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Abstract 

 

In this thesis we apply the Black-Litterman model on the Norwegian stock market 

using historical price data in the period of 2004 to 2015. A wide collection of 

analyst recommendations was used to determine views to feed into the model. We 

provide a theoretical framework of the model, and discuss the implications of 

some of the approaches in the literature. To best understand the functioning of the 

model, we compare it to several mean-variance models and pure benchmark 

portfolios by evaluating them based on five criteria. They asses return, both risk 

adjusted and not, transaction cost and predictability. With equal weights on all 

criteria, the Black-Litterman portfolios perform mediocre despite a positive 

contribution from the views. Regardless of its ranking among comparable 

portfolios, the model behaves intuitively and is undoubtedly an upgrade to 

Markowitz traditional method.  
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1 Introduction 

1.1 Background 

In 1952 Harry Markowitz introduced a concept of mean-variance optimization in 

his article Portfolio Selection. The model outlined was intended to assist investors 

in the effort of constructing optimal portfolios based on historical financial data. 

His contribution would later be considered the foundation of what is today known 

as modern portfolio theory. Although, the approach of using mean-variance 

optimization in order to construct optimal portfolios were sound in theory, 

receiving great praise by academics, the method did not influence practitioners in 

the same manner. The approach had several issues that made its practical 

applications limited. Michaud (1989) argues why the Markowitz “optimized” 

portfolio might not be optimal. One of the major issues discussed by Michaud, is 

how the model tend to maximize the effects of errors in the input assumptions. 

This would, he argued, lead to unintuitive portfolios with unstable asset 

allocations.  

 

Black and Litterman (1992) argued that Markowitz’ model was difficult to use in 

practice, since the portfolios tend to behave badly. First of all, the model requires 

investors to assign exact expected returns for all assets. This assumption is 

unrealistic, since portfolio managers usually only follow a small number of 

securities. The resulting portfolio weights were also extremely sensitive to small 

changes in the inputs of expected returns. Already in 1990, Fisher Black and 

Robert Litterman discussed the inadequacies of the Markowitz model. This 

became the foundation of the Black-Litterman model; hereby referred to as the BL 

model. Further extensions of the model were made in 1991 and 1992, but the 

model has also seen a large amount of supplementary research from other authors. 

In Section 2, we introduce some of the most central articles and extensions related 

to the BL model.  

 

The BL model builds on the same optimization approach suggested by 

Markowitz, but with a different set of expected returns. Instead of using historical 

returns as a proxy for future expected returns, Black and Litterman suggested 

using market equilibrium returns, with notions from the CAPM by Sharpe (1964) 

and Lintner (1965), as reference. The method for arriving at a set of equilibrium 



GRA 19003 – Master Thesis  01.09.2016 

   Page 2 

returns is further based on the works of the Global CAPM by Black (1989). The 

improvements include a new way to easily let investors adjust their portfolio 

based on a set of views. The original model that consisted only of fixed income 

assets and currencies were expanded, in Black and Litterman (1991) and (1992), 

to include equities as well. The optimal portfolio suggested would, simply put, be 

a combination of the market capitalization weighted portfolio and the investors 

own views. Hence, an investor with neutral views would hold the equilibrium 

(market capitalization weighted) portfolio. However, when possessing additional 

views, the model would tilt the optimal portfolio weights according to these 

views.  

1.2 Research Question 

In this thesis, we explore the BL Model and apply it to the Norwegian stock 

market. The process involves setting specific views for individual assets; this is 

done using historical analyst recommendations. We seek to clarify on the 

implementation process and explore the challenges and difficulties associated with 

the BL model. We investigate the implications of model buildup and reasons for 

different outputs. This will help shed light on various aspects of the model 

behavior, as well as other issues related to the process. Even though the idea and 

the end result of the model might be intuitive, the implementation process can 

appear quite complicated. We further discuss the improvements the BL model 

offers to the traditional mean-variance approach. In addition, we evaluate the 

performance, based on several criteria, of BL portfolios, Markowitz portfolios, in 

combination with an equally weighted and market weighted portfolio. 

1.3 Outline 

This thesis will consist of two main parts. Firstly, in Section 2 we will present a 

review of existing literature and Section 3 will consist of a clarification of the 

theoretical framework. Section 4 will in short introduce the data used in the thesis. 

Secondly, Section 5 presents the methodology, while we in Section 6 present the 

results of the empirical analysis. The optimal portfolios constructed using the BL 

model, both with and without short-constraints, will be compared against an 

equally weighted portfolio (1/N), a market weighted portfolio (Mkt_weights), and 

several mean-variance portfolios. These portfolios will be evaluated using the 
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performance criteria; cumulative return, Sharpe ratio, portfolio turnover, certainty 

equivalent return (CEQ), and tracking error. 

1.4 Key Findings 

Measured by Sharpe ratio we did not find a significant difference between the BL 

portfolios and the market or the equally weighted portfolio. However, the 

traditional Markowitz portfolio significantly underperformed the two best 

performers in our sample, which are a Markowitz portfolio with constraints on 

shorting and a Markowitz portfolio where the variance is minimized. This was due 

to poor performance by the traditional Markowitz portfolio resulting from 

excessive trading. In terms of CEQ, the Markowitz portfolio significantly 

underperformed all other portfolios and benchmarks, again due to its poor 

performance. Among the other portfolios, no significant differences were 

detected.   

 

The impact of the analyst recommendations leads the BL portfolios to outperform 

the market in terms of cumulative returns. However, high levels of trading can be 

observed for the BL portfolios, thus, incurring substantial transaction costs. Based 

on all performance criteria, the equally weighted portfolio is the best performer, 

and the traditional Markowitz portfolio is the poorest.  
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2 Literature Review 

 

A starting point for Markowitz was John Burr Williams’ Theory of Investment 

Value (1938). Here, Williams claimed that the value of a security should be the 

same as the net present value of its future dividends. With future dividends being 

unknown, Markowitz claimed that the expected future returns could serve as a 

proxy for future dividends, and hence the value of a security. Together with the 

expected future return, Markowitz (1952) argued that one has to take into 

consideration the variance, i.e. the risk, associated with investing in a portfolio. 

Since dealing with a portfolio of more than one asset, co-movements between 

assets had to be dealt with, which is represented by the covariance of returns.   

 

Markowitz’ mean-variance portfolio model serves the two basic objectives of 

investing; namely maximizing expected return and minimizing the risk. His 

framework has stood the test of time and is still considered academically sound. 

However, multiple practical issues have strongly prevented the model’s impact in 

the professional investment management world.  

 

Many problems with the use of Markowitz’ mean-variance portfolio model has 

been advocated. Black and Litterman (1992, 1) highlighted that “A good part of 

the problem is that such models are difficult to use and tend to result in portfolios 

that are badly behaved”. They elaborate by saying that without constraints the 

model results in large short positions in one or several assets. With no shorting of 

assets, the model frequently assigns zero weights to many assets, i.e. “corner” 

solutions. Also, the model does not take into consideration the market 

capitalization of assets, ending in large positions in assets with low market 

capitalization.  

 

These unintuitive and unreasonable results stem, according to Black and 

Litterman (1992), from two known problems. First, the Markowitz formulation 

requires investment managers to specify expected returns for all assets included in 

the model. This seems laborious, knowing that investors tend to focus only on 

particular segments of the investment universe. In addition to being time 

consuming, expected returns are hard to estimate, and the historical returns that 

are often used is, according to Black and Litterman (1992), a poor proxy for future 
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returns. Second, the weights assigned to each asset in the mean-variance portfolio 

are extremely sensitive to the vector of expected returns. Together, compounding 

each other, these problems produce highly unstable portfolios. As Best and Grauer 

(1991) demonstrated, a small increase in one individual asset’s expected return 

can drive half of the assets from the portfolio (with constraints on shorting).  

 

In Michaud (1989) several problems were discussed. One critique states that the 

Markowitz’ optimizers maximize estimation errors. The estimates of expected 

returns, variances, and covariance are subject to estimation error. The basis for the 

critique lies in the fact that Markowitz optimization overweighs those assets that 

have large expected returns, negative covariance and small variance. His 

argument is that “these securities are, of course, the ones most likely to have large 

estimation errors” (1989, 34). He further claims that using sample means from 

historical data as expected returns contributes to the maximization of estimation 

errors.  Also, he touches upon the issues that the model does not account for 

asset’s market capitalization weights, and the instability of results with respect to 

the expected return input in particular.  

 

The BL model successfully closed some gaps that Markowitz’ left behind with his 

mean-variance optimization model. It creates stable, mean-variance efficient 

portfolios, and according to Lee (2000), there is no longer real issues caused by 

estimation error-maximization. The first significant contribution to asset 

allocation by Black and Litterman is that it provides an intuitive and neutral 

starting point (prior), namely the equilibrium market portfolio, building on the 

work of Black (1989). The second contribution made is that investors can express 

their own views, either relative or absolute, and these views are combined with the 

equilibrium market portfolio, resulting in stable and intuitive portfolios. The 

weight of an asset increases if the investor becomes bullish toward the asset, 

holding everything else equal. The weight also increases if the investor becomes 

more confident about the bullish view. These features serve as two new 

dimensions to portfolio management, which together with the neutral starting 

point of the equilibrium market portfolio makes the model stable, intuitive, and 

valuable to practitioners. As Black and Litterman (1992) writes, they have 

combined two established theories of modern portfolio theory – the mean-
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variance optimization framework of Markowitz and the CAPM of Sharpe and 

Lintner.  

 

In today’s myriad of versions of the BL model, Jay Walters (2014) has sorted the 

models into three distinct reference models, based on two central dimensions. The 

first dimension separates Bayesian from non-Bayesian models. The original BL 

(1991a, 1991b, 1992), together with Bevan and Winkelmann (1998) and He and 

Litterman (1999) uses a Bayesian approach. Walters calls these models, Canonical 

Reference Models (CRM). Non-Bayesian models are further split in two parts, 

models including the parameter τ, often referred to as the ‘weight on views’, 

called Hybrid, while models excluding τ, which are pure mixing models, are 

called Alternative.  

 

The original articles by Black and Litterman (1991b, 1992, 1991a) and He and 

Litterman (1999) focused on the features and overview, rather than on the 

derivation of the formulas behind the model. This made it hard to reproduce, and 

even hard to obtain full understanding of the models build-up. Bevan and 

Winkelmann (1998) provided insight on the internal process of working with the 

BL model within Goldman Sachs. Full derivation of the model is still not 

presented, but an explanation of how they set target risk levels, focusing on 

tracking error and Market Exposure, presented by Litterman and Winkelmann 

(1996), contributes to the development on how to use the model.  

 

In Satchell and Scowcroft (2000), their main objective was to give a mathematical 

depiction of the model. However, their contribution, in retrospect, is the 

introduction of a new non-Bayesian (Hybrid) model. It uses point estimates 

instead of distributions, which leads τ and 𝛺 to affect shrinkage of the views, 

rather than the ‘weight on views’ and uncertainty in the views respectively. Fusai 

and Meucci (2003), and Meucci (2005), focused on a non-Bayesian model, which 

excludes the parameter τ, as 𝛺 alone was considered sufficient in shrinking the 

influence of the views. Using Jay Walters’ analogy, Meucci’s model is the 

Alternative Reference Model (ARM). Meucci (2005) himself coined the phrase, 

“Beyond BL” referring to his model. Looking at the last decade, the most 

influential models, according to Walters, has been the CRM and “Beyond BL”.  
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Idzorek (2002) introduced “user-specified confidence levels”. The method of 

using confidence levels let the investor establish a confidence to each view, 

instead of calculating the less intuitive variance of each view. According to 

Idzorek, this new method should increase the usability of the model. Even if the 

model Idzorek uses is a Hybrid Reference Model it can also be applied to the 

CRM.  
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3 Theory 

 

In this part we will introduce some of the theoretical framework the BL model 

relies on. Black and Litterman presented their approach as an upgrade to the 

traditional mean-variance approach. We will therefore start off by explaining 

some of the most essential aspects of Markowitz (1952). Thereafter, we will 

present the BL model and its framework, to understand how it functions from a 

mathematical point of view.  

3.1 The Markowitz Mean-Variance Model 

The main concept of the mean-variance method is that an investor can, 

theoretically, significantly reduce the risk of a portfolio, while at the same time 

keep a certain level of expected return, or the investor can maximize the expected 

return, given a level of risk. This can be achieved by combining assets that have 

low or negative correlation with one another. Markowitz defined risk as the 

variance of the portfolio, which is determined by the variances of individual asset 

returns, as well as their covariance. The Markowitz model is a normative model, 

rather than a descriptive, attempting to explain how one should select a portfolio, 

and not how people usually go about doing it (Sharpe 1967). Diversification as a 

technique, to lower risk and not influencing the expected return, was well known 

before 1952, but Markowitz’ mean-variance optimization would prove to form a 

comprehensive and convincing argument to validate diversification for decades.  

The investor is assumed to be risk averse, and is only interested in expected return 

and risk.  

 

In order to form traditional mean-variance portfolios an investor needs a proxy for 

expected return, commonly used is the historical returns of all assets, as well as 

the variance and covariance of returns between them. By convention, excess 

returns are used to calculate the covariance matrix and to state the expected 

returns.  

 

Attainable portfolios are reached by solving the following problems 

min
𝑤
𝑤𝑇Σw  

st. 

(1) 

𝑤𝑻𝑟̅ = 𝑟̅𝑝 (2) 
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or 

max
𝑤
𝑤𝑇 𝑟̅ 

st. 

(3) 

𝑤𝑇𝛴𝑤 = 𝜎𝑝
2 

 

(4) 

Where 

w is the vector of portfolio weights 

w* is the optimal portfolio 

𝜎𝑝
2 is the variance of the portfolio 

𝑟̅ is the expected returns of the portfolio 

𝑟̅p is the required returns of the portfolio 

μ is the vector of expected excess returns 

Σ is the covariance matrix 

𝛿 is the risk aversion coefficient that states the tradeoff between risk and 

return 

 

However, often the following problem is solved, and its result is referred to as the 

Markowitz’ optimal portfolio (w*).  

max
𝑤
𝑤𝑇𝜇 − 

𝛿

2
𝑤𝑇𝛴𝑤 (5) 

𝑤∗ = (𝛿𝛴)−1𝜇 (6) 

3.2 Causes of the Mean-Variance Methods’ Limited Practical Use 

As previously stated, the Markowitz model has received praise in the academic 

world, but its practical impact through implementation amongst practitioners has 

been limited. Several reasons for this have been presented over the years. From a 

theoretical standpoint two assumptions must hold for the mean-variance model to 

provide the optimal risk-return tradeoff. Firstly, returns have to be jointly normal; 

secondly, one must have perfect knowledge of Σ and μ. 

 

As stated by Michaud (1989) and Black and Litterman (1992), maximization of 

errors is one of the most important problems, at least fundamentally. The reason 

for the problem is that all inputs need to be estimated, i.e. expected returns, 

variances and covariance. These factors are estimates, and will be affected by 

estimation error. The argument made is that assets that have high expected return, 

low variance, or negative covariance tend to be subject to large estimation errors 

relative to their counterparts. Such assets receive overweight due to their attractive 

features, which results in portfolios that ‘maximize’ errors.  
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Portfolio weights have been reported to be extremely sensitive to changes in 

inputs, and expected returns in particular, by, among others Best and Grauer 

(1991). Michaud (1989) also comment upon this and attributes this feature of 

oversensitivity to ill-conditioned covariance matrices. Greater samples of 

historical data to estimate the covariance matrix are the only remedy proposed. In 

DeMiguel, Garlappi and Uppal (2005), they found that 3 000 months were needed 

in the estimation window (of a 25 asset portfolio) for the sample-based mean-

variance strategy to outperform the equally weighted portfolio, based on several 

criteria. By this they aim to highlight the severity of estimation error, which also 

cause oversensitive portfolios. 

 

A sample mean of historical returns is often used as expected returns in the mean-

variance model. According to Michaud (1989) this causes portfolios to maximize 

errors and to be overly sensitive.  

 

The Markowitz’ model does not account for differences in market capitalization 

between assets. Therefore, it can suggest large long positions in companies with 

low market capitalization. This can impose a direct problem in the 

implementation, but also, in some cases, there will be a strong price effect that is 

hard to anticipate.  

 

The problems mentioned above has a technical nature, however, the main issue is 

highly practical. The final weights suggested by the Markowitz’ model are 

typically extreme, meaning unreasonably large short and long positions to exploit 

the in-sample-based features of the portfolio. The gearing proposed is generally 

not feasible, and implementation would be costly. Also, most practitioners are 

constrained from shorting, implying that the theoretically appealing features of 

optimal diversification is not relevant to start with. If constraints on shorting were 

to be imposed, the suggested portfolio would be ‘corner solutions’, meaning zero 

weight in many stocks and large weight in few stocks. With little diversification, 

these corner solutions are risky and undesirable to investors. This fact combined 

with the argument of estimation error maximization and portfolio sensitivity 

makes the applicability of the model limited.  
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3.2.1 Markowitz’ Comment  

Many of the problems connected to the mean-variance method of Markowitz are 

in great extent dealt with by the BL model. More stable portfolios, less corner 

solutions proposed, market capitalization accounted for, and maximization of 

errors reduced due to less extreme portfolios. Thus, the BL model is valuable in 

practice. The only difference however, is the calculation of expected returns. 

Instead of using mean historical returns, which has been the conventional method 

associated with Markowitz optimization, BL expected returns are used. 

Markowitz (1959, 14) comments upon the difficulty of forming inputs to the 

model.   

 

“Portfolio selection should be based on reasonable beliefs about future 

rather than past performances per se. Choice based on past performances 

alone assume, in effect, that average returns of the past are good estimates 

of the “likely” return in the future; and variability of return in the past is a 

good measure of the uncertainty of return in the future.” 

 

Further, he states that he created a model for portfolio optimization and that it is 

the job of security analysts to figure out what input to feed into the model.   

3.3 The Black-Litterman Model 

When the BL model was first introduced in 1990, it represented a solution to 

some the problems with the theoretical Markowitz framework. The new approach 

to the portfolio selection problem builds on the same maximization of risk and 

return tradeoff. The main difference, however, lies in the estimation of expected 

returns. As a starting point one often uses the market capitalization weighted 

portfolio, which is later tilted towards the views of the portfolio manager. These 

views are subjective in nature, but since most portfolio managers have certain 

beliefs about how the market will develop; the model serves as a tool for practical 

use. In addition to using the market equilibrium portfolio as a starting point, 

Meucci (2009) illustrates that an investors’ current portfolio or an index can be 

applied. In reaching the BL expected return vector a Bayesian approach is used to 

combine the implied equilibrium returns with views. Optimal weights are then 

determined by mean-variance optimization.  
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We will now present the BL master formula and its input. It shows how the BL 

returns are calculated, which is the cornerstone of the model.  

𝜇̂ = [(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃]−1[(𝜏𝛴)−1𝛱 + 𝑃𝑇𝛺−1𝑄] (7) 

Where  

𝜇̂  is the vector of mean expected excess returns 

τ   is a scalar that represents the ‘weight on views’ 

Σ  is the covariance matrix of historical excess returns 

P  is the matrix linking assets to views 

𝛺 is a diagonal matrix comprised of the uncertainty of each view 

represented by its error terms 

Π is the vector of implied equilibrium expected excess returns 

Q is a vector consisting of the investor views 

 

These BL expected returns are then used to solve problem (3) above, and optimal 

weights are obtained.  

 

When applying the BL model using subjective views about specific industries, 

companies, markets or asset classes, one assumes that the efficient market 

hypothesis in its semi-strong form do not hold. Therefore, to benefit from own 

conceptions about the future market development, mispricing must at least prevail 

occasionally.   

3.3.1 The Canonical Reference Model 

Again, using the analogy of Jay Walters (2013), the CRM refers to the original 

BL. We will here define the reference model for returns, which is fundamental in 

defining the model. It is here the various versions of the BL model differ. This 

presentation will contribute to the understanding of the original model, as well as 

its main difference compared to another model we will deploy later, namely the 

ARM. The reference model clarifies which variables that are random and which 

parameters that are modeled, unlike the variables that are not random and 

parameters that are not modeled.  

 

We first assume that the expected returns are normally distributed 

𝑟 ~ 𝑁 (𝜇 , 𝛴) (8) 
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These are the expected returns we eventually want to model. These two moments 

are the only needed inputs to solve a Markowitz optimization, however, some 

more modeling is needed.  

 

Now, we define the expected return, i.e. the mean return, as a random variable 

𝜇 ~ 𝑁 (𝜋 , 𝛴𝜋) (9) 

where π represents the estimate of the mean, μ, and 𝛴𝜋 is the variance of the 

estimate of the true mean, μ. A linear relationship as shown below is obtained. 

𝜇 = 𝜋 + 𝜀 (10) 

The interpretation is that the expected returns are normally distributed around our 

estimate π, with a disturbance term ε. Further, the disturbance term has a mean of 

zero and a variance of 𝛴𝜋. The disturbance term is also considered to be 

uncorrelated with the prior, μ. As a final step we define 𝛴𝑟 as the variance of 

returns, r, about the estimate, π. This leads to the following equation. 

𝛴𝑟 = 𝛴 + 𝛴𝜋 (11) 

Now, we can define the CRM for returns as 

𝑟 ~ 𝑁 (𝜋 , 𝛴𝑟) (12) 

Equation (8) is the reference model for the ARM. The difference is that Equation 

(8) uses a point estimate of μ, rather than a distribution. Knowing the difference 

between the reference models is important to understand how parameters 

influence the outcome. In our implementation of the BL model we will apply both 

the CRM and the ARM. A presentation of the latter model will therefore follow in 

Section 3.3.6. 

3.3.2 Reverse Optimization and the Risk Aversion Parameter 

The implied equilibrium returns are estimated using a method called reverse 

optimization. First of all, the BL model utilizes General Equilibrium theory, 

which says that each sub-portfolio must be in equilibrium if the aggregate 

portfolio is. We will work with a quadratic utility function and assume that there 

is a risk free asset available to investors. The equilibrium returns are then CAPM 
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(Capital Asset Pricing Model) returns, and the portfolio without views is equal to 

the CAPM Market portfolio. CAPM returns are not hard to calculate for assets 

individually, however, since the CAPM market portfolio consist of all investable 

assets it becomes demanding. The technique of reverse optimization solves this 

problem. In its derivation we start with the quadratic utility function 

𝑈 = 𝑤𝑇𝛱 − (
𝛿

2
)𝑤𝑇𝛴𝑤 

(13) 

U The objective function that represent investors utility 

w Row vector of weights  

Π Row vector of equilibrium excess returns 

δ Risk aversion 

Σ Covariance matrix of excess returns 

 

Maximizing utility with respect to weights will give us the solution. So, we take 

the first derivative of (13) w.r.t. w and then we solve for Π and obtain 

𝛱 = 𝛿𝛴𝑤 (14) 

The covariance matrix is estimated using historical data, and the market weights 

can easily be found in the market (at least for listed companies etc.). The risk 

aversion parameter however, is not yet accounted for. Multiplying (14) above with 

𝑤𝑇 and changing to scalar terms, and then solving for δ, we obtain the following 

expression for the risk aversion parameter 

𝛿 = (𝑟 − 𝑟𝑓)/𝜎
2 (15) 

where r is the total market return (𝑤𝑇𝛱 + 𝑟𝑓), 𝑟𝑓 is the risk free rate, and 𝜎2 is the 

variance of the market (𝑤𝑇𝛴𝑤). Once δ is calculated, one can plug it in to (14), 

together with the covariance matrix (Σ) and the market weights (w), to find the 

implied equilibrium returns (also called the prior).  

 

Now we can develop the prior distribution using an assumption made by Black 

and Litterman; the covariance of the estimate is proportional to the covariance of 

returns (𝛴𝜋 = 𝜏𝛴). Thus, τ is a parameter of this proportionality. Making the prior 

distribution for the BL model, P(A), equal to 
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𝑃(𝐴) ~ 𝑁(𝛱, 𝜏𝛴), 𝑟𝐴 ~ 𝑁(𝑃(𝐴), 𝛴) (16) 

The mean is an estimate and the variance is set proportionally. τ is often 

appointed low values. Black and Litterman (1992) for instance assumed τ equal to 

0.025, because the variance of the estimated mean is assumed to be smaller than 

the variance of returns in itself. Using the CRM, (12), the prior distribution, can 

be written as 

𝑟𝐴 ~ 𝑁(𝛱, (1 + 𝜏)𝛴) (17) 

From this, a curiosity of the models behavior can be explained. It is often stated 

that a BL model without views will be equal to the market portfolio, but this is 

only true if one constrains the model to invest 100% in the portfolio. Without this 

budget constraint 𝜏/(1 + 𝜏) will be invested at a risk free rate. Below is the 

mathematical proof from Walters (2014), using what we already know.  

𝛱 = 𝛿𝛴𝑤 

𝑤 = (𝛿𝛴)−1𝛱 

𝑤̂ = ((1 + 𝜏)𝛿𝛴)−1𝛱 

𝑤̂ = (
1

1 + 𝜏
) (𝛿𝛴)−1𝛱 

𝑤̂ = (
1

1 + 𝜏
)𝑤 

(18) 

 

3.3.3 Building the Inputs 

Merging the implied equilibrium returns with views requires the user to specify 

the view vector (Q), the uncertainty in views (𝛺), and the link matrix (P). The 

view vector is a k × 1 column vector, where k is the number of views. It discloses 

what return an investor believes an asset will reap (for absolute views), or the 

difference in return between assets (for relative views).  

 

Since there is uncertainty related to the views, each view has an error term (ε𝑖). It 

can be presented like this 

𝑄 + 𝜀 = [
𝑄1
⋮
𝑄𝑘

]+[

𝜀1
⋮
𝜀𝑘
] 
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The error terms do not enter the BL formula, and they are non-observable at the 

time of investment. Without the error terms the investor would be 100% 

confident, due to absolute certainty. To incorporate these errors, estimated 

variances of the views are included in the model through 𝛺. It is, in most cases, a 

diagonal covariance matrix consisting of the variance of the error terms (ω). The 

off-diagonal positions are hence zero, meaning that the views are considered to be 

uncorrelated. According to Walters (2014) the problem is constrained in this way 

to improve stability and increase simplicity of the problem. Mankert (2006) 

argues that such an assumption is inconsistent, due to lack of uncorrelated error 

terms in Σ; meaning that the returns of the assets are correlated and so should the 

views. 

 

Since 𝛺 is a set of variances of the error terms connected to each view it represent 

the uncertainty of views. Entering the model is 𝛺−1, which denote the confidence, 

or precision, related to the views.  

 

There are multiple ways to calculate 𝛺. We will here present the original method 

that assumes proportionality between the variance of returns and the variance of 

the views. He and Litterman (1999) defined the variance of views as follows 

𝛺 = 𝑑𝑖𝑎𝑔(𝑃(𝜏𝛴)𝑃𝑇) (19) 

This is the method most frequently used, although the alternative presented by 

Meucci (2005) has gained a foothold as well. The greatest difference in his 

alternative is that the matrix is not diagonal, implying that views are allowed to 

have other than zero covariance. He sets 

𝛺 = (
1

𝑐
)𝑃𝛴𝑃𝑇 

(20) 

where c > 1 and often set equal to 𝜏−1.  

 

This leads to the following 𝛺 matrices 

[
𝜔1 0 0
0 ⋱ 0
0 0 𝜔𝑘

]      𝑜𝑟    [

𝜔1,1 … 𝜔1,𝑘
⋮ ⋱ ⋮
𝜔𝑘,1 … 𝜔𝑘,𝑘

] 
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To connect the view vector (Q) to assets, one must specify a link matrix (P). It is a  

k × n matrix, where there are k views on n assets. In the implementation that later 

will follow, the P matrix will simply be, by construction, the identity matrix. This 

is due to the fact that only absolute views will be applied, and that k will equal n 

at all times. We will elaborate more in Section (5).  

 

Determining a distribution for the views is not always possible due to the fact that 

the P matrix does not have to be of full rank (Walters 2014), meaning that 

incomplete or relative views may create a non-invertible variance. Even if it is 

hard to interpret the conditional distribution we find it important to elaborate in 

order to better grasp the model. Following Walters (2014), the conditional 

distribution in view and asset space is given respectively  

𝑃(𝐵|𝐴) ~ 𝑁(𝑄, 𝛺) (21) 

𝑃(𝐵|𝐴) ~ 𝑁(𝑃−1𝑄, [𝑃𝑇𝛺−1𝑃]−1) (22) 

3.3.4 𝜏; Function and Reason 

(i) What is meant by a precision weighted average: The expected returns 

calculated using the BL model is often referred to as a precision weighted 

average. From how the model usually is presented that is hard to tell. However, 

with some small modifications of the ‘master formula’ it becomes more apparent.  

𝜇̂ = [(𝜏𝛴)−1𝛱 + 𝑃𝑇𝛺−1𝑄][(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃]−1 

=
(𝜏𝛴)−1𝛱 + 𝑃𝑇𝛺−1𝑄

(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃
=

(𝜏𝛴)−1

(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃
𝛱 +

𝑃𝑇𝛺−1𝑃

(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃
𝑃−𝟏𝑄 

𝜏𝛴 and 𝛺 are referred to as the uncertainty of the prior and the views respectively. 

Thus, the inverse of uncertainty is called the precision, and it is evident that the 

fractions above form a precision weighted average. Also, from this it is clear that 

the posterior distribution will have a higher precision than either the prior or the 

conditional distribution.  

 

(ii) BL expected returns when 𝛺 is proportional to the variance of asset returns: 

According to Walters (2014) this is the most common method in specifying 𝛺. By 

construction, the variance of the prior is set proportionally to the variance of 



GRA 19003 – Master Thesis  01.09.2016 

   Page 18 

assets (𝛴𝜋 = 𝜏𝛴). If the variance of the views (𝛺) is specified by the same 

proportionality (τ), then the weight of the prior distribution and conditional 

distribution will be equal in forming the posterior distribution. This is best 

understood if looking at the equation above, where the precision of the implied 

equilibrium returns (Π) and the returns of the views (𝑃−1𝑄) is the same. The 

reason is that both are set proportionately to the variance of asset returns (Σ). A 

proof will follow with two initial assumptions.  

1. 𝛺 = 𝑃(𝜏𝛴)𝑃𝑇 

2. 𝑃𝑇 = 𝑃 = 𝐼 

Where I is the identity matrix. Further, we define 𝑉 = 𝑃−1𝑄. 

𝜇̂ = [(𝜏𝛴)−1𝛱 + 𝑃𝑇𝛺−1𝑄][(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃]−1 

= [(𝜏𝛴)−1𝛱 + 𝑃𝑇(𝑃(𝜏𝛴)𝑃𝑇)−1𝑄][(𝜏𝛴)−1 + 𝑃𝑇(𝑃(𝜏𝛴)𝑃𝑇)−1𝑃]−1 

= [(𝜏𝛴)−1𝛱 + (𝜏𝛴)−1𝑉][(𝜏𝛴)−1 + (𝜏𝛴)−1]−1 

=
(𝜏𝛴)−1(𝛱 + 𝑉)

(𝜏𝛴)−1 + (𝜏𝛴)−1
=
(𝜏𝛴)−1(𝛱 + 𝑉)

2(𝜏𝛴)−1
=
𝛱 + 𝑉

2
 

Hence, defining 𝛺 in this way and having a link (P) matrix equal to the identity 

matrix, τ will be irrelevant for the outcome of the model. As shown above, BL 

expected returns would be a simple average of the implied equilibrium returns and 

the absolute returns stated in the views.  

3.3.5 Using Bayes Theorem for the Estimation Model 

Estimating the BL returns require a blending of the implied equilibrium returns 

and the views. Both of them are normally distributed and by applying Bayesian 

theory we can model the posterior distribution, which is the blending of the prior 

(17) and conditional (22) distribution.  

 

The posterior distribution becomes a precision weighted average of the prior and 

conditional distribution. Applying Bayes Theorem, the posterior distribution can 

be constructed, also called the BL master formula (Walters 2014). 

𝑃(𝐴|𝐵) ~ 𝑁([(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃]−1[(𝜏𝛴)−1𝛱

+ 𝑃𝑇𝛺−1𝑄], [(𝜏𝛴)−1 + 𝑃𝑇𝛺−1𝑃]−1) 

(23) 



GRA 19003 – Master Thesis  01.09.2016 

   Page 19 

It is, however, worthwhile to present the mean return in the following manner for 

intuitive purposes  

𝜇̂ = 𝛱 + 𝜏𝛴𝑃𝑇[(𝑃𝜏𝛴𝑃𝑇) + 𝛺]−1[𝑄 − 𝑃𝛱] (24) 

To provide further intuition of this equation, two extreme scenarios are presented. 

First, we let 𝛺 be zero, meaning that there is 100% certainty in the views. 

Commonly 𝛺 is estimated as 𝑑𝑖𝑎𝑔(𝑃(𝜏𝛴)𝑃𝑇), but this is just one possible method 

of obtaining 𝛺. Instead, we set all variances (and covariance) of the views (𝜔𝑘,𝑘) 

equal to zero, so (24) transforms to the following 

𝜇̂ = 𝛱 + 𝛴𝑃𝑇[𝑃𝛴𝑃𝑇]−1[𝑄 − 𝑃𝛱] (25) 

𝛺 is simply left out and τ cancels since there is only one term left in the brackets 

which is put in inverse. If a view is specified for every asset, then P will be 

invertible and further simplification can easily be performed. We obtain 

𝜇̂ = 𝑃−1𝑄 (26) 

It makes sense that the views solely set expected returns if there is no uncertainty 

related to them. On the other hand, if the practitioner of the model is not certain 

about the views (𝛺 = ∞), then the expected returns are equal to the implied 

returns. To see this, the second term on the right hand side of (24) is divided by an 

infinitely large number, and thus converges toward zero. 

3.3.6 The Alternative Reference Model 

This is the most commonly used extension or alternative to the original BL model. 

It is used in Satchell and Scowcroft (2000) and in Meucci (2005). The ARM is as 

follows 

𝐸(𝑟) ~ 𝑁 (𝜇 , 𝛴) (27) 

Here, 𝐸(𝑟) is normally distributed with a variance of Σ. We do not model μ as a 

random variable in this case; it is rather a point estimate. This is frequently 

referred to as setting τ = 1, but τ is actually eliminated altogether. Black and 

Litterman assumed in their original model that the covariance of the estimate was 

proportional to the covariance of returns. This is where τ entered, forming the 

assumption: 𝛴𝜋 = 𝜏𝛴. When eliminating τ from the model, 𝛺 is the only 
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parameter that controls the merging of the implied equilibrium returns and the 

views. Rewriting (24) results in the following expression for the BL expected 

returns. 

𝛱̂ = 𝛱 + 𝛴𝑃𝑇((𝑃𝛴𝑃𝑇) + 𝛺)
−1
(𝛺 − 𝑃𝛱) (28) 

With these expected returns, unlike with Bayesian returns, the outcome without 

views would be equal to the market weights, since we previously had 𝑤̂ =

(
1

1+𝜏
)𝑤.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GRA 19003 – Master Thesis  01.09.2016 

   Page 21 

4 Data 

 

In this Section we describe the data used, and the sources it is collected from. 

 

In order to form a good basis for the construction of an optimal and diversified 

portfolio we begin by specifying an investment universe consisting of Norwegian 

stocks listed on Oslo Stock Exchange (OSE). For it to be diversified, the relative 

weight of each stock needed to be non-negligible. On those grounds, we selected 

the 20 largest companies that were listed before 2004, see Appendix, Table A1. 

We collected weekly prices for these companies from Bloomberg, starting from 

the beginning of 2004 to the end of 2015. In order to reflect the total return to 

investors, prices with adjustments for dividends were used (Total Return Net of 

Dividends). Further, logarithmic (ln) returns were calculated to meet the normality 

assumption. We decided to use weekly return data as this will provide us with 

what we believe is a sufficient number of observations.  

 

In calculating the covariance matrix, we used excess returns, which is the 

conventional method. To arrive at the excess returns, we proceeded to collect a 

proxy for the risk-free rate. As the investment period is 10 years, we decided to 

use 10-year Norwegian Government bonds in order to match the risk-free 

alternative attainable over a similar time horizon. The data was collected from 

Norges Bank for the period of 2004-2015. Additionally, in order to calculate the 

implied equilibrium returns, market weights were needed on every rebalancing 

date, i.e. the last Friday every month from 2006 to 2015. The current market 

capitalization was used as a proxy for each firms’ size and further used to arrive at 

the company’s specific weight at each week and month.  

 

Data on analysts’ recommendations were collected from the Bloomberg database 

for the investment period 2006-2015. For each company, the total number of buy, 

hold and sell recommendations on the last Friday of every month, i.e. the 

rebalance date, were retrieved. Based on these sentiment samples, practices were 

developed to determine whether the BL portfolio would underweight or 

overweight a stock, and to what extent.  
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5 Methodology 

 

In this Section we clarify the different empirical approaches used in this thesis 

and the motivation for the choices made. The methods of choice are based on the 

original work by Black and Litterman (1990, 1991 and 1992), as well as the later 

publications by Meucci (2005, 2010). 

 

As mentioned earlier, the BL model can be constructed using different reference 

models. These reference models differ in framework and applicability. We will 

employ both what is referred to as the CRM and the ARM (Walters 2014).  

 

The BL models are applied to the Norwegian Stock Market using weekly data 

from 2004-2015, where the first two years are used solely as input for the 

covariance matrix, i.e. a rolling window consisting of 104 observations. The 

investment period starts on January 1st 2006 and lasts for 10 years with 

rebalancing occurring on the last Friday of every month. We define our 

investment universe as the 20 largest stocks, measured by market capitalization. 

The portfolios constructed using the BL approach will be compared against a 

traditional Markowitz maximum Sharpe portfolio and three other benchmark 

portfolios. These benchmark portfolios are; market capitalization weighted, 

equally weighted, and minimum variance. The performance of all portfolios will 

be evaluated by the following five performance criteria: (i) cumulative returns; (ii) 

the out-of-sample Sharpe ratio; (iii) portfolio turnover (trading volume), (iv) CEQ, 

and (v) tracking error.  

 

We will construct portfolios both with and without constraints on short selling. 

There are two main reasons for this; first, mutual funds are not allowed to short 

sell stocks. This means that many potential users of the BL model and mean-

variance methods are restricted. The second reason is that the mean-variance 

approach has a tendency to suggest unreasonably large short positions in one or 

several assets.  

 

In Section 3.3.4 (ii) we proved that if one defines 𝛺 as 𝑃(𝜏𝛴)𝑃𝑇, and at the same 

time use a P matrix equal to the identity matrix, the BL expected returns will be a 
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simple average of the implied equilibrium returns (𝛱) and the returns of the views 

(𝑃−1𝑄). This definition of 𝛺 appears to be most common, which is somewhat 

peculiar in our understanding, as it renders the model unaffected by 𝜏. Few 

authors pinpoint this fact in their work even though it obviously is important in 

the understanding of the model. Knowing this we will still apply the original 

model (CRM) with 𝛺 as outlined in (19) and the ARM will be applied with 𝛺 as 

outlined in (20). A discussion of how to determine the value of τ will follow, 

however, its value will be irrelevant in our CRM and work as a scalar to set the 

uncertainty related to views in the ARM (1 𝑐⁄ = 𝜏). We hope that this will shed 

light on the different aspects of the models, both in terms of their behavior and 

end results.  

5.1 Constructing a New Set of Expected Returns 

This Section will clarify how our model has been build, with remark to some 

specific details. The BL expected returns relies heavily on how the parameters are 

set and defined, therefore we devote this Section to describe just that.  

5.1.1 Estimating the Covariance Matrix 

In the BL model, together with many other quantitative financial models, the 

returns are assumed to be normally distributed. We assume the return data to be 

log normally distributed, thus the covariance matrix is estimated with ln returns in 

order to achieve normality. In addition, excess returns are used, meaning asset 

returns above the weekly risk free rate. The covariance matrix is updated for every 

rebalancing, i.e. estimation of a new portfolio, with a rolling window of two years 

or 104 weekly returns.   

5.1.2 Setting a Value for 𝜏 

How to set 𝜏 has been a subject of great discussion. Some authors set small values 

for 𝜏, while some ignore it. Meucci (2005) sets 𝜏 to 1 and in effect eliminate 𝜏 

using the ARM, while Black and Litterman (1992), He and Litterman (1999), and 

Idzorek (2005) choose a value of 𝜏 between 0.025 and 0.05. Satchell and 

Scowcroft (2000) discuss the use of 𝜏 “around” 1, while Walters (2014, 20) state 

that this has no intuitive connection to the data. Taking into account the 

convincing argument that 𝜏 is closer to 0 than 1, because the uncertainty in the 

mean is lower than the uncertainty in returns, the statement from Walters in his 
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2014 article makes sense. To see why, from a statistical standpoint, consider the 

following. Let’s say one bootstraps a distribution of means using m samples of 

size n (with replacement). As the number of samples (m) goes to infinity, the 

central limit theory tells us that 𝛴𝜋 converges toward 𝛴 𝑛⁄  (Walters 2013). 

Knowing that 𝛴𝜋 = 𝜏𝛴, we thus have 

𝛴𝜋 = 𝜏𝛴 = 𝛴 𝑛⁄     𝜏 = 1 𝑛⁄  

The most intuitive definition of n in this particular case is to set n equal to the 

number of observations used to determine the covariance matrix, which is two 

years of weekly observations, i.e. n = 104. Thus, the value of 𝜏 in our models will 

be 0.00962 (1/104).  

5.1.3 Risk Aversion 

The risk-return tradeoff for the investor is determined by the risk aversion 

parameter δ. The value of δ is generally calculated as the rolling average of 

market return divided by the market volatility; see (15). The parameter directly 

affects the value of the implied equilibrium return (Π) vector. We found the value 

of δ, when using the general calculation method, to be volatile, and in some cases 

negative. This created some problems with parts of the calculation. In He and 

Litterman (1999), the parameter of δ is set as a constant value of δ = 2.5. This is 

assumed to be a representation of the world average risk tolerance. The above 

reasoning leads us to apply a constant δ of 2.5 across the entire investment period.  

5.1.4 Investor Views 

The specified views by the portfolio managers have a large impact on the final 

weights suggested by the BL optimization problem. A view can either be defined 

as an absolute view or a relative view. An absolute view is set on an individual 

asset basis, while a relative view is set for more than one asset. The latter would 

be useful in the event where an investor believe one or more assets will 

outperform other assets. In the BL model, a view is assigned a value of 1, 0, or -1 

to represent the nature of the view. A bullish view is assigned a value of 1, while a 

bearish view is assigned a value of -1, and a neutral view is given a value of 0. 

The nature of the view determines in which direction the portfolio will be tilted. A 

bullish view will increase the weights for a given stock keeping everything else 

equal, while a bearish view will decrease the weights for the stock. 
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The P matrix regulates which assets are related to the different views. In our case, 

as the specified views are absolute and all assets have a view, by construction, at 

all times, the P matrix is the identity matrix. Since the portfolio is estimated 120 

times it is easier not to adjust the size of the P matrix continuously. When a 

neutral view (0) is assigned to a stock, the return in the Q matrix will be equal to 

the corresponding implied equilibrium return. The Q vector contains the actual 

quantified investor views in the form of expected returns.  

 

In order to arrive at these expected returns in the Q vector we utilize the sentiment 

of analyst recommendations. If more than 70% of analysts recommend a buy, the 

implied equilibrium returns are scaled upwards by 30%. If the buy ratio is 

between 60 and 70% the tilt is 20%, and with a buy ratio of between 50 and 60% 

the tilt is 10%. The same goes for sell signals, only that the scaling is respectively 

30, 20, and 10 % downward. The view is set as neutral when less than half of the 

analysts possess neither a bullish or bearish view. In essence, three levels for each 

sentiment are used, i.e. strong buy, buy and weak buy, or strong sell, sell and 

weak sell.  

 

The model input of investor views is of a highly subjective nature. In order to 

mitigate this issue, we have formed our views using a compilation of analyst 

recommendations. Hence, we collected buy, hold and sell recommendations from 

a wide selection of financial institutions. In so doing, we will form some sort of 

analyst consensus, and also, the extent to which analysts agree will serve as an 

extra dimension in the information gathering. From these views we will estimate 

new portfolios on a monthly basis (120 times).  

 

In our CRM 𝛺 is defined as 𝑑𝑖𝑎𝑔(𝑃(𝜏𝛴)𝑃𝑇), but remembering the proof under 

Section 3.3.4, 𝛺 has no impact on the end result. In our ARM however, Ω is 

defined as (1 𝑐⁄ )𝑃𝛴𝑃𝑇. Using the same arguments as for τ, 1/c is set equal to 

1/104. This level of uncertainty is used as a starting point.  
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5.1.5 Combining All Input into BL Expected Returns 

The process of constructing a new set of expected returns is the most central part 

of the BL model. To arrive at the new set of expected returns, we apply the BL 

master formula (23). The formula is restated here 

𝜇̂ = [(τΣ)−1 + PTΩ−1P]−1[(τΣ)−1Π + PTΩ−1Q] (29) 

The implied equilibrium returns (Π) are the starting point, and is reached by 

performing reverse optimization as described in Section 3.3.2. Following this, the 

investor views are stated through the P matrix and Q matrix. The Ω matrix 

captures the variance of the specified views and the covariance between the 

different views (in the ARM) acting as a measure of uncertainty in the views. We 

proceed to separately calculate the first (30) and the second term (31) of the BL 

master formula, before combining them to arrive at the final set of new expected 

returns. 

[(τΣ)−1 + PTΩ−1P]−1 (30) 

[(τΣ)−1Π + PTΩ−1Q] (31) 

5.2 Estimating the portfolios 

The method of estimating the portfolio weights is performed using the traditional 

Markowitz optimization method. All of the required automation processes were 

possible to achieve using the Macro function in Microsoft Excel, and simple use 

of VBA coding. For every rebalancing a solver-computation is run for each 

portfolio. Because the starting weights matter for the end result using solver, each 

portfolio is assigned the current market weights before executed. A constraint 

forcing the aggregate portfolio weights equal to one is included; hence, investing 

in a risk free asset is not an option. The initial weights in January 2006 for all 

portfolios, including the market capitalization weighted portfolio, are displayed in 

the Appendix, Table 2. 

 

The optimal portfolios are obtained by maximizing the Sharpe ratio using the 

Markowitz framework 

max
𝑝
𝑆𝑅 =

𝑅𝑝 − 𝑅𝑓

𝜎𝑝2
 

(32) 
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s.t       ∑ 𝑤𝑖
𝑁
𝑖=1 = 1, 𝑤ℎ𝑒𝑟𝑒 𝑁 = 20 

and the constrained portfolios, s.t   

𝑤𝑖 ≥ 0 

5.3 Benchmark Portfolios 

5.3.1 Markowitz Maximum Sharpe Ratio Portfolio 

This is the traditional Markowitz optimal portfolio that optimizes the Sharpe ratio, 

as shown in (32). Both the input in the covariance matrix and the calculations for 

the mean historical return uses an estimation window of 2 years, or 104 

observations. The return data used in the calculations are ln values. Because of 

unfeasible weights occurring for a large portion of the investment period we chose 

to make a constrained version in order to have a more sensible basis for 

comparison. This version constrains the weights of individual stocks to be at most, 

long or short, 100% of the portfolio. Although constraining the portfolio will 

prevent a theoretically optimal model to unfold, we find it necessary in order to 

implement the portfolio, without its features being lost for comparison purposes. 

The aforementioned will be referred to as the MV portfolio; in addition, we 

include a version with constraints on short selling, hereby referred to the MV_ns. 

5.3.2 Market Capitalization Weighted Portfolio   

The benchmark will act as a proxy for the market portfolio in our study, and will 

be referred to as Mkt_weights. It contains the 20 stocks that comprise our 

investment universe. Weights are calculated based on market capitalizations in 

2006. Once invested in these weights in January 2006, no rebalancing is needed, 

thus the turnover of this portfolio is zero. 

5.3.3 Equally Weighted Portfolio     

This benchmark is commonly referred to as the naive portfolio where an equal 

amount is invested in each of the 20 stocks, hereby denoted 1/N. Each stock will 

be given a portfolio weight of 5 percent and will be rebalanced every month 

(𝑤𝑖 = 1 𝑁⁄ ). 



GRA 19003 – Master Thesis  01.09.2016 

   Page 28 

5.3.4 Minimum Variance Portfolio     

This portfolio follows the techniques of Markowitz and is constructed by 

minimizing the portfolio variance, from this time on referred to as Min_var. 

Hence, the portfolio is not influenced by the estimation error related to expected 

returns. 

 min
𝑝
𝜎𝑝
2 (33) 

s.t                ∑ 𝑤𝑖
𝑁
𝑖=1 = 1, 𝑤ℎ𝑒𝑟𝑒 𝑁 = 20. 

5.4 Portfolio Performance Criteria 

In order to properly evaluate our BL portfolios we compare them to the 

Markowitz maximum Sharpe portfolios and the benchmark portfolios along five 

different performance criteria. To analyze if the strategies are statistically 

distinguishable, we performed tests on the out-of-sample Sharpe ratio and the 

CEQ, for all strategy pairs. 

5.4.1 Cumulative Return 

The cumulative return obtained out-of-sample for each portfolio is calculated 

throughout the investment period. The model estimation is based on ln returns, 

however when estimating the resulting change in wealth, raw returns are used. 

Also, keep in mind that returns are reported in excess of the risk free rate, i.e. 

above the yield of 10-year Norwegian Government bonds. 

5.4.2 Out-of-Sample Sharpe Ratio 

We gather the in- and out-of-sample Sharpe ratio at each rebalance date. The in-

sample Sharpe ratio compared to the out-of-sample Sharpe ratio gauge the effect 

of estimation error, or, in other words, the effect of a non-clairvoyant investor. 

Strategy k’s out-of-sample Sharpe is defined as the sample mean of out-of-sample 

excess returns over their standard deviation (μ̂k σ̂k⁄ )1. The in-sample Sharpe ratio 

using Markowitz optimization is the theoretically optimal solution, while the out-

of-sample Sharpe ratio is calculated using these optimal portfolio weights and 

post-rebalance returns. Markowitz in-sample Sharpe will be used as a benchmark 

representing the maximum Sharpe ratio throughout the analysis. To tell whether 

                                                 

1 We have used ln values of out-of-sample excess returns to obtain a better estimate of the mean, 

see Hudson and Gregoriou (2010). 
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or not the Sharpe ratios (out-of sample) are statistically distinguishable we 

performed the test proposed by Jobson and Korkie (1981), with the correction of 

Memmel (2003).2 

5.4.3 Portfolio Turnover 

The portfolio turnover, or the trading volume, is recorded for each portfolio at 

every rebalance date. The turnover of the portfolio represents the average portion 

of the total portfolio that is reallocated each month. Hence, a high level of 

turnover translates into higher transaction costs for the portfolio. We define 

turnover as in the article 1/N (DeMiguel, Garlappi, Uppal 2005).3  

5.4.4 Certainty Equivalent Return 

The CEQ is the return an investor, with a given risk aversion level, would choose 

with certainty over a higher but uncertain portfolio return. Assuming that 

investors are mean-variance optimizers and have a quadratic utility, the CEQ of 

portfolio k is 

𝐶𝐸𝑄̂𝑘 = 𝜇̂𝑘 −
𝛿

2
𝜎̂𝑘
2, (34) 

where 𝜇̂𝑘 and 𝜎̂𝑘
2 is the sample mean and variance of excess returns and δ is still 

the risk aversion parameter (set to 2.5). Other authors apply a δ of 1 when 

calculating CEQ, see for example 1/N (DeMiguel, Garlappi, Uppal).   

 

                                                 

2 With two portfolios i and n, the test for difference in Sharpe ratios, 𝐻0: 𝜇̂𝑖 𝜎̂𝑖⁄ − 𝜇̂𝑛 𝜎̂𝑛⁄ = 0, has 

the following test statistic 𝑧̂𝐽𝐾 , which has a standard normal distribution:  

𝑧̂𝐽𝐾 =
𝜎̂𝑛𝜇̂𝑖 − 𝜎̂𝑖𝜇̂𝑛

√𝜗̂
 

and 

𝜗̂ =
1

𝑇−𝑀
(2𝜎̂𝑖

2𝜎̂𝑛
2 − 2𝜎̂𝑖𝜎̂𝑛𝜎̂𝑖,𝑛 +

1

2
𝜇̂𝑖
2𝜎̂𝑛

2 +
1

2
𝜇̂𝑛
2𝜎̂𝑖

2 −
𝜇̂𝑖𝜇̂𝑛

𝜎̂𝑖𝜎̂𝑛
𝜎̂𝑖,𝑛
2 ). 

where the means, variances, and covariance are estimated over the sample size T – M.  

 
3 Turnover is defined as the average absolute value traded per rebalancing:  

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
1

𝑇−𝑀
∑  𝑇−𝑀
𝑡=1 ∑ (|𝑤̂𝑘,𝑗,𝑡+1 − 𝑤̂𝑘,𝑗,𝑡|)

𝑁
𝑗=1 , where T is the length of the total dataset and M 

is the length of the estimation window. Further, subscript k, j, and t represent strategies, assets, and 

time respectively. Note that for the market weighted portfolio the turnover is zero, but for the 

equally weighted portfolio it is not due to fluctuations in market prices.  
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The test used to quantify the statistical difference between portfolios builds on the 

work by Greene (1997).4  

5.4.5 Tracking Error 

The tracking error is assessed for the BL portfolios and the Markowitz portfolios 

(including Min_var) against the market weighted portfolio and the equally 

weighted portfolio. Tracking error is measured as the standard deviation of the 

difference in return between a portfolio and a benchmark. The rationale for 

including this criterion is that large deviations from a benchmark can reveal 

unpredictable behavior.  Hence, measuring how different an investor can 

anticipate the portfolio to evolve in relation to the benchmark.  The market 

weighted portfolio and the equally weighted portfolio are stable portfolios that 

serve as intuitive benchmarks for this matter. Market weighted portfolios are often 

imitated by ETFs (exchange traded funds) and serves as easily available, highly 

diversified investments. The equally weighted portfolio is known as the naive 

portfolio, investing the same amount in every security included in a portfolio. 

Because of their availability and widespread use in simple diversification we 

employ these portfolios as benchmarks.  

 

 

 

 

 

 

 

 

 

 

                                                 

4 If 𝑓(𝑣) = (𝜇𝑖 −
𝛿

2
𝜎𝑖
2) − (𝜇̂𝑛 −

𝛿

2
𝜎̂𝑛
2), where i and n represent two different portfolios, the 

asymptotic distribution of 𝑓(𝑣) is according to Greene (1997): √𝑇(𝑓(𝑣̂) − 𝑓(𝑣))  →

𝑁 (0,
𝛿𝑓

𝛿𝑣

𝑇
𝛩
𝛿𝑓

𝛿𝑣
), where 

𝛩 =

(

 
 

𝜎𝑖
2 𝜎𝑖,𝑛 0 0

𝜎𝑖,𝑛 𝜎𝑛
2 0 0

0 0 2𝜎𝑖
4 2𝜎𝑖,𝑛

2

0 0 2𝜎𝑖,𝑛
2 2𝜎𝑖

4
)
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6 Empirical Results and Analysis 

 

In this chapter we present the results of our empirical study and elaborate on our 

findings. We will discuss the performance of our optimal BL and Markowitz 

portfolios and the accompanied benchmarks in the period of 2006-2015. 

Hopefully, this will enlighten various aspects of the portfolios and reveal their 

main differences.  

 

Empirical results will be presented for a total of nine different strategies or 

portfolios; the three benchmarks (Mkt_weights, 1/N, and Min_var), MV with and 

without constraints on shorting, together with 4 different BL portfolios. As 

previously mentioned we have employed two versions of the BL model. First is 

the CRM (BL (Can.) and BL_ns (Can.)) where, due to how Ω is defined, the BL 

expected returns are a simple average of the prior and conditional distribution 

(shown in Section 3.3.4). Therefore, the often mentioned weights-on-views will 

play no role. Our ARM (BL (Alt.) and BL_ns (Alt.)) will contrast this since the 

uncertainty in views is scaled by 1/c. These two models are common despite that 

they are fundamentally different from a theoretical standpoint and despite that 

only one of them offers a tool to influence the end result based on the confidence 

related to views.  

6.1 Performance Criteria 

The portfolios will be evaluated and assigned a rank according to each 

performance criteria as well as an overall ranking. Assigning ranks to each 

portfolio will act as a way to organize the evaluation process. When looking at the 

performance it is important to keep in mind the fact that the BL portfolios are, of 

course, heavily influenced by the investor views. However, assessing the turnover 

and tracking error will highlight the behavior of the BL model rather than the 

effects of views in particular.  
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6.1.1 Cumulative Return 

Graph 1: Cumulative Returns 2006-2015 

 

 

Graph 1 shows the cumulative returns over the investment period for all 

portfolios. The highest performing portfolio in terms of cumulative return over the 

period is the Min_var portfolio, with an excess return of 233%, or an average 

annual return of 12.8% (see Table 1, Panel B). All the portfolios constructed using 

the BL approach outperform the market weighted portfolio; however, only the 

portfolios constructed using the ARM outperform the equally weighted portfolio. 

This is due to the fact that the ARM assigns a higher confidence in views; hence, 

the portfolios deviate from the market to a higher degree. Further, the market 

weights in this sample are dominated by a small number of companies with 

relatively large market capitalization compared to the average company included. 

Hence, the portfolios constructed using the BL approach will be more sensitive to 

share price fluctuations in the largest companies in our sample. The 1/N portfolio 

overweight small companies relative to large ones, thus implying that with our 

sample over the period 2006-2015 smaller than average companies outperform 

larger than average companies.  

 

Even though the end results between the two BL portfolios are quite similar, the 

ARMs deviate more from the market portfolio than the CRM. This can be seen 

studying the graphs of cumulative returns.  
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Graph 2: Comparison of Yearly Returns 

 

 

Graph 2 indicates a clear correlation of yearly portfolio returns. The co-movement 

is particularly strong the first four years. Correlations of raw returns are presented 

in Table 4. All of the portfolios are highly correlated with the market, except for 

the MV portfolio.  

 

Table 1, Panel A shows the development for each portfolio return year by year. 

Again, the correlation in returns is evident. However, some are still varying more 

than others, even though they tend to move in the same direction. All portfolios 

experience steep declines in 2008, but most show a strong recovery in 2009, 

recuperating from the financial crisis the year before. The MV portfolios and the 

Min_var portfolio, however, do not recover in 2009. The MV portfolio plummets 

badly in the end of 2008 and the beginning of 2009, with the worst week showing 

negative returns in excess of 50%, and never recovers from the resulting low 

portfolio value. The MV_ns and Min_var portfolios do not recover as strongly in 

2009 and their correlation with the market is not as high as for the other portfolios 

(0.624 and 0.564 respectively). The two portfolios reap high profits the last four 

years, ending up being the best performing portfolios (looking at compounding 

raw returns).  
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Table 1: Yearly Returns for All Portfolios 

The table lists the raw returns for all portfolios during the investment period. Panel A displays the returns on a yearly basis. 

Panel B shows the average compounded return of each portfolio across the 10-year period. The investments period spans 

from the first month of 2006 to the last month of 2015. The return data is calculated using weekly excess returns, i.e. the 
return above 10-year Norwegian government bonds. 

 

Strategy MV MV_ns 

BL 

(Can.) 

BL_ns 

(Can.) BL (Alt.) 

BL_ns 

(Alt.) 1/N 

Mkt 

weights Min. var 

       Panel A: Yearly Returns for All Portfolios   

 

        

2006 -15.56 % 19.04 % 25.82 % 24.80 % 26.96 % 26.72 % 31.01 % 24.46 % 31.37 % 

2007 4.26 % 18.32 % 10.79 % 8.45 % 14.20 % 8.03 % 6.96 % 7.74 % 14.11 % 

2008 -50.89 % -20.39 % -63.02 % -53.59 % -73.98 % -54.18 % -54.51 % -51.87 % -40.39 % 

2009 -97.43 % 6.55 % 153.2 % 88.28 % 318 % 106.2 % 87.70 % 54.54 % 6.97 % 

2010 5.97 % 38.00 % 0.49 % 14.42 % -9.19 % 18.56 % 30.33 % 9.90 % 31.40 % 

2011 23.11 % -28.54 % -3.12 % -12.09 % 1.10 % -15.37 % -22.65 % -8.25 % 8.96 % 

2012 -5.15 % 6.50 % 13.63 % 11.58 % 19.32 % 16.34 % 21.10 % 6.61 % 18.71 % 

2013 75.33 % 46.44 % 20.42 % 16.51 % 20.00 % 13.07 % 22.85 % 19.70 % 36.23 % 

2014 -0.14 % 27.67 % 3.74 % 4.57 % 1.31 % 2.76 % 2.41 % 6.02 % 16.28 % 

2015 46.08 % 17.47 % -2.74 % -1.20 % -9.31 % -6.48 % 3.65 % 3.37 % 29.54 % 

       

Panel B: Average Compounded Returns 

 

  

 

       

2006-2015 -28.44 % 10.67 % 5.78 % 4.80 % 6.65 % 5.07 % 6.65 % 3.47 % 12.80 % 

 

Table A3 displays a high correlation between the BL portfolios. Due to the low 

uncertainty in the views for the ARM, the returns display a higher volatility and 

are less correlated with the market. This is intuitive as lower uncertainty assigned 

to investor views will cause larger weight to be placed on views rather than the 

market portfolio. The average compounding return of the BL portfolios show that 

the ARM outperforms the CRM. The reason is that the views contribute to 

outperforming the market, so that the more weight being put on them the better. If 

the views contributed negatively, the ARM would underperform. 

 

If we ignore the MV portfolio, the worst performer overall is the market portfolio. 

The BL portfolios outperform the market because of the investor views. MV_ns is 

not as easy to interpret, but resemble a momentum strategy when historical returns 

are used as a proxy for expected returns. The 1/N portfolio overweight small 

stocks compared to the market, indicating that, in our sample, small stocks 

outperform large stocks.  
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6.1.2 Sharpe Ratio 

Table 2: Comparison of In-Sample and Out-Of-Sample Sharpe Ratios 

The table displays the weekly Sharpe ratios using logarithmic values. Panel A lists the In-Sample Sharpe ratios as 
calculated by the solver function in Microsoft Excel. Panel B lists the out-of-sample Sharpe ratios representing the actual 

Sharpe ratios achieved calculated using ln values of returns. The reason for using ln values of returns is to more accurately 

estimate an average level of out-of-sample excess return (and the accompanying standard deviation) (Hudson and 
Gregoriou 2010). Also, since working with ln returns in-sample, the two are comparable. 

  

Strategy MV MV_ns 

BL 

(Can.) 

BL_ns 

(Can.) 

BL 

(Alt.) 

BL_ns 

(Alt.) 1/N 

Mkt 

weights 

Min 

var 

            Panel A: In-Sample                   

Expected Portfolio Return 0.0232 0.0061 0.0041 0.0037 0.0054 0.0042 0.0033 0.0033 0.0021 

Portfolio Standard Deviation 0.0672 0.0353 0.0400 0.0374 0.0463 0.0387 0.0379 0.0365 0.0207 

Sharpe Ratio 0.4114 0.2161 0.0958 0.0942 0.1100 0.1033 0.0812 0.0866 0.1185 

            Panel B: Out-of-Sample                   

Portfolio Returns -0.0064 0.0019 0.0011 0.0009 0.0012 0.0009 0.0012 0.0007 0.0023 

Portfolio Standard Deviation 0.0978 0.0309 0.0388 0.0345 0.0488 0.0357 0.0360 0.0336 0.0261 

Sharpe Ratio -0.0657 0.0629 0.0278 0.0261 0.0253 0.0266 0.0344 0.0195 0.0884 

 

In Table 2, Panel A and B, the in- and out-of-sample weekly Sharpe ratios are 

presented. The difference between them demonstrates the degree of estimation 

error and reliability associated with the model estimates. As expected, the 

portfolios constructed using the traditional MV approach, the MV and MV_ns, 

show high Sharpe ratios in-sample, 0.411 and 0.216 respectively. The Sharpe ratio 

of the MV portfolio represents an optimal diversification strategy without 

estimation error. However, these levels are far off the Sharpe ratios achieved out-

of-sample, with levels of -0.066 for the MV and 0.063 for the MV_ns. Deviations 

can also be observed for the BL portfolios although to a lower degree than for the 

MV portfolios. The BL portfolios perform close to identically in terms of Sharpe 

ratios out-of-sample, ranging from 0.025 (BL (Alt.)) to 0.028 (BL (Can.)). In-

sample, a minor distinction is evident between the CRM and the ARM, with 0.096 

and 0.110, 0.094 (ns) and 0.103 (ns) respectively. It becomes evident that the 

model overestimates the portfolios expected return for all the portfolios, as well as 

the benchmarks, with one exception, namely the Min_var. The highest performing 

portfolio in terms of out-of-sample Sharpe ratio is the Min_var portfolio. It also 

has the lowest deviation between in- and out-of-sample Sharpe ratios. 
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Table 3: Annualized Sharpe Ratios 

The table lists the annualized Sharpe Ratios for all portfolios on a yearly basis. The annualized Sharpe ratio is calculated 

using the yearly returns from Table 3, and the annualized standard deviation values from Table 7. The Sharpe ratios 

displayed are derived from raw excess return data, i.e. the return above the 10-year Norwegian government bonds. 

 

Year MV MV_ns 
BL 

(Can.) 
BL_ns 
(Can.) BL (Alt.) 

BL_ns 
(Alt.) 1/N Mkt_weights Min_var 

2006 -0.3757 0.9392 1.1705 1.1607 1.1149 1.2096 1.5134 1.1770 1.9703 

2007 0.0893 1.0088 0.5706 0.4750 0.6760 0.4593 0.4253 0.4186 0.9898 

2008 -0.6950 -0.7212 -1.1537 -1.1744 -1.0327 -1.1465 -1.1756 -1.1701 -1.1471 

2009 -0.9045 0.2206 4.1750 2.7186 6.5677 3.0930 2.6252 1.7912 0.3058 

2010 0.0969 1.5188 0.0204 0.6821 -0.2960 0.8510 1.3314 0.4746 1.8237 

2011 0.3593 -1.0543 -0.1428 -0.5175 0.0492 -0.6464 -0.8237 -0.3517 0.5497 

2012 -0.1297 0.4222 0.8571 0.7880 0.9884 1.0264 1.2913 0.5005 1.8376 

2013 2.1496 3.4653 1.6667 1.4501 1.2247 0.9993 2.0065 1.9680 3.2588 

2014 -0.0020 1.2751 0.1855 0.2583 0.0548 0.1560 0.1296 0.3410 0.9611 

2015 0.5281 1.3209 -0.1556 -0.0736 -0.4567 -0.3981 0.2001 0.1930 2.2318 

Average 0.1116 0.8395 0.7194 0.5767 0.8890 0.5604 0.7523 0.5342 1.2781 

 

Table 3 shows the annualized (out-of-sample) Sharpe ratios for each year included 

in the investment period for each individual portfolio. The annualized Sharpe 

ratios are calculated using the yearly compounding returns and annualized 

standard deviations. To arrive at the annualized standard deviation, we apply the 

technique explained in, among others, Kritzman (1991), where the standard 

deviation of returns used are scaled to yearly values by multiplying with the 

square root of the number of observations in a full year, i.e. 52 for weekly data, 

see Table A4. The results indicate that on average the short-restricted BL 

portfolios, both constructed using the CRM and ARM, perform close to the 

market capitalization weighted portfolio in terms of risk-adjusted returns. The 

portfolio constructed by minimizing the portfolio variance shows the highest risk 

adjusted returns, in terms of Sharpe ratio, followed by the BL portfolio 

constructed using the ARM. 

 

Table A5 presents the p-values for differences in Sharpe ratios. The Min_var 

portfolio is statistically distinguishable from the MV, Mkt_weights, and BL_ns 

(Can.) portfolios at a 10% level. Min_var is the best performer in the sample, and 

the other three are ranked ninth, eighth, and sixth respectively. None of the pairs 

including two BL portfolios are close to being statistically distinguishable. Up to 

this point they have been reported to yield about the same return, both risk 

adjusted and not, therefore this result is not considered surprising. Other 



GRA 19003 – Master Thesis  01.09.2016 

   Page 37 

performance criteria may measure their differences more clearly, such as turnover 

and tracking error.  

6.1.3 Portfolio Turnover 

Graph 3: Comparison of Portfolio Turnover 

 

 

Table A6 shows the level of turnover inherent in each portfolio, the same results 

are displayed graphically above. The turnover criterion represents the portion of a 

portfolio that on average is being reallocated at each rebalance date, i.e. every 

month. Thus, this criterion is used to measure the transaction cost associated with 

the different portfolio. As expected, the MV portfolio with no short constraints 

holds the highest level of turnover. On average, just below 300% of the portfolio 

is reallocated every month. This is due to the excessively large long and short 

positions suggested in several stocks, and the instability of these positions.  

 

Comparing the BL portfolios constructed using the CRM and the ARM, the latter 

has twice the turnover without constraints (1.07 vs 0.53) and close to 50% higher 

with constraints on shorting (0.31 vs 0.21). This result translates into greater 

implied transaction costs in the implementation of the ARM. The greater 

fluctuation in suggested weights, the greater the turnover or transaction cost will 

end up being. Because the BL portfolios apply the market (with zero turnover by 

construction) as a prior or starting point, the ARM ends up with a higher turnover 

due to its stronger confidence in views. Naturally, portfolios with constraints on 

shorting have lower turnover, holding everything else equal.  
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6.1.4 Certainty Equivalent Return 

Table 10, Panel A, shows the obtained CEQ for all portfolios and Table 10, Panel 

B, presents the p-values of the differences in CEQ. Again, the results are 

calculated with a risk aversion parameter of 2.5. Due to uncertainty related to how 

to determine the risk aversion parameter, we want to emphasize that δ only affects 

the estimation of the BL portfolios. Meaning that one can easily assess, for all 

portfolios except the BL portfolios, the impact of δ on CEQ. To determine the 

new CEQ values for the BL portfolios one have to calculate new out-of-sample 

excess returns with the new risk aversion parameter.  

Table 4: Certainty Equivalent Return and Statistical 

Test of Difference in CEQ 

The certainty equivalent return for each portfolio is displayed in Panel A below. A statistical test of the differences in CEQ 
is shown in Panel B. The certainty equivalent return is the return an investor would accept with certainty instead of 

investing in a given risky investment. The CEQ is calculated by subtracting from the mean return, the parameter δ divided 
by two and multiplied by the variance of return. In this calculation the ln returns are used, and the CEQ is reported in 

weekly returns. The statistical test of the difference in CEQ follows the methodology by Greene (1997) described in 

Section 4.4.4.  It shows whether or not two portfolios have a significant different CEQ, and to which extent. 
  

Strategy MV MV_ns 

BL 

(Can.) 

BL_ns 

(Can.) BL (Alt.) 

BL_ns 

(Alt.) 1/N Mkt_weights Min_var 

          
Panel A: Certainty Equivalent Return for All Portfolios           

CEQ -1.84 % 0.08 % -0.08 % -0.06 % -0.17 % -0.06 % -0.04 % -0.08 % 0.15 % 

          
Panel B: P-values for differences in CEQ             

MV 

 

0.0001 0.0001 0.0001 0.0004 0.0001 0.0000 0.0001 0.0000 

MV_ns 

  
0.5672 0.6067 0.4148 0.5991 0.6717 0.5550 0.7522 

BL (Can.) 

   
0.9445 0.8074 0.9590 0.8935 0.9864 0.3603 

BL_ns (Can.) 
    

0.7448 0.9855 0.9467 0.9547 0.3843 

BL (Alt.) 
     

0.7606 0.6985 0.7758 0.2514 

BL_ns (Alt.) 

      
0.9333 0.9700 0.3783 

1/N 

       
0.9013 0.4452 

Mkt 
weighted 

        
0.3423 

Min_var 
          

The CEQ of the MV portfolio is -1.84%, which means that an investor would be 

willing to accept a weekly loss of 1.84% with certainty over investing in the MV 

portfolio. The CEQ of the MV portfolio stands out from the rest with its poor 

performance; however, six out of the other eight is also negative. BL (Alt.) has the 

second lowest CEQ with a value of -0.17%, which in yearly terms translates into a 

loss of 9.2%. The CEQ of the market changes from -0.08% (-4.0% yearly) to 

0.009% (0.4% yearly) when changing δ from 2.5 to 1. This highlights the 
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somewhat arbitrary value of the CEQ, caused by the seemingly arbitrary choice of 

δ. Even though the level of the values can be hard to interpret, the ranking of the 

portfolios stay the same.  

 

Analyzing Table 4, Panel B, the differences in CEQ between the portfolios are not 

statistically significant for all portfolios except the MV portfolio. All pairs 

including the MV portfolio are statistically significant at the 1% level. Thus, the 

MV portfolio can be separated from the other portfolios, but among the remaining 

portfolios the CEQ is not statistically distinguishable.  

6.1.5 Tracking Error 

Table 5 shows the weekly tracking error for all portfolios related to two of the 

benchmarks. The tracking error for the MV portfolio exceeds 10% for both 

benchmarks. The weekly deviations are extremely high and underpin the 

unpredictability inherent in the MV portfolio. The MV_ns and Min_var portfolios 

are at reasonable levels (2.78%/2.77% and 2.83/3.06% respectively) even though 

they do not follow the market as closely as the BL portfolios.  

Table 5: Tracking Error 

The tracking error of the optimized portfolios is displayed in the table below. The first row shows the tracking error of the 

Markowitz portfolios and the BL portfolios against the market capitalization weighted portfolio. The second row shows the 

tracking error for the same portfolios as row 1 but in relation to the equally weighted portfolio. Lastly, the tracking error is 
reported in weekly returns. 

  

Benchmark MV MV_ns 
BL 

(Can.) 
BL_ns 
(Can.) BL (Alt.) 

BL_ns 
(Alt.) Min_var 

Mkt_weights 10.13 % 2.78 % 1.41 % 0.61 % 2.91 % 1.01 % 2.83 % 

1/N 10.55 % 2.77 % 1.90 % 1.24 % 3.16 % 1.27 % 3.06 % 

 

With the market portfolio as a benchmark the tracking error of the BL models 

constructed using the ARM is about twice as large as the CRM counterparts 

(2.91% vs. 1.41% and 1.01% vs. 0.61%). Again, the reason is that the ARM is 

tilted to a greater extent towards its views. The difference in tracking error is not 

as large using the 1/N portfolio as a benchmark since tweaked versions of the 

market are all somewhat different from the 1/N portfolio. 

 

When interpreting the level of tracking error for the BL portfolios it is evident that 

what contributes to the level of deviation is the certainty to the views, rather than 

the views itself. If a given investor view makes a portfolio over- or underperform 

the market by 5%, the tracking error would be the same. However, if more views 
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are added, or the confidence to the views is changed, the tracking error could 

change. The only difference between the CRM and the ARM in our 

implementation is the confidence to the views, thus being the only parameter 

influencing the difference in tracking error. 

6.2 Total Ranking 

Table 12 displays the overall ranking, based on all the previously mentioned 

performance criteria. The equally weighted (1/N) portfolio receives the lowest 

overall score, and is hence ranked as the best performing portfolio. The 1/N 

portfolio outperforms the market in all criteria related to returns (cumulative 

return, Sharpe ratio, and CEQ). This was attributed to the fact that smaller than 

average stocks outperform larger than average stocks. Also, since the BL 

portfolios are heavily related to the market, the 1/N portfolio beats all the BL 

portfolios on all return related criteria. If one excludes the MV portfolio from the 

analysis, due to overly poor performance, the 1/N portfolio underperforms based 

on returns relative to the remaining MV_ns and Min_var. These are the best 

performers based on returns, but after accounting for turnover and tracking error, 

1/N comes out on top. The 1/N portfolio is by construction the best performer 

(together with Mkt_weights) by tracking error, and its turnover is obviously low. 

Hence, an evaluation on these grounds looks promising for the 1/N portfolio once 

it outperforms the market.  

 

The BL portfolios that are constrained from shorting consistently outperform the 

market by returns, both risk adjusted and not. This is not the case for the 

unconstrained BL portfolios, since they underperform the market based on CEQ. 

Looking at cumulative returns, the BL (Alt.) is the best performing BL portfolio. 

We find this intuitive, due to successful views and the fact that the BL (Alt.) 

portfolio is the one that is tilted the most towards the views. Second best 

performer, based on cumulative returns, is the BL (Can.), followed by the BL_ns 

(Alt.) and BL_ns (Can.). Thus, constraints on shorting suppresses the cumulative 

return, however, it boosts the risk adjusted return. In terms of Sharpe ratio, the BL 

(Can.) performs the best (out of the BL portfolios), but the BL_ns (Alt.) and 

BL_ns (Can.) surpasses the BL (Alt.) portfolio. By CEQ, both portfolios with 

constraints on shorting (and the market) have outperformed the unrestricted 
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portfolios. This indicates that the CEQ (with a δ of 2.5) compensates more for risk 

than the Sharpe ratio.  

 

By all appearances, the MV portfolio is the worst performer of the nine. The 

reason lies in its excessive trading and poor returns. Min_var and MV_ns are the 

best performers by return, but are surpassed by 1/N due to higher turnover and 

tracking error. Pinpointing the causes for Min_var and MV_ns’ good performance 

is hard, but in this case it has been lucrative to use the historical average mean or 

just to minimize the variance of returns.  

Table 12: Total Ranking Based on All Performance Criteria 

This table reports the ranking of all nine portfolios based on all five criteria. The overall score is just the sum of ranks, 

therefore a low score is favorable.  From the overall score, an overall rank is calculated. We want to emphasize that this 
ranking is not absolute in telling which strategy is better. It is rather a tool used to analyze the portfolios and their different 

characteristics.  

Rank based 

on: 

Cumulative 

return 

Sharpe 

ratio Turnover CEQ 

Tracking 

error 

Overall 

score 

Overall 

rank 

MV 9 9 9 9 9 45 9 

MV_ns 2 2 5 2 6 17 3 

BL (Can.) 5 4 7 7 5 28 7 

BL_ns (Can.) 7 6 3 4 3 23 4 

BL (Alt.) 4 7 8 8 8 35 8 

BL_ns (Alt.) 6 5 4 5 4 24 5 

1/N 3 3 2 3 1 12 1 

Mkt_weights 8 8 1 6 1 24 6 

Min_var 1 1 6 1 7 16 2 
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7 Conclusion 

 

In this thesis we applied the BL model to data from the Norwegian stock market. 

We aimed to clarify the implementation process as well as discuss various 

ambiguities inherent in the BL model. Further, we wanted to determine whether 

the model offered any improvements to the traditional Markowitz paradigm.  

 

The most surprising discovery from a theoretical perspective was the fact that the 

CRM, with its rather complicated buildup, simplifies to a simple average of the 

prior and conditional distribution. Discussing the parameter τ, which has gained 

great attention, will then be futile. The only rationale approach, in our opinion, is 

to define the variance of views (𝛺) before setting a value for τ.  

 

In the empirical study we measured the performance of the BL model relative to 

the Markowitz model and other benchmarks (1/N, Mkt_weights, and Min_var). 

What follows are subsections were we first discuss the significance of the results, 

then the BL portfolios are compared to the Markowitz maximum Sharpe 

portfolios and the two benchmarks (Mkt_weights and 1/N), and finally we 

evaluate the BL portfolios internally.  

 

When assessing the performance in relation to risk, using the Sharpe ratio, we did 

not find significant differences between the BL portfolios and the market 

weighted portfolio or the naive portfolio. The MV portfolio had a significantly 

different Sharpe ratio at the 5 and 10% level against the MV_ns and Min_var 

respectively. However, this result was due to extreme deviations in the MV 

portfolio in terms of portfolio weightings and the proceeding returns. In terms of 

CEQ, we find it to be statistically different for the MV portfolio against all other 

portfolios. Similar reasons as aforementioned also apply in this case.  

 

BL vs. Markowitz: The unrestricted MV portfolio is the worst performer in all 

criteria, it is not implementable in practice due to excessive trading, and its 

tracking error is extremely high (in excess of 10% per week). It may be 

theoretically sound, but practically, the MV portfolio using historical means is 

useless. The restricted MV portfolio performs well when assessing returns, and 
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risk adjusted returns, and even the turnover is not too bad. The strategy performs 

well in our sample, but the frequent use of corner solutions, and hence lack of 

diversification, may scare investors off.  

 

BL vs. mkt_weights and 1/N: As previously mentioned the BL portfolios beat the 

market on returns, due to successful views. Adjusting for risk, the BL portfolios 

still outperform the market in Sharpe ratio, but only the restricted BL portfolios 

perform better than the market in CEQ. For the BL portfolios to be a better 

alternative investment than the market, it simply needs to outperform based on 

returns. Holding a market portfolio requires no portfolio turnover, therefore when 

tilting the portfolio, it is imperative to the BL portfolio that it is on average more 

correct than not. Thus, gaining abnormal return, and not only incur excessive 

transaction costs. However, from a practical point of view, the option to 

incorporate views into a portfolio selection model has value in itself.  

 

Many of the same arguments apply to the 1/N portfolio, with its low turnover and 

tracking error. In our sample the 1/N portfolio overweight smaller than average 

stocks and underweight larger than average stocks. One practical issue is that the 

strategy does not take into account the market capitalization of each stock. This 

could induce strong price effects negatively affecting the portfolio return. 

However, the bet on small stocks reap good returns in our sample, and with a low 

turnover and tracking error the 1/N portfolio is ranked best in class. The pros of 

1/N are its simplicity, and its low transaction costs, and a con is the fact that it 

ignores market capitalization.   

 

Internal BL evaluation: There are two clear distinctions along two dimensions 

when evaluating the BL portfolios. They are both intuitive, thus verifying the 

logic of the model. First, the unrestricted portfolios yield higher returns than the 

restricted; however, the latter perform better when adjusting for risk. Further, the 

unrestricted portfolios demand higher turnovers and obtain higher tracking errors. 

Second, the ARM yield higher return, demand higher turnover, and obtain higher 

tracking error than the CRM. For our dataset, it can be summarized in the 

following; the more tilted the better the return, higher the risk, higher transaction 

cost, and higher uncertainty. 
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8 Further Research 

 

In this thesis we have focused on the implementation and application of the BL 

model using a set of Norwegian Stocks during the last 10 years. As a suggestion 

for further research it could be of interest to consider a wider scope of stocks and 

a longer time period. This could possibly unveil other interesting aspects of the 

model behavior that might have been lost due to limited geographical location of 

assets and the time period of the study. Further, one could also include other asset 

classes in order to broaden the investment universe and this way more closely 

mirror the possibilities of an actual investor. This could include using a broad 

international index of stocks, fixed income assets and real estate investment trusts 

or a combination of these. 
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Appendix 

Table A1: Company Names and Tickers 

The table lists the stocks included in our sample, and consists of the 20 largest stocks, measured by market capitalization, 

listed on Oslo Stock Exchange in the period of 2004-2015. 

 

Company Name Ticker 

Atea ATEA 

DNB DNB 

DNO International DNO 

Fred. Olsen Energy FOE 

Frontline FRO 

Kongsberg Gruppen KOG 

Lerøy Seafood Group LSG 

Norsk Hydro NHY 

Orkla ORK 

Petroleum Geo-Services PGS 

Prosafe PRS 

Royal Caribbean Cruises RCL 

Schibsted ser. A SCHA 

Storebrand STB 

Statoil STL 

Subsea 7 SUBC 

Telenor TEL 

TGS-NOPEC Geophysical Company TGS 

Tomra Systems TOM 

Veidekke VEI 
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Table A2: Starting Portfolio Weights 01.01.2006 

The table displays the portfolio weights suggested by the portfolio optimization at the start of the investment period. 

Optimal weights for all the BL portfolios and the MV maximum Sharpe portfolios, with and without constraint on short 

selling, are shown.  
 

  MV MV_ns 

BL 

(Can.) 

BL_ns 

(Can.) BL (Alt.) 

BL_ns 

(Alt.) 1/N Mkt_weights Min_var 

ATEA -0.2745 0.0000 -0.0149 0.0000 -0.0315 0.0000 0.0500 0.0009 -0.0570 

DNB 0.1444 0.1113 0.0340 0.0486 -0.0321 0.0053 0.0500 0.0968 0.3553 

DNO 0.2854 0.1696 0.0370 0.0274 0.0610 0.0325 0.0500 0.0142 -0.0127 

FOE 0.4359 0.1173 0.0839 0.0651 0.1567 0.0954 0.0500 0.0149 -0.0197 

FRO 0.1408 0.0534 0.0209 0.0168 0.0225 0.0023 0.0500 0.0194 -0.0609 

KOG -0.2476 0.0000 0.0014 0.0000 -0.0010 0.0000 0.0500 0.0037 0.0828 

LSG 0.1198 0.0422 0.0249 0.0023 0.0481 0.0016 0.0500 0.0029 0.0724 

NHY -0.0408 0.0000 0.0351 0.0376 -0.1182 0.0000 0.0500 0.1804 0.0966 

ORK 0.3067 0.0258 0.0956 0.0999 0.1347 0.1385 0.0500 0.0585 0.0569 

PGS -0.1341 0.0000 0.0513 0.0316 0.0923 0.0415 0.0500 0.0125 0.0155 

PRS -0.1044 0.0000 -0.0567 0.0000 -0.1266 0.0000 0.0500 0.0098 0.0890 

RCL 0.0551 0.0000 0.1191 0.1127 0.1770 0.1377 0.0500 0.0641 0.0306 

SCHA -0.1727 0.0000 0.0129 0.0000 0.0118 0.0000 0.0500 0.0140 0.0523 

STB -0.1017 0.0000 -0.0079 0.0000 -0.0322 0.0000 0.0500 0.0151 0.0959 

STL -0.3504 0.0000 0.4170 0.3917 0.4967 0.3740 0.0500 0.3413 -0.0159 

SUBC -0.1311 0.0000 0.0529 0.0405 0.0927 0.0549 0.0500 0.0151 -0.0945 

TEL 0.3072 0.0964 0.1536 0.1170 0.1957 0.1114 0.0500 0.1137 0.1712 

TGS 0.0871 0.0000 -0.0312 0.0000 -0.0729 0.0000 0.0500 0.0083 -0.0013 

TOM 0.0690 0.0000 0.0071 0.0088 0.0054 0.0048 0.0500 0.0087 -0.0040 

VEI 0.6058 0.3841 -0.0361 0.0000 -0.0799 0.0000 0.0500 0.0055 0.1474 

SUM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table A3: Correlation Matrix of LN Returns 

The table below displays the level of correlation between the different portfolios included in the study. The highest 
correlations can be seen between the BL_ns constructed using the CRM against the BL_ns constructed using the ARM, and 

also for the market weighted portfolio against the short restricted BL portfolios.  

 

Strategy  MV MV_ns 

BL 

(Can.) 

BL_ns 

(Can.) BL (Alt.) 

BL_ns 

(Alt.) 1N Mkt_weights Min_var 

MV 1.0000 0.2876 -0.0239 -0.0347 -0.0252 -0.0308 -0.1449 -0.0435 0.2551 

MV_ns 

 

1.0000 0.5780 0.6387 0.4945 0.6418 0.6589 0.6237 0.5950 

BL (Can.) 

  
1.0000 0.9621 0.9659 0.9576 0.8712 0.9336 0.4710 

BL_ns (Can.) 

   
1.0000 0.8676 0.9929 0.9365 0.9837 0.5404 

BL (Alt.) 
    

1.0000 0.8776 0.7609 0.8110 0.3534 

BL_ns (Alt.) 
     

1.0000 0.9356 0.9585 0.5191 

1N 

      
1.0000 0.9300 0.5402 

Mkt_weights 
       

1.0000 0.5640 

Min_var 

        
1.0000 
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Table A4: Annualized Standard Deviation of Return for Empirical Data 

The table lists the annualized standard deviations of all portfolios for every year. The annualized standard deviations are 

calculated as the standard deviation of weekly excess return for a given year multiplied by the square root of 52.  

 

Year MV MV_ns 

BL 

(Can.) 

BL_ns 

(Can.) BL (Alt.) 

BL_ns 

(Alt.) 1/N Mkt_weights Min_var 

2006 0.4143 0.2027 0.2206 0.2137 0.2418 0.2209 0.2049 0.2078 0.1592 

2007 0.4774 0.1816 0.1891 0.1779 0.2101 0.1748 0.1636 0.1849 0.1426 

2008 0.7323 0.2828 0.5463 0.4563 0.7164 0.4726 0.4637 0.4433 0.3521 

2009 1.0771 0.2970 0.3669 0.3247 0.4842 0.3433 0.3341 0.3045 0.2280 

2010 0.6159 0.2502 0.2386 0.2114 0.3106 0.2181 0.2278 0.2085 0.1722 

2011 0.6432 0.2707 0.2184 0.2337 0.2235 0.2378 0.2750 0.2346 0.1630 

2012 0.3969 0.1539 0.1591 0.1470 0.1955 0.1592 0.1634 0.1321 0.1018 

2013 0.3504 0.1340 0.1225 0.1139 0.1633 0.1308 0.1139 0.1001 0.1112 

2014 0.7127 0.2170 0.2018 0.1768 0.2383 0.1768 0.1861 0.1766 0.1694 

2015 0.8726 0.1323 0.1763 0.1635 0.2040 0.1629 0.1824 0.1745 0.1323 

Average 0.6293 0.2122 0.2440 0.2219 0.2988 0.2297 0.2315 0.2167 0.1732 

          

Table A5: Statistical Test for the Difference in Sharpe Ratios 

This table shows the p-values from the statistical test performed for the difference in Sharpe ratios using the framework 
suggested in Jobson and Korkie (1981), and corrected by Memmel (2003) (as described in Section 4.4.2).   

 

Strategy MV MV_ns 
BL 

(Can.) 
BL_ns 
(Can.) BL (Alt.) 

BL_ns 
(Alt.) 1/N Mkt_weights Min_var 

MV 

 

0.0156 0.1410 0.1494 0.1518 0.1464 0.1340 0.1821 0.0039 

MV_ns 

  

0.3787 0.3187 0.3900 0.3236 0.4253 0.2493 0.5173 

BL (Can.) 

   

0.8874 0.8306 0.9276 0.7663 0.5977 0.1696 

BL_ns (Can.) 

    

0.9020 0.8069 0.6336 0.2329 0.0979 

BL (Alt.) 

     

0.9785 0.8842 0.8472 0.3170 

BL_ns (Alt.) 

      

0.6479 0.4690 0.1180 

1/N 

       

0.3609 0.1901 

Mkt_weights 

        

0.0870 

Min_var 

          

Table A6: Portfolio Turnover 

The portfolio turnover for each of the portfolios is displayed in the table below. The level of turnover represents how much 
of the portfolio is reallocated on average each month. A value of 1 would mean that 100% of the portfolio is reallocated 

each month. The turnover of 1/N is different from zero due to fluctuations in market prices. This price effect is accounted 

for each month when calculating the turnover for every portfolio.  
 

  MV MV_ns 

BL 

(Can.) 

BL_ns 

(Can.) BL (Alt.) 

BL_ns 

(Alt.) 1/N Mkt_weights Min_var 

Turnover 2.9227 0.3420 0.5303 0.2108 1.0704 0.3054 0.0630 0 0.3625 
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Introduction 

Harry Markowitz introduced the first asset allocation model in his 1952 article 

Portfolio Selection. The model he presented was a mean-variance optimization 

technique designed to generate optimal portfolios, using historical data of return 

and predicted expected returns. His contribution received praise in the academic 

world and is considered to represent the beginning of modern portfolio theory. 

The article proposed a mean-variance optimization technique. Despite gaining 

appraisal in the academic world, portfolio managers were not equally excited. The 

approach had several issues that made its practical application limited. It was 

difficult to use and had a tendency to suggest portfolios that behaved badly (Black 

and Litterman 1992). First of all, the model required investors to assign exact 

expected returns for all assets. Also, the resulting portfolio weights were 

extremely sensitive to small changes in the expected returns, resulting in the 

portfolio weights changing drastically. Michaud (1989) states that the major 

problem with the technique is the way it would tend to maximize the effects of 

errors in the input assumptions. 

As a solution to some of the inadequacies of the Markowitz models, Fisher Black 

and Robert Litterman put forth a new approach in 1990, further expanded in 1991  

and 1992, which will be the focus of our thesis. By combining the mean-variance 

optimization techniques introduced by Markowitz with the equilibrium concepts 

of the CAPM (Capital Asset Pricing Model) by Sharpe (1964) and Lintner 

(1965b, 1965a), surfaces an approach to portfolio choice that came to be known as 

the Black-Litterman model, hereby referred to as the B-L model. Black and 

Litterman writes in their article Global Portfolio Optimization that “Quantitative 

asset allocation models have not played the important role they should in global 

portfolio management” (1992, 1). As it would turn out, more than two decades 

after their initial contribution, the use of quantitative models in portfolio choice 

have gained a strong position, and is to this day used by many agents as a viable 

tool in the investment industry.  

Black and Litterman proposed a number of new features to the standard asset 

allocation model. Among the most important was the way it utilizes the 

equilibrium returns generated by a Global CAPM suggested in Black (1989) as a 

starting point, and how it lets investors easily adjust their portfolio based on a set 
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of views. The original model that consisted only of fixed income assets and 

currencies were expanded the year after, in Black and Litterman (1991b, 1992), to 

include equities as well. The optimal portfolio suggested by the model would in 

essence be a combination of the market portfolio and the investors own views. 

Hence, an investor with neutral views would hold the equilibrium (market 

capitalization weighted) portfolio. However, when possessing additional views, 

the model would tilt the optimal portfolio weights according to these views.  

The importance of quantitative asset allocation models in today’s investment 

world is perhaps greater than ever. On a daily basis portfolio managers attempt to 

make sense out of a vast stream of financial data and macroeconomic news. 

Quantitative asset allocation models are designed as a tool that can guide portfolio 

managers in their attempt to make more balanced and optimal portfolios. The B-L 

approach has been shown to be effective also in real markets, see among others 

Bevan and Winkelmann (1998) and Black and Litterman (1992), and we believe 

that it would be interesting to explore and test its applicability in practice further. 

The aim of our research will be to add to the relatively limited empirical evidence 

of the performance of the model in real markets. We will do this by applying he 

B-L model on the Norwegian Stock Market. In addition to testing the model we 

seek to clarify on the implementation process of the model. The latter will help 

shed light on various aspects of the model behavior, as well as other issues related 

to the process. Even though the idea and the end result of the model might be 

intuitive, the implementation process can be quite complicated.  
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Literature review 

The inception of modern portfolio theory is by most academics and practitioners 

considered to be the article Portfolio Selection, published in 1952 by Harry 

Markowitz. A starting point for Markowitz was John Burr Williams’ Theory of 

Investment Value (1938). Here, Williams claimed that the value of a security 

should be the same as the net present value of its future dividends. With future 

dividends being unknown, Markowitz claimed that the expected future returns 

could serve as a proxy for future dividends, and hence the value of a security. 

Together with the expected future return, Markowitz argued that one have to take 

into consideration the variance, i.e. the risk, associated with investing in a 

portfolio. Since dealing with a portfolio of more than one asset, the co-movements 

between assets needed to be dealt with, represented by the covariances of returns.   

Markowitz’ mean-variance portfolio model serves the two basic objectives of 

investing; namely maximizing expected return and minimizing the risk. His 

framework has stood the test of time and is still considered academically sound. 

However, multiple practical issues have strongly prevented the model’s impact in 

the professional investment management world.  

Many problems with the use of Markowitz’ mean-variance portfolio model has 

been advocated. Black and Litterman (1992, 1) highlighted that “A good part of 

the problem is that such models are difficult to use and tend to result in portfolios 

that are badly behaved”. They elaborate by saying that without constraints the 

model results in large short positions in one or several assets. With no shorting of 

assets, the model frequently assigns zero weights to many assets, i.e. “corner” 

solutions. Also, the model does not take into consideration the market 

capitalization of assets, ending in large positions in assets with low market 

capitalization.  

These unintuitive and unreasonable results stem, according to Black and 

Litterman (1992), from two known problems. First, the Markowitz formulation 

requires investment managers to specify expected returns for all assets included in 

the model. This seems laborious, knowing that investors tend to focus only on 

particular segments of the investment universe. In addition to being time 

consuming, expected returns are hard to estimate, and the historical returns that 

are often used is, according to Black and Litterman (1992), a poor proxy for future 
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returns. Second, the weights assigned to each asset in the mean-variance portfolio 

are extremely sensitive to the vector of expected returns. Together, compounding 

each other, these problems produce highly unstable portfolios. As Best and Grauer 

(1991) demonstrated, a small increase in one individual asset’s expected return 

can drive half of the assets from the portfolio (with constraints on shorting).  

Michaud wrote the article The Markowitz Optimization Enigma: Is ‘Optimized’ 

Optimal? in 1989 where several problems were discussed. One critique in 

Michaud (1989) states that the Markowitz’ optimizers maximize estimation errors. 

The estimates of expected returns, variances, and covariances are subject to 

estimation error. The basis for the critique lies in the fact that Markowitz 

optimization overweighs those assets that have large expected returns, negative 

covariance and small variance. His argument is that “these securities are, of 

course, the ones most likely to have large estimation errors” (1989, 34). He further 

claims that using sample means from historical data as expected returns 

contributes to the maximization of estimation errors.  Also, he touches upon the 

issues that the model does not account for asset’s market capitalization weights, 

and the instability of results with respect to the expected return input in particular.  

Fischer Black and Robert Litterman published in 1990 the article Asset 

Allocation: Combining Investor Views With Market Equilibrium, which proved to 

be the introduction of the B-L model. They extended the model in 1991 and 1992, 

and it was soon established as the B-L model. From this point on, many 

extensions and versions of the B-L model has been published.  

The B-L model successfully filled many of the gaps that Markowitz’ left behind 

with his mean-variance optimization model. It creates stable, mean-variance 

efficient portfolios, and according to Lee (2000), there is no longer real issues 

caused by estimation error-maximization. The first significant contribution to 

asset allocation by Black and Litterman is that it provides an intuitive and neutral 

starting point (prior), namely the equilibrium market portfolio, building on the 

work of Black (1989). The second contribution made is that investors can express 

their own views, either relative or absolute, and these views are combined with the 

equilibrium market portfolio, resulting in stable and intuitive portfolios. The 

weight of an asset increases if the investor becomes bullish toward the asset, all 

other equal. The weight also increases if the investor becomes more confident 
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about the bullish view. These features serve as two new dimensions to portfolio 

management, which together with the neutral starting point of the equilibrium 

market portfolio makes the model stable, intuitive, and valuable to practitioners. 

As Black and Litterman (1992) writes, they have combined two established 

theories of modern portfolio theory – the mean-variance optimization framework 

of Markowitz and the CAPM of Sharpe and Lintner.  

In today’s myriad of versions of the B-L model, Jay Walters (2014) has sorted the 

models into three distinct reference models, based on two central dimensions. The 

first dimension separates Bayesian from non-Bayesian models. The original B-L 

(1991a, 1991b, 1992), together with Bevan and Winkelmann (1998) and He and 

Litterman (1999) uses a Bayesian approach. Walters call these models, canonical 

B-L models. Non-Bayesian models are further split in two, models including the 

parameter τ (often referred to as the ‘weight on views’) are called hybrid, and 

models excluding τ and becomes pure mixing models are called alternative.  

The original articles by Black and Litterman (1991a, 1991b, 1992) and He and 

Litterman (1999) focused on the features and overview, rather than on the 

derivation of the formulas behind the model. This made it hard to reproduce, and 

even hard to obtain full understanding of the models build-up. Bevan and 

Winkelmann (1998) provided insight on the internal process of working with the 

B-L model within Goldman Sachs. Full derivation of the model is still not 

presented, but an explanation on how they set target risk levels, focusing on 

tracking error and Market Exposure, presented by Litterman and Winkelmann 

(1996), contributes to the development on how to use the model.  

Satchell and Scowcroft wrote the article A demystification of the Black–Litterman 

model in year 2000 where their main objective was to give a mathematical 

depiction of the model. However, their contribution in retrospect is the 

introduction of a new non-Bayesian (hybrid) model. It uses point estimates instead 

of distributions, leading τ and Ω to affect shrinkage of the views, rather than the 

original interpretations which is the ‘weight on views’ and uncertainty in the 

views respectively. Fusai and Meucci (2003), and later only Meucci (2005), 

replaced the model of Satchell and Scowcroft. It is a non-Bayesian model, which 

in addition excludes the parameter τ since Ω alone was considered sufficient in 

shrinking the influence of the views. Using Jay Walters’ analogy, Meucci’s model 
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is an Alternative Reference Model. Meucci himself coined the phrase, “Beyond B-

L” referring to his model. Looking at the last decade, the most influential models, 

according to Walters, has been a mixture of the canonical and “Beyond B-L”.  

In 2002 Thomas M. Idzorek wrote A Step-By-Step Guide To The Black-Litterman 

Model where he introduced “user-specified confidence levels”. The method of 

using confidence levels let the investor establish a confidence to each view, 

instead of calculating the less intuitive variance of each view. According to 

Idzorek, this new method should increase the usability of the model. Even if the 

model Idzorek uses is a Hybrid Reference Model it can also be applied to the 

canonical B-L.  

Theory 

In this part we will present some of the theoretical framework the B-L builds on. 

Black and Litterman present their approach as an upgrade to the traditional mean-

variance approach. We will here start off by briefly presenting some of the most 

essential aspects of the Markowitz model presented in his paper Portfolio 

Selection from 1952. The main concept of the mean-variance method is that an 

investor can significantly reduce the risk of a portfolio, while at the same time 

keeping a certain level of expected return, or the investor can maximize the 

expected return, given a level of risk. This can be achieved by combining assets 

that have a low or negative correlation. The investor is assumed to be risk averse, 

and is only interested in expected return and risk.  

Attainable portfolios are reached by solving the following problems: 

min w
T
Σw       (1) 

           w 

w
T𝑟̅ 

= 𝑟̅p 

 or 

 max w
T𝑟̅ 

       (2) 
            w 

 w
T
Σw = 𝜎𝑝

2 

Where 

w is the vector of portfolio weights 

w* is the optimal portfolio 

𝜎𝑝
2 is the variance of the portfolio 

𝑟̅p is the required returns of the portfolio 

𝑟̅ is the expected returns of the portfolio 



GRA 19003 – Preliminary Thesis Report   15.01.2016 

  Page 7 

μ is the vector of expected excess returns 

Σ is the covariance matrix 

δ is the risk aversion coefficient  

 

However, often the following problem is solved, and its result is referred to as the 

Markowitz’ optimal portfolio (w*).  

 max 𝒘𝑇𝜇 − 
𝛿
2

𝒘𝑇𝜮𝒘      (3) 
                     w 

 𝒘∗ = (𝜹𝜮)−𝟏𝝁 

The expected return, using Markowitz’ mean-variance approach, is often the mean 

historical return. However, in the B-L model, the expected returns are a 

combination of the equilibrium market portfolio and investors views. After having 

found the expected (excess) returns, the optimization process is similar for the  

B-L method as for the Markowitz’ method. The following equation is often 

referred to as the B-L master formula. 

   (4) 

Where  

𝜇̅  is the vector of mean expected excess returns 

τ   is a scalar that represents the ‘weight on views’ 

Σ  is the covariance matrix of historical excess returns 

P  is the matrix consisting of the assets involved in the views 

Ω is a diagonal matrix comprised of the uncertainty of each view 

represented by its error terms 

Π is a vector of equilibrium expected excess returns 

Q is a vector consisting of the investor views 

 

These B-L expected returns are then used to solve problem (3) above, and optimal 

weights are obtained.  

When applying the B-L model using subjective views about specific industries, 

companies, markets or asset classes one assume that the efficient market 

hypothesis in its semi-strong form do not hold. Therefore, to benefit from own 

conceptions about the future market development, mispricing must at least prevail 

occasionally.   

      QPPP TT 11111 )()( 
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Methodology 

In this section we clarify the empirical approach we intend to use and the 

motivation for this choice. The method we will use are based on the original 

approach by Black and Litterman (1991a, 1991b, 1992).   

Our initial plan is to apply the B-L model on the Norwegian Stock Market. We 

will do this by comparing the performance of a portfolio constructed using the  

B-L approach against a traditional mean-variance method and a benchmark. The 

benchmark we intend to use is the OBX-index, consisting of the 25 most traded 

stocks on the Oslo Stock Exchange. In order to form a good basis for comparison 

we will define these 25 stocks as our investment universe. Our test will be 

conducted on weekly data in the period of 2010-2015. The performance of the 

model will be evaluated by assessing the cumulative returns, as well as the risk-

adjusted returns in order to separate differences in return associated with 

excessive risk-taking. 

We will construct optimal portfolios both with and without constraints on short 

selling. There are two main reasons for this. First, mutual funds are not allowed to 

short sell stocks. This means that many potential users of the B-L model and 

mean-variance methods are restricted. Second, the mean-variance optimization 

method has a tendency to suggest unreasonably large short positions one or 

several assets. Our hope is that this will enlighten different aspects of the models, 

both in terms of their behavior and their results.  

Without investor views the optimal portfolio will be identical to the market 

portfolio, here the benchmark index (OBX). However, views are highly subjective 

in nature. In order to mitigate this issue, we intend to base our views on a sum of 

aggregate analysts’ recommendations. We will hence collect “buy”, “hold” and 

“sell” recommendations from various financial institutions, in order to form our 

views. By having a large pool of recommendations we hope to reduce subjectivity 

and the risk of bias. Based on these views we will rebalance the portfolio on a 

yearly basis.  

In the B-L model, a view is assigned a value of 1, 0, or -1 to represent the nature 

of a view. A bullish view will be assigned a value of 1, while a bearish view will 

be assigned a value of -1, and a neutral view with a value of 0. The nature of the 
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view will then tilt the optimal portfolio, by increasing the weights of stocks with 

bullish views, or decreasing the weights of stocks for which views are bearish. 

The confidence in each view will be based on the collective sentiment of analysts. 

An important aspect of the model is the option investors have to specify their 

certainty in views. We will use a slightly modified approach by utilizing the 

extension suggested by Idzorek (2002), where confidence levels of 0-100 are 

specified. This will provide us with an intuitive tool in determining the confidence 

corresponding to each view. In addition, the target prices of individual stocks will 

be used to determine expected returns associated with the views.  

Data 

We will collect weekly data from the Norwegian Stock Market in the period of 

2009-2015. The investment period starts in January 2010, thus the first year of 

data will be used solely as input in order to construct the starting portfolio. The 

data will consist of returns on the 25 most traded stocks on OSE (Oslo Stock 

Exchange), as well as the OBX-index. We decided to use weekly return data as 

this will provide us with what we believe is a sufficient number of observations. 

To perform some of the calculations we also need the risk-free rate. As a proxy 

for the risk-free rate we will use data on 10-year Norwegian government bonds, 

collected from Norges Bank. In addition, we will gather and analyze data on 

analysts’ recommendations in order to form our inputs for the views, and the 

corresponding expected return and confidence levels. In cases where no 

recommendation can be found for a given stock, no view will be assigned. The 

stock data we use will be adjusted for dividends, as well as splits. For this reason, 

we will have to adjust target prices accordingly. The data on stock returns and 

analysts’ recommendations will be collected from Bloomberg.  
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