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Abstract

We consider a Flexible Job-Shop scheduling problem with batching ma-
chines, reentrant flows, sequence dependent setup times and release dates
while considering different regular objective functions. Semiconductor man-
ufacturing is probably one of the most prominent practical applications of
such a problem. Existing disjunctive graph approaches for this combined
problem rely on dedicated nodes to explicitly represent batches. To facili-
tate modifications of the graph, our new modeling reduces this complexity
by encoding batching decisions into edge weights. An important contri-
bution is an original algorithm that takes batching decisions “on the fly”
during graph traversals. This algorithm is complemented by an integrated
move to resequence and reassign operations. This combination yields a rich
neighborhood that we apply within a local search and a Simulated Anneal-
ing (SA) metaheuristic. The latter is embedded in a Greedy Randomized
Adaptive Search Procedure (GRASP) which is the most efficient approach.
Numerical results for benchmark instances of different problem types show
the generality and applicability of our approach. The conciseness of our
idea facilitates extensions towards further complex constraints needed in
real-world applications.
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1. Introduction

The production of microelectronic devices is a highly complicated and
cost intensive process—particularly in the front-end where the fabrication
of wafers takes place. A wafer is a thin slice of semiconductor material on
which chips are manufactured. In a semiconductor manufacturing facility
(fab), up to 600 processing steps in different work areas are required for
the production of a single lot of wafers. We consider high-mix fabs where
various types of products are in progress at the same time. Here, schedul-
ing decisions have a strong impact on key performance indicators such as
throughput and cycle time. The presence of batching machines within a
Job-Shop environment characterizes our scheduling problem and leads to a
general formulation with a wide range of applications not only in semicon-
ductor manufacturing but also in other fields, in particular in manufacturing
processes where furnaces are required, e.g. mould manufacturing. In our set-
ting, a batching machine can simultaneously process multiple lots (up to a
given maximum capacity) using the same processing duration. In this pa-
per, we concentrate on the diffusion and cleaning area of a semiconductor
manufacturing facility. This work area contains machines for wet cleaning,
wet etching, thermal processes, deposition and oxidation. Its properties lead
to a Flexible Job-Shop scheduling problem with p-batching, reentrant flows,
sequence dependent setup times and release dates. We optimize different
regular mono-objective functions from the literature such as makespan, to-
tal weighted tardiness and maximum lateness as well as other performance
indicators that are relevant in industrial applications. A formal definition
of the problem is given in Section 3.

The considered problem is NP-hard since it generalizes both the NP-hard
classical Job-Shop scheduling problem as well as the NP-hard single-machine
scheduling problem with total weighted tardiness objective (see Garey et al.
(1976)). We aim to solve industrial instances with more than 80 machines
(number of machines in the diffusion and cleaning area) and hundreds of
jobs, each job consisting of up to ten operations. We develop a heuristic
method since we want to solve large instances of an NP-hard problem.

Most existing solution approaches for Complex Job-Shop scheduling prob-
lems with batching machines rely on the disjunctive graph representation of
Ovacik and Uzsoy (1997). This representation introduces dedicated nodes
to represent batching decisions. We propose a novel batch-oblivious mod-
eling which avoids additional batching nodes. Instead, we encode batching
decisions in the weights of edges to reduce the structural complexity of the
graph. This modeling is explained in detail in Section 4. Then, we introduce
a novel integrated algorithm to compute start dates and to create batches
that takes advantage of the batch-oblivious representation. This representa-
tion allows our integrated algorithm to make batching decisions during graph
traversal. This can be used to “fill up” underutilized batches by applying
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a combined resequencing and reassignment strategy. In addition, an inte-
grated batch-oblivious move is proposed to relocate individual operations.
The combination of the algorithm and the batch-oblivious move yields a
neighborhood that implicitly comprises specific moves known from the lit-
erature such as the swapping of batches. This neighborhood also includes
more moves generated by the interplay of the algorithm and the integrated
batch-oblivious move. These building blocks for heuristic methods are de-
tailed in Section 5. We apply them within a GRASP based approach (Feo
and Resende (1995)). We randomize the construction of initial solutions by
successively inserting jobs using a randomly perturbed ordering of jobs. So-
lutions are improved using a Simulated Annealing heuristic. This GRASP
based metaheuristic approach is presented in Section 6. Computational ex-
periments using a parallelized implementation yield very good results for
various types of instances. Numerical results are presented and discussed in
Section 7, where new public industrial benchmark instances are proposed.

2. Related Work

Scheduling problems with batching are reviewed in the articles of Mathi-
rajan and Sivakumar (2006) and Potts and Kovalyov (2000). An overview of
scheduling challenges in semiconductor manufacturing is provided in Mönch
et al. (2013) and Mönch et al. (2011). The scheduling of parallel batching
machines and variants of the Job-Shop scheduling problem are well-studied
problems whereas their combination is rarely considered. Starting with the
work of Ovacik and Uzsoy (1997), several approaches for Complex Job-Shop
scheduling problems are based on the shifting bottleneck heuristic of Adams
et al. (1988). This heuristic decomposes the problem into multiple parallel-
machine scheduling problems and subsequently applies appropriate subprob-
lem solution procedures. For this setting, Ovacik and Uzsoy (1997) introduce
a disjunctive graph representation that represents batches using dedicated
nodes. This representation was also used in Mason et al. (2005) and Mönch
and Rose (2004), where the authors show that a modified shifting bottle-
neck heuristic outperforms classical dispatching rules. Similar approaches
are proposed in Upasani et al. (2006) and Sourirajan and Uzsoy (2007).
Results were improved in Mönch et al. (2007) by using a genetic algorithm
in the subproblem solution procedure. Another approach is presented in
Yugma et al. (2012) which relies on batch specific moves, e.g. moving one
batch or swapping operations from different batches. Again, batches are
represented using dedicated nodes. In distinction to all these approaches,
our approach uses a less complex disjunctive graph model without dedicated
nodes, enabling a more holistic integration of batching decisions.

A mixed integer formulation for Complex Job-Shops with total weighted
tardiness objective is given in Mason et al. (2005). Bilyk et al. (2014) pro-
pose an improved method to solve parallel-machine scheduling problems
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which appear as subproblems of shifting bottleneck based approaches. A
sequential decomposition approach for Complex Job-Shops is presented in
Guo et al. (2012) which apply an ant colony optimization heuristic. Schedul-
ing in the diffusion and cleaning area of semiconductor manufacturing with
its particular constraints is also addressed by Yurtsever et al. (2009), Kim
et al. (2010) and Jung et al. (2013), however, they do not consider a Job-
Shop environment. Job-Shop scheduling problems with sequence dependent
setup times are an important subproblem of Complex Job-Shop scheduling
problems. Good results for such problems were achieved by a tabu search
based approach in González et al. (2013).

Hence, to our knowledge, our approach is the first one to handle the full
complexity of complex job-shop scheduling problems with batching using
disjunctive graphs and no dedicated nodes. Moreover, as shown in Sec-
tion 4, we propose an original algorithm to build batches while traversing a
conjunctive graph.

3. Problem Description

This section provides a formal definition of the considered Flexible Job-
Shop scheduling problems with batching, reentrant flows, sequence depen-
dent setup times and release dates (Complex Job-Shops). We aim to op-
timize regular objective functions which are formally defined later in this
section. Using Graham’s α|β|γ notation, this class of scheduling problems
can be denoted as FJc|rj , si,j , B, recr|reg. We consider batching and its
embedding in a Job-Shop environment to be the main characteristics of our
problem. In this paper, batching lots in a machine (up to the batching
capacity of the machine) means that all lots in the batch are processed to-
gether, i.e. they have the same start times and completion times. Also, the
processing duration does not depend on the number of lots in the batch.
This type of batching is also called p-batching in the literature.

We are given a set of jobs J which have to be processed using a given
set of machines M . For each job j ∈ J , we are given a set of opera-
tions Oj = {o1,j , o2,j , . . . , o|Oj |,j}, and a release date rj ∈ Z. The disjoint

union O = O1
.
∪O2 . . .

.
∪O|J | denotes all given operations. For a given set

of recipes R, each recipe r ∈ R prescribes a machine mr ∈ M , a processing
duration pr ∈ N0 and a batching capacity br ∈ N>0. In our industrial case,
the recipe of a process operation (see Johnzén et al. (2011)) precisely defines
how the machine should conduct the process: Duration, temperatures, gas
flow and pressure, etc. Note that a recipe is associated to only one machine.
For a given set of families F , each family f ∈ F specifies a subset of eligible
recipes Rf ⊂ R. Each operation oi,j ∈ O is assigned to a family fi,j ∈ F .
We denote by Ri,j the eligible recipes for a family fi,j ∈ F of an opera-
tion oi,j ∈ O. In our industrial case, a family helps to identify operations
that have similar characteristics, and thus lots that can be grouped in the
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same batch. Hence, we have to select for each operation oi,j ∈ O one recipe
out of Ri,j . A given mapping s : F ×F → N0 prescribes sequence-dependent
setup times between operations that are scheduled on the same machine.

A schedule is completely characterized by selecting recipes qi,j ∈ Ri,j and
start times Si,j ∈ Z for all given operations oi,j ∈ O. We denote the ma-
chines, processing durations and batching capacities related to this selection
as mi,j , pi,j and bi,j , respectively. To describe a schedule that is feasible, se-
lected recipes qi,j and start dates Si,j of operations oi,j have to respect several
constraints that are detailed in the following. Preemption is not allowed:
Once the processing of an operation has begun, it cannot be interrupted.
Thus, the completion time of an operation is given by Ci,j = Si,j + pi,j .
Operations belonging to the same job have to be performed in the order
given by the route of the job. So, Ci,j ≤ Si+1,j has to be fulfilled for all
oi,j ∈ O with i < |Oj |. Operations performed on the same machine must
not overlap. Hence, for two operations oi,j , ok,l ∈ O with mi,j = mk,l, either
Si,j = Sk,l or Si,j ≥ Ck,l or Ci,j ≤ Sk,l must hold. Only operations of the
same family can be included in a common batch. So, for two operations
oi,j , ok,l ∈ O with fi,j ̸= fk,l and mi,j = mk,l, we require Si,j ̸= Sk,l. Batch-
ing capacities limit the number of operations per batch. Thus, we require
|{ok,l ∈ O | Sk.l = Si,j ∧mk,l = mi,j}| ≤ bi,j for all operations oi,j ∈ O. The
first operation o1,j ∈ Oj of each job cannot be processed before its release
date, so S1,j ≥ rj must hold for all j ∈ J . To respect sequence-dependent
setup times, for all operations oi,j , ok,l ∈ O with mi,j = mk,l and Si,j ̸= Sk,l

either Ci,j + s(fi,j , fk,l) ≤ Sk,l or Ck,l + s(fk,l, fi,j) ≤ Si,j must hold.
Our goal is to determine schedules that optimize regular objective func-

tions. An objective function is a function f : R|O| → R that maps tuples of
operation start dates to a real number. We call an objective function regular
(see Conway et al. (1967) and Brucker (2007)), if for two given tuples of start
dates (S1, . . . , S|O|), (S

′
1, . . . , S

′
|O|) ∈ R|O| with S1 ≤ S′

1 ∧ · · · ∧ S|O| ≤ S′
|O|

it follows that f(S1, . . . , S|O|) ≤ f(S′
1, . . . , S

′
|O|). Intuitively speaking, the

quality of a schedule cannot deteriorate by advancing the start date of some
of its operations. Most objective functions considered in the scheduling lit-
erature (e.g., makespan, maximum lateness, total weighted completion time,
or total weighted tardiness) are regular objective functions.

We have provided a concise formal definition of a Complex Job-Shop
scheduling problem which generalizes several scheduling problems defined
in the literature: It reduces to a Flexible Job-Shop scheduling problem if
all batching capacities are equal to one, and to a scheduling problem with
parallel batching machines if the routes of all jobs contain only a single
operation. In the latter case, the flexibility of batching machines allows each
job to be assigned to any machine. Recurrent flows are comprised in the
definition: No constraint forbids to reuse a machine for multiple operations
of the same job. Note that some objective functions might depend on due
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dates dj ∈ Z or weights wj ∈ R which may be associated to each job j ∈ J .
These parameters were not explicitly included in the formal definition above
since they do not impose any hard constraint on schedules. Yet they can be
integrated in the definition of an objective function.

4. Disjunctive Graph Modeling

Disjunctive graphs, introduced by Roy and Sussmann (1964), allow com-
binatorial properties of schedules to be represented in a concise way and have
been applied to solve a broad range of scheduling problems. To tackle the
inclusion of p-batching within Job-Shop environments, we introduce in this
section a batch-oblivious disjunctive graph representation which is designed
to facilitate decision-making on batches during graph traversals. First, we
recall the disjunctive graph model for Complex Job-Shops. Then, two alter-
native representations for batching decisions are described: In Section 4.1,
we recall and discuss an established representation which inserts dedicated
batching nodes into the graph (see Ovacik and Uzsoy (1997)). In Section 4.2,
a novel, batch-oblivious representation is introduced which modifies edge
weights instead of introducing auxiliary nodes. This batch-oblivious rep-
resentation helps us to make batching decisions on the fly (during graph
traversal). This idea provides the foundation for the scheduling approach
proposed in this paper.

Disjunctive graphs represent structural properties of schedules and model
assignment, sequencing or batching decisions. Conjunctive graphs encode
all decisions to be taken and are the principal tool for our algorithms. The
basic graph representation corresponds to the one introduced in Dauzère-
Pérès and Paulli (1997) for flexible (called multiprocessor in Dauzère-Pérès
and Paulli (1997)) job-shop scheduling problems. Let us briefly recapitulate
those graph types. In both cases, each node represents an operation and
each edge represents a dependency induced by either the route of a job or
the sequencing decisions for two operations assigned to the same machine.
Disjunctive graphs model all possible assignments of operations to machines
and all possible sequences of operations on the machines using undirected
edges. By replacing undirected by directed edges while satisfying some fea-
sibility constraints, a conjunctive graph is constructed which corresponds
to an assignment of each operation to one machine and to a sequencing of
the assigned operations on each machine. Redundant directed edges are
removed in the conjunctive graph. Next, we provide a definition of a ba-
sic conjunctive graph representation that still neglects the representation of
batching decisions.

A conjunctive graph G = (V,E) is an acyclic directed graph with nodes
V = O ∪ {0, ∗} that correspond to the given operations O plus an artificial
start node 0 and an artificial end node ∗. For each job and each machine, the
graph contains one path from the artificial start node 0 to the artificial end
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node ∗. The disjoint union of those paths yields all edges of the graph. Each
node v ∈ O is part of exactly two paths: One corresponding to the route of
its job and one corresponding to the sequence of the machine it is assigned
to. For a node v ∈ O, we denote its route successor by r(v) ∈ V \ {0} and
its machine successor by m(v) ∈ V \ {0}. Analogously, its predecessors are
denoted by r−1(v) ∈ V \ {∗} and m−1(v) ∈ V \ {∗}. The artificial start
node 0 has |J | + |M | outgoing edges and no incoming edges. Analogously,
the artificial end node ∗ has |J |+|M | incoming edges and no outgoing edges.
Overall, the graph contains |E| = 2 |O|+ |J |+ |M | edges.

A conjunctive graph can be used to determine start dates So of operations
o ∈ O. A weight lu, v ∈ N0 is assigned to each edge (u, v) ∈ E in order to
ensure a minimum duration between the beginning of adjacent operations:
Sv ≥ Su+lu, v for each edge (u, v) ∈ E. Having this, start dates of operations
correspond to distances of longest paths from the artificial start node with
respect to those edge weights. We denote the distance of a longest path from
a node v ∈ V to a node w ∈ V by L(v, w) ∈ N0. For each operation v ∈ O, its
start date is determined by Sv = L(0, v). To reflect the given constraints,
we define edge weights as follows. For edges (0, o1,j) ∈ E connecting the
artificial start node 0 with the initial operation o1,j of a job j, the edge weight
is set to the release date rj of job j. For edges (0, om) ∈ E connecting the
artificial start node 0 with the initial operation om scheduled on machinem ∈
M , the edge weight is set to zero. For route edges (v, r(v)) ∈ E with v ̸= 0,
the edge weight is set to the processing duration pv of operation v. For
machine edges (v,m(v)) ∈ E with v ̸= 0 of non-batching machines, the edge
weight is set to the sum pv + s(v,m(v),mv) of the processing duration of
v and the sequence-dependent setup time between v and m(v) on machine
mv = mm(v).

Now, what remains is to provide a representation for batching machines.
They can be either modeled by modifying the structure of the graph (batch-
aware) or by adapting the weights of edges (batch-oblivious). The following
two subsections present both alternatives. Recall that each batch has to re-
spect the capacity of the machine as well as the equality of involved families.
The adherence to those constraints has to be guaranteed for each schedule.
The related checks are not detailed in this section in order to focus on the
essential parts of both representations.

4.1. Batch-Aware Conjunctive Graphs

This section reviews a batch-aware conjunctive graph representation that
was introduced by Ovacik and Uzsoy (1997). All solution approaches for
Complex Job-Shop scheduling problems that we are aware of make use of
this type of representation (e.g., Mason et al. (2005), Mönch et al. (2003),
or Yugma et al. (2012)).

A batch is a set of operations B ⊂ O that is processed simultaneously
on the same machine. In the batch-aware representation, for each batch, an
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additional node b is added to the graph. The start date of this batching
node is taken as the common start date for all operations contained in the
batch. A batch requires all of its operations to be ready before it can begin
processing. To reflect this, each operation node v ∈ B is connected to
the batching node b via an edge (v, b) of weight zero. Then, operations
following in the routes of involved jobs are connected as follows: For each
operation v ∈ B of the batch, an edge (b, r(v)) from the batching node
to the route successor r(v) of v is introduced. Those edges are given the
processing duration of pv as their weight. Two additional edges (m−1(b), b)
and (b,m(b)) are introduced to order the batch in the sequence of operations
on machine mb. Analogously to the non-batching case, the weight of each
machine edge (u,w) is defined by the sum pu + s(u,w,mu). Each operation
node v ∈ B has exactly one incoming edge and one outgoing edge. The
batching node b has |B|+ 1 incoming edges and |B|+ 1 outgoing edges.

Batch-aware conjunctive graphs represent dependencies stemming from
batching decisions in a structural way. The number of nodes in those graphs
depends on the number of batches. This structure renders modifications
of batching decisions complicated to handle: The number of nodes in the
graph must be adapted and several edges have to be manipulated while the
acyclicity of the graph must be preserved.

4.2. Batch-Oblivious Conjunctive Graphs

In the following, we introduce a novel representation for batching deci-
sions in conjunctive graphs which is non-intrusive regarding the structure
of the graph. No dedicated batching nodes are introduced and the basic
representation presented at the beginning of this section can remain as is.
Our only means to represent batching decisions is to adapt the weights of
machine edges (v,m(v)) ∈ E. The weight of a machine edge is set to zero
if its adjacent operations should be processed in the same batch. Other-
wise, the edge weight is set to pv + s(v,m(v),mv), as in the non-batching
case. Unfortunately, it is not that simple: lv,m(v) = 0 only guarantees that
Sv ≤ Sm(v) but not that Sv = Sm(v). Since the start dates of all operations
in a batch must be equal, setting edge weights to zero can lead to infeasible
solutions. In the following, we develop a simple criterion that decides on the
feasibility of zero weighted machine edges.

First, let us reconsider a general property of longest paths in directed
acyclic graphs. The start date of a node v ∈ V directly depends on the start
dates of its predecessors as follows:

Sv = max
(u,v)∈E

(Su + lu, v). (1)

Now, consider two operations v ∈ O and m(v) ∈ O that might be scheduled
in the same batch. The node m(v) ∈ V has two incoming edges coming from
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its machine predecessor v and its route predecessor w = r−1(m(v)). We can
apply equation (1) to obtain

Sm(v) = max(Sv + lv,m(v), Sw + lw,m(v)). (2)

If the length lv,m(v) of the machine edge (v,m(v)) ∈ E is set to zero, we
want to obtain Sv = Sm(v) from a longest path computation. So, let us
assume that lv,m(v) = 0 and Sv = Sm(v). With equation (2), we obtain

Sv = max(Sv, Sw + lw,m(v)) ⇐⇒ Sv ≥ Sw + lw,m(v). (3)

This means (3) is a necessary condition to combine v and m(v) in the same
batch. Thus, in batch-oblivious disjunctive graphs, we require the invariant(

lv,m(v) = 0 ∧ Sv ≥ Sw + lw,m(v)

)
∨

(
lv,m(v) = pv + s(v,m(v),mv)

)
(4)

to be fulfilled for all nodes v ∈ V and w ∈ V with w = r−1(m(v)). It fol-
lows that, for each operation v ∈ V , a longest path computation schedules
the machine successor operation m(v) either at the same time as v or at
a later point in time where processing durations and sequence-dependent
setup times are satisfied. This property propagates in a natural way: Mul-
tiple operations belonging to the same batch are connected in a path of zero
weighted machine edges. Next, we want to show that each optimal schedule
can be represented using our batch-oblivious conjunctive graph representa-
tion.

Theorem 1. For any given regular criterion, there exists a batch-oblivious
conjunctive graph G with edge weights l : V → N0 such that longest paths in
this graph represent an optimal schedule.

Proof. Consider a feasible schedule that is optimal with respect to the given
regular criterion. We denote the operation start dates of this optimal sched-
ule by Sv. Now, we construct a batch-oblivious conjunctive graph that
defines the assignment and ordering of operations on the machines as fol-
lows:
a) The graph respects all machine assignment decisions of the optimal sched-

ule.
b) Ordering decisions on the machines respect the start dates of the optimal

schedule: If Sv < Sw for v ∈ V and w ∈ V , then v is ordered before w.
c) Nodes v ∈ V and w ∈ V that are part of the same batch (i.e. Sv = Sw)

are ordered as follows: If Sr−1(v) + lr−1(v), v < Sr−1(w) + lr−1(w), w, then v
is ordered before w.

d) For two nodes v ∈ V and w ∈ V of the same batch with Sr−1(v) +
lr−1(v), v = Sr−1(w) + lr−1(w), w, their relative order can be arbitrarily de-
cided as long as no cycle is introduced.
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Since those rules are derived from a feasible schedule, this graph is con-
structed without any cycle. Edge weights are set according to the batching
decisions in the given optimal schedule. Property c) guarantees that, for
all adjacent nodes v ∈ V and m(v) ∈ V of the same batch, Sr−1(m(v)) +
lr−1(m(v)),m(v) ≤ Sv holds. Thus, invariant (4) holds for all edges of the
graph.

Figure 1 shows an example that allows to compare batch-aware and
batch-oblivious representations. It shows a schedule with three jobs A, B
and C using two machines. We see two batches processed on machine 2,
each consisting of two operations: One is composed of operation 1 plus
operation 4, another one is composed of operation 5 plus operation 8. For
brevity of notation, sequence-dependent setup times have been omitted and
let us denote p1,4 = p1 = p4 and p5,8 = p5 = p8. Note that invariant (4) is
not visualized in Figure 1 (b), so assume that S1 ≥ rB and S5 ≥ S7 + p7.

5. Building Blocks for Integrated Batching Decisions

This section develops the foundation of our heuristic approach. First, we
describe in Section 5.1 how start dates can be computed from a given batch-
oblivious conjunctive graph. The graph will remain structurally unchanged
in this first version. Then, we define a general move in Section 5.2. It
moves individual operations and is designed to be complemented by the
interleaved start date computation and graph modification that we introduce
in Section 5.3. This interleaved computation advances suitable nodes to “fill
up” incomplete batches. Overall, our method integrates adaptive batching
decisions with one general move to resequence and reassign operations. It
can be used as a building block for metaheuristic approaches.

5.1. Static Start Date Computation

Let us first describe how start dates of operations can be computed from
a given batch-oblivious conjunctive graph. For this, batching decisions are
taken dynamically (“on the fly”) during a traversal of the graph by deciding
the weights of edges. Thereby, it is important to preserve invariant (4)
introduced in Section 4. In contrast to the adaptive start date computation
presented in Section 5.3, this static algorithm does not modify the graph
itself: It preserves all ordering and assignment decisions inherent in the
given conjunctive graph. The ordering is relaxed in the sense that a directed
edge (u, v) ∈ E requires only that operation v must not be processed before
operation u. So, u and v might start at the same time which means they
are part of the same batch.

The computation is based on topological orderings. In an acyclic directed
graph, a topological ordering can be defined as a relation ≺ ⊆ V × V with
v ≺ w ⇒ @ a path from w to v. Thus, traversing a conjunctive graph in
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topological order guarantees that, for each node v ∈ O, both predecessors
r−1(v) and m−1(v) are visited before v. Hence, the inductive formula for Sv

given in equation (1) can be applied.

Algorithm 1 A static batching algorithm for a given conjunctive graph G

computeStartDatesStatically (G)
S0 ← 0
βv ← 1 (∀ v ∈ V )
for v ∈ computeTopologicalOrdering (G \ {0})

i f (Sr−1(v) + pr−1(v) ≤ Sm−1(v) and fm−1(v) = fv and βm−1(v) < bv )

Sv ← Sm−1(v), βv ← βm−1(v) + 1

else
Sv ← max

(
Sr−1(v) + pr−1(v), Sm−1(v) + pm−1(v) + s(m−1(v), v)

)
Algorithm 1 provides the pseudo-code for a static graph evaluation algo-

rithm. It tracks the used capacity β for each node and checks if the families
fv ∈ F and fm−1(v) ∈ F of consecutive operations are equal. The algorithm
greedily creates batches while preserving the invariant for batch-oblivious
conjunctive graphs. This corresponds to a longest path computation with
dynamically specified edge weights. The computation takes O(|E|) time
since a topological ordering in a conjunctive graph can be computed in
O(|E|) and each node is visited exactly once. Batching decisions are taken
greedily and strongly depend on the structure of the given graph.

5.2. An Integrated Batch-Oblivious Move

In order to develop heuristic algorithms, we want to introduce moves
which modify a given batch-oblivious conjunctive graph. Known heuris-
tic approaches we are aware of employ specific knowledge about previous
batching decisions. E.g. they explicitly displace, combine or split entire
batches, or they exchange operations belonging to different batches (Bilyk
et al. (2014); Yugma et al. (2012)). To keep it simpler, we follow a differ-
ent strategy and maintain the batch-obliviousness of our graph also for our
moves. An observation from Section 4 is that, except of its edge weights, our
conjunctive graph representation does not differ from a conjunctive graph
representation for Flexible Job-Shop scheduling problems without batching.
This allows us to apply the move introduced in Dauzère-Pérès and Paulli
(1997) which integrates the resequencing and reassignment of operations.
We include a detailed description of this move in this paper not only for
completeness, but also to adapt it to our notation and to show that it re-
mains valid for redefined edge weights.

Assume that all batching decisions have been taken and thus edge weights
and start dates have been fixed. An operation v is moved after another oper-
ation w as follows: First, the machine related conjunctive edges (m−1(v), v) ∈
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E and (v,m(v)) ∈ E of operation v are replaced by an edge (m−1(v),m(v)).
Then, operation v is reinserted after operation w by replacing the edge
(w,m(w)) ∈ E with two edges (w, v) and (v,m(w)). In the graph that
is created by executing the move, we then have m(w) = v. Recall that
mw must be a machine for which v is qualified to be processed on (i.e.
∃ q ∈ Rv : mq = mw). To be computed efficiently, the feasibility check of
a move relies on start dates of operations as shown in the following. Let
us denote by lv = min

(
lv,m(v), lv, r(v)

)
the minimum weight of the outgoing

edges of a node v ∈ O.

Theorem 2. (Dauzère-Pérès and Paulli (1997)) An operation v ∈ O can
be moved between two operations w and m(w) with w ̸= r(v) and m(w) ̸=
r−1(v) if Sr(v) + lr(v) > Sw and Sm(w) + lm(w) > Sr−1(v).

Proof. When v is removed, the edges (m−1(v), v) and (v,m(v)) are replaced
by an edge (m−1(v),m(v)) which cannot introduce a cycle. When v is
reinserted after w, there are only two possible ways to create a cycle:

a) There was a path from operation r(v) to operation w before moving v.
This implies Sr(v) + lr(v) ≤ Sw, which contradicts the first assumption.

b) There was a path from operationm(w) to operation r−1(v) before moving
v. This implies Sm(w) + lm(w) ≤ Sr−1(v), which contradicts the second
assumption.

Note that the original theorem has been adapted to include redefined
edge weights. This move has been successfully applied to solve Flexible
Job-Shop scheduling problems without batching and is not restricted to a
particular objective function. However, in our case which includes batching,
those moves might tear apart batches. This might lead to poor solutions
containing unfavorable batches of only a single operation. Thus, to escape
from a local optimum, a sequence of moves might need to strongly deterio-
rate a given solution before it can improve it again. The following subsection
shows how we tackle this problem.

5.3. Adaptive Start Date Computation

To improve batching decisions, we interleave the computation of start
dates with modifications of the batch-oblivious conjunctive graph. In par-
ticular, we want to improve schedules created by the moves described in
Section 5.2 by “filling up” batches with remaining machine capacity: We
advance suitable nodes by removing and reinserting them in the graph. In
Algorithm 1 of Section 5.1, a topological ordering is computed first and then
all nodes are traversed in this order. This is not viable anymore if we modify
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the graph while traversing it. Thus, we propose to interleave the compu-
tation of a topological ordering with a dynamic modification of the graph.
We will see in the following that this idea can be described in terms of
unidirectional cuts. During the course of our algorithm, unidirectional cuts
distinguish unsettled nodes that still can be modified from settled nodes
that are fixed. Finally, we propose in Section 5.4 different strategies for
such adaptive graph modifications.

Definitions and Notation. For a given batch-oblivious conjunctive graph
G = (V,E), we consider a cut Vs ⊆ V that partitions the graph into a
subset of settled nodes Vs and a subset of unsettled nodes Vu = V \ Vs.
A cut Vs is called unidirectional if there are no edges from an unsettled node
to a settled node, i.e. E ∩ (Vu × Vs) = ∅. Let us denote by Gs = (Vs, Es)
and Gu = (Vu, Eu) the resulting subgraphs. The edges of each graph G⋆ ∈
{Gs, Gu, G} are given by E⋆ = E ∩ (V⋆ × V⋆). Let us denote for a node
v ∈ V⋆ its indegree in G⋆ by deg−⋆ (v) and its outdegree in G⋆ by deg+⋆ (v).
A node v ∈ V⋆ without incoming edges (i.e. deg−⋆ (v) = 0) is called a root
node of G⋆. A node v ∈ V⋆ without outgoing edges (i.e. deg+⋆ (v) = 0) is
called a leaf node of G⋆.

Proposition 1. In a conjunctive graph G = (V,E), Vs = {0} is a unidirec-
tional cut.

Proof. Since the only settled node 0 ∈ Vs is a root in G, no edges can end
in a settled node.

To settle a node v ∈ Vu with r−1(v) ∈ Vs after a leaf node w ∈ Vs

of Gs, v is removed from Gu and appended to Gs. If m−1(v) = w, the
operation remains assigned to machinemv sequenced after the same machine
predecessor w. In this case, no edges need to be modified. Otherwise,
if m−1(v) ̸= w, we modify the graph G as follows: The machine related
conjunctive edges (m−1(v), v) ∈ E and (v,m(v)) ∈ E of operation v are
replaced by an edge (m−1(v),m(v)) and the edge (w,m(w)) ∈ E is replaced
by two edges (w, v) and (v,m(w)). Settling a node does not change any route
edges. If m−1(v) ̸= w and mv = mw, then v is resequenced. If m−1(v) ̸= w
and mv ̸= mw, then v is reassigned. Note that we require for a node v ∈ Vu

to be reassigned after a node w ∈ Vs that ∃ q ∈ Rv with mq = mw.

Theorem 3. Let G = (V,E) be a conjunctive graph and let Vs be a unidi-
rectional cut in G. When a node v ∈ Vu with r−1(v) ∈ Vs is settled after a
leaf node w ∈ Vs of Gs, the modified graph G′ = (E′, V ′) does not contain
any cycle and V ′

s = Vs ∪ {v} is a unidirectional cut in G′.

Proof. When v ∈ Gu is settled, three edges from E \ Es are deleted and the
edges (m−1(v),m(v)), (w, v) and (v,m(w)) are inserted. Edge deletions can
neither introduce a cycle, nor invalidate any unidirectional cut. Since Vs is a
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unidirectional cut in G and v ∈ Vu, it follows that m(v) ∈ Vu and r(v) ∈ Vu.
With r(v) ∈ V ′

u and m(w) ∈ V ′
u, we conclude that v is a leaf in G′

s. Since
the predecessors of v in G′ are settled, i.e. r−1(v) ∈ V ′

s and w ∈ V ′
s , edges

adjacent to v cannot invalidate the unidirectional cut V ′
s . The only inserted

edge that is not adjacent to v in G′, (m−1(v),m(v)), does not invalidate the
unidirectional cut since m(v) ∈ Vu. Thus, V

′
s is a unidirectional cut in G′.

It remains to show that no cycle is introduced in G′. Since v ∈ V ′
s , the

edge (m−1(v),m(v)) is the only inserted edge that might be contained in
the subgraph G′

u. It cannot introduce a cycle since it replaced the edges
(m−1(v), v) and (v, m(v)). Thus, the subgraph G′

u is acyclic. Both edges
(r−1(v), v) ∈ E′ and (w, v) ∈ E′ that are added to G′

s end in the node
v. Since v is a leaf in G′

s, this cannot introduce a cycle in G′
s. Thus, the

subgraph G′
s is acyclic. Overall, since G′

u and G′
s are acyclic, a cycle in G′

must include an edge from V ′
u to V ′

s . Such an edge cannot exist since V ′
s is

a unidirectional cut in G′.

Algorithm 2 An adaptive batching algorithm for a given conjunctive graph
G

computeStartDatesAdaptively (G)
S0 ← 0
Vs = {0}
βv ← 1 (∀ v ∈ V )
while Vs ̸= V

v, w ← select (v ∈ V \ Vs, w ∈ Vs)
assert (r−1(v) ∈ Vs and deg+s (w) = 0)
settle v after w
i f (Sr−1(v) + pr−1(v) ≤ Sm−1(v) and fm−1(v) = fv and βm−1(v) < bv )

Sv ← Sm−1(v), βv ← βm−1(v) + 1

else
Sv ← max

(
Sr−1(v) + pr−1(v), Sm−1(v) + pm−1(v) + s(m−1(v), v)

)
Vs ← Vs ∪ {v}

Algorithm 2 shows how the results on unidirectional cuts can be applied
to interleave the computation of start dates with modifications of the graph.
Initially, only the artificial start node 0 is considered to be settled. Then,
nodes that meet the criteria of Theorem 3 can be successively settled without
introducing any cycle. The start dates of settled nodes are calculated as
proposed in Algorithm 1. The quality of the resulting schedule and the
efficiency of the algorithm strongly depends on the selection of the nodes v
and w. In the following, we propose and analyze three selection strategies.
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5.4. Strategies for Selecting Nodes

A Static Selection Strategy. A straightforward selection strategy chooses
in each step a root node v ∈ Vu of Gu and settles it after its machine
predecessor w = m−1(v). This strategy does not modify the graph and
iterates the nodes in topological order. Algorithm 2 with this static selection
strategy is equivalent to Algorithm 1 presented in Section 5.1. In order to
implement this strategy, we need to determine root nodes of Gu efficiently.
This has been done by applying the approach of Kahn (1962). It maintains
the indegree in Gu for each node of the graph G and a list containing all root
nodes in Gu. When a node is settled, it is removed from the list of root nodes
in Gu and, for each of its successor nodes, the number of incoming edges in
Gu is decreased. These successor nodes v ∈ Vu are added to the list of root
nodes when their indegree in Gu becomes zero. Since these auxiliary data
structures can be updated in constant time, the runtime of the algorithm is
linear in the number of edges of G.

A Resequencing Selection Strategy. The idea of this strategy is to “fill up”
batches that underutilize the available batching capacity. This is done by
advancing suitable operations on their assigned machines and can be im-
plemented as follows: As in the static strategy, we first determine a root
node v ∈ Vu in Gu. If it can be included in the same batch as its machine
predecessor w = m−1(v) or if no batching capacity is remaining for w, v
is settled after w as in the static selection strategy. Otherwise, we iterate
through the machine successors of v until we find an operation u ∈ Vu with
r−1(u) ∈ Vs and qu = qw for which invariant (4) is fulfilled. If such an
operation is found, u is settled after w, and is combined in a batch with
operation w by Algorithm 2. If no such operation exists, we fall back to
settling v ∈ Vu after w. Again, the auxiliary data structures can be updated
in constant time. We omit the details of this updating procedure due to a
shortage of space.

A Reassigning Selection Strategy. We can enhance the resequencing selec-
tion strategy by extending the search for suitable “batch-filling” operations
to other machines. If no resequenceable operation is found, we continue to
search on other machines for suitable operations to be reassigned: We search
in turn, starting from root nodes y ∈ Vu in Gu with my ̸= mv. Again, we
successively search machine successors of y until an operation u ∈ Vu is
found such that r−1(u) ∈ Vs and ∃ q ∈ Ru : q = qw and which fulfills invari-
ant (4). If such an operation is found, it is settled after w. Otherwise, we
fall back to settling v ∈ Vu after w.

Analysis. We proposed three selection strategies which differ in their effort
to “fill up” underutilized batches. These strategies offer a solid baseline to
evaluate our algorithmic framework. However, finding improved strategies
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might be an interesting challenge for future research. In the worst case, both
the resequencing and the reassignment strategies explore O(|V |) operations
to select a node. This increases the runtime bound of Algorithm 2 to O(|E| ·
|V |). However, in the average case, as observed in the numerical experiments
of Section 7, a much better behavior is obtained since only few batches are
underutilized and only those will trigger a search.

An interesting property of our method is that it includes various classical
moves. Consider as an example the swapping of adjacent batches of different
families. First, an integrated move could displace a single operation of the
second batch before the first batch. Then, the resequencing selection strat-
egy fills up that newly created batch with all operations that had been part
of the second batch. In the end, both batches are swapped. Note that this
is only a simple example of possible interactions. We observe much more
complex rearrangements in practice.

6. Heuristic Approaches

In this section, we apply the building blocks developed in Section 5 within
different heuristics. Since our batch-oblivious methodology is not bound to
one specific solution approach, we deploy it within classical heuristic frame-
works in order to evaluate its performance. In the following, we describe a
construction heuristic, a local search method, a Simulated Annealing meta-
heuristic and a Greedy Randomized Adaptive Search Procedure (GRASP)
based metaheuristic.

First, we define a construction heuristic which adapts the methods pre-
sented in Yugma et al. (2012) and Knopp et al. (2014). If due dates and
weights are given, jobs are initially sorted in decreasing order of their ra-
tio

wj

dj
(weight divided by due date). Otherwise, jobs are initially sorted

in decreasing order of the sum of the shortest processing durations of their
operations. The heuristic then iterates over the sorted list of jobs and suc-
cessively inserts all operations of the current job. The operations of a job
are greedily inserted, starting from the first operation, by selecting the best
insertion position for each operation. The best insertion position is deter-
mined by the objective function value of the partial solution obtained by
actually inserting the considered operation. The construction is completed
when all operations of all jobs have been inserted.

In both local search and Simulated Annealing, we combine the batch-
oblivious move from Section 5.2 with the adaptive start date computation
from Section 5.3 as follows. After a batch-oblivious move is performed, an
adaptive start date computation follows in order to determine start dates and
batching decisions. The combined result of both modifications is considered
as one single move. If such a move is rejected, all involved changes are
collectively reverted. The local search starts with the solution found by
the construction heuristic, and explores the neighborhood using steepest
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descent. All moves reachable from the current solution are evaluated and
the one leading to the best solution is selected. The local search continues
until no strictly better solution is found.

Our Simulated Annealing metaheuristic is based on the same integrated
move and also starts with the solution found by the construction heuris-
tic. In each step, one node is randomly chosen to be moved, its feasible
insertion positions are computed, and one of them is randomly selected and
performed. We use a geometric cooling schedule that maintains a temper-
ature T which is multiplied by a cooling factor Pc < 1 after each iteration.
At iteration n, the move is immediately accepted if the current value of the
objective function fn improves the previous objective function value fn−1.
Otherwise, the new solution is accepted with a probability of exp(−∆

T ), where
∆ = fn − fn−1. If the new solution is not accepted, all changes related to
the move are reversed. The search is stopped if the best solution does not
improve during a specified number of iterations Pm. The initial tempera-
ture is determined by sampling a fixed number Ps of random moves. For
each random move r, we evaluate its influence ∆ = fr − fi on the objective
function value fi of the initial solution. Then, for a tuning parameter Pp,
the Pp-th percentile of these values is selected as initial value for T .

In order to further diversify the search and to make use of the ever
increasing parallelism of modern CPUs, we developed a heuristic approach
based on the idea ofGreedy Randomized Adaptive Search Procedures (GRASP)
of Feo and Resende (1995). Our heuristic creates many different starting
solutions by randomizing the construction heuristic. This is done by per-
turbing the sorted list of jobs used in the construction heuristic as follows.
A tuning parameter Pi ≥ 1 is introduced that steers the perturbation in-
tensity. At each iteration of the construction heuristic, the next job to be
inserted is determined by randomly selecting one of the first Pi elements
in the sorted list of remaining jobs. The operations of the job are then
greedily inserted as described earlier and the job is then removed from the
list. Each solution is independently improved using the Simulated Anneal-
ing metaheuristic. The GRASP based approach is parallelized as follows.
Each solution is constructed and improved independently and thus can be
run in its own thread. The communication between threads is only needed
to update the best overall solution once a thread has completed its compu-
tation. A fixed number of threads is used, and each thread restarts with
a new initial solution once its Simulated Annealing metaheuristic has met
the stopping criterion. We expect the parallel speedup to grow linearly with
the number of threads (i.e., parallel efficiency ≈ 1). In other words, there
should be the same outcome (except minor differences due to the stopping
condition) for a parallel run and a sequential run with a computational time
prolonged proportionally to the number of threads used in the parallel run.
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7. Numerical Results

The algorithms presented in this paper were implemented in C++14
and compiled using the GCC MinGW-W64 compiler in version 4.9.1. All
numerical experiments are conducted on an Intel Xeon E5-2620 2.1 GHz
machine (6 cores) running Microsoft Windows 7. Extensive numerical ex-
periments on different types of industrial and academic instances were per-
formed. The generality of our approach allows to assess its performance
using instances of different scheduling problems. Section 7.1 evaluates our
algorithms on new Complex Job-Shop benchmark instances that stem from
a real-world semiconductor manufacturing facility. Section 7.2 compares our
methods with results for the Complex Job-Shop instances of Mason et al.
(2005). In order to show that our approach remains competitive on prob-
lems of reduced complexity, Section 7.3 compares our methods with results
for the instances for parallel batch machines of Mönch et al. (2005), and
Section 7.4 provides results for the Flexible Job-Shop benchmark instances
of Hurink et al. (1994).

The sampling strategy of our Simulated Annealing implementation avoids
the need to adapt parameters for individual instances. For all numerical ex-
periments, we used the following identical parameter settings: A cooling
factor of Pc = 0.99999, a number of samples Ps = 100, a maximum number
of iterations Pm = 100 000, a temperature percentile of Pt = 5%, and a
perturbation intensity of Pi = 5. All given computational times refer to
wall-clock-time and 6 parallel threads are used in all runs of the GRASP
based approach. All heuristics are run only once since, within the GRASP
based approach, many independent runs are performed.

7.1. Complex Job-Shop Instances from the Diffusion and Cleaning Area

This section presents results for new benchmark instances from the dif-
fusion and cleaning area of a semiconductor manufacturing facility. We pro-
vide two types of instances. First, 15 industrial instances were provided by
STMicroelectronics and modified to anonymize confidential data. Second, 15
random instances that are close to the industrial instances were generated.
The random instances include due dates which are not present in the in-
dustrial instances. All instances are published under github.com/sebastian-
knopp/cjs-instances and its details are described in the following.

Industrial Instances. We perform experiments on 15 industrial instances
that were extracted from the Manufacturing Execution System (MES) of
a semiconductor manufacturing facility over a period of one year. These
instances represent various situations that actually appeared in production.
Smaller instances with around 25 machines represent a subset of the actual
area while larger instances with around 100 machines correspond to the
full area. The number of jobs per instance is between 119 and 346. For
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each job, between one and seven operations have to be performed. Only
some of the machines are capable to process multiple operations in the same
batch. Sequence-dependent setup times are required only for some of the
non-batching machines. Since no due dates are provided, the total weighted
completion time is minimized.

Random Instances. We perform experiments on 15 random instances that
are close to the industrial instances for the diffusion and cleaning area. The
instance generation method described below and its parameters are chosen
to serve this purpose. As in the industrial instances, machines are parti-
tioned into batching machines and non-batching machines. We assume that
all batching machines have the same capacity. A family is processable either
on a random subset of the batching machines or on a random subset of the
regular machines. We generated 15 instances using all possible combinations
for the numbers of jobs |J | ∈ {20, 40, 60, 100, 200} and batching capacities

b ∈ {2, 4, 6}. We consider |J |
20 batching machines, |J |

10 non-batching machines,
|J |
10 batching families, and |J |

5 non-batching families. We denote a discrete
uniform distribution over [a, b] by DU [a, b]. For each job j ∈ J , a random
number |Oj | ∼ DU [1, 7] of operations is chosen. Each operation is ran-
domly assigned to a family. Sequence-dependent setup times ∼DU [1, 10]
are generated between all non-batching families. We use wj ∼ DU [1, 10],
rj ∼DU [0, 2·|J |], dj ∼ rj +DU [pj ,

3
2pj ] for job weights, release dates and

due dates, respectively (pj denotes the minimum sum of the processing du-
rations of all operations of the job). The number of recipes per family is
selected according toDU [1, 5]. For the processing time of operations oi,j ∈ O
we use pi,j ∼b · DU [10, 20] with b = 1 for non-batching machines. The total
weighted tardiness is minimized.

We performed numerical experiments for the described industrial (I) and
random (R) instances allowing a maximum computation time of 5 minutes
per instance. Table 1 provides the obtained objective function values for the
Simulated Annealing and GRASP based approaches. Table 3 provides re-
sults in terms of the relative deviation from the best objective function value
that has been found. We provide average (I, R) and median (Ĩ, R̃) values of
these relative deviations over all instances. The column initial refers to the
solution that is computed using the non-randomized version of the construc-
tion heuristic. We clearly see that the GRASP based approach outperforms
all other approaches. The static selection strategy is outperformed by the
resequencing and the reassigning strategies with a slight advantage for the
resequencing strategy. One reason that could explain the performance of the
resequencing strategy is that a larger number of moves can be performed in
the same amount of time compared to the reassigning strategy, for which
additional time is spent to search for nodes that can be settled.

The number of moves performed per second is analyzed in Table 2, as
well as the different selection strategies and the impact of the parallel imple-
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Simulated Annealing GRASP

|J | |M | static reseq reass static reseq reass

In
d
u
st
ri
a
l
(t
ot
al

w
ei
gh

te
d
co
m
p
le
ti
on

ti
m
e) 01 119 24 92973 93208 93189 92899 92803 92532

02 148 22 250240 249400 243372 245939 242890 239892
03 195 25 217863 203678 203485 208286 202801 201790
04 209 24 271548 265801 268121 267669 260286 260931
05 186 88 171229 169174 170373 167902 163345 162884
06 268 26 341448 333429 333323 336012 331276 329918
07 210 94 150271 150984 158954 149680 150115 150332
08 310 17 465701 461574 460594 454252 451612 447305
09 231 95 167754 167973 168011 167271 166798 166643
10 245 94 202722 199565 204280 198112 197369 195789
11 302 24 561202 562295 561767 554883 555655 554670
12 302 24 350461 349444 371985 345590 344109 345673
13 324 94 349147 337979 340014 346464 334409 334416
14 315 101 475725 470249 505656 469239 450909 465354
15 346 94 777426 726829 749775 736514 698666 702559

R
a
n
d
o
m

(t
ot
al

w
ei
gh

te
d
ta
rd
in
es
s) 01 20 3 10618 10613 10613 10598 10011 10011

02 20 3 6030 6098 6354 5939 5883 5883
03 20 3 7063 7074 7074 7036 7006 7006
04 40 6 9201 9302 9256 8801 9083 9015
05 40 6 14208 14246 14842 14573 14904 14674
06 40 6 37152 33318 32629 32406 32048 32321
07 60 9 17832 17522 17427 16126 15165 15668
08 60 9 41609 40514 41537 42560 41094 42508
09 60 9 35888 37155 37068 31984 32354 30890
10 100 15 28503 30051 30209 28015 27954 28342
11 100 15 34501 33315 36518 32738 33370 33161
12 100 15 50505 44284 49300 39565 40851 43102
13 200 30 28580 27030 47916 28259 27685 32242
14 200 30 55075 53193 67950 52867 51444 58399
15 200 30 66589 63042 66672 60993 60494 62464

Table 1: Detailed results for industrial and random instances
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reass reseq static

#Threads: 1 1 2 3 4 5 6 1 1 1

I |O| #m
s r r r r r r r r ns

|O|

In
d
u
st
ri
a
l

01 193 5810 1.0 2.3 3.4 4.5 5.7 6.7 1.4 1.4 637
02 293 3809 1.0 2.4 3.5 4.7 5.8 6.9 1.4 1.4 647
03 305 3215 1.0 2.3 3.5 4.6 5.8 6.7 1.5 1.5 664
04 370 2768 1.0 2.3 3.4 4.6 5.7 6.8 1.4 1.5 649
05 452 1740 1.0 2.3 3.4 4.5 5.6 6.6 1.8 1.8 700
06 461 1960 1.0 2.3 3.4 4.4 5.7 6.6 1.6 1.6 698
07 472 1300 1.0 2.1 3.1 4.4 5.1 6.2 2.2 2.2 731
08 480 2134 1.0 2.0 3.0 3.7 4.9 5.9 1.3 1.4 705
09 511 1502 1.0 1.9 2.8 3.8 4.7 5.7 1.8 1.8 736
10 539 1441 1.0 1.9 3.0 4.0 4.9 5.9 1.7 1.8 733
11 569 2070 1.0 2.0 2.9 3.9 4.8 5.7 1.2 1.2 718
12 720 963 1.0 1.6 2.2 3.1 3.8 4.6 1.8 1.8 787
13 725 654 1.0 2.1 3.1 4.0 5.1 6.1 2.6 2.7 776
14 752 748 1.0 2.0 3.1 3.7 5.2 6.1 2.3 2.3 759
15 835 609 1.0 2.2 3.2 3.9 5.0 6.0 2.4 2.4 804

R
a
n
d
o
m

01 82 18605 1.0 1.9 2.9 3.8 4.8 5.5 1.0 1.0 640
02 80 17831 1.0 2.0 3.0 3.8 4.9 5.7 1.0 1.1 644
03 75 18635 1.0 2.0 3.0 4.0 5.0 5.8 1.1 1.1 645
04 147 10053 1.0 2.0 3.0 3.9 4.8 5.7 1.0 1.0 652
05 165 7732 1.0 2.1 3.1 3.6 5.2 6.1 1.2 1.2 641
06 159 8749 1.0 2.0 2.9 3.8 4.7 5.2 1.1 1.2 618
07 222 5589 1.0 2.0 3.0 4.0 5.0 5.9 1.2 1.3 640
08 269 3959 1.0 2.1 3.1 3.5 5.1 6.1 1.4 1.5 638
09 220 5682 1.0 2.0 2.9 3.9 4.8 5.6 1.2 1.2 649
10 398 2485 1.0 2.1 3.0 4.0 5.1 6.0 1.4 1.5 668
11 406 2167 1.0 2.0 3.0 3.6 4.9 5.8 1.6 1.7 670
12 387 2507 1.0 1.8 2.7 3.5 4.5 5.3 1.4 1.5 692
13 796 885 1.0 2.0 2.9 3.9 4.8 5.6 1.9 1.9 730
14 796 743 1.0 2.0 2.9 3.8 4.8 6.0 2.1 2.2 758
15 768 820 1.0 1.9 2.9 3.5 4.8 5.6 2.0 2.1 765

Table 2: Analysis of the number of moves performed per second

Initial Local Search Sim. Annealing GRASP

static reseq reass static reseq reass static reseq reass

I 12.2% 7.4% 6.4% 7.6% 3.9% 2.1% 3.8% 2.0% 0.3% 0.3%

Ĩ 10.8% 6.7% 5.7% 6.7% 4.1% 1.6% 3.0% 1.8% 0.3% 0.0%

R 52.9% 41.2% 40.2% 41.2% 8.3% 5.7% 15.2% 2.3% 1.5% 4.2%

R̃ 49.6% 39.9% 39.6% 36.5% 5.7% 4.0% 8.1% 1.1% 0.0% 2.4%

Table 3: Aggregated results for industrial and random instances.
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mentation. In column |O|, the total number of operations for each instance
is provided, since we assume it is correlated to the number of moves which
are performed per second. Different variants of our algorithms have been
tested on the industrial and random instances using a computational time of
one minute for each variant and instance. In order to evaluate the number
of moves performed per second, the time for constructing solutions is not
taken into account. The GRASP based heuristic is run using a large value
for the maximum number of non-improving iterations Pm in order to avoid
triggering runs of the construction algorithm. This setting means there is
one parallel run of the Simulated Annealing algorithm for each thread that
is used. The second row of Table 2 provides the number of used threads. For
runs using the reassigning strategy with one thread, the absolute number of
moves performed per second is given in column #m

s . All columns entitled
by “r” provide the relative number of moves per second. The three right-
most columns provide results for the resequencing and static node selection
strategies. The results show that the reassigning strategy requires more time
per move than the other strategies. Column ns

|O| provides the average num-
ber of nanoseconds that is spent per node while performing a single move.
Being almost constant, these values show that the static selection strategy
yields an algorithm that is linear in the number of nodes. The slight increase
that can be observed might be due to secondary reasons such as an increase
of cache misses coming along with the increased memory consumption of
larger instances; also, additional time might be needed for a larger number
of jobs. The numbers of moves performed per second increases linearly with
the numbers of threads, which shows that the parallel implementation of
our algorithm scales with the number of threads.

7.2. Complex Job-Shop Instances of Mason et al. (2005)

Mason et al. (2005) consider a Complex Job-Shop scheduling problem
from semiconductor manufacturing and provide results for instances based
on the mini-fab model of El Adl et al. (1996). Total weighted tardiness is
minimized in all these instances. There is a difference to our problem defini-
tion that concerns sequence-dependent setup times. Mason et al. (2005) do
not allow the setup between operations oa and ob to begin before the route
predecessor operation of ob is completed. In our definition, this setup can
begin as soon as oa is completed. We consider this difference by modifying
the instances as follows: We consider all setup durations to be zero and
prolong operation processing durations instead. We extend each processing
duration by adding the longest possible setup duration that might precede
the operation. It is important to note that, in case setup durations are cru-
cial, this modification might increase (but never decrease) the optimal total
weighted tardiness.

Table 4 shows results for a batching capacity of b = 3. Results for b = 2
and b = 4 are similar and omitted here for a shortage of space. Columns
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SB Dispatching MIP Batch-Oblivious

|J | best ATCS CR EDD 6 hrs Initial GRASP reass

3 1.484 3.082 2.974 2.996 1.000 2.024 1.268
4 2.028 2.401 3.495 3.371 1.000 2.257 1.313
5 1.885 2.267 3.604 3.207 1.000 1.575 1.098
6 1.283 1.534 1.860 1.929 1.003 1.440 0.876
7 1.131 1.608 1.446 1.515 1.198 1.349 0.735
8 1.164 1.325 1.120 1.193 2.860 1.180 0.713
9 1.240 1.299 1.087 1.207 N/A 1.497 0.806
10 1.266 1.453 1.032 1.066 N/A 1.292 0.768

Table 4: Results for instances of Mason et al. (2005) with b = 3

“Batch-Oblivious” show our results, all others are taken from Mason et al.
(2005) for comparison. We allowed a computational time of 5 seconds per
instance. Values represent normalized average total weighted tardiness and
1.000 represents the best solution found by Mason et al. (2005). For smaller
instances, setup durations are crucial and our results are worse due to the
assumptions for setups in the modified instances. For instances with more
than 5 jobs, setup durations are negligible and our method clearly outper-
forms the results of Mason et al. (2005). Initial solutions obtained by our
construction heuristic are strongly improved by our GRASP based approach.

7.3. Instances for Parallel Batch Machines of Mönch et al. (2005)

Mönch et al. (2005) consider a scheduling problem for the diffusion and
cleaning area that models the machines in that area as parallel batch pro-
cessors. This modeling does not include a Job-Shop environment, so the
problem is less general than ours. From the perspective of this paper, their
instances consist of jobs with exactly one operation without any sequence-
dependent setup times. The instances cover a range of variations regarding
instance sizes, batch sizes, processing times, release dates, and due dates.
We compare our algorithms with results that are obtained by methods ded-
icated to this less general problem. Table 5 provides average values for total
weighted tardiness. The best results for such instances that we are aware
of are reported by Chiang et al. (2010). We put their results in brackets
since they used a parameter-identical reimplementation instead of the orig-
inal instances of Mönch et al. (2005). For this comparison, we scaled their
reported results using the relative values given in their paper.

Our best method (GRASP reass) outperforms the results of Mönch et al.
(2005) and Yugma et al. (2012). It reaches a quality that is comparable to
the dedicated method of Chiang et al. (2010). In contrast to the previous
section, we see stronger differences between the different selection strategies.
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Time #Machines Batch size
(s) m=3 m=4 m=5 b=4 b=8

Mönch et al. (2005) 58 412 300 231 389 240
Chiang et al. (2010) 4 (370) (272) (209) (347) (220)
Yugma et al. (2012) 178 411 278 206 367 229

Initial <1 630 455 356 577 383
Local Search static 14 607 434 334 553 363
Local Search reseq 30 539 399 316 487 348
Local Search reass 60 486 361 269 452 292

Sim. Annealing static 120 548 383 294 503 314
Sim. Annealing reseq 120 457 344 261 418 290
Sim. Annealing reass 120 411 303 210 382 234

GRASP static 120 502 356 266 469 280
GRASP reseq 120 429 318 244 399 262
GRASP reass 120 382 274 197 356 212

Table 5: Results for instances of Mönch et al. (2005) with total weighted tardiness objective

α β
0.25 0.5 0.75 0.25 0.5 0.75

Mönch et al. (2005) 592 282 68 658 232 53
Yugma et al. (2012) 561 269 65 647 215 33

GRASP reass 564 245 44 610 208 35

Table 6: Release date (α) / due date (β) dependent results for instances of Mönch et al.
(2005)

25



20s 30s 60s 120s 300s 1800s 3600s

edata avg 2.55% 1.60% 1.02% 0.78% 0.58% 0.34% 0.27%
max 12.22% 5.98% 4.12% 4.03% 3.85% 2.34% 2.34%

rdata avg 3.13% 1.43% 0.75% 0.58% 0.35% 0.21% 0.15%
max 15.90% 5.83% 3.83% 3.83% 1.46% 1.35% 1.35%

vdata avg 4.66% 2.40% 0.35% 0.21% 0.18% 0.10% 0.09%
max 25.32% 25.32% 2.36% 1.37% 1.37% 0.87% 0.65%

Table 7: Results for instances of Hurink et al. (1994) (gap to best known solution)

We assume that this is due to the fact that, in non-Job-Shop instances, a
larger number of operations is available to be settled. We observe that the
reassigning strategy strongly outperforms both the static and the resequenc-
ing selection strategies. Again, the GRASP metaheuristic approach yields
a clear improvement over Simulated Annealing alone. In addition, Table 6
provides average total weighted tardiness values for varying release date dis-
tributions α and due date tightness distributions β as described in Mönch
et al. (2005). We observe good results for GRASP reass when due dates are
tight.

7.4. Flexible Job-Shop Instances of Hurink et al. (1994)

Finally, we present results for the flexible Job-Shop instances of Hurink
et al. (1994) for which the makespan is minimized. These instances do not
incorporate batching machines and have been widely used to assess the per-
formance of several highly efficient dedicated methods. The instances are
partitioned into edata, rdata, and vdata instances that include low, medium
and high flexibility levels, respectively. The comparison with best known
results from literature refers to the best known solution that is obtained by
combining the results of Jurisch (1992), Dauzère-Pérès and Paulli (1997),
Mastrolilli and Gambardella (2000), Pacino and Van Hentenryck (2011),
Behnke and Geiger (2012) and Schutt et al. (2013). Table 7 reports aggre-
gated results for a range of computational times ranging from 20 seconds
to one hour. Rows avg and max refer to average and maximum gaps to
best known solutions in percent, respectively. The results show that the
GRASP based approach obtains good results even for this much less general
problem. If the computational time is large enough, the GRASP based ap-
proach obtains results that are very close to the best known solutions from
the academic literature. Actually, in four cases, best known solutions were
improved after 1 hour of computational time (rdata-la28 (1079), rdata-la37
(1076), rdata-la40 (969), vdata-la23 (814)).
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8. Conclusion

In this paper, we considered a Complex Job-Shop scheduling problem
with a focus on the integration of batching machines. We reduced the struc-
tural complexity of disjunctive graphs by introducing a novel batch-oblivious
representation. This representation allows to take batching decisions dur-
ing a traversal of the graph and enables the implementation of resequencing
and reassignment strategies that adaptively “fill up” underutilized batches.
Together with an integrated batch-oblivious move, we obtain a neighbor-
hood that is applied in a GRASP based heuristic approach. The scheduling
of parallel batching machines is often considered to be important because
it is a subproblem solution procedure of the shifting bottleneck heuristic.
Our holistic way to modify schedules outperforms such approaches for the
instances considered in our numerical experiments. Our batch-oblivious ap-
proach improves both solution quality and implementation complexity in
comparison to decomposition based approaches.

Avoiding the complexity of additional batching nodes simplifies the in-
clusion of further constraints. Regarding the diffusion and cleaning area, we
want to include the complex routing structures presented in Knopp et al.
(2014) to model machines in more detail. Also in this context, we want
to include additional time constraints that limit the time between certain
operations (see Klemmt and Mönch (2012); Sadeghi et al. (2015)). Though
we already observe good numerical results, we still see opportunities for
further improvements. Enhancing the node selection strategies proposed
in Section 5.4 seems promising. In addition, how to apply the conditions
for testing the feasibility of moves and the move evaluation functions pro-
posed in Mati et al. (2011) and Garćıa-León et al. (2015) for regular criteria
should be investigated. Evaluating the implementation of more advanced
features of GRASP (see Resende and Ribeiro (2010) and Armentano and
de Franca Filho (2007)) could be relevant. The batch-oblivious approach
could also be applied using different metaheuristic methods: GRASP has
strong diversification and intensification mechanisms but lacks elements of
mutual learning that can be found in path-relinking approaches or genetic
algorithms. Speeding up individual moves by only partially updating the
graph as proposed by Katriel et al. (2005), Pearce and Kelly (2007) and
Sobeyko and Mönch (2015) seems applicable and promising as well.
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