) all argue and show that stock

options can make managers more averse to increases in firm risk, so that stock options might

be counter-productive if risk-taking incentives need to be provided. Our paper shows that

options are indeed part of an optimal contract. They can be detrimental to risk-taking incen-

tives, but wreak less havoc than stock. Having neither stock nor options is not an alternative,

because such a contract would not provide any effort incentives. In addition, we do not allow

CEOs to hedge their exposure to firm risk. Gao (2010) shows that a CEO’s pay-for-

performance sensitivity decreases with his hedging cost, so the firm reacts to the possibility of

hedging by awarding even more options or stock to the CEO. This argument suggests that,

for many firms, our level of risk avoidance would be lower in both models with and without

risk-taking incentives. Finally, this paper takes an important step forward by modeling both

risk and effort incentives, but future research is needed to determine how the results would

change when we allow for gradual vesting, new grants, or contract renegotiation.

Supplementary Material

Supplementary data are available at Review of Finance online.

Appendix A: Validity of the First-Order Approach

Like most of the theoretical literature on executive compensation, we work with the first-

order approach: we replace the incentive compatibility constraint (7) by the two first-order

conditions (8) and (9). This approach is only valid if the utility that the agent maximizes

has exactly one optimum, and it is a sufficient condition is that this utility is globally con-

cave. In our model, this sufficient condition does not hold, and it is possible that the first-

order approach is violated.

A violation of the first-order approach has two potential consequences. First, the agent

might choose a different combination of effort e and volatility r than under the observed

contract. The reason is that our optimization routine only ensures that the pair fed; rdg
(which is implemented by the observed contract) remains a local optimum under the new

contract, but we do not require it to be the global optimum (see Lambert and Larcker,

2004). Second, a violation of the first-order approach implies that there might be more than

one solution to the optimization problem. We tackle this second issue by repeating our

numerical optimizations with different starting values, but we do not find any indication

that there are multiple solutions for any CEO in our sample. In this Appendix, we therefore

concentrate on the first problem. In particular, we analyze whether the agent has an incen-

tive to shirk under the optimal contract W�ðPTÞ, i.e., to choose effort e 6¼ ed or volatility r

6¼ rd such that P0ðe;rÞ < Pd
0 ¼ P0ðed; rdÞ. We ignore deviations that lead to an increase of

firm value as this will not create any concerns for shareholders. For expositional conven-

ience, we say that the first-order approach is violated if the agent shirks under the optimal

contract W�ðPTÞ. In the remaining part of this Appendix, we derive two conditions under

which the first-order approach is not violated. To simplify the argument, we normalize P0ðe
¼ 0;rÞ ¼ P0ðe; r ¼ 0Þ ¼ 0 and Cðe ¼ 0Þ ¼ 0.

Condition 1. The agent has no incentives to choose e¼ 0 or r¼0, i.e., EðVðW�
TÞjP0¼0Þ

< EðVðW�
TÞjP0¼Pd

0Þ�CðedÞ¼
�
U.
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The optimal contract W�
T from Equation (11) features a lower bound on the payout to

the agent. If this lower bound is higher than the agent’s outside option
�
U, the agent might

not exert any effort and might choose the lowest feasible volatility. Consequently, the

first-order approach might be violated. Our first condition therefore states that this is not

the case. This assumption appears reasonable, because for the median CEO, the mini-

mum payout ($1.3m for c¼ 3, according to Table II, Panel A) is only 8.1% of the

expected payout ($16.0m, in Table I). The strong rise in executive compensation during

the past three decades has been attributed to a higher outside option or higher rents, but

not to an increase in the cost of effort. Therefore, Condition 1 is plausible: No CEO will

stop working when he gets a minimum payment of 8.1% of what he can expect with nor-

mal effort.

Next, we consider more general (and less extreme) deviations from the target values of

effort ed and volatility rd. We show that these deviations are not profitable for the agent

when Condition 1 and the following condition hold:

Condition 2. The production function P0ðe; rÞ is concave enough, i.e., it is steep enough

in e and r for e < ed and r < rd and it is not too steep in e and r for e > ed and r > rd.

We distinguish three cases. First, consider a choice e � ed and r � rd, where e < ed or

r < rd. The agent will not deviate in this way if

EðVðW�
TÞje; rÞ � CðeÞ < EðVðW�

TÞjed; rdÞ � CðedÞ:

This inequality holds if the firm value P0ðe; rÞ associated with the deviation to ðe; rÞ is

low enough to render this choice unattractive. This is the case if Condition 1 holds and if

P0ðe; rÞ is steep enough in e and r.

The second case is obtained if e < ed and r > rd. To rule out such a deviation, the pun-

ishment for the downward deviation in e must not be fully compensated by the reward

for the upward deviation in r. This is achieved if P0ðe;rÞ is steep enough in e for e < ed

and not too steep in r for r > rd. A similar argument applies to the third case if

e > ed; r < rd.

Appendix B: Proof of Proposition 1

Note that the monotonicity constraint (5) must hold for every PT, so that it is actually a

continuum of an infinitely number of restrictions. We first rewrite the restriction as a func-

tion of WT. Let hð:Þ be the function that maps PT into WT: WT ¼ hðPTÞ. Then,

PT ¼ h�1ðWTÞ, and dWT

dPT
PTÞ ¼ h0ðh�1ðWTÞÞ



. Hence, Equation (5) can be rewritten as

h0ðh�1ðWTÞÞ � 0: (28)

For every WT, Equation (5) provides one restriction, so the Lagrangian for the differentia-

tion at WT is:

LWT
¼
Ð1
0 PT �WT½ �gðPT je; rÞdPT þ kPC

Ð1
0 VðWT ; eÞgðPT je; rÞdPT � CðeÞ �

�
U

� 	
þ ke

Ð1
0 VðWTÞgeðPT je; rÞdPT �

dC

de

� �
þ kr

Ð1
0 VðWTÞgrðPT je;rÞdPT

þ kWT
h0ðh�1ðWTÞÞ;

where gðPT je;rÞ is the (lognormal) density function of the end-of-period stock price PT:
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gðPT je; rÞ ¼
1

PT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2T
p exp �ðln PT � lðe;rÞÞ2

2r2T

" #
(29)

with

lðe;rÞ ¼ ln P0ðe; rÞ þ ðrf � r2=2ÞT: (30)

Here, ge and gr are the derivatives of gð:Þ with respect to e and r. The first-order condition

is then

gðPT je;rÞ ¼ kPCVWT
gðPT je;rÞ þ keVWT

geðPT je; rÞ þ krVWT
grðPT je; rÞ

þkWT

h00ðh�1ðWTÞÞ
h0ðh�1ðWTÞÞ

:
(31)

Although there is one multiplier kWT
for each value of WT, the other three multipliers kPC,

ke, and kr are the same across all values of WT. If the constraint (28) is binding, Equation

(31) defines the Lagrange multiplier kWT
, and the solution is determined by the binding

monotonicity constraint. If Equation (28) is not binding, kWT
is zero and the first-order con-

dition (31) simplifies with some rearranging to

1

VWT
ðWTÞ

¼ kPC þ ke
ge

g
þ kr

gr

g
: (32)

Consequently, the solution is given by Equation (32) as long as it is monotonically increas-

ing, and flat otherwise.

For the log-normal distribution (29), we get:

ge ¼ g � ln PT � lðe; rÞ
r2T

� leðe;rÞ (33)

gr ¼ g � ½ln PT � lðe;rÞ� � lrðe;rÞ � r2T þ ½ln PT � lðe;rÞ�2rT

ðr2TÞ2
� g

r

¼ g � ½ln PT � l� � lr � rþ ½ln PT � l�2

r3T
� g

r
:

(34)

Substituting this into the first-order condition (32) yields:

1

VWT
ðWTÞ

¼ kPC þ ke
½ln PT � l� � le

r2T
þ kr

½ln PT � l� � lr � rþ ½ln PT � l�2

r3T
� 1

r

!
:

The optimal wage contract can be written as Equation (10) with parameters c0ðrÞ; c1ðrÞ,
and c2ðrÞ:

c0ðrÞ ¼ kPC � ke
le � l
r2T

� kr
l � lr

r2T
� l2

r3T
þ 1

r

� �
;

c1ðrÞ ¼ ke
le

r2T
þ kr

lr

r2T
� 2l

r3T

� �
;

c2ðrÞ ¼ kr
1

r3T
� 0:

Equation (11) then immediately follows with VðWTÞ¼
W1�c

T

1�c for c 6¼1 and VðWTÞ¼ lnðWTÞ
for c¼1.�

1840 I. Dittmann et al.



Appendix C: User’s Guide on How to Calculate Risk Avoidance q

This appendix contains formulae for our measure of risk avoidance q from Equation (16)

that can readily be implemented in a computer program. We start with a few definitions:

PC ¼ P0 exp rf � d � r2

2

� �
T

� �
; CV ¼ r

ffiffiffiffi
T
p

;

TW ¼ /þW0ð Þexp rf T
� 

; MD2 ¼ ln ðKÞ � ln ðPCÞ
CV

;

MD2 is the point where options are just at the money. With these definitions, we can calcu-

late PPSua and �ua as follows:

PPSua ¼ PC

P0

" ðMD2

�1
TW þ nS exp dTf gPC exp CVuf gð Þ�cnS exp dT þ CVuf gf ðuÞdu

þ
Ð1
MD2 TW þ nS exp dTf g þ nOð ÞPC exp CVuf g � nOKð Þ�c

nS exp dTf g þ nOð Þexp CVuf gf ðuÞdu�

�ua ¼
ðMD2

�1
TW þ nS exp dTf gPC exp CVuf gð Þ�cnS exp dT þ CVuf g

PC �rT þ u
ffiffiffiffi
T
p� 	

f ðuÞdu

þ
ð1

MD2

TW þ nS exp dTf g þ nOð ÞPC exp CVuf g � nOKð Þ�c nS exp dTf g þ nOð Þ

PC exp CVuf g �rT þ u
ffiffiffiffi
T
p� 	

f ðuÞdu;

where f(u) is the standard normal density function. Our measure of risk avoidance then fol-

lows from Equation (16).

Appendix D: Representing the Observed Contract

Let N be the number of option grants. Each grant i is characterized by the strike price Ki,

the maturity Ti, and the number of options ni
O. We define

Wsmth
T ðPTÞ :¼ðW0þ/Þerf TþnSPTþ

XN
i¼1

ni
OEðmaxfPTi�Ki;0gjPminfTi ;TgÞerf maxfT�Ti ;0g : (35)

If Ti>T, this is simply the Black–Scholes value of the option i over the remaining maturity

Ti�T. If Ti<T, we assume that the option is exercised at time Ti if it is in the money and

that the proceeds are invested at the risk-free rate until time T.

Note that, for each option grant i with Ti < T; Wsmth
T ðPTÞ contains a separate integral

with respect to the stock price at Ti conditional on PT. Therefore, D2 is an m-dimensional

integral, where m is the number of option grants with Ti < T. As we cannot solve this

numerically, we approximate D2 by a sum over 63 equally spaced stock prices PT over the

range of stock prices that covers 99.8% of the probability mass.

Appendix E: Model Convergence

In Table II and footnote 19, we experience numerical problems in the calibration, and the

convergence rates for c ¼ 0:5 and c¼ 6 are 67% and 66%, respectively. To better
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understand the economics behind the numerical problem, we repeat our calibration process

for c ¼ 2, 4, 5 in addition to the values of 0.5, 3, 6 reported in Table II. The convergence

rates for the CRRA-RTI model are 97% for c¼ 2, 93% for c¼4, and 78% for c¼ 5. It

seems that our model and calibration work well for the more common range of the risk

parameter c, ranging from 2 to 4, but not for the more extreme values such as c ¼ 0:5 and

c¼ 6.

Among 1,707 CEOs, we have fourteen cases (less than 1%) where the calibration fails

for all three values (c ¼ 0.5, 3, 6). For these fourteen cases, we argue that our model is a

poor description of that particular firm/CEO pair. For the rest of the sample (more than

99%), we can calibrate our model for at least one of the assumed values of c, suggesting

that the model works for at least one parameter value of c.

In addition, we split the sample into two based on whether the calibration in Table II,

Panel A, converges, and we compare the two subsamples for all variables listed in Table I.

Table X shows the medians of the variables in each subsample as well as the p-value of the

two-sample Wilcoxon test. For c ¼ 0:5, we find no significant difference between the con-

vergence and the non-convergence subsamples. For c¼ 3, the only difference between the

two sub-samples is that the percentage of CEO stock holdings is lower for the non-conver-

gence group. For c¼ 6, the non-convergence group has a higher base salary and non-firm

wealth.
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