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Abstract

We present and investigate a simple way to generate non-normal data using linear

combinations of independent generator (IG) variables. The simulated data have

prespecified univariate skewness and kurtosis, and a given covariance matrix. In contrast to

the widely used Vale-Maurelli (VM) transform, the obtained data is shown to have a

non-Gaussian copula. Analytically, we obtain asymptotic robustness conditions for the IG

distribution. Empirically, we show that popular test statistics in covariance analysis tend

to reject true models more often under the IG transform than under the VM transform.

This implies that overly optimistic evaluations of estimators and fit statistics in covariance

structure analysis may be tempered by including the IG transform for non-normal data

generation. We provide an implementation of the IG transform in the R environment.

Keywords: Simulation, Non-normal multivariate data, Kurtosis, Asymptotic

Robustness, Structural equation modeling
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A simple simulation technique for non-normal data with pre-specified skewness, kurtosis

and covariance matrix

INTRODUCTION

The use of Monte Carlo simulation to empirically assess estimators and

goodness-of-fit statistics is widespread in structural equation modeling (SEM) research.

The most common estimation method is normal-theory maximum likelihood (ML), which

is the default choice in SEM software. Normal-theory ML also provides an associated

goodness-of-fit test, which under ideal conditions of correct model specification,

multivariate normality and large sample size follows a chi-square distribution. However, in

most real-world situations data are drawn from non-normal distributions (Micceri, 1989).

It is therefore important to evaluate normality-based ML under realistic sample sizes and

non-normal distributions. In fact, for any estimation technique to be evaluated,

normal-theory based or not, we need to generate data with methods that can provide many

different kinds of multivariate non-normal distributions. The tradition in SEM simulation

is to set up a non-normal data generating process by specifying a given covariance matrix

and given skewness and kurtosis in the univariate marginal distributions. This is natural,

since SEM is based on analysis of the covariance structure. However, in the non-normal

case, there are many distributions that have a given covariance matrix. Similarly, the

skewness and kurtosis of a univariate distribution do not fully define a univariate

distribution. So by specifying the covariance matrix, and also, for each observed variable,

the skewness and kurtosis values, there are potentially many data-generating processes that

can attain the target covariance matrix, skewnesses and kurtosis. The data-generating

process of Vale-Maurelli (Vale & Maurelli, 1983) has been the default choice for researchers

conducting SEM simulation studies. However, the Vale-Maurelli (VM) transform

represents only one of many data-generating processes that attain the prespecified
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covariance structure and univariate skewness and kurtosis of the observed variables.

The aim of the current paper is to introduce a new simulation technique that

generates data that are different in important ways from data obtained with the VM

transform. We demonstrate that using the VM transform may result in a too optimistic

evaluation of normal-theory based test statistics in SEM. A more moderate evaluation of

the performance of these popular test statistics is obtained when data is generated by the

simulation technique proposed in this article. For instance, we show that at fixed levels of

skewness and kurtosis in the observed variables, the performance of the ML chi-square

goodness-of-fit test TML rejects true models more often when data are simulated with our

proposed method, compared to when data are generated with the VM transform. Hence, a

researcher using only the VM transform may be led to conclude that TML performs quite

well under non-normality. However such a conclusion is contingent on the special kind of

non-normality offered by the VM transform. A less optimistic evaluation of the

appropriateness of TML under non-normality may have resulted had the data been

generated by the new method instead of the VM transform. Researchers can more broadly

evaluate the finite-sample performance of statistical techniques under non-normality by

employing this new simulation technique in addition to the VM transform.

Let us remark that although convenient, the traditional SEM approach of specifying

the covariance matrix and some finite-order moments of the univariate marginal

distributions does not fully identify a multivariate distribution. There is a more general

concept of dependency among random variables than the covariance matrix, namely the

copula. The importance of the copula stems from the following unique decomposition of

any continuous multivariate distribution into two parts:

Multivariate distribution = Univariate marginal distributions + Copula.

The first part is a specification of the univariate marginal distributions of the
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multivariate distribution, that is, the distribution of each observed variable. The second

part pertains to the dependence structure among these observed variables. This structure

may be modeled by the copula of the distribution, which describes the dependency among

the observed variables. For instance, the copula associated with multivariate normality is

defined as follows. Given a random multivariate normal vector X = (X1, . . . , Xd)′ we may

define a new vector UX = (φ(X1−µ1
σ1

), . . . , φ(Xd−µd

σd
))′, obtained from X by applying the

standard normal cumulative distribution function φ to each standardised univariate

marginal in X. The copula of X, known as the normal copula, is the cumulative

distribution function of the vector UX . This procedure may be applied to any non-normal

random vector Y , whose copula is the distribution of the vector

UY = (F1(Y1), . . . , Fd(Yd))′, where we have applied the cumulative distribution function

Fi(yi) = P (Yi ≤ yi) to each Yi. See Vuolo (2015) for an introduction to copulas in sociology.

Note that multivariate normality occurs only when both all univariate marginal

distributions are normally distributed, and the associated copula is normal as defined

above. Violation of the normality assumption can occur either if at least one univariate

marginal distribution is non-normal, or if the copula is non-normal, or both. For instance,

it may be the case that all univariate marginal distributions are normally distributed, but

that the copula is not normal, which will result in a non-normal multivariate distribution

with normal univariate marginal distributions. A practitioner investigating the observed

variables one-by-one will in such a case get the false impression that the data are normally

distributed. Conversely, it is possible to have non-normal univariate observed variables, but

with a normal copula. In this latter case, the distribution will appear highly non-normal

when investigating each observed variable, but its dependence structure, that is, its copula,

is identical to the multivariate normal case.

In fact, this latter situation closely describes the VM transform, which is implemented

in software packages like Mplus (Muthén & Muthén, 2012), EQS (Bentler, 2006) and lavaan
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(Rosseel, 2012). The VM transform delivers distributions with pre-specified univariate

skewness and kurtosis, and a pre-specified covariance matrix. See Curran, West, and Finch

(1996) for an example of an extensive Monte Carlo paper which uses this method. In the

VM transform one samples from an underlying multivariate normal distribution, whose

covariance matrix is found with a numerical routine. Then for each marginal variable Z, a

resulting observed variable Y is generated from Z by applying a Fleishman polynomial,

that is, a third or higher order polynomial whose coefficients are determined to match the

target skewness and kurtosis values (Fleishman, 1978). There has recently been some

critique of the VM transform, both empirically (Astivia & Zumbo, 2014) and theoretically

(Foldnes & Grønneberg, 2015). In the latter work, it is shown that the truly multivariate

aspects of the VM-transform, i.e., its copula, is very closely related to the multivariate

normal copula. Moreover, attempts to generalise the VM-transform by including Fleishman

polynomials of higher degrees (Headrick, 2002) do not transcend this limitation. The

copula-based simulation approach proposed by Mair, Satorra, and Bentler (2012) offers an

alternative to the VM-transform, where the resulting copula is non-normal. However,

controlling the univariate marginal distributions is not possible with their method.

In the present article we present and investigate a new method for simulating

non-normal data with exact control of the covariance matrix and univariate skewness and

kurtosis, and with truly non-normal copulas. The new method hence provides an

alternative to the VM transform, and gives rise to a different set of non-normal

distributions than those offered by the VM transform. We illustrate that the proposed

simulation method produces distributions under which normal-theory ML inference

performs differently than it does under the data generated by the VM transform, in spite of

both distributions sharing the same covariance matrix and the same univariate skewness

and kurtosis.

We propose a new transform that generates random samples from a vector Y of p
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observed variables. The transform represents the observed variables as Yi = ∑s
j=1 aijXj, for

i = 1, . . . , p, where the aij are constant scalars and the Xj, j = 1, . . . s, are mutually

independent random variables referred to as independent generator (IG) variables. In

practice, the vector Y will contain all observed variables in a SEM model that we wish to

generate data for, while the Xj variables may be unrelated to the model, propagating

randomness into Y . We say that any Y that can be represented stochastically in this way

has an IG distribution. These distributions are convenient for simulating multivariate

non-normal data, because it is straightforward to independently draw random samples from

the univariate distributions of the Xj and then use the linear combinations to generate

data for Y . The algebraic simplicity of the stochastic representation also makes it possible

to develop analytical results. Foldnes, Olsson, and Foss (2012) used IG distributions to

theoretically study the loss of power of robust test statistics with increasing kurtosis.

To investigate whether normal-theory ML inference is robust to various violations of

the normality assumption, researchers need to generate data that depart from the normal

case in significant ways. In SEM simulation a researcher with a target model in mind

usually specifies the population parameters of the model and calculates the implied

covariance matrix of the observed data. Then simulations are executed from a non-normal

distribution whose covariance matrix equals the implied covariance matrix. The task of

non-normal data generation with given covariance matrix is important in related fields of

statistics as well. Many methods rely on some form of covariance structure analysis, e.g.,

repeated-measures designs (Molenaar & Rovine, 1998; Berkovits, Hancock, & Nevitt,

2000), multilevel random coefficients models (Rovine & Molenaar, 2000) and ANCOVA

(Headrick & Sawilowsky, 2000). Evaluating such methods under non-normal data hence

requires a simulation from an underlying distribution whose covariance matrix equals a

given target matrix, and whose univariate marginal distributions are partially or fully

specified. In the present article we consider the traditional case where only the third- and
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fourth-order moments are pre-specified for each univariate marginal distribution.

The goals of this article are threefold. First, to introduce and illustrate a new

simulation technique based on IG variables. The second goal is to demonstrate the need for

non-normal data simulation techniques that differ from the often used VM transform. We

do this by Monte Carlo, showing that popular SEM fit statistics are sensitive to the

underlying type of non-normality, even for fixed levels of univariate skewness and kurtosis.

In a real-world setting, we do not know the exact nature of our non-normal data, so we

should be careful to include different kinds of non-normality into our simulation conditions.

Our third goal is to present analytical results for IG distributions. We establish exact

conditions for the validity of normal-theory based test statistics under non-normal IG

distributions. We also demonstrate that the IG distribution has a non-normal copula, in

contrast to the VM distribution, again showing that the IG transform produces conditions

that may complement the VM transform.

This article is organised as follows. In the next section we present the IG transform,

summarised in a five-step algorithm. This is followed by a section where the five-step

algorithm is illustrated on an empirical example. We then present a technical section

developing analytical results for the IG transform, beginning with a non-technical summary

of these results. This is followed by a section with a Monte Carlo study that evaluates the

rejection rates of two popular test statistics under data produced by both the IG and the

VM transform. The last section discusses limitations of the IG transform and gives

conclusive remarks. Sample code written in the R environment is available as online

supplementary material for methodologists that wish to implement the IG transform.
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THE IG TRANSFORM

This paper investigates distributions obtained from linear combinations of

independent non-normal variables:

Y = AX, (1)

where X is a column s-vector of generator variables, while Y is a column p-vector of

generated variables. A researcher may form Y from the observed variables in the model

under scrutiny. The topic of the current section is how we may choose the A matrix and

distributions for the Xj so that the observed variables have the desired covariance matrix,

skewness and kurtosis. The IG variables Xj for j = 1, . . . , s, contained in the vector X, are

assumed to be mutually independent, and A is a p× s (s ≥ p) matrix of constant

coefficients. We assume without loss of generality that Xj have zero mean and unit variance

for all j. In the following, we refer to data-generation by way of (1) as the IG transform.

For a given target covariance matrix Σ for Y , we employ some matrix A such that

AA′ = Σ.

This will ensure, given the unit variance and mutual independence of the IG variables, that

Y has the target covariance Σ. In a straightforward application of eq. (1) one can set

s = p and choose A as a square root matrix of Σ. However, a researcher investigating a

particular model might want to investigate how skewness and kurtosis in various parts of

the model influence estimation and goodness-of-fit statistics. Then a more elaborate A can

be constructed from the model at hand as follows. A SEM model can be formulated

(Bollen, 1989) as

η = Bη + Γξ + ζ, Y1 = Λ1η + ε, Y2 = Λ2ξ + δ, (2)

where ξ, ζ, ε and δ are latent vector variates and the observed variate is Y = (Y ′1 ,Y ′2 )′.

The covariance matrices of ξ, ζ, ε and δ are denoted by Φ, Ψ, Θε and Θδ, respectively, and
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are assumed to be positive definite. The matrices B and Γ contain regression coefficients,

while Λ1 and Λ2 contain factor loadings. Note that (2) contains the multivariate regression

model as a submodel, when the Yi are measured without errors and B = 0.

We decompose these matrices by Φ = A1A
′
1, Ψ = A2A

′
2, Θε = A3A

′
3 and

Θδ = A4A
′
4 where the Ai are square root matrices. We set ξ = A1X1, ζ = A2X2,

ε = A3X3, and δ = A4X4 where the variables contained in the vector

X = (X ′1,X ′2,X ′3,X4)′ are mutually independent, each with variance one and zero mean.

Consequently we can cast (2) into the form of (1):

Y =

 Λ1(I −B)−1ΓA1 Λ1(I −B)−1A2 A3 0

Λ2A1 0 0 A4





X1

X2

X3

X4


. (3)

So, we can control skewness and kurtosis in each random vector ξ, ζ, ε and δ of the

proposed model by applying the IG transform to each of these. The distribution of the

observed vector Y will then still be an IG distribution.

After A in eq. (1) has been determined, we wish to find suitable distributions Fj for

the Xj such that each Yi has a given skewness and kurtosis. The skewness αV of a random

variable V with expectation µV and standard deviation σV is a measure of asymmetry, and

involves the third-order moment: αV = E[((V − µV )/σV )3]. Kurtosis is a measure of the

propensity of a distribution to produce outliers (see Westfall (2014) for a recent discussion

of the interpretation of kurtosis in terms of tail extremity). Kurtosis involves fourth-order

moments. The relative, or excess, kurtosis βV of V defined as βV = E[(V − µV )4]/σ4
V - 3.

The issues of skewness and kurtosis can be handled separately. For skewness, the

pairwise independence between the Xj makes it a rather uncomplicated exercise in algebra
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to obtain an expression for the skewness of Yi:

αYi
= a3

i1αX1 + a3
i2αX2 + · · ·+ a3

isαXs

(a2
i1 + a2

i2 + · · ·+ a2
is)3/2 . (4)

Hence, the skewness of the Yi depends linearly on the skewnesses in the generator variables.

Given user-specified skewness values αYi
, i = 1, . . . , p, there are p equations of type (4).

Together they constitute a linear system in p equations with s ≥ p unknowns, namely the

αXj
, j = 1, . . . , s. In general such a system is consistent, and can be easily solved for the

αXj
by using statistical or mathematical software, like R, Mathematica or Matlab.

An expression similar to (4) might be obtained for kurtosis, again relying on the

mutual independence and unit variance of the IG variables. By some straightforward

algebra, we obtain:

βYi
= a4

i1βX1 + a4
i2βX2 + · · ·+ a4

isβXs

(a2
i1 + a2

i2 + · · ·+ a2
is)2 . (5)

With given user-specified kurtosis values βYi
, we again end up with a system of p linear

equations with more unknowns (βXj
, i = 1, . . . , s) than equations. And again, we can solve

this system by using routines in a software package like R.

We can now summarise the IG transform simulation method:

1. The user specifies a target covariance matrix Σ, and target skewness (αYi
) and

kurtosis (βYi
) for each univariate marginal Y1, . . . , Yp.

2. A matrix A is determined such that AA′ = Σ.

3. The systems of linear equations (4) and (5) are solved for αXj
and βXj

, respectively.

4. For each IG variable Xj, a univariate distribution Fj is specified such that Xj has

zero expectation, unit variance, skewness αXj
and kurtosis βXj

.

5. For a given sample size, draw independently random realisations of Xj, i = 1 . . . , s.

Apply the linear transformation (1) to obtain a random sample from Y .
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The IG transform above stochastically defines a large class of distributions, where

steps 2, 3 and 4 can be executed in various ways. In step 2 many A are possible. If s > p

there might be several possible solutions for αXj
and βXj

in step 3. In step 4 there are

different candidate distributions for Xj with given skewness and kurtosis, for instance

through Fleishman polynomials, the Johnson family of distributions (Johnson, 1949) or the

Pearson family of distributions (Pearson, 1895). However, the focus in the present article is

to introduce and illustrate a new simulation method that matches target skewness, kurtosis

and covariance, and which is fast and easy to simulate from. The flexibility contained in

the IG class of distributions may be a topic of future research.

ILLUSTRATION: BOLLEN’S POLITICAL DEMOCRACY MODEL

In this section we demonstrate how to simulate data for the well-known political

democracy model for developing countries, described in the textbook by Bollen (1989).

The associated R code is available as supplementary material. The model contains four

measures of political democracy measured twice (1960 and 1965), and three measures of

industrialization measured once (1960), and is depicted in Figure 1.

Suppose we want to generate data from a population that fits perfectly with the

model. In our case we have access to the original dataset (Bollen, 1989, p. 428, Table 9.4)

that contains n = 75 developing countries, so we can use the model-implied covariance

matrix as the target matrix Σ = Σ̂:

Σ =



0.53
0.98 2.25
0.82 1.78 1.95
0.67 1.45 1.21 6.83
0.84 1.82 1.52 6.21 15.18
0.70 1.53 1.28 5.23 6.57 10.6
0.84 1.83 1.53 6.25 9.17 6.61 11.05
0.81 1.77 1.48 5.14 5.68 4.78 5.72 6.77
0.96 2.1 1.75 5.36 8.89 5.67 6.78 5.24 11.17
1.04 2.27 1.89 5.78 7.27 6.91 7.31 5.66 6.71 10.67
1.03 2.25 1.87 5.72 7.19 6.05 7.58 5.6 7.99 7.16 10.34

.

In addition to specifying the target covariance matrix, the researcher also specifies

skewness and kurtosis for each of the 11 observed variables. We specify the following

skewness values for Y1, Y2, . . . , Y11: (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2), and the following excess
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kurtosis values: (1, 1, 1, 1, 3, 3, 3, 3, 7, 7, 7). For instance, for Y5 we desire a distribution with

skewness 1 and excess kurtosis 3.

The second step is to determine a matrix A such that AA′ = Σ. This is done in

mathematical or statistical software, like R. In this illustration we take A to be the

lower-triangular Choleski factor of Σ:

A =



2.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.38 3.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.00 0.59 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.39 1.13 0.47 1.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.97 0.33 0.26 0.27 1.63 0.00 0.00 0.00 0.00 0.00 0.00
2.05 1.30 0.32 0.13 0.41 2.23 0.00 0.00 0.00 0.00 0.00
2.21 0.65 0.84 0.46 0.46 0.36 2.02 0.00 0.00 0.00 0.00
2.19 0.64 0.52 0.70 0.47 0.99 0.28 1.76 0.00 0.00 0.00
0.25 0.07 0.06 0.06 0.16 0.11 0.12 0.07 0.63 0.00 0.00
0.55 0.16 0.13 0.13 0.34 0.25 0.26 0.16 1.09 0.65 0.00
0.46 0.14 0.11 0.11 0.29 0.21 0.21 0.14 0.91 0.39 0.73

.

The third step involves solving the equations (4) and (5) for skewness αXj
and

kurtosis βXj
, respectively. Solving a linear system of equations is a routine task performed

by any mathematical software package. The solutions for skewness αXj
, j = 1, . . . , 11, in

the IG variables are (0, 0, 0, 0, 4.07, 3.33, 4.14, 5.44, 2.99, 9.32, 6.47). For excess kurtosis the

solutions are (1, 2.18, 2.46, 5.81, 17.36, 14.06, 18.79, 29.51, 12.44, 96.07, 56.42). So for

instance, the IG variable X5 should have skewness 4.07 and excess kurtosis 17.36.

The fourth step involves finding univariate distributions for the IG variables Xj

which have the required skewness and kurtosis. For instance, we must define a distribution

F5 such that the skewness and kurtosis of X5 equal 4.07 and 17.36, respectively. There are

different ways of doing this, one could for instance use Fleishman polynomials as done in

the VM transform. However, for this illustration we use the Pearson distribution system,

which allows the user to specify mean, variance, skewness and kurtosis in order to obtain a

corresponding Pearson distribution. For instance, F5 is a member of the type I Pearson

family of distributions, which are transformations of Beta distributions, so that the

probability density of X5 is f(x) = Γ(a+b)
Γ(a)Γ(b)(

x−λ
s

)a−1(1− x−λ
s

)b−1. To attain zero mean, unit

variance, skewness 4.07 and kurtosis 17.36 we use R (Becker & KlÃűßner, 2013) to

calibrate the parameters: a = 0.05, b = 1.07, λ = −0.32 and s = 6.99.

The fifth and last step is to draw independently for each Xj random samples of a
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given sample size N . These eleven samples are combined as columns to form a N × 11

matrix D. The final simulated dataset is then obtained as the N × 11 data matrix D ·A′,

where each row represents a single draw from the random vector Y .

ANALYTICAL INVESTIGATIONS OF IG DISTRIBUTIONS

The material contained in this section is quite mathematical in nature, and may be of

interest primarily to technical readers. Applied researchers may wish to skip the

technicalities. For those readers we provide the following summary of our analytical

investigations.

Summary of analytical results

An important use of non-normal data generation in SEM is to evaluate the

finite-sample performance of estimators and fit statistics under a variety of distributional

conditions. Normal-theory based ML is the most popular estimation method, which also

provides an associated fit statistic, TML. An important issue is whether TML can still be

trusted when data are non-normal. It is well known that under some specific combinations

of non-normal data and model conditions TML retains its asymptotic chi-square

distribution. These combinations involve certain exact relationships between the

multivariate fourth-order moments of the data and the derivatives of the model-implied

covariance matrix, and are characterised in a body of literature referred to as asymptotic

robustness (AR) (e.g., Shapiro, 1987; Browne & Shapiro, 1988; Amemiya & Anderson,

1990; Satorra & Bentler, 1990). If the IG transform is to be used to realistically assess

TML, for instance in terms of Type I error rates, it is important that AR does not hold. In

this section we therefore investigate under what conditions the IG transform will violate

AR. With the results obtained in this section, we can affirm whether a given IG transform

in conjunction with a given model will violate AR. This is done by examining an explicit
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matrix that must be zero in all elements for AR to hold. A researcher employing the IG

method for data generation could check whether this matrix is non-null, and hence be

confident that the simulated data will distort the distribution of the ML chi-square fit

statistic. We are able to deduce this result because the IG transform is analytically

tractable, due to the independence of the IG variables. Interestingly, we also establish in

the context of IG distributions that whenever the well-known Satorra-Bentler correction is

equal to one, that is, when there is no correction, then AR must hold and hence both the

ML chi-square and the Satorra-Bentler chi-square are to be trusted under reasonably large

sample sizes. Whether this result extends to other classes of non-normal distributions is

presently unknown.

It is also important to establish that the IG transform is able to generate data with a

non-normal copula, so that the resulting IG distribution departs from normality both in

terms of each observed variable, and in terms of their dependence structure. In the second

subsection we show that IG distributions, in contrast to those obtained with the VM

transform, in general have a non-normal copula. Hence the IG transform may serve to

modify previous performance evaluations of estimators and fit statistics in SEM that were

based on the VM transform, or other non-normal data simulation techniques based on the

normal copula, like the NORTA method (Cario & Nelson, 1997) and its extensions

(Kowalchuk & Headrick, 2010).

Applied researchers may skip the technicalities contained in the next two subsections

without loss of continuity, and proceed to the next section, where the IG transform is

compared to the VM transform in a Monte Carlo study.

Asymptotic robustness

IG distributions belong to a class of distributions referred to as Data Model 1 by

Yuan and Bentler (1999), where AR conditions were derived for four test statistics. These



A SIMPLE SIMULATION TECHNIQUE 16

results were based on a crucial assumption (Yuan & Bentler, 1999, Condition 4.1) relating

the data generation method and the model structure. This condition is sufficient for AR to

hold. However, a researcher seeking to evaluate normal-theory based statistics under

non-optimal conditions should avoid AR. So what we need is a necessary condition for AR.

By violating this condition in the simulation set-up, the researcher will know that AR is

violated.

To develop AR conditions under (1), we need to define some central vectors and

matrices and operations upon them. For illustrative purposes, we exemplify in the

following these definitions on a simple model, referred to as Model S. Model S has one

factor ξ and three observed variables Y1, Y2, Y3, with var(ξ) = 1 for identification. We

constrain all three loading coefficients to be equal: λi = λ for i = 1, 2, 3. As is common in

parallel measures (Lord & Novick, 1968), we also constrain some error variances to be

equal: ψ2
1 = ψ2

2, where ψ2
i is the variance of the measurement residual corresponding to Yj.

Hence the free parameters in Model S are λ, ψ2
1 and ψ2

3. These parameters constitute the

parameter vector θ = (λ, ψ2
1, ψ

2
3)′. The model-implied covariance matrix of Model S is

Σ(θ) =


λ2 + ψ2

1 λ2 λ2

λ2 λ2 + ψ2
1 λ2

λ2 λ2 λ2 + ψ2
3

 .

This matrix is symmetric, and contains redundant elements. For a symmetric p× p-matrix

G, let vech(G) represent the column vector consisting of the p∗ = p(p+ 1)/2

non-duplicated elements of G, that is, the diagonal and supra-diagonal elements. So we

can represent Σ(θ) by the column vector

σ(θ) = vech(Σ(θ)) = (λ2 + ψ2
1, λ

2, λ2 + ψ2
1, λ

2, λ2, λ2 + ψ2
3)′,

containing the p∗ = 3 · 4/2 = 6 unique elements of Σ(θ). The same procedure may be

applied to the sample covariance matrix S, which is then more economically represented as
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s = vech(S). We let p denote the number of observed variables, and q the number of free

parameters. An important matrix is the Jacobian matrix of derivatives ∆(θ) = ∂σ(θ)/∂θ′,

where each entry of σ(θ) is partially differentiated with respect to each parameter in θ.

For model S we have

∆(θ) =



2λ 1 0

2λ 0 0

2λ 1 0

2λ 0 0

2λ 0 0

2λ 0 1



.

Next we consider a central element in SEM, namely the sampling distribution of the

covariances, i.e., the distribution of s. The asymptotic covariance matrix of
√
ns is denoted

by Γ, and should not be confused with the regression coefficient matrix in equation (2). To

exemplify, let us consider an IG distribution tailored to simulate data for Model S. We fix

all the parameter values λ, ψ2
1 and ψ2

3 to 1, such that the target covariance matrix is

Σ =
( 2 1 1

1 2 1
1 1 2

)
. Then we set A =

 √
2 0 0

1/
√

2
√

3/2 0
1/
√

2 1/
√

6 2/
√

3

 where AA′ = Σ. There is a general

formula for Γ when data comes from an IG transform (Browne & Shapiro, 1988, Theorem

2.1):

Γ = ΓN +K ′pÃCÃ′Kp. (6)

Here Ã is the p2 × s matrix whose jth column is aj ⊗ aj, with aj being the j-th column

vector of A. The ⊗ symbol denotes the Kronecker product. Then aj ⊗ aj consists of

stacking p copies of aj, where the ith copy is being multiplied by aij, for i = 1, . . . , p. For
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Model S, with the A given above, this gives

Ã =



2 0 0

1 0 0

1 0 0

1 0 0

1/2 3/2 0

1/2 1/2 0

1 0 0

1/2 1/2 0

1/2 1/6 4/3



.

C is the s× s diagonal matrix which has the excess kurtosis of the IG variables on the

diagonal, and zeros elsewhere. The constant p2 × p∗ matrix Kp consists of elements with

values in {0, 1
2 , 1} and is defined in, e.g., Browne (1974, Section 2). It has the property that

vech(G) = K ′pvec(G) where vec(G) is the vector formed by stacking the columns of G.

For Model S, p = 3, and

K ′3 =



1 0 0 0 0 0 0 0 0

0 0.5 0 0.5 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0.5 0 0 0 0.5 0 0

0 0 0 0 0 0.5 0 0.5 0

0 0 0 0 0 0 0 0 1



.

Finally, eq. (6) contains ΓN , defined as the asymptotic covariance matrix of
√
ns for

multivariate normal data, which is given by ΓN = 2K ′p(Σ⊗Σ)Kp. Returning to Model

S, with fixed parameter values λ, ψ2
1 and ψ2

3 all equal to 1, and with excess kurtosis in the

IG variables denoted by βi = βXi
for i = 1, 2, 3, eq. (6) gives:
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Γ =



8 + 4β1

4 + 2β1 5 + β1

2 + β1 4 + β1
2 8 + β1+9β2

4

4 + 2β1 3 + β1 2 + β1
2 5 + β1

2 + β1 3 + β1
2 4 + β1+3β2

4 3 + β1
2 5 + β1+β2

4

2 + β1 2 + β1
2 2 + β1+β2

4 4 + β1
2 4 + β1+β2

4 8 + 9β1+β2+64β3
36



.

Setting βi = 0 for i = 1, 2, 3 in the above expression recovers ΓN . Recall that the elements

of s are ordered as s11, s12, s22, s13, s23, s33. So, for instance, the covariance between the

sample covariance of Y2 and Y3 and the variance of Y2 is approximately equal to

4 + (β1 + 3β2)/4 divided by the sample size n, provided the sample is large.

The normal-theory ML estimate θ̂ minimises

FML(θ) = log |Σ(θ)|+ tr
(
SΣ−1(θ)

)
− log |S| − p.

With multivariate normality TML = (n− 1) · FML(θ̂) is asymptotically distributed as a

chi-square with d = p∗ − q degrees of freedom. With non-normal data TML is however

asymptotically distributed as a mixture of chi-squares:

TML
d−→

d∑
j=1

γjχ
2
1, (7)

where the χ2
1 are mutually independent chi-squares with one degree of freedom and

d−→ denotes convergence in distribution. The γj are the non-zero eigenvalues of UΓ

where U = Γ−1
N − Γ−1

N ∆
{
∆′Γ−1

N ∆
}−1

∆′Γ−1
N . AR is hence equivalent to γj = 1,

j = 1, . . . , d. Returning to Model S, with the three parameters fixed to one, and with

excess kurtosis in the IG variables as follows: β1 = 2, β2 = 4 and β3 = 6, the non-zero

eigenvalues of UΓ are γ1 = 2.25, γ2 = 1 and γ3 = 1. Hence, for large samples produced by

the specified IG transform, TML obtained from testing Model S will have an asymptotic
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mean of 4.25, which is larger than the mean d = 3 of the reference chi-square distribution.

Hence, although Model S has perfect fit to the target covariance matrix Σ, the TML-based

test will reject Model S too often. In fact, at the nominal significance level 0.05, model S

will have a rejection rate of about 0.14 in large samples. The fact that TML tends to inflate

with increasing kurtosis is well-known. However, as demonstrated above with Model S,

working with IG distributions allows for an exact calculation of the asymptotic distribution

of TML. One way to remedy the inflation of TML is to scale by a factor c = d/trace(UΓ),

as proposed by Satorra and Bentler (1988). Then the asymptotic mean of TSB = c · TML

equals the degrees of freedom d.

Shapiro (1987) showed that AR holds if and only if there exists some p∗× q matrix D

such that

Γ = ΓN + ∆D′ +D∆′. (8)

Moreover, under the slightly less general representation Γ = ΓN + ∆E∆′ for some

symmetric matrix E, normal-theory based estimators like ML are asymptotically efficient

within the class of minimum discrepancy function (MDF) estimators (Shapiro, 1987,

Corollary 5.3). A MDF estimator θ̂ is defined as the minimiser of F (S,Σ(θ)) where the

function F has the following three properties: F (E,G) ≥ 0 for all E and G; F (E,G) = 0

if and only if E = G; F is twice continuously differentiable jointly in E and G (Browne,

1982).

In Yuan and Bentler (1999) a crucial assumption, therein referred to as Condition

4.1, is that vech(aia′i) is contained in the column space of ∆ for all i. We reformulate this

condition as P = 0, where

P ≡∆′cK ′pÃ.

Here, ∆c is an orthogonal complement of ∆(θ), that is, a p∗ × (p∗ − rank(∆)) matrix of

full column rank where each column in ∆c is orthogonal to each column in ∆(θ). For
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Model S one orthogonal complement is given by

∆c =



0 0 1

1 1 0

0 0 −1

−1 0 0

0 −1 0

0 0 0



,

So that P =
( 0 0 0

1/2 −1/2 0
3/2 −3/2 0

)
, which contains non-zero elements.

Yuan and Bentler (1999) showed that P = 0 is a sufficient condition for AR. Our

first proposition gives a simple alternative proof that P = 0 entails AR. In addition we also

show that the condition P = 0 implies that normal-theory estimators are asymptotically

efficient.

Proposition 1. Consider the covariance model Σ(θ), and assume that it is correctly

specified for an underlying IG distribution of type (1). Then, if P = 0, asymptotic

robustness holds. Also, if P = 0, then normal theory estimators (e.g. ML, GLS) are

asymptotically efficient within the class of minimum discrepancy function estimators.

Proof. ∆′cK ′pÃ = 0 implies that the column space of K ′pÃ is a subset of the column space

of ∆. Hence there exists a matrix L such that K ′pÃ = ∆L. Substitution in the second

term on the right-hand side of (6) gives K ′pÃCÃ′Kp = ∆LCL′∆′, and Γ = ΓN + ∆E∆′

where E = LCL′.

A necessary condition for AR was not given in Yuan and Bentler (1999). The

following proposition identifies a necessary condition. It also states that, if all the Xj have

more, or all have less, kurtosis than the normal distribution, then P = 0 is actually

equivalent to AR.
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Proposition 2. Suppose that asymptotic robustness holds when testing a model Σ(θ)

against an underlying IG distribution defined by (1). Then PCP ′ = 0. Moreover, if either

βXj
> 0 for all j, or βXj

< 0 for all j, then P = 0.

Proof. By AR, it follows from equations (6) and (8) that some D exists such that

∆D′ +D∆′ = K ′pÃCÃ
′Kp and premultiplication with ∆′c and postmultiplication by ∆c

gives the required result. Now assume that βXj
> 0 for all j, i.e. that the diagonal

elements of C are all positive. The diagonal elements of PCP ′ are quadratic forms pjCp′j

where pj is the jth row of P . Now pjCp′j = 0 implies that pj = 0 for all j. The same

argument holds for the situation with βXj
< 0 for all j.

As a corollary we obtain an interesting observation. In general, if the Satorra-Bentler

correction c is inactive, that is, if c = 1, we know that the sum of the eigenvalues γj is

equal to d. In general this does not imply that we are in an AR situation, with γj = 1 for

all j = 1, . . . , d. The following corollary shows, however, that under an IG distribution with

excess kurtosis in the IG variables, c = 1 is indeed equivalent to AR.

Corollary 3. Consider an IG distribution (1) where either βXj
> 0 for all j, or βXj

< 0

for all j. Then the Satorra-Bentler correction c equals one if and only if AR holds.

Proof. Assume AR holds. Then from the previous proposition it follows that P = 0.

Under an IG distribution we have from (6)

trace(UΓ) = trace((∆′cΓN∆c)−1(∆′cΓ∆c)) = trace(I) + tr(QC),

where Q = P ′(∆′cΓN∆c)−1P . Hence from Q = 0 it follows that trace(UΓ) = d so that

c = d/d = 1.

Assume c = 1. Then tr(QC) = 0. Define M = (∆′cΓN∆c)−1. Then

trace(QC) = trace(P ′MPC) = trace(P̃ P̃ ′M ) = trace(P̃ ′MP̃ ) = trace(P̆ ′P̆ )



A SIMPLE SIMULATION TECHNIQUE 23

where P̃ = PC1/2 and P̆ = P̃M 1/2. Since tr(QC) = 0, it follows that P̆ = 0, which is

equivalent to P̃M 1/2 = PC1/2M 1/2 = 0. Since C and M are non-singular, it follows that

P = 0, which implies AR, by Proposition 1.

We have seen that when all IG variables have more, or all have less, kurtosis than a

normal variable, then PCP ′ = 0 and P = 0 are equivalent conditions, both again

equivalent to AR. A natural follow-up question is whether P = 0 is also necessary for AR

in the general case where some IG variables have more kurtosis, and some less, than the

normal distribution. In the following we use Model S to construct a counterexample. For

Model S, we noted earlier that P =
( 0 0 0

1/2 −1/2 0
3/2 −3/2 0

)
6= 0. If we set the excess kurtosis in the

IG variables to β1 = 1, β2 = −1 and β3 = 1
16 , and define D′ = 1

12

(
8 3 −1 3 0 1
8 2 −10 2 −4 0
−6 −2 0 −2 0 0

)
, then

K ′3ÃCÃ
′K3 = ∆D′ +D∆′. Hence, in this case P is not zero, but if β1 = 1, β2 = −1 and

β3 = 1/16, then AR holds. So P = 0 implies AR only in the case where all IG variables

have positive, or all have negative, excess kurtosis.

The Copula of the IG transform

Consider a continuous multivariate distribution, with univariate marginal

distributions Fi(y) = P (Yi ≤ y), i = 1, . . . , p. Sklar (1959) showed that a full description of

the random vector Y = (Y1, Y2, . . . , Yp)′ may be uniquely obtained by separating the

marginal distributions Fi, from the dependence structure, i.e. the copula. More precisely,

the probability integral transform applied to each component of Y gives the random vector

(U1, . . . , Up) = (F1(Y1), . . . , Fp(Yp)), with uniform marginal distributions. The copula C of

Y is the joint cumulative distribution function of (U1, · · · , Up). So a copula is a cumulative

distribution function with uniform marginal distributions. We refer to Joe (2014) for a

thorough review of copula theory.

Similar to the IG transform, under the VM transform the user may specify kurtosis
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and skewness for each univariate marginal, together with a covariance matrix. The

resulting distribution, given the non-normal nature of the univariate marginal

distributions, appears to be highly non-normal. It has however been shown (Foldnes &

Grønneberg, 2015) that the dependence structure of the VM transform is closely related to

that of a multivariate normal distribution. Intuitively this is not surprising, given that the

Fleishman polynomials in the VM transform do not contain interactions between the

normally distributed generator variables Z for Y . That is, in the VM transform each

output variable Yi is obtained as a polynomial in a single corresponding normally

distributed variable Zi. The generator vector Z = (Z1, . . . , Zp)′ is multivariate normal, and

the VM output Y = (Y1, . . . , Yp)′ inherits some basic properties of Z.

Compare this to the IG transform in eq. (1), where each Yi is a function of

potentially all the generator variables Xj. Although eq. (1) is a simple way to obtain

dependence between the Yi, i.e. by assuming linearity and independence, the resulting

distribution for Y has a non-normal copula. To the best of our knowledge there exists no

general results on the copula obtained from the IG transform. However, as shown in the

following, this copula is not in general normal. Consider the two-dimensional case

p = s = 2 and assume that A is non-singular. Suppose that the probability density

function (pdf) of X1 is non-zero everywhere, while the pdf of X2 is non-zero only in an

interval [b,∞). For instance might X1 be normally distributed and X2 a scaled χ2. Fix Y1

to any value y1. If we assume that both a11 and a21 are non-zero, it follows from

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

that

y2 = a21

a11
y1 + (a22 −

a12a21

a11
)x2.

Since A is invertible we have (a22 − a21a21
a11

) 6= 0, and suppose without loss of generality that
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this expression is positive. Then, given Y1 = y1, the conditional density of Y2 is non-zero

only in [a21
a11
y1 + (a22 − a12a21

a11
)b,∞). So there exists y1, y2 such that f2|1(y2|y1) = 0, where

f2|1 denotes the conditional density of Y2 given Y1 = y1. Furthermore, since a21 is non-zero

and since the pdf of X1 is non-zero everywhere, it follows that the pdf of Y2 is non-zero

everywhere: f2(y2) > 0 for all y2. Then since

f2|1(y2|y1) = f2(y2) · c12(F1(y1), F2(y2))

it follows that the copula density c12 of Y has c12(F1(y1), F2(y2)) = 0 for some y1, y2.

However, since the bivariate normal pdf is non-zero everywhere, the bivariate normal copula

is non-zero for all interior points of the unit square, so c12 can not be a normal copula.

MONTE CARLO ILLUSTRATION

In this section we investigate empirically the performance of the two most popular fit

statistics under the IG and VM simulation methods. We choose to focus on test statistics,

since model fit evaluation is a central task in SEM. Specifically, we consider the

performance of TML, which is the default statistic in most SEM software packages, and TSB,

which is the most widely used fit statistic for non-normal data. Our goal is to illustrate the

IG transform in a specific example, and also to show that it produces distributions that

differ from the VM transform to the extent that important SEM statistics are affected.

Since our purpose here is not to evaluate the IG method over a span of models,

sample sizes and non-normality conditions, we employ a simple model, given in Figure 2,

with two factors ξ1 and ξ2, each with two indicators.

The population model has factor loadings equal to 1, 0.8, 1, 0.8 for Y1, Y2, Y3 and Y4,

respectively. Both factor variances are equal to one, and the covariance between ξ1 and ξ2

is φ = 0.2. The residual variances of Y1, Y2, Y3 and Y4 are all equal to 0.4. The model has

only three free parameters, namely the elements of the covariance matrix Cov (ξ1, ξ2). All
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factor loadings and residual variances are fixed in the model to their population

counterparts, so there are seven degrees of freedom. The resulting covariance matrix of the

observables, and a corresponding triangular square root matrix, are given by

Σ =



1.40 0.80 0.20 0.16

0.80 1.04 0.16 0.13

0.20 0.16 1.40 0.80

0.16 0.13 0.80 1.04


, A =



1.183 0 0 0

0.676 0.763 0 0

0.169 0.060 1.170 0

0.135 0.048 0.662 0.762


.

We remark that other square root matrices of Σ could have been used, for instance a

symmetric A, but for the sake of simplicity we do not proceed to study these.

The Monte Carlo design include the following factors

• Two sample sizes, n = 100 and n = 500

• Two levels of non-normality.

– Moderate non-normality has skewness αYi
equal to 0, 0, 1, 1 and kurtosis βYi

equal to 1, 1, 3, 3 in Y1, Y2, Y3 and Y4, respectively.

– Severe non-normality has skewness αYi
equal to 2, 2, 3, 3 and kurtosis βYi

equal

to 5, 5, 15, 15 in Y1, Y2, Y3 and Y4, respectively.

• Two simulation methods: VM and IG

For the two levels of non-normality in the Yi variables, i = 1, . . . , 4, we calculated

skewness and kurtosis values in the generator variables X1, . . . , X4. This was done with a

numerical routine for the equation systems (4) and (5), as shown in the supplementary

online material. The resulting skewness and kurtosis values for X1, . . . , X4 are given in

Table 1. Each generator variable Xj was then simulated independently, with zero mean,

unit variance, zero skewness and excess kurtosis as specified in Table 1. To this end, we
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employed the Pearson family of distributions (Pearson, 1895), which allows the user to

specify the first four moments. We note that other kinds of distributions that match these

moments could have been used, and that the sensitivity of the IG transform to variation in

the univariate distributions of the IG variables is a direction for future research.

Results are give in Table 2. In each condition we report for TML and TSB the mean,

variance and rejection rate at the α = 0.05 level. There are 2000 replications in each cell,

so that the maximal standard error for the rejection rates are
√

0.52/2000 = 0.011. The

main observation is that fixing the covariance matrix and both univariate skewness and

kurtosis still leaves a lot of flexibility that will influence the behaviour of TML and TSB.

Both statistics differ in mean, variance and rejection rates between the VM and IG

transforms. Under normal data, the asymptotic mean and variance of these statistics equal

that of a χ2 distribution with seven degrees of freedom. So the asymptotic mean and

variance is 7 and 14, respectively. As expected, due to excess kurtosis, TML is inflated, with

rejection rates larger than the nominal levels. The non-normality correction in TSB only

partly ameliorates the inflation. Importantly, in all conditions the behaviour of of both

TML and TSB are sensitive to the underlying transform. The mean and variance are higher

under IG than VM, resulting in consistently higher rejection rates for data generated with

the IG transform compared to the VM transform. Hence it seems that data obtained from

the IG transform are farther removed from normality than data obtained with the VM

transform, even when controlling for covariance matrix and skewness and kurtosis in the

marginal distributions. For instance, in the n = 500 condition with severe non-normality,

one gets a much more positive impression of the performance of TSB under the VM

transform than under the IG transform (rejection rates are 9.1% and 15.0%, respectively).

Since the difference between the IG and VM transform lies solely in the copula, we have

empirically demonstrated that the underlying copula of a distribution can significantly

affect SEM goodness-of-fit testing.
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DISCUSSION

Limitations of the IG transform

It is likely that the class of IG distributions contains a quite limited subset of the

class of all non-normal multivariate distributions. The question whether a random vector is

generated by some mechanism based on linear combinations of mutually independent

random constituents is hard to verify. Hence there may be types of multivariate

non-normality that may occur in practice, but are not obtainable through the IG transform.

A more practical and critical limitation is the application of the IG transform for

large dimensionality. If d is large, say d > 50, the observed variables will be linear

combinations of a large set of independent generator variables, and the resulting sum will

tend to be normally distributed, due to the central limit theorem. To counteract this

convergence to normality, the IG variables must possess extreme skewness and kurtosis. In

theory this is not a problem, but in practice it is our experience that it may be difficult to

simulate from univariate distributions with such extreme third- and fourth-order moments.

For example, with a target kurtosis of, say, 10, it may be necessary for some IG variables to

have a kurtosis of, say, 100. We may speculate that available statistical software routines

will not be fully able to generate data with such a high kurtosis. This concern is a topic for

further research.

One might wonder whether the two systems of equations (4) and (5) can be solved for

skewness and kurtosis values, respectively. Hovewer, these are linear systems of equations,

where a solution does not exist only if the coefficient matrix is singular, in which case the

matrix A may be replaced to obtain a solution. Given solutions for skewness and kurtosis

in (4) and (5) another problem may arise. Not all combinations of univariate skewness and

kurtosis are feasible, and we may end up in such a situation for one of the observed

variables. In such a case one could again replace A. Whether this poses a serious
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limitation for the IG transform is a topic for future research.

Note that while the VM transform defines one single specific distribution for a given

target covariance matrix, and given univariate skewness and kurtosis, the IG transform

defines a much larger class of distributions. This generality reflects the fact that specifying

the covariance and third- and fourth-order moments of the marginal distributions does only

partially specify the multivariate distribution. The IG class of distributions, for given

covariance and univariate moments, is spanned by two independent choices. Firstly, the

choice of A, among the many different square and non-square matrices whose product AA′

equals the target covariance matrix. Each choice of A leads to a different multivariate

distribution. Secondly, the choice of distributions for the IG variables. There are many

univariate distributions with a given skewness and kurtosis, and a researcher may use

Fleishman polynomials, Pearson distributions or Johnson distributions. All of these will

result in different distributions for the IG transform. Finally, we remark that the IG

transform can easily be extended to higher order moments, e.g. fifth-order, which would

involve solving systems of linear equations of the the same kind as equations (4) and (5)

Conclusion

We have studied the use of independent generator variables for simulating

non-normal data with a prescribed covariance matrix and skewness and kurtosis in each

univariate marginal. We have shown analytically and empirically that the IG transform

generates data with different multivariate characteristics than the VM transform, even

when the two transforms share the same covariance structure and univariate

skewness/kurtosis. While the VM transform results in data whose copula is closely related

to the normal case, the IG transform produces data with a non-normal copula. A simple

Monte Carlo study demonstrated that two popular SEM goodness-of-fit statistics perform

worse with data from the IG transform than when data are generated with the VM
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transform. This demonstrates that the use of the IG transform may offer new insights on

the robustness of SEM inference to violations of the normality assumption, relative to

those gained through the use of the VM transform.

The proposed IG transform may be applied in simulation studies designed to test the

sensitivity of normal-theory based estimators and test statistics like TML to conditions of

non-normality. A researcher could use the IG transform for data generation and make

certain that the necessary condition in proposition 2 is violated. This will most likely

prevent an overly optimistic evaluation of the distributional robustess of normal-theory

SEM inference.

ACKNOWLEDGMENTS

We thank Randi Hammervold, Stefan Schauber and Albert Satorra for thoughtful

comments on an earlier draft of this article as well as the editor who helped us improve the

readability of this article.



A SIMPLE SIMULATION TECHNIQUE 31

References

Amemiya, Y., & Anderson, T. (1990). Asymptotic chi-square tests for a large class of factor

analysis models. The Annals of Statistics, 1453–1463. doi: 10.1214/aos/1176347760

Astivia, O. L. O., & Zumbo, B. D. (2014). A cautionary note on the use of the vale and

maurelli method to generate multivariate, nonnormal data for simulation purposes.

Educational and Psychological Measurement, 1-27. doi: 10.1177/0013164414548894

Becker, M., & KlÃűßner, S. (2013). PearsonDS: Pearson distribution system [Computer

software manual]. Retrieved from

http://CRAN.R-project.org/package=PearsonDS (R package version 0.97)

Bentler, P. M. (2006). Eqs 6 structural equations program manual. Encino, CA:

Multivariate Software.

Berkovits, I., Hancock, G. R., & Nevitt, J. (2000). Bootstrap resampling approaches for

repeated measure designs: relative robustness to sphericity and normality violations.

Educational and Psychological Measurement, 60 (6), 877–892. doi:

10.1177/00131640021970961

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley. doi:

10.1002/9781118619179

Browne, M. (1974). Generalized least-squares estimators in the analysis of covariance

structures. South African Statistical Journal, 8 , 1-24. doi:

10.1002/j.2333-8504.1973.tb00197.x

Browne, M. (1982). Covariance structures. In D. M. Hawkins (Ed.), Topics in applied

multivariate analysis. Cambridge University Press. doi:

10.1017/cbo9780511897375.003

Browne, M., & Shapiro, A. (1988). Robustness of normal theory methods in the analysis of

linear latent variable models. British Journal of Mathematical and Statistical



A SIMPLE SIMULATION TECHNIQUE 32

Psychology, 41 , 193-208. doi: 10.1111/j.2044-8317.1988.tb00896.x

Cario, M., & Nelson, B. (1997). Modeling and generating random vectors with arbitrary

marginal distributions and correlation matrix. Northwestern University, IEMS

Technical Report, 50 , 100–150.

Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to

nonnormality and specification error in confirmatory factor analysis. Psychological

Methods, 1 (1), 16-29. doi: 10.1037/1082-989X.1.1.16

Fleishman, A. (1978). A method for simulating non-normal distributions. Psychometrika,

43 , 521-532. doi: 10.1007/BF02293811

Foldnes, N., & Grønneberg, S. (2015). How general is the vale–maurelli simulation

approach? Psychometrika, 80 (4), 1066–18. doi: 10.1007/s11336-014-9414-0

Foldnes, N., Olsson, U. H., & Foss, T. (2012). The effect of kurtosis on the power of two

test statistics in covariance structure analysis. British Journal of Mathematical and

Statistical Psychology, 65 (1), 1–18. doi: 10.1111/j.2044-8317.2010.02010.x

Headrick, T. C. (2002). Fast fifth-order polynomial transforms for generating univariate

and multivariate nonnormal distributions. Computational Statistics & Data Analysis,

40 (4), 685–711. doi: 10.1016/S0167-9473(02)00072-5

Headrick, T. C., & Sawilowsky, S. S. (2000). Properties of the rank transformation in

factorial analysis of covariance. Communications in Statistics-Simulation and

Computation, 29 (4), 1059–1087. doi: 10.1080/03610910008813654

Joe, H. (2014). Dependence modeling with copulas. Boca Raton, FL: CRC Press.

Johnson, N. (1949). Systems of frequency curves generated by methods of translation.

Biometrika, 36 , 149-176. doi: 10.1093/biomet/36.1-2.149

Kowalchuk, R. K., & Headrick, T. C. (2010). Simulating multivariate g-and-h

distributions. British Journal of Mathematical and Statistical Psychology, 63 (1),

63–74. doi: 10.1348/000711009X423067



A SIMPLE SIMULATION TECHNIQUE 33

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores.

Addison-Wesley Pub. Co.

Mair, P., Satorra, A., & Bentler, P. M. (2012). Generating Nonnormal Multivariate Data

Using Copulas: Applications to SEM. Multivariate Behavioral Research, 47 (4),

547–565. doi: 10.1080/00273171.2012.692629

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures.

Psychological Bulletin, 105 (1), 156–166. doi: 10.1037/0033-2909.105.1.156

Molenaar, P. C. M., & Rovine, M. J. (1998). A nonstandard method for estimating a

linear growth model in lisrel. International Journal of Behavioral Development,

22 (3), 453–473. doi: 10.1080/016502598384225

Muthén, B., & Muthén, L. (2012). Mplus version 7: User’s guide. Los Angeles, CA:

Muthén & Muthén.

Pearson, K. (1895). Contributions to the mathematical theory of evolution. ii. skew

variation in homogeneous material. Philosophical Transactions of the Royal Society of

London. A, 343–414. doi: 10.1098/rsta.1894.0003

Rosseel, Y. (2012). lavaan: Latent variable analysis [Computer software manual]. Retrieved

from http://CRAN.R-project.org/package=lavaan (R package version 0.4-12)

Rovine, M. J., & Molenaar, P. C. M. (2000). A structural modeling approach to a

multilevel random coefficients model. Multivariate Behavioral Research, 35 (1), 51–88.

doi: 10.1207/S15327906MBR350103

Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in

covariance structure analysis. In Proceedings of the american statistical association

(p. 308-313). Alexandria, VA. doi: 10.1007/BF02296192

Satorra, A., & Bentler, P. M. (1990). Model conditions for asymptotic robustness in the

analysis of linear relations. Computational Statistics & Data Analysis, 10 (3),

235–249. doi: 10.1016/0167-9473(90)90004-2



A SIMPLE SIMULATION TECHNIQUE 34

Shapiro, A. (1987). Robustness properties of the mdf analysis of moment structures. South

African Statistical Journal, 21 , 39-62.

Sklar, M. (1959). Fonctions de rÃľpartition à n dimensions et leurs marges. UniversitÃľ

Paris 8.

Vale, C., & Maurelli, V. (1983). Simulating multivariate nonnormal distributions.

Psychometrika, 48 (465–471). doi: 10.1007/BF02293687

Vuolo, M. (2015, June). Copula Models for Sociology: Measures of Dependence and

Probabilities for Joint Distributions. Sociological Methods & Research, 1–45. doi:

10.1177/0049124115584477

Westfall, P. H. (2014). Kurtosis as peakedness, 1905–2014. rip. The American Statistician,

68 (3), 191–195. doi: 10.1080/00031305.2014.917055

Yuan, K.-H., & Bentler, P. M. (1999). On normal theory and associated test statistics in

covariance structure analysis under two classes of nonnormal distributions. Statistica

Sinica, 9 , 831-854. doi: 10.1111/j.2044-8317.1998.tb00682.x



A SIMPLE SIMULATION TECHNIQUE 35

Table 1

Skewness αXj
and kurtosis βXj

in the generator variables X1, . . . , X4.

Non-normality X1 X2 X3 X4

Moderate
αXj

0 0 1.035 1.716

βXj
1 2.569 3.142 7.820

Severe
αXj

2 3.378 3.100 5.140

βXj
5 12.843 15.711 39.098
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Table 2

Mean, variance and percentage rejection rates for two test statistics. TML: normal-theory

based likelihood-ratio test statistic. TSB: Satorra and Bentler mean-adjusted test statistic.

VM: data obtained with VM transform. IG: data obtained with IG transform. RR: rejection

rate. Var: Variance.

TML TSB

Non-normality n Method Mean Var RR Mean Var RR

Moderate

100 VM 10.1 32.8 20.5 8.0 28.6 11.2

100 IG 11.3 135.8 23.9 8.3 43.0 12.6

500 VM 10.2 33.3 21.9 7.2 17.5 7.0

500 IG 11.8 73.5 29.1 7.3 24.2 9.0

Severe

100 VM 22.1 268.5 66.5 9.5 69.6 17.9

100 IG 32.2 700.3 74.6 13.1 382.2 25.6

500 VM 23.4 305.0 67.4 7.5 30.1 9.1

500 IG 33.8 939.9 74.5 8.8 111.6 15.0
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Figure 1 . Bollen’s political democracy model. dem60: Democracy in 1960. dem65:

Democracy in 1965. ind60: Industrialisation in 1960.
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Figure 2 . Model S: A simple two-factor model.

δ1

δ2

δ3

δ4

Y1

Y2

Y3

Y4

ξ1 ξ2

φ


