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An equilibrium characterization of an all-pay
auction with certain and uncertain prizes

Christian Riis
Norwegian Business School∗

October 3, 2016

Abstract

In the important contribution "All pay auctions with certain and
uncertain prizes" published in Games and Economic Behavior May
2014, the authors analyze an all pay auction with multiple prizes.
The specific feature of the model is that all valuations are common
except for the valuation of one of the prizes, for which contestants have
private valuations. However, the equilibrium characterization derived
in the paper is incorrect. This paper provides the correct equilibrium
characterization of the model.
Key words: All pay auctions, uncertain prizes
JEL codes: D 44, D82, J31, J41

Minchuk and Sela (2014) (hereafter MS) consider an all pay auction with
multiple prizes. The specific feature of their model is that all valuations are
common except for the valuation of one of the prizes. For this particular prize
contestants have private valuations, independently drawn from a common
distribution.
The authors claim that the equilibrium bid function is symmetric and

monotone in the valuation of the uncertain prize. However this is only the
case if the uncertain prize has the highest or lowest value. It is not if the
uncertain prize has an intermediate value, which is MS’main case.

∗Department of Economics, Norwegian Business School, Oslo, Norway; Email: chris-
tian.riis@bi.no. I am grateful to Zongwei Lu and Erlend S. Riis for outstanding research
assistance.
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Let us first provide intuition for why MS’ result fails. We follow MS’
notation. There are n contestants competing for m different prizes. The
highest bidder wins the most valuable prize, with a common value of vn.
The second highest bidder wins the second most valuable prize vn−1 and so
on. The uncertain prize is indexed n − j + 1, with private value, denoted
by a, drawn independently from the interval [vn−j, vn−j+2] according to a
distribution function F (·). We refer to f(·) as the density of F (·).
Suppose that the equilibrium bid function β(a) is strictly increasing. The

probability that a player who bids according to valuation s will win the
uncertain prize is then

(n− 1)!
(j − 1)! (n− j)!F (s)

n−j (1− F (s))j−1 .

Obviously this probability is a non-monotonic function of s, strictly increas-
ing in s for low bid levels, and strictly decreasing for high bid levels. The
probability of winning the uncertain prize reaches a maximum at a valuation
â implicitly determined by

F (â) =
n− j
n− 1

It follows from standard single crossing conditions1 that a strictly increas-
ing bid function on a bid segment is part of a separating equilibrium only if
the win probability is increasing in valuation —as the player with a high val-
uation has a stronger incentive to bid aggressively than a bidder with a lower
valuation. In other words, a strictly increasing bid function is incompatible
with optimal bidding behavior if the probability of winning the uncertain
prize declines with the bid level —in which case a bidder with a particularly
high valuation for the uncertain prize will lower her bid.
Thus, a separating equilibrium cannot be monotone in the valuation of

the uncertain prize in our setting. We will now by construction derive the
separating equilibrium.
Suppose the number of players strictly exceeds the number of prizes,

making a generalization of the result straightforward. A standard charac-
teristic of a separating equilibrium in all pay auctions with ex ante identical
contestants is the following:

1For at detailed exposition see Athey (2001)
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• The player with the lowest possible valuation for the uncertain prize
obtains zero payoff.

An implication of this is that the bid function must have upper support
equal to vn, the value of the highest prize. Otherwise the player with the
lowest possible valuation obtains a strictly positive rent by jumping to the
upper support. As the lower support must be zero, a separating equilibrium
will be a mapping from valuation aε [vn−j, vn−j+2] to bids β on [0, vn].2

Observe that the equilibrium can be anchored in the following observa-
tion: For high bids, the probability of winning the uncertain prize declines
as the bid level increases. Therefore, single crossing indicates that the bid
function must have a declining segment at high valuations. For low valua-
tions the equilibrium bid function must be increasing. A conjecture would
be that the equilibrium bid function has the shape illustrated in figure 1,
consisting of two bid segments: a declining segment, βH(a), for those bid
levels at which the win probability (for the uncertain prize) declines with
the bid; and an increasing segment βL(a) for bid levels at which the win
probability increases. A contestant with valuation a then randomizes be-
tween the two bid levels, and chooses βL(a) with probability q(a). With one
exception: the contestant with the highest possible valuation for the uncer-
tain prize, a = vn−j+2, bids a certain amount, corresponding to the bid level
that maximizes the probability of winning the uncertain prize. Note that the
player with the lowest possible valuation for the uncertain prize, a = vn−j,
randomizes between bidding zero and vn.

2It is also standard that the bid distribution must be atomless.
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Figure 1

Figure 1: The equilibrium bid function

We will now show that the separating equilibrium indeed satisfies this
pattern. Denote by F̃ ik(a) the equilibrium probability that a player with
valuation a wins the prize indexed i, given that she bids according to bid
segment βk(a), k = L,H. The probability that this player will win the
uncertain prize, indexed n− j + 1, is then

F̃ n−j+1L (a) = (1)

(n− 1)!
(i− 1)! (n− i)!

(∫ a

vn−j

q(z)f(z)dz

)n−j (
1−

∫ a

vn−j

q(z)f(z)dz

)j−1
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if she bids βL(a)
3, and

F̃ n−j+1H (a) = (2)

(n− 1)!
(j − 1)! (n− j)!

(
1−

∫ a

vn−j

(1− q(z)) f(z)dz
)n−j (∫ a

vn−j

(1− q(z)) f(z)dz
)j−1

if she bids βH(a).
Let us first characterize the equilibrium bid functions following MS’pro-

cedure, which is also the standard procedure.
A player with valuation a behaves as a player with valuation s in order

to maximize (k = L,H)

max
s

∑
i=n−m+1
i 6=n−j+1

F̃ ik(s)vi + F̃ n−j+1k (s)a− βk(s)

The necessary conditions yields the following pair of differential equations

β′k(s) =
∑

i=n−m+1
i 6=n−j+1

dF̃ ik(s)

ds
vi +

dF̃ n−j+1k (s)

ds
a

The first order condition evaluated at s = a yields the candidate bid func-
tions4

βk(a) = βk(vn−j) +

∫ a

vn−j

 ∑
i=n−m+1
i 6=n−j+1

dF̃ ik(x)

dx
vi +

dF̃ n−j+1k (x)

dx
x

 dx
= βk(vn−j) +

∑
i=n−m+1
i 6=n−j+1

F̃ ik(a)vi −
∑

i=n−m+1
i 6=n−j+1

F̃ ik(vn−j)vi +

∫ a

vn−j

[
dF̃ n−j+1k (x)

dx

]
xdx

3To see this, note that a bid s wins the prize n− j + 1 if an exact number j − 1 of the
bidder’s contestants outbid her (note that there is a probability 1−

∫ s
vn−j

q(z)f(z)dz that
a single contestant will choose a bid above s), and the remaining n − j contestants will
bid below s.

4Note that F̃ i(a) = F̃ i(vn−j) +
∫ a
vn−j

dF̃ i
k(x)
dx dx.
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If k = L we have βL(vn−j) = 0 and thus F̃ iL(vn−j) = 0, as the player loses
with certainty. If k = H we have βL(vn−j) = v1 and thus F̃ nL (vn−j) = 1,
as the player in this case is certain to win the most valuable prize. In both
cases, the candidate bid function is (where the second equality follows from
integration by parts)

βk(a) =
∑

i=n−m+1
i 6=n−j+1

F̃ ik(a)vi +

∫ a

vn−j

[
dF̃ n−j+1k (x)

dx

]
xdx

=
∑

i=n−m+1
i 6=n−j+1

F̃ ik(a)vi + F̃ n−j+1k (a)a−
∫ a

vn−j

[
F̃ n−j+1k (x)

]
dx

This yields associated utilities

Uk(a) =

∫ a

vn−j

F̃ n−j+1k (x)dx

Thus the bidder’s rent is associated with a valuation of the uncertain prize
above the lower support vn−j, exactly as described by MS.
It remains to determine q(a). The equilibrium probability function, q(·),

makes each contestant indifferent between choosing βL(a) and βH(a). This
means that we have to find a function q(·) such that UL(a) = UH(a) for every
type a, thus ∫ a

vn−j

F̃ n−j+1L (x)dx =

∫ a

vn−j

F̃ n−j+1H (x)dx (3)

must always hold. Obviously this is equivalent to the following condition:
for any aε[vn−j, vn−j+2] we have

F̃ n−j+1L (a) = F̃ n−j+1H (a) (4)

Hence, in a separating equilibrium, for each type a, the probability of winning
the uncertain prize is independent of the choice between βL(a) and βH(a).
Accordingly, the net cost of submitting a high bid, βH(a) − βL(a), cancels
out with the net gain from the higher probability of winning one of the
certain and more valuable prizes. Note that βL(vn−j+2) = βH(vn−j+2) since
F̃ iL(vn−j+2) = F̃ iH(vn−j+2) for all i = n−m+1, .., n5, which confirms that the
two bid segments meet at a = vn−j+2.

5This can easily be checked by inserting vn−j+2 in the integral limits in (1) and (2),
and generalizing to any i.
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Substituting from (1) and (2) condition (4) can be written(∫ a

vn−j

q(z)f(z)dz

)n−j (
1−

∫ a

vn−j

q(z)f(z)dz

)j−1
(5)

=

(
1−

∫ a

vn−j

(1− q(z)) f(z)dz
)n−j (∫ a

vn−j

(1− q(z)) f(z)dz
)j−1

which must hold for all aε[vn−j, vn−j+2]. q(·) is the solution to the functional
equation given by (5). We will now prove existence and uniqueness of q(·).
We prove this for the most general case where we assume no properties

of f beyond being a probability density function. For notational simplicity
and without loss of generality we set [vn−j, vn−j+2] = [0, 1].
Consider equation (6).

λ̃
n−j (

1− λ̃
)j−1

=
(
λ̃+ 1− F

)n−j (
1−

(
λ̃+ 1− F

))j−1
(6)

Note that replacing λ̃ with
∫ a
vn−j

q(z)f(z)dz yields equation (5).

Lemma 1 There is a unique function λ̃ : [0, 1]→ [0, 1] that satisfies equation
(6) for all F ∈ [0, 1] and that has the following properties:

1. λ̃ is strictly increasing;

2. λ̃(F ) ≤ F for all F ∈ [0, 1] ;

3. λ̃ is Lipschitz continuous with Lipschitz constant 1.

Furthermore, this function is almost everywhere differentiable with λ̃
′
(F ) ∈

[0, 1] .

See appendix for proofs.

Theorem 1 The function q : [0, 1] → [0, 1] defined by q(a) := λ̃
′
(F (a))

satisfies λ (a) =
∫ a
0
f(z)q(z)dz for all a. Furthermore, this solution is unique

for (almost all) a ∈ [0, 1] where f(a) 6= 0.
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One case is particularly simple. If the uncertain prize is the median prize,
j = (n+1)/2, the equilibrium q is constant, q(a) = 1/2 for all a. To see this,
insert q(a) = 1/2 in (5) and solve the integrals, which yields(
1

2
F (a)

)(n−1)/2(
1− 1

2
F (a)

)(n−1)/2
=

(
1− 1

2
F (a)

)(n−1)/2(
1

2
F (a)

)(n−1)/2
Note that the equilibrium is fully revealing, despite the fact that players

randomize bid levels, as each pair of possible bids is unique for the player’s
valuation.

1 Appendix

Proof Lemma 1. We will prove this in several steps.
Step 1: We first reformulate the problem, so that finding λ̃(F ) for a

F ∈ [0, 1] becomes equivalent to finding a point of intersection between two
graphs. Consider the function G(x) := xn−j(1 − x)j−1 and the translation
HF (x) := G(x + 1 − F ). Note that G(λ̃) is the LHS of (6) and HF (λ̃) is
the RHS. Thus, the curve of the RHS, HF , is just the curve of the LHS, G,
shifted to the left by 1 − F . So for a given F ∈ [0, 1] we are looking for a
λ̃(F ) ∈ [0, F ] such that G(λ̃(F )) = HF (λ̃(F )).
Step 2: We will now show that for each F ∈ [0, 1), there exists a unique

point λ̃(F ) ∈ [0, F ] such that G(λ̃(F )) = HF (λ̃(F )). To do so, we shall show
that the graphs of G and HF have simple bell-shapes for which a unique
intersection point is easy to derive. For the graph of G, note that a simple
analysis tells us that:

1. G has a unique peak at
n− j
n− 1 =: λG;

2. On [0, λG] G is strictly increasing from 0 to G(λG);

3. On [λG, 1] G is strictly decreasing from G(λG) to 0.

Write λHF := λG − 1 + F . Then, equivalently, HF is strictly increasing
on [−1 + F, λHF ] and strictly decreasing on [λHF , F ].
Existence: Trivially λ̃(0) = 0. When F ∈ (0, 1), we have that HF (0) >

0 = G(0) and HF (F ) = 0 < G(F ). Thus, by the intermediate value property,
there is an intersection point λ̃(F ) ∈ (0, F ).
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Uniqueness: We claim that for all F , the intersection point λ̃(F ) lies
between the peaks λHF and λG, and that there can be no other intersection
points outside of the interval (λHF , λG). Once this is established, it is trivial
to show that the intersection point must be unique.

• Suppose λ̃ ∈ [0, λHF ]. We have HF (λ̃) = G(λ̃ + 1 − F ), and since G
is strictly increasing on the interval [0, λG] ⊇ [λ̃, λ̃ + 1 − F ], we have
G(λ̃+ 1− F ) > G(λ̃). Thus HF (λ̃) > G(λ̃) and there are no points of
intersection on this interval.

• Suppose λ̃ ∈ [λG, 1]. By a similar analysis as for the above case,
HF (λ̃) = G(λ̃ + 1 − F ) < G(λ̃) as G is decreasing on the interval
[λG, 1]. We again conclude that there are no points of intersection.

• Suppose λ̃ ∈ (λHF , λG). We have HF (λHF ) > G(λHF ) and HF (λG) <
G(λG), so by continuity, there must be a point of intersection. Further-
more, as HF is strictly decreasing and G is strictly increasing on this
interval, the crossing point must be unique.

So for each F ∈ [0, 1), we have a mapping λ̃ : F 7→ λ̃(F ) ∈ [0, F ]. For λ̃ at
F = 1, we note that as λ̃(F ) ∈ (λHF , λG) for F ∈ (0, 1) and limF→1 λHF = λG,
we set λ̃(1) = limF→1 λ̃(F ) = λG for continuity.
Step 3: We will now show that λ̃ is strictly increasing. To do so, we will

show that for all F and ε > 0, we have λ̃(F ) ≤ λ̃(F + ε). We know that
λ̃(F + ε) ∈ (λHF+ε , λG), so if λHF+ε ≥ λ̃(F ), we are done. If λHF+ε < λ̃(F )

then HF+ε is decreasing on [λ̃(F ), λ̃(F ) + ε], so

HF+ε(λ̃(F )) > HF+ε(λ̃(F ) + ε) = HF (λ̃(F )) = G(λ̃(F )).

Thus, HF+ε has yet to intersect with G at λ̃(F ) and so λ̃(F + ε) > λ̃(F ) and
λ̃ is strictly increasing.
Step 4: Then we will show that λ̃ is Lipschitz continuous with Lipschitz

constant 1, which is equivalent to showing that λ̃(F + ε) ≤ λ̃(F ) + ε. This
follows from a similar analysis to that of Step 3. It will be enough to show
that HF+ε(λ̃(F ) + ε) < G(λ̃(F ) + ε). We have

HF+ε(λ̃(F ) + ε) = HF (λ̃(F )) = G(λ̃(F )) < G(λ̃(F ) + ε)

since G is increasing on [0, λG]. Thus λ̃(F ) + ε is past the intersection point
λ̃(F + ε) of HF+ε and G, which is what we wanted to show.
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Step 5: We conclude the proof by deducing that λ̃ is almost everywhere
differentiable and that λ̃

′
(F ) ∈ [0, 1]. This follows immediately from the fact

that Lipschitz continuous functions are almost everywhere differentiable, that
λ̃ is increasing and that λ̃(F + ε) ≤ λ̃(F ) + ε.

Proof Theorem 1. We will prove this in three steps.
Step 1: First we show that λ is almost everywhere differentiable, and

that λ′(a) = f(a) λ̃
′
(F (a)). λ is the composition λ(a) := λ̃ ◦ F (a). By the

chain rule, if λ̃ and F are differentiable at a, then λ is differentiable at a, and
λ′(a) = λ̃

′
(F (a))F ′(a). We established in Lemma 1 that λ̃ is differentiable

almost everywhere. Furthermore, since f is a probability density function, it
is absolutely integrable, so by the Lebesgue differentiation theorem, F (a) =∫ a
0
f(z)dz is continuous, almost everywhere differentiable and F ′(x) = f(x).

This concludes Step 1.
Step 2: Secondly we show that λ(a) = λ(b) +

∫ a
b
λ′(z)dz. By the second

fundamental theorem for absolutely continuous functions, this is equivalent
to showing that λ is absolutely continuous. We have by that if F and λ̃
are absolutely continuous and F is monotone, then the composition λ̃ ◦ F
is also absolutely continuous. Absolute continuity of λ̃ follows directly from
Lipschitz continuity. F is clearly monotone, and absolute continuity of F fol-
lows from absolute integrability of f . Therefore, λ is absolutely continuous.
Step 1 and 2 together show that λ(a) =

∫ a
0
f(z) λ̃

′
(F (z)) dz, so we can

set q(a) := λ̃
′
(F (a)). We have from Lemma 1 that λ̃

′
(a) ∈ [0, 1], which

implies that q is a function from [0, 1] to [0, 1]. In other words, we have the
existence of a solution q : [0, 1]→ [0, 1].
Step 3: Now it remains to show uniqueness of the solution q on the

subset of [0, 1] where f(a) 6= 0. We suppose that q̃ : [0, 1]→ [0, 1] also solves
λ(a) =

∫ a
0
f(z)q̃(z)dz and show that q̃(a) = q(a) for almost all a for which

f(a) 6= 0. The integrands f(z)q(z) and f(z)q̃(z) are absolutely integrable, so
by the Lebesgue differentiation theorem (alternative formulation),

f(a)q(a) = lim
h→0+

1

h

∫
[a,a+h]

f(z)q(z)dz, f(a)q̃(a) = lim
h→0+

1

h

∫
[a,a+h]

f(z)q̃(z)dz,

for almost all a ∈ [0, 1]. However, by our assumption,∫
[a,a+h]

f(z)q(z)dz =

∫
[a,a+h]

f(z)q̃(z)dz

so f(a)q(a) = f(a)q̃(a) almost everywhere, and we are done.
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