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Cooperating to Commercialize Technology: A Dynamic Model of 

Fairness Perceptions, Experience, and Cooperation 

 

Abstract 

Technology entrepreneurship is an important driver of economic growth, though 

entrepreneurs must maintain cooperative ties with the owners of any technology they hope to 

bring to market. Existing studies show that fairness perceptions have a great influence on this 

cooperation, but no research investigates its precise mechanisms or dynamic patterns. This 

study explores the development of 17 ventures that cooperated with a university-owner of 

technology and thereby identifies different cooperation patterns in which fairness perceptions 

influence the degree of cooperation. These perceptions also change over time, partly as a 

function of accumulated experience and learning. A system dynamics model integrates 

insights from existing literature with the empirical findings to reveal which cooperation 

mechanisms relate to venture development over time; the combinations of individual 

experience, fairness perceptions, and market circumstances lead to four different patterns. 

This model can explain changes in entrepreneurial cooperation as a result of changes in 

fairness perceptions, which depend on learning effects and entrepreneurial experience. Each 

identified cooperation pattern thus has implications for research and offers insights for 

practitioners who need to manage relationships in practice. 
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1. Introduction 

Efforts to commercialize university-based inventions encourage economic growth, because 

technology ventures enjoy a good likelihood of evolving into high growth firms (Mueller 

2006, Shane 2004). For the entrepreneurs who bring such a technology to market, 

cooperating with the university is key to ensure their venture development, sustainability, and 

competitive advantage (Rothaermel and Thursby 2005, Shane 2002), especially when those 

universities provide crucial resources such as property rights, human capital, offices, lab 

facilities, or funding. Existing research describes antecedents and outcomes of cooperation 

and demonstrates that contractual and governance forms matter (Alvarez and Parker 2009, 

Reuer et al. 2006), even if subjective factors, such as fairness perceptions, appear even more 

important (Husted and Folger 2004, Sapienza and Korsgaard 1996, Sommer and Loch 2009). 

Yet we still lack insight in the dynamics of cooperative relationships between resource 

owners (e.g., universities) and entrepreneurs (Ariño and De la Torre 1998, Ariño et al. 2008, 

Ness 2009). As entrepreneurial cooperative relationships unfold over time, external events 

can affect interactions and fairness perceptions, especially as the parties accumulate new 

experiences and learn new behavior. Therefore, studying cooperation as dynamic behavior 

over time is vital for understanding entrepreneurial cooperation and the interventions that can 

overcome the limitations of standardized procedures that tend to break down in this context 

(Shane 2004, Sommer and Loch 2009).  

 This study investigates cooperation between entrepreneurs and a university where they 

acquired the intellectual property of the technological invention they hope to exploit. The 

resulting university spin-offs are key mechanisms for commercializing university-owned 

technologies (Bercovitz and Feldman 2006) and realizing economic growth (Mueller 2006), 

in which context the university usually provides resources to start the venture, acquire 

intellectual property rights, develop the technology, and obtain access to facilities. In such 
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alliances, fairness perceptions significantly influence the cooperation between the 

entrepreneurs and the university, yet no research investigates the precise mechanisms and 

different patterns of their cooperative dynamics (Ambos et al. 2008, Feldman et al. 2002, 

Rappert et al. 1999).  

 We adopt a process perspective and investigate which feedback and causal mechanisms 

determine how fairness perceptions affect this form of cooperation. Our conceptualization of 

the process is grounded in an in-depth literature review; we then gather empirical 

observations of 17 spin-off ventures. In turn, we can identify several cooperation patterns, 

including some counterintuitive patterns in which perceptions of unfairness shift to a sense of 

fairness, or vice versa, resulting in either cooperative or uncooperative behavior that has 

serious performance implications. We propose a system dynamics (SD) model of the 

feedback mechanisms and reinforcing causal loops. As its center, this model highlights how 

changing fairness perceptions drive more cooperation, particularly with the accumulation of 

experience that results in new behaviors and adjusted perceptions. In contrast, if learning is 

prevented, the relationship appears increasingly unfair, cooperation deteriorates, and venture 

development gets delayed. Our study specifies the influential functions of experience, 

fairness perceptions, and cooperation for technology commercialization. We also model 

possible interventions in deteriorating cooperation patterns, showing that involving 

experienced entrepreneurs early in the commercialization process may turn uncooperative 

behavior into more productive interactions. 

2. Fairness Perceptions and Entrepreneurial Cooperation 

2.1. Need for Cooperation  

When new ventures exploit university-owned technology, their relationship with the 

university is vital. Shane (2002) shows that university-owned inventions tend to be 

embryonic and highly innovative, such that the inventor’s cooperation for further 
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development is crucial for commercialization. The inventor might serve as the lead 

entrepreneur or member of venture team in a technology spin-off, though in some cases, the 

inventor has just an informal position in a venture run by an external entrepreneur (Franklin 

et al. 2001). Regardless of the inventor’s exact position, the venture must cooperate closely 

with his or her source university, to support the sharing of tacit knowledge about the research 

that led to the invention and to develop follow-up products (Jensen and Thursby 2001).  

 Academic entrepreneurs also usually must enter into a formal relationship with the 

university to acquire financial resources and ensure intellectual property (IP) protection (e.g., 

an exclusive license from the university). A formal relationship also enhances the credibility 

of the venture. Accordingly, research shows that more cooperative and formal venture–

university relationships exert positive influences on new venture performance (Rothaermel 

and Thursby 2005, Vohora et al. 2004), result in more innovative output at lower costs 

(George et al. 2002), and lead to faster new venture establishment (Müller 2010).   

2.2. The Crucial Role of Fairness  

After deciding to exploit a particular university-owned technology through a new venture, 

academic entrepreneurs must negotiate with the university to acquire the IP rights (usually 

with a license) and design the revenue sharing, because in most countries, the technology will 

be owned by the university (Stevens and Bagby 2001). The stressful bargaining process can 

reduce entrepreneurs’ motivation and perceptions of fair treatment (Nicolaou and Birley 

2003, Rappert et al. 1999), which in turn might influence their cooperative behavior. If they 

are sufficiently upset by the negotiations, they might even terminate the cooperation or 

pursue litigation (Feldman et al. 2002). Thus the degree of cooperation largely depends on the 

degree of perceived fairness, which affects commitment, trust, and social harmony and leads 

to cooperative or uncooperative behaviors (Kim and Mauborgne 1998, Ring and Van de Ven 

1994). The degree of perceived fairness in turn depends on the surrounding conditions, 
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interactions, and outcomes in the alliance (Kumar and Nti 1998). Fairness perceptions should 

be particularly important with regard to entrepreneurs, who lack organizational commitment 

to the university and instead must be personally involved in cooperation.  

 Existing research distinguishes four fairness dimensions—distributive, procedural, 

interactional, and informational (Colquitt 2001)—though the effect of procedural fairness on 

cooperation is most frequently studied (Griffith et al. 2006, Sommer and Loch 2009). 

Increases in fairness lead to better cooperation (Amaral and Tsay 2009, Griffith et al. 2006, 

Sommer and Loch 2009) and better venture performance. For example, in a study of the 

cooperative relationships between venture capitalists and entrepreneurs, Busenitz et al. (2004) 

find that procedural fairness (the perceived fairness of the process) relates positively to long-

term venture performance, and Sapienza and Korsgaard (1996) observe that procedural 

fairness helps explain the degree of cooperation between entrepreneurs and investors. 

Similarly, perceived fairness increases cooperation between subsidiaries and corporate 

management, resulting in higher performance (Kim and Mauborgne 1998), and in a corporate 

context, it enhances a firm’s ability to exploit entrepreneurial opportunities by increasing the 

amount and quality of knowledge sharing and learning (De Clercq et al. 2010). Thus, fairness 

perceptions influence the quality of social interactions.  

 Fairness perceptions influence human behavior especially in settings marked by unequal 

power distributions, such as when one partner has less ability to assert preferences. Fair 

treatment and procedures give weaker partners a feeling of indirect control and encourage 

them to accept even somewhat adverse outcomes (Lind and Tyler 1988, Sapienza and 

Korsgaard 1996). In contrast, perceptions of unfair treatment result in resentment and adverse 

behavior, such as sabotage or uncooperative actions, regardless of the potential for 

detrimental consequences for the venturing process (Kim and Mauborgne 1998, Pillutla and 

Murnighan 1996, Sommer and Loch 2009). 
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2.3. Cooperation as a Dynamic Process 

To gain insights into the dynamics of cooperative (entrepreneurial) relationships, Ring and 

Van de Ven (1994) conceptualize a sequence of negotiation, commitment, and execution 

stages that rely on assessments of an ongoing interaction’s efficiency and equity. By 

emphasizing both fairness and efficiency, this conceptualization balances hard (e.g., 

contracts) and soft (e.g., fairness perceptions) processes. Doz (1996) also proposes that 

cooperation depends on the initial conditions that define the tasks, interface structure, and 

expectations. Partners then cycle through a sequence of learning, reevaluation, and re-

adjustment, which enables them to evaluate the relationship’s efficiency, fairness, and 

adaptability. The reevaluation stage in particular highlights perceived fairness, cooperation 

progress, and speed and thus can result in adjustments to cooperative conditions and 

processes—whether for the better or not. For example, if early expectations indicated good 

success probabilities, negative reevaluations due to slow development might disrupt 

cooperation.  

Perceptions of fairness and venture progress also change over time and have varying 

effects on the cooperation between small university spin-offs and their large university 

partners (Feldman et al. 2002, Sommer and Loch 2009). Although we know that perceived 

fairness increases cooperation and related performance, it remains unclear how fairness 

perceptions change over time and thereby vary in their effects on cooperation and 

performance. Our detailed study of fairness perceptions and cooperation dynamics aims to 

reveal the mechanisms underlying these interactions and create insights for managing them.  

Accordingly, in Figure 1 we integrate these research findings and display the role of 

fairness perceptions and subsequent entrepreneurial cooperation in three partly overlapping 

adjustment, reevaluation, and learning cycles (cf. Ariño and De la Torre 1998, Doz 1996). 

Existing literature treats these three cycles as separate mechanisms; we instead stress their 
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cumulative and reinforcing nature by conceptualizing them as partly embedded causal loops. 

All the relationships in Figure 1 are positive. In the adjustment cycle (light grey arrows), 

accumulated experience affects both performance and perceived performance, which initiates 

a positive change in fairness perceptions. Perceived fairness exerts a positive effect on 

cooperative behavior, which influences the pace of key startup and commercialization events. 

This execution of startup events then increases experience, which closes the adjustment cycle. 

The reevaluation cycle (dark grey arrows) is partly embedded therein but includes a direct 

effect of the pace of startup events on perceived performance. That is, as more key startup 

events get executed, more progress is made, and the perceived performance of the venture 

improves, which triggers an increase in fairness perceptions and then results in increased 

cooperation. Finally, in the learning cycle (black arrows), the execution of startup events 

leads to increased experience, which directly affects cooperative behavior and then influences 

the pace of events.  

------ Insert Figure 1 about here -------- 

3. Empirical Cooperation Patterns 

3.1. Empirical Data and Analysis 

The empirical data that inform our model pertain to new ventures commercializing 

technology from Eindhoven University of Technology in The Netherlands. This university 

stimulates the creation of new ventures proactively, with the goal of commercializing 

university inventions, so it has established various procedures and rules to guide new 

venturing processes, such as norms for the negotiation process and standard agreements 

between the university and entrepreneurs. These rules attempt to create smooth 

commercialization processes by preventing extended negotiations and establishing 

expectations for the inventors and (future) entrepreneurs. 
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 We selected a sample of 17 new ventures begun by academic entrepreneurs from the 

database maintained by the technology transfer office (TTO) at the university, in consultation 

with the TTO staff. The sample features theoretically relevant differences, including the 

industry targeted, the academic or industry experience of the entrepreneurs, and the success 

of the venture. Yet, the small sample enables our in-depth comparison of each case and 

examination of its cooperative dynamics (Eisenhardt 1989, Lichtenstein et al. 2006, Van de 

Ven and Engleman 2004).  

 The data came from two main sources: (1) open-ended interviews with the entrepreneurs 

and university officials and (2) archival data. We conducted 29 face-to-face interviews with 

the lead founders, as well as 13 interviews with university and TTO officials, which we used 

to discern the institutional environment of the university. All interviews were recorded and 

fully transcribed. The archival data sources included company-related documents and 

performance data, such as business plans and annual reports, as well as contracts with the 

companies. We also collected newspaper articles, interviews, brochures, and online 

information about the companies.  

 Our analyses of the interviews with the academic entrepreneurs enabled us to identify the 

key startup and commercialization events. We employed the coding technique developed by 

Van de Ven and Poole (1990) to code events that must occur for a venture to become an 

independent and viable company (Lichtenstein et al. 2007). The key events include filing the 

first patent, registering the company, signing the contract with the university, starting 

production, acquiring investments, and establishing an agreement with a first client. We also 

coded context characteristics, including market complexity (i.e., volatility and market 

response), and individual-level characteristics, such as experience. We coded the four 

dimensions of fairness perceptions (Colquitt 2001), but they all had similar effects on 

cooperation, so we proceeded with a single, overall fairness construct. Two coders, 
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unfamiliar with the study, confirmed the reliability of the final coding. We then triangulated 

the interview codes with other data sources, such as e-mail conversations and press releases.  

 Next, we created and analyzed graphical representations of the event series, including the 

time between events, for each of the 17 cases, to identify any differences in the venture 

startup patterns (Langley 1999). We then related the identified cooperation patterns and their 

underlying events with the coded fairness perceptions, contextual characteristics, and 

individual-level conditions. By using the throughput time of events, we established a 

relationship among fairness perceptions, cooperative behavior, and venture performance in 

terms of progress.  

3.2. Empirical Findings  

Our empirical analysis reveals three cooperation and new venture development patterns, each 

of which includes two phases of interaction. For example, the unfair–fair pattern indicates 

that the entrepreneur initially perceived the relationship as unfair but then grew to regard it as 

fair. Two key differences in venture and context characteristics influenced these fairness 

perceptions and thus the cooperation patterns: the degree of initial experience possessed by 

the entrepreneur (low or high) and the complexity of the market in which the entrepreneur 

operates (low or high). Combining these two differences result in four possible patterns, but 

we empirically observed only three (see Table 1). The fourth possible pattern thus appears 

unusual; it does not emerge in any of our 17 cases. In Figure 2 we depict the accumulation of 

startup and commercialization events as a function of time for each of the three empirically 

observed patterns. Higher curves indicate that the events accumulated quickly. As more key 

startup events occur within a particular time period, venturing progress increases in speed.  

------ Insert Table 1 and Figure 2 about here -------- 

 

 The first pattern, which we call steady development (fair–fair), features startup events 

that occur faster than in the other two observed patterns. For example, the establishment of 
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the legal entity and strategic cooperation with external parties both start early, and 

entrepreneurs perceive the university’s procedures and policies, as well as the (negotiation) 

behavior exhibited by its representatives, as consistently fair. As one founder noted, ―It is 

especially important that we found something that was satisfactory to everybody.... They may 

get their 200K [in royalties]. That’s quite easy, also because it is favorable for both parties. 

When the university sees something coming back, we will probably get more from them as 

well.‖ That is, cooperation with the university appears essential for the venture’s 

development, so the entrepreneurs work hard to maintain good working relationships. 

Another founder explained, ―I prefer to be embedded within the research group. That I could 

talk with researchers at the coffee table. That’s of much value for me.‖ The ventures 

following this pattern in turn show steady development and continuous growth; the critical 

events in their development curves are the filing of their first patent and the start of 

production. Their markets exhibit relatively low complexity and volatility. Finally, an 

essential condition is the degree of (market and entrepreneurial) experience of the founders, 

which emerges in their fairness evaluations: ―We just make agreements in conformance with 

market standards. That is the most effective deal.‖  

 In the second pattern, increased cooperation (unfair–fair), the entrepreneur requires 

significantly more time to complete key startup events. In particular, the first five startup 

events take significantly more time than in the steady development pattern, but over time, the 

pace increases. Initially entrepreneurs perceive the relationship as unfair, such that ―The TTO 

director says: if a spin-off earns twenty Ferrari’s, we would like to get one as well.… But he 

wanted to have 15% [of the shares], that makes it three Ferraris! Then, I start thinking: that’s 

just unfair.‖ This perception reflects the power imbalance between the entrepreneur and the 

university: ―You easily get screwed. The university has the most powerful position.‖ It also 

slows progress in negotiations, which spills over to affect other startup events. For example, 
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ventures often need IP agreements with the university to attract investments. However, soon 

after they finalize these negotiations, fairness perceptions turn more positive. Entrepreneurs 

learn to perceive the agreement and relationship as fair, so they increase their cooperation 

with the university, and venture development progresses at a moderate pace (i.e., increasing 

slope after month 18 in Figure 2). As an important individual-level condition, these 

entrepreneurs (mostly doctoral students or recent graduates) appear relatively inexperienced. 

Their changing perceptions, cooperation, and performance indicate their learning curves, as 

one founder reflected in a second interview, just after he had finished negotiations: ―We were 

maybe a bit naive in the beginning.… More experience would definitely have helped.… The 

most important difference is: we were quite negative in the beginning and now we’re more 

positive.‖ As the surrounding market has relatively low complexity, this pattern allows for 

learning time, because there is no need for quick action to meet changing customer 

preferences or to deal with changing competitive landscape. Yet their minimal experience 

causes entrepreneurs to perceive even these markets, with their relatively low complexity, as 

difficult, which helps explain why the initial events take so much time. 

  Finally, in the decreased development pattern (fair–unfair), entrepreneurs initially 

develop the venture quickly and in close cooperation with the university after a short period 

of negotiations. In the first phase, the entrepreneurs perceive the university’s rules and 

behavior as fair, but by the second or third investment round, their perceptions begin to 

change, and they regard their previous agreement and renegotiations as unfair. Therefore, 

they decrease their cooperation with the university, because they believe, for example, ―The 

average VC [venture capitalist] does not ask so many clauses as the university.... The 

approach is: as the university gets such a percentage for actually nothing, what should I tell 

this VC three months later? That the company’s value has increased twenty times? That 

doesn’t work. It is just not correct.‖ The specific events surrounding changing perceptions 
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suggest that (re)negotiations often take place in difficult market circumstances, such as a lack 

of positive responses from customers or industry crises. When they reduce their cooperation, 

the entrepreneurs must find ―better‖ partners, which delays the commercialization process. 

This pattern is common among founders with substantial business experience, who 

experience the university environment as ―not professional‖ or lacking in ―business-like 

manners.‖ Yet their experience also seems to prevent them from learning from the changing 

circumstances to achieve fruitful interactions with the university. 

4. Model Description 

Some patterns are more likely to be delayed, but a simple explanation that relies solely on 

high market complexity and low experience is insufficient. For example, we find a mixture of 

quick and delayed venture development in two patterns (see Table 1), which implies the need 

for insights in dynamic patterns. Accordingly, we develop a system dynamics (SD) model 

that describes the complex interrelationships of new venturing processes, fairness 

perceptions, entrepreneurial experience, and cooperation dynamics. This method can analyze 

situations that involve multiple and interacting processes, delays, accumulations, and other 

nonlinear effects, such as feedback loops and thresholds (Davis et al. 2007), and it appears 

extensively in prior research (e.g., Akkermans and Vos 2003, Croson and Donohue 2006, 

Garcia et al. 2003, Georgiadis et al. 2009, Größler et al. 2008, Oliva and Sterman 2001, 

Repenning and Sterman 2002). Also entrepreneurship researchers have started to use SD 

modeling, to describe venture development from opportunity identification to exit 

(Yearworth 2010), to explore the effects of e-commerce strategies (Bianchi and Bivona 

2002), and to understand the growth of biotech start-ups (Grossmann 2003). Our SD model 

extends this literature by developing and simulating a model of the cooperation dynamics of 

entrepreneurial firms and by using a modeling approach that not only uses empirically 

grounded results (see Yearworth 2010) but also combines these results with literature based 
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relationships. The key concepts of our SD model are based on our literature review (see 

Figure 1), though the model behavior and the value of the exogenous variables are based on 

our empirical analysis (see Table 1). Thus, our empirically grounded model provides a logical 

and coherent explanation of interrelationships and resulting multi-ordered dynamics of the 

different processes. We provide a full description of the model, including model equations 

and the values of the exogenous variables, in a separate model documentation appendix, 

available upon request.  

4.1. Main Model Equations 

We provide a stylized version of the simulation model in Figure 3, which contains three 

reinforcing cycles: adjustment, reevaluation, and learning. For clarity, we detail the model in 

the reverse sequence, starting with the shortest (i.e., learning) cycle (black arrows in Figure 

3).  

----- Insert Figure 3 about here ------- 

4.1.1. Modeling the Learning Cycle 

The learning cycle begins with the execution of the startup and commercialization events 

(lower left corner, Figure 3). The event execution rate (eer) refers to the number of startup 

events executed per month; it implies the flow from events that are currently being 

undertaken, or Events in Execution (EiE), to the stock of completed or Executed Events (EE). 

Initially of course, the EiE stock is full, because all the events have yet to be executed. The 

EE stock contains a single event: the invention. As the cooperation progresses, more events 

get executed, EiE is depleted, and EE increases (Equation 1). As our empirical observations 

show a  total number of 16 unique startup events per case, EE will never rise above 16. To 

measure eer, we multiply the number of startup events in execution (EiE) by the degree of 

cooperative behavior (CB) (Equation 2). Thus as CB increases, eer increases, because more 

cooperative behavior should shorten the event execution time (eet) (Equation 3). Thus, 
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, (1)

 

 , and (2)
 

 
. (3)

 

 Every executed event also adds to the entrepreneur’s accumulated experience. Therefore, 

eer directly influences the experience rate (iex) (Equation 4). However, experience could 

decrease if an entrepreneur forgets about past events (dex). Therefore, to determine the 

relative experience of an entrepreneur, compared with the experience possessed by other 

entrepreneurs (relEx) (Equation 5), we measure the ratio of Experience with Events (ExE) to 

a reference level of experience (refEx). This reference level equals the maximum experience 

an entrepreneur can attain in this industry, ranging from 0 (no experience) to 1 (maximum 

experience). Thus,  

 , and  (4) 

 . (5) 

 We also recognize that more relative experience (relEx) should reduce the execution 

time, because according to learning curve theory, productivity rises by a given percentage as 

experience levels increase (Sterman 2000; see also Lapré et al. 2000, Wiersma 2007). We 

define the productivity increase that results from learning in our study as a lead-time based on 

learning (ll) construct:  

  . (6) 

We designate the normal lead-time (nl) as equal to the shortest event lead-time, which occurs 

when the entrepreneur has maximum experience. Across industries, lead-times fall by 10% to 

30% with twice the amount of cumulative experience (Sterman 2000). However, our modeled 

process is not very repetitive, so we assume that smaller lead-time reductions result from 

adding experience. Specifically, for every doubling of ExE, we assume ll declines by 10%, so 

elc relEx nl mcf ll    

refEx 

ExE 
relEx  

dex eer dex iex ExE 
dt 
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CB EiE eer   

eer EiE 
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eer EE 
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the exponent of the learning curve (elc) equals –0.15. This constant exponent describes the 

strength of the learning curve; because it is negative, a higher level of relative experience 

induces a shorter lead-time based on learning. Finally, ll should be positively influenced by a 

constant that represents the market complexity factor (mcf). At the same experience level, ll 

should be longer in complex rather than simple markets.  

 Beyond the learning effect, the time needed to execute an event (eet) depends on 

perceived fairness (PF): 

 . (7) 

That is, if an entrepreneur perceives higher fairness, the time needed to execute an event 

should be shorter. This reduced time then leads to cooperative behavior (CB), which closes 

the learning cycle. Thus the learning loop has two negative links: between relative experience 

and lead-times based on learning, and between event execution time and cooperative 

behavior. The even number of negative links implies positive, or reinforcing, overall behavior 

of the loop.  

4.1.2. Modeling the Reevaluation Cycle 

In the reevaluation cycle (dark grey arrows, Figure 3), the number of executed startup events 

(EE) determines the progress of the venture (pv), which in turn influences its perceived 

performance, according to the entrepreneur (PP). The progress of the venture is measured by 

comparing the actual progress in terms of EE with the planned progress. When the actual 

progress falls behind the expected schedule, pv decreases. Because perception changes take 

time, we model PP as an adaptive expectation; it gradually adjusts to the actual progress of 

the venture (Sterman 2000) through changes in perceived performance (cPP). Initially the 

entrepreneur has difficulty assessing venture performance, because few events have been 

executed. Thus perceived performance initially depends on the entrepreneur’s relative 

experience (relEx). Over time, more events get executed, and PP is increasingly influenced 

PF ll eet /  
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by venture progress, so we predict that the weight of experience (we) decreases over time 

(from 1 to 0). In terms of our causal loops, this means that in the beginning the adjustment-

loop (with relEx) and the learning-loop are the drivers of the model’s behavior. Over time, 

the influence of relEx decreases because we decreases and as a result the reevaluation-loop 

(with pv) and the learning-loop will determine model behavior. The time required to adjust 

PP (perceptions) to actual values (determined by pv, relEx, and we) then depends on the 

perception adjustment time (pat): 

 . (8) 

Performance perceptions also directly influence perceived fairness (PF), again as an adaptive 

expectation: It takes time before the entrepreneur recognizes performance, so PF lags PP by 

a certain time (pat): 

 . (9) 

The reevaluation cycle continues from PF to eet, CB, eer, EE, pv, and cPP—relationships 

that we described previously, so we refer readers back to Equations 1–8 for their 

explanations.  

4.1.3. Modeling the Adjustment Cycle 

Finally, the adjustment cycle (light grey arrows, Figure 3) starts with the rate at which events 

get executed; continues with increasing experience, perceived performance, perceived 

fairness, and event execution time; and closes with the impact of cooperative behavior on the 

event execution rate. See Equations 1–9.  

4.2. Settings and Model Fit 

Our empirical results show that particular combinations of experience and market complexity 

produce three patterns in real-world alliances (see Table 1):  

pat 

PP PF 
PF 

dt 

d 
cPF 
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PP 

dt 

d 
cPP 
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● Steady development (fair–fair). The fixed pace at which events are executed results in 

quick venture development (high experience, low complexity). 

● Increased cooperation (unfair–fair). The event execution rate is slow at first but then 

speeds up (low experience, low complexity). 

● Decreased cooperation (fair–unfair). The fast event execution rate in the beginning 

eventually slows down (high experience, high complexity). 

Although we did not observe the fourth possible pattern in our empirical analysis, we 

consider it for theoretical completeness, namely,  

● Unstable development (unfair–unfair). Events are executed slowly, both at first and in the 

end (low experience, high complexity). 

 For each pattern, we use our SD model to recognize the feedback mechanisms and 

reinforcing causal loops that drive them. To ensure that we can replicate actual behaviors 

with our model, we assess its performance statistically through a comparison with our 

empirical data pertaining to executed events, or EE (available for the first three scenarios). 

The comparison is based on Theil’s inequality statistics (Figure 4, Panel B), such that we can 

evaluate the fit between actual (Figure 2) and simulated (Figure 4, Panel A) EE behavior 

(Sterman 2000). Specifically, we divide the root mean square error into three components: 

bias (i.e., actual and simulated data have different means), unequal variation (actual and 

simulated data have different variances), and unequal covariation (actual and simulated data 

are imperfectly correlated). If the error is small and unsystematic (concentrated in unequal 

variation or covariation), the model can endogenously generate the behavior that marks the 

observed system (Sterman 1984).  

 We find a good fit between actual and simulated behavior (Sterman 2000). In general, 

the errors are concentrated in unequal variation or covariation. Although the bias associated 

with the increased cooperation pattern is somewhat large (0.45), the bias is nearly zero for the 
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other patterns, which implies the former value is probably due to acceptable assumptions that 

do not compromise the model as such (Sterman 1984). The graphs in Figure 4, Panel A, also 

confirm the robustness of our results. That is, differences are relatively small between the 

simulated increased and decreased cooperation patterns, but the crucial patterns emerge. For 

example, in the simulated decreased cooperation pattern (black solid line, Figure 4, Panel A), 

the number of initially executed events is slightly higher than the number in the increased 

cooperation pattern (dark grey solid line), which implies a higher event execution rate. Then 

after month 26, the situation reverses.  

 With Figure 5, we undertake a visual inspection of the effects of fairness perceptions. 

Although we lack time-series data regarding perceived fairness behavior (PF), quotes from 

our interviews reflected fairness perceptions in all three scenarios, including changes over 

time, so we expect simulated PF to reflect these quotes. According to Figure 5, Panel A, the 

model simulation attains satisfactory results that align with the empirical data: Fairness is 

always high (≥0.5) in the steady development pattern, grows in the increased cooperation 

pattern, declines in the decreased cooperation pattern, and is always low (<0.5) in the 

hypothetical unsteady development pattern. 

----- Insert Figure 4 and Figure 5 about here ------- 

5. Model Results: Four Cooperation Patterns 

From our theoretical model derived from prior literature (Figure 1) and our simulation model 

based on our empirical study (Figure 2), we derive a narrative to explain how the cooperation 

between an entrepreneur (small partner) and a university (large partner) unfolds.  

5.1. Steady Development Pattern (Fair–Fair) 

In this scenario, a relatively experienced entrepreneur starts to commercialize a university-

owned technology through a new venture in a market with minimal complexity. The 

entrepreneur has started ventures before and knows what to expect from the university; 
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expectations about the time needed to execute all necessary events also are reasonable. The 

entrepreneur’s initial expectation is that the negotiations will be fair (light grey solid line, 

Figure 5, Panel A), and this positive perception smoothes communication processes and 

cooperative behavior, which shortens the event execution time (Figure 5, Panel B) and speeds 

up the event execution rate. As more events get executed, the entrepreneur’s experience 

steadily increases (Figure 5, Panel C), and through this learning curve, execution time per 

event falls (Figure 5, Panel B). Then the reinforcing loop with increased fairness perceptions 

(Figure 4, Panel A) leads to even more effective cooperation and further reductions in event 

execution time. The venture performance is consistently good (Figure 5, Panel D) and 

fairness perceptions persist throughout the process (Figure 5, Panel A).  

5.2. Increased Cooperation Pattern (Unfair–Fair) 

When a relatively inexperienced entrepreneur wants to start commercializing a university 

technology in a market with relatively low complexity, his or her lack of experience (dark 

grey solid line, Figure 5, Panel C) exaggerates the power imbalance with the large university 

and thus creates low initial fairness perceptions (Figure 5, Panel A). In turn, these 

inexperienced entrepreneurs are reluctant to cooperate, so communication and cooperation 

take more time and lengthen the event execution time (Figure 5, Panel B). However, the 

relative simplicity of the market still allows events to be executed, so the progress of the 

venture never falls below 75% (Figure 5, Panel D). Furthermore, because the entrepreneur is 

at the start of a learning curve, every event makes a high marginal contribution to his or her 

experience level (Figure 5, Panel C). After executing about half of the necessary events, the 

learning effects come into play; the turning point after 8 of the 16 start-up events is based on 

our empirical study. We find that reaching a final agreement with the university about IP 

(which is the ninth event, on average) prompts a shift in fairness perceptions. The augmented 

learning thus increases fairness perceptions (Figure 5, Panel A), ensures cooperative 
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behavior, and shortens event execution time (Figure 5, Panel B), which advances the 

venture’s progress (Figure 5, Panel D). 

5.3. Decreased Cooperation Pattern (Fair–Unfair) 

In this scenario, an experienced entrepreneur enters a relatively complex market with a 

university-owned technology. This entrepreneur is very optimistic: Having started new 

ventures successfully before, why should this one fail? Initially then, the fairness of the 

interactions with the university seems high (black solid line, Figure 5, Panel A). However, the 

complexity of the selected market creates some problems, leading to longer than expected 

event execution times (Figure 5, Panel B) and a sense of stagnation in perceived progress 

(Figure 5, Panel D). Because the entrepreneur has already reached the end of his or her 

learning curve, experience increases minimally (Figure 5, Panel C), so new events have 

limited influence on event execution time, which barely gets reduced at all during the process 

(Figure 5, Panel B). Progress falls farther and farther behind the intended schedule, and the 

entrepreneur starts to regard the process as inflexible and unfair. The cycle grows vicious: 

Lower perceived fairness increases event execution time, which reduces progress and 

decreases perceived fairness even more. 

The behavior of this pattern (first fairness increases and later it decreases) deserves some 

clarification as only reinforcing loops drive this behavior. The lack of venture progress in the 

beginning of the decreased cooperation pattern only has a minor effect on Perceived 

Performance (PP) as a result of the relatively large weight of experience (we). As a result, in 

the beginning the adjustment-loop dominates and all variables in this loop are increasing. 

Although pv is quite low, an increasing relEx does compensate for this effect, leading to an 

overall positive effect on PP. However, we decreases over time and the reevaluation-loop 

becomes stronger over time, which causes that the decreasing venture progress influences PP 
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negatively. Even though the actual progress (in terms of EE) can be increasing, there is a 

negative effect on pv as long as the actual progress is below the planned progress. 

5.4. Unsteady Cooperation Pattern (Unfair–Unfair) 

We imagine, in this hypothetical pattern, that an inexperienced entrepreneur starts to 

commercialize university-owned technology in a highly complex market. Low initial fairness 

perceptions (black dotted line, Figure 5, Panel A) and high market complexity induce a long 

initial event execution time (Figure 5, Panel B). The slow progress barely adds to the 

entrepreneur’s experience; after week 26, the time needed to execute an event becomes so 

long that the entrepreneur even starts to forget, leading to reduced experience (Figure 5, Panel 

C). We observe another vicious cycle: Long event execution times lead to a minor increase in 

experience, which results in little learning and slower progress, which negatively affect 

perceived fairness and thereby increases event execution time even more. 

As this unsteady development pattern was not validated by our case study due to a lack of 

empirical observations of this pattern, we analyzed the pattern by sensitivity analyses. We 

tested the robustness of the pattern by changing the values of two exogenous variables. Our 

analyses show that the pattern is robust to these changes (see the model documentation 

appendix).  

5.5. Intervention Scenarios: From Vicious to Virtuous Cycles 

How can ventures in these latter two deteriorating patterns possibly succeed? Our SD model 

enables us to explore whether it is possible to turn vicious cycles into virtuous ones. Of the 

various interventions possible—such as hiring technology transfer officers with more 

expertise (Lockett and Wright 2005), shifting to a less complex market, or adapting the 

business model (Degroof and Roberts 2004)—we consider the option of adding experienced 

entrepreneurs to the venturing team (Franklin et al. 2001). We model such additions as a 

sudden increase of entrepreneurial experience (ExE) at different points in time, namely, at 6, 



 

22 
 

12, 18, and 24 months. For each time, we determine the minimum amount of extra experience 

needed to halt the vicious cycle, increase cooperation, and enhance venture progress.  

----- Insert Figure 6 about here ------- 

 We show the results of these interventions in Figure 6. Specifically, in Panel A, we find 

that it is possible to halt the vicious cycle in the decreased cooperation pattern by involving 

an experienced entrepreneur, but the amount of extra experience required grows 

exponentially over time. In month 6, adding 8 events to the stock of experience (ExE) is 

sufficient to turn the collaboration into a positive interaction. Our reference experience level 

(refEx) is set to 100 events, so the addition implies involving another experienced 

entrepreneur for only 8% of the week. In month 24 though, the necessary experience jumps to 

274 events—equivalent to adding almost three, full-time, experienced entrepreneurs. Panel B 

indicates that halting the hypothetical unsteady development pattern would be even more 

difficult: At month 6, we would need an extra experience of 43 events to turn the 

collaboration into a positive interaction. By month 12, this intervention can no longer 

succeed, regardless of how much experience the venturing team adds, and the vicious circle 

becomes inescapable.  

6. Discussion  

The SD model, which extends existing literature and is based on empirical data, reveals 

interactions over time among feedback mechanisms and causal loops: the accumulation or 

loss of entrepreneurial experience (mediated by a learning curve), changing fairness 

perceptions, increased or decreased cooperation, and venture development (which is 

associated with venture success, Lichtenstein et al. 2007). In contrast, existing literature on 

university spin-offs and entrepreneurial cooperation has primarily studied cooperation from a 

cross-sectional perspective (Lichtenstein et al. 2007, Reuer et al. 2006, Rothaermel et al. 

2007) and therefore cannot offer detailed explanations for why some cooperation processes 



 

23 
 

are more or less difficult (cf. Müller 2010). Unlike most interfirm collaborations, 

entrepreneurs face significant uncertainty and must deal with individual-level fairness 

perceptions when they ally with universities—features that are hard to manage with 

standardized contracts and procedures (Shane 2004, Sommer and Loch 2009). We contribute 

to extant literature by providing a causal, dynamic understanding of how changing fairness 

perceptions influence entrepreneurial cooperation and technology commercialization 

processes. In particular, we show that no single critical event triggers increased or decreased 

cooperation; rather, it depends on learning effects and initial levels of and increasing 

entrepreneurial experience. Each identified cooperation patterns thus has implications for 

research, as well as important insights for practitioners, who should take individual-level 

perceptions and experiences of the entrepreneurs into account when managing such 

relationships.  

 The steady development pattern (fair–fair) exemplifies the reinforcing effect of 

experience, fair perceptions, effective cooperation, and smooth technology commercialization 

processes. Most studies imply this pattern: A high degree of relevant experience leads to high 

degrees of perceived fairness (Müller 2010), better cooperation, and more successful 

venturing (Grandi and Grimaldi 2005, Lee and Tsang 2001, McGee et al. 1995). However, 

our study also reveals that the experience effect is dynamic and cumulative, such that more 

relevant experiences and positive learning improve cooperation. In a practical sense, 

venturing teams should aim to include experienced entrepreneurs, who can smooth the 

process, especially if they have cooperated with the focal university before.  

 The increased cooperation (unfair–fair) pattern offers a new finding by showing that a 

difficult start and unfavorable initial conditions (inexperienced, unfair perceptions) do not 

necessarily lead to poor performance in the long run. The learning curve effect means that not 

only are initial conditions important, but learning capacity has a key influence as well (e.g., 
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Doz 1996). Therefore, university representatives and inexperienced entrepreneurs should take 

care to recognize the effects of fairness perceptions on the degree of cooperation and 

venturing progress. Such perceptions might be improved through the careful management of 

expectations, communication, and procedural consistency. Furthermore, inexperienced 

academic entrepreneurs should pursue opportunities to learn and adapt their perceptions; 

TTO managers similarly should try to provide learning experiences outside the university.  

 The decreased cooperation (fair–unfair) pattern indicates an experience trap effect 

(Sengupta et al. 2008). Experienced entrepreneurs think that they have ―seen that, done that‖ 

and thus may fail to understand the importance of cooperation or have difficulty adapting to 

new circumstances (Shepherd et al. 2003). Because external changes in the market or 

industry likely create a need for contractual renegotiations (Ariño and De la Torre 1998, Doz 

1996, Reuer et al. 2002), entrepreneurs must be prepared to adapt to changes, without 

minimizing beneficial cooperation efforts. Those entrepreneurs who terminate their 

relationship with the university during renegotiations, especially in the context of difficult 

market circumstances, are more likely to enter a vicious cycle in which their uncooperative 

behavior is detrimental to venture progress. The failed learning mechanism also might 

explain Ariño et al.’s (2008) observation that small firms are less likely to change their 

contracts when collaborative interactions result in governance misalignment. For technology 

commercialization, experienced entrepreneurs thus should be aware of the trade-off 

associated with their experience, such that they run the risk of lost flexibility (Dane 2010). 

Our intervention scenarios note the possibility of halting the vicious circle of decreased 

cooperation through the early involvement of an extra entrepreneur or multiple experienced 

team members, but to avoid an even deeper experience trap, those additional members should 

have experiences that differ from those of the existing team. The collaboration also ultimately 

includes two parties, so another possible intervention would be to add skilled people to the 
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TTO staff (Lockett and Wright 2005), which may ensure that entrepreneurs receive enough 

learning time or help to address market complexity. 

 Finally, the unsteady cooperation (unfair–unfair) pattern reveals that cooperation and 

venture progress are likely poor in difficult commercialization settings, featuring 

inexperienced entrepreneurs who are unable or unwilling to learn. Most entrepreneurship 

studies are biased toward successful entities, because unsuccessful cases are difficult to 

sample (Davidsson 2004); our well-supported model shows that in this hypothetical scenario, 

learning through the commercialization process becomes a vicious cycle, and hindered 

progress is the outcome. For inexperienced entrepreneurs who want to start commercializing 

in such conditions, our results are discouraging, because they suggest the project is very 

likely to fail. Only by involving an experienced entrepreneur early in the process can this 

unsteady cooperation pattern shift into a positive interaction (Franklin et al. 2001, Mosey and 

Wright 2007). Although we did not model alternative intervention scenarios in this case, it 

may help to combine multiple interventions, such as adding skilled TTO staff, changing the 

business model, and adding team members with specific market knowledge (Van Burg et al. 

2008). Furthermore, our sensitivity analyses indicated that a less ambitious planning of the 

venture could also yield positive results.  

Beyond these implications, this study suffers from some limitations that offer 

recommendations for research. First, our study’s empirical data include only a small sample 

of high-tech companies affiliated with a single university. The external validity of the 

empirical findings and the model calibration are well supported in this domain but not 

necessarily beyond it. Second, we used an overall construct of fairness perceptions. 

Analyzing the dynamics across different dimensions could reveal interesting internal 

dynamics (Ariño and Ring 2010). Third, the nature of our empirical data does not allow for 

real-time or close to real-time analyses. The granularity of the events therefore refers to 
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weeks and months rather than days or hours. Closer observations of commercialization 

processes and cooperation might reveal more sophisticated patterns (e.g., fair–unfair–fair) 

and more information to calibrate the model. Fourth, our findings indicate that even 

experienced entrepreneurs can have difficulties setting up a venture in complex markets. 

They know how to set up a venture; they just do not have enough knowledge about the 

complex market they are trying to serve. This finding implies the potential for two types of 

learning curves: one for learning how to set up a venture, and one for learning how to operate 

in a complex market. Further research should address the differences in these learning curves 

and their individual and combined effects on the venture start-up process.  

7. Conclusions 

This study describes and simulates the commercialization process of a university-owned 

technology by a new venture. The model outlines the effects of accumulated experience, as 

well as the results in terms of perception changes and cooperative behavior. We thus 

contribute to a better understanding of the effects of entrepreneurs’ experience and fairness 

perceptions on their cooperative behavior, opening the ―black box‖ surrounding the role that 

such perceptions play in technology commercialization processes. If they understand the 

dynamics associated with this cooperative behavior, managers of technology 

commercialization and entrepreneurs can gain a better sense of how to ensure effective and 

cooperative behaviors.  
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Figure 1: Cooperation Dynamics Model 
 

 

  
 

 

 

Figure 2: Cumulative Number of Actual Executed Events 

 

  

Execution of
Startup Events

Perceived
Performance

Perceived
Fairness

Adjustment

Cooperative
Behavior

Reevaluation Learning

Experience

Cumulative Number of Actual Executed Events

20

15

10

5

0

0 4 8 12 16 20 24 28 32 36
Time (Month)

Steady development pattern 

(fair-fair)

Increased cooperation pattern 

(unfair-fair)

Decreased cooperation pattern 

(fair-unfair)

Unsteady development pattern 

(unfair-unfair)



 

31 

 

Figure 3: Stylized Model 

 

Stock: accumulation that characterizes the state of the system

Flow: rate in which material (or information) flows into or out of a stock

Valve: regulator of the flow

Source: stock outside model boundary

Arrow (dashed): causal relationship between an exogenous variable (constant) and an endogenous variable (a leads to b)

Arrow (solid): causal relationship between two endogenous variables (b leads to c)

Positive causal relationship: when the cause increases (decreases) the effect will also increase (decrease)

Negative causal relationship: when the cause increases (decreases) the effect will decrease (increase)
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Table 1 

Cooperation Patterns  

 

 
 

Initial Experience  

 Low High 

Market  

Complexity  

 

Low 

 

Increased cooperation 

(unfair–fair) 

6 cases; 1 delayed 

 

Steady development  

(fair–fair) 

7 cases; all on time 

 

High Unsteady development  

(unfair–unfair) 

(not empirically observed
1
) 

Decreased cooperation 

(fair–unfair) 

4 cases; 3 delayed 

 
1
This pattern is not empirically observed but represents a theoretical extrapolation from the findings from the 

17 cases (Section 4.2).  
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Figure 4 

Fit Between Actual and Simulated Executed Events 
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Figure 5 

Dynamic Behavior of Four Cooperation Patterns 

 

5A 

 

5B 

 
5C 

 

5D 

 

  
 

  

Perceived Fairness (PF)

1

0.75

0.5

0.25

0
0 4 8 12 16 20 24 28 32 36

Time (Month)

d
im

en
si

o
n
le

ss

Event execution time (eet)

10

7.5

5

2.5

0
0 4 8 12 16 20 24 28 32 36

Time (Month)

m
o
n
th

s

Relative experience (relEx)

0 4 8 12 16 20 24 28 32 36
Time (Month)

0.8

0.6

0.4

0.2

0

d
im

en
si

o
n

le
ss

Progress of venture (pv)

1

0.75

0.5

0.25

0
0 4 8 12 16 20 24 28 32 36

Time (Month)

d
im

en
si

o
n
le

ss

Steady Development Pattern 

Increased Cooperation Pattern

Decreased Cooperation Pattern 

Unsteady Development Pattern



 

35 
 

Figure 6 

From Vicious to Virtuous Cycles  

6A. Decreased Cooperation Pattern (Fair–Unfair) 

  
 

6B. Unsteady Development Pattern (Unfair–Unfair) 
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Model documentation accompanying the paper: 
Elco van Burg & Kim E. van Oorschot, “Cooperate to Commercialize Technology: 

A Dynamic Model of Fairness Perceptions, Experience, and Cooperation”, 

Production and Operations Management.  

 

 
 

1. Introduction 

 

The full simulation model is shown in Figure A. At the core of the model are the three 

reinforcing cycles of adjustment, reevaluation, and learning. For clarification reasons we will 

explain our model in the reversed sequence, starting with the shortest cycle (the learning cycle, 

depicted with the black arrows in Figure A).  
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Figure A: Full System Dynamics Model of Fairness Perceptions, Experience, and Cooperation 

 

2. Modeling the Learning Cycle 

 

We start the formalization of the learning cycle at the lower left corner of Figure A: the process 

of executing startup and commercialization events. The execution of the 16 most frequent startup 

and technology commercialization events (total startup events, TE, see equation 1) that were 

identified in the process study is represented by three stocks, as shown in Figure A. When the 

partners start with an event (event start rate, esr), this single event flows from Events to be 
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Executed (EtbE) (equation 2) to the stock of Events in Execution (EiE). This esr is influenced by 

the time required to start an event (tts) (equation 3 and 4). 

  

TE = 16 (1) 

esrEtbE
dt

d
  (2) 

),min( eer
tts

EtbE
esr   (3) 

 tts = 1 (4) 

The event execution rate (eer) denotes the number of startup events that is executed per month, 

which is simulated as a flow of events from the stock Events in Execution (EiE) to the stock 

Executed Events (EE). As more events are executed, the stock EiE is depleted and the stock of 

EE is filled (equation 5 and 6). Every time one event is finished, another one is started (denoted 

by the arrow from eer to esr) (see equation 3). The eer is determined by the number of startup 

events in execution (EiE) and the degree of cooperative behavior (CB) (equation 7). CB is linked 

to the event execution time (eet) (equation 8). As such, a shorter eet results in more CB. 

eeresrEiE
dt

d
  (5) 

 
eerEE

dt

d
  (6)

 

CBEiEeer   (7) 

 eet
CB

1


 (8) 

Initially (at t = 0), 14 out of the 16 events are in the stock of Events to be Executed (EtbE) 

(equation 9), and the stocks EiE and EE both contain only one event. For EE this is the actual 

invention to be commercialized (equation 11), for EiE this is the next event (following the 

invention) both partners are jointly working on (equation 10). 

 

EtbE(0)= TE-EiE(0)-EE(0)  (9) 

EiE(0) = 1 (10) 

 EE(0) = 1 (11) 

Note that the total number of startup events (TE) eventually limits the event execution rate. 

Because TE is 16, no more than 16 events can be executed. When 16 events are executed (EE = 

16), the venture process is finished. Therefore, EE can never rise above 16, and for successful 

ventures, graphs of EE showing the behavior over time will always flatten after 16 events have 

been executed.  

 

Every event that is executed increases the accumulated experience of the entrepreneur. 

Therefore, the eer directly influences the increase rate of experience (iex) (equation 12). 
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Experience might decrease though if the entrepreneur starts to forget past events (dex). This 

situation occurs when the time between events is very long. Then, the events that happened a 

long time ago are not part of the working memory of the entrepreneur (short-term memory, stm) 

and the information needs to be recalled, repeated, re-discussed, and so on, which increases the 

time required for the next event. As long as the time between events is shorter than the stm, there 

is no forgetting. When the time between events is longer than the stm, the entrepreneur starts to 

forget some of his/her previous experiences. The rate at which the experience decreases is 

defined by the long-term memory (ltm) (equation 13).  

dexeerdexiexExE
dt

d
  (12) 

dex = IF (eet>stm) THEN (ExE/ltm) ELSE (0) (13) 

stm = 6 (14) 

ltm = 12 (15) 

To determine the relative experience of an entrepreneur compared to other entrepreneurs (relEx), 

we consider the ratio of ExE and the reference experience (refEx) (equation 16), which indicates 

the maximum level of experience the entrepreneur can attain in this industry (equation 17). As 

such, relEx is expressed as a number between 0 and 1, such that 0 indicates being highly 

inexperienced and 1 is highly experienced. 

 
refEx

ExE
relEx   (16) 

 refEx = 100 (17) 

Finally, we define an initial value of ExE according to the relative experience of the entrepreneur 

at the start of new venture process (relEx(0), see equation 18). We distinguish two situations: the 

entrepreneur is initially inexperienced or the entrepreneur is initially experienced:  
 

refExrelExExE  )0()0(  (18) 

relEx(0) = 0.4 (for an inexperienced entrepreneur) (19) 

relEx(0) = 0.6 (for an experienced entrepreneur)` (20) 

Higher relEx results in decreased event execution time, via the learning curve (equation 21). 

Learning curve theory posits that productivity rises by a given percentage with each doubling of 

the level of experience (Sterman 2000: 507, see also Lapré et al. 2000, Wiersma 2007). The 

productivity increase through this learning curve is defined as leadtime based on learning (ll): 

 

 
elcrelExnlmcfll   (21) 

 nl = 2 (22) 

 elc = -0.15 (23) 

where normal leadtime (nl) is the shortest leadtime that can be attained at the reference 

experience level in a very complex market. Reductions of, in this case leadtimes, of 10% to 30% 

per doubling of cumulative experience have been documented in various industries (Sterman 
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2000). Because we do not model a process with highly repetitive activities, we assume that 

reductions in our case fall at the lower end of the spectrum, or 10%. For every doubling of ExE, 

the ll declines by approximately 10%. This 10% reduction corresponds with a value of the 

exponent of the learning curve (elc) of -0.15 (equation 23). The elc is a constant that describes 

the strength of the learning curve. Because the exponent of the learning curve (elc) is negative, 

higher relEx implies a shorter leadtime based on learning (ll). Figure B shows the relationship 

between ExE and ll, in which the 10% reduction is realized when the exponent of the learning 

curve (elc) is -0.15. 

1.00
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2.00

2.50

3.00

3.50

4.00

4.50

0 20 40 60 80 100 120

ExE

ll

 
Figure B: Leadtime based on learning (ll) as a function of Experience (ExE) 

 

In addition to experience, ll is also positively influenced by a constant, the market complexity 

factor (mcf). This mcf defines the complexity level of the market in which the new venture will 

operate. The lower the mcf the „easier‟ (e.g., in terms of high predictability, low diversity, low 

volatility, etc.) the market is. Thus, at the same level of experience, ll is longer in complex 

markets as opposed to easier markets. Two situations are distinguished here: a situation in which 

market complexity is low and one in which market complexity is high:   
 

mcf = 0.50 (for a low market complexity) (24) 

mcf = 0.75 (for a high market complexity) (25) 

Besides the learning effect, the time needed to execute an event (eet), is also affected by the 

perceived fairness (PF) of the entrepreneur. 

     

 PFlleet / . (26) 

This equation shows that higher perceived fairness (PF) shortens the time needed to execute an 

event (eet). Subsequently, the eet feeds back into the cooperative behavior (CB), which closes 

the learning cycle (see equation 8). 

 

 

3. Modeling the Reevaluation Cycle 

 

The reevaluation cycle is depicted with the dark grey arrows in Figure A. The number of 

executed startup events (EE) allows the entrepreneur to perceive the progress of the venture (pv), 
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which changes the perceived performance of the venture (PP). Because changes in perception 

take some time, it is modeled as an adaptive expectation that gradually adjusts to the actual value 

of the variable (Sterman 2000), via the change in Perceived Performance (cPP) (equation 27). 

The actual value of the variable is determined by pv. In the beginning, however, it is difficult for 

the entrepreneur to adequately assess venture performance based on the small number of 

executed events. When the entrepreneur is experienced, he or she should be more optimistic 

about the performance of the venture (“I have done this before, I know what I am doing, and I 

will be successful”), which indicates a higher PP. When the entrepreneur is inexperienced, the 

performance likely seems low in the beginning (“I don‟t know how this works, I don‟t know if I 

am doing this right, and maybe others are much better at this”). Therefore, we assume that in the 

beginning, performance depends on relEx, but after more events get executed, PP is influenced 

more by pv. This shift in impact is determined by the weight of experience (we). This we is 

defined as a non-linear decreasing function (Effect 2, Ef2) of time (t), starting at 1 and decreasing 

to 0 (see equation 29 and 30). The time required to adjust the PP (the perception) to the actual 

value (determined by pv, relEx, and we) is determined by the perception adjustment time (pat), 

which is equal to 2 months (equation 31): 

pat

pvwerelExwePP
cPPPP

dt

d ))1(( 
  (27) 

pvwerelExwePP  )1()0(  (28) 

we = Ef2(t) (29) 

Ef2 > 0, Ef2‟ < 0, Ef2‟‟ < 0, Ef2(0)=1, Ef2(7)=0.98, Ef2(22)=0.32, Ef2(32)=0 (30) 

pat = 2 (31) 

The influence of relEx on PP decreases over time (because we decreases) and after month 20, pv 

is the most dominant factor to determine PP. In terms of our causal loops, this means that in the 

beginning the adjustment-loop (with relEx) and the learning-loop are the drivers of system 

behavior. Over time, the influence of relEx decreases (because we decreases), causing the 

reevaluation (with pv) and the learning-loop to determine the model behavior. 

 

The progress of the venture (pv) is determined by the relative progress (rpv) and schedule 

pressure (sp) (equation 32). The rpv is the number of events that are actually executed (EE) 

compared to the number of events that are expected to be executed, based on the time that has 

elapsed (t) and the expected leadtime of each event (el) (see equation 33).  
  

)(1 spEfrpvpv   (32) 

))0(,min()( executed events ofnumber  planned

)( executed events ofnumber  actual

EE
el

tTE

EE

PEE

EE
rpv

t

t
t




 

(33) 

This equation shows that EE is positively related to rpv. The more events are executed (higher 

EE), the higher the relative progress of a venture (rpv). However, because time (t) is in the 

denominator of the equation, the elapsed time has a negative effect on the rpv. The more time 

has elapsed, the higher the value of t, which can potentially reduce rpv. When the actual progress 

cannot keep up with the planned progress, rpv can decrease if EE is not increasing sufficiently. 
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Schedule pressure (sp) is defined as the ratio of time required to execute all remaining events and 

the time remaining to do all these events (equation 34). Schedule pressure (sp) affects pv through 

the function Effect 1 (Ef1). Ef1 is modeled as a non-linear decreasing function of sp. When, for 

example, 75% of the events have been executed (rpv = 0.75) in almost 100% of the planned time, 

there is significant schedule pressure to finish the last 25% of the events on time. Because of this 

high schedule pressure, the perceived progress of the venture (pv) is much lower than the 75%, 

which is determined by Ef1 (equation 35). As such, sp behaves as a multiplier. When events are 

executed according to plan (or even ahead of plan), sp ≤ 1, and the Ef1(sp) = 1. When the 

number of executed events is lower than planned, sp will be larger than 1, and Ef1 will be lower 

than 1, thereby decreasing the perceived progress of the venture. Because sp is a multiplier, it 

can strengthen the negative effect of rpv, but it will not make a negative effect of rpv positive. 
 

telTE

elEETE
sp






)(

remaining time

required time
 (34) 

 Ef1 > 0, Ef1‟ < 0, Ef1‟‟ < 0, Ef1(0)=1, Ef1(1)=1, Ef1(2)=0.5, Ef1(5)=0.1 (35) 

PP directly influences the perceived fairness (PF) (equation 36). PF is also modeled as an 

adaptive expectation: it takes some time before the entrepreneur internalizes the performance, so 

PF lags PP by a certain time (pat): 

 

 
pat

PPPF
PF

dt

d
cPF


 . (36) 

We assume that PF can be quantified as a number between 0 and 1, in which 0 indicates that the 

entrepreneur perceives total unfairness and 1 denotes high fairness perception. The initial PF 

(PF(0)) is determined by the initial relative experience (relEx(0)), which is also expressed as a 

number between 0 and 1. 

  

PF(0) = relEx(0) = 0.4 (for an inexperienced entrepreneur)  (37) 

PF(0) = relEx(0) = 0.6 (for an experienced entrepreneur)  

Thus, based on the empirical observations, we model that an inexperienced entrepreneur begins 

the venture processes with a relatively low perceived fairness, and an experienced entrepreneur 

will start these processes with a relatively high perceived fairness. 

 

The reevaluation cycle continues from PF to eet, CB, eer, EE, pv, and cPP. Because these 

relationships have been described already, it suffices here to refer to respectively equations 26, 8, 

7, 6, 32, and 27.  

 

 

4. Modeling the Adjustment Cycle 

 

The adjustment cycle is reflected by the light grey arrows in Figure A. Starting at the execution 

of events, the cycle continues with experience increase, perceived performance, perceived 

fairness, event execution time, and the cycle closes with the impact of cooperative behavior on 
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the event execution rate. Because all of these relationships have been defined in the previous 

sections, we limit ourselves here to referring to the equations described in Section 2 and 3. 
 

 

5. Sensitivity Analyses 

 

Our fourth pattern, the unsteady development pattern (unfair-unfair) was not validated by our 

case study (due to a lack of empirical observations of this pattern), but appeared as a logical 

possibility during our simulations. To analyze the sensitivity of this pattern to values of the 

exogeneous variables, we have done two sensitivity analyses: 

1) changing the expected leadtime, which determines the planned number of events executed; 

2) changing the weight of experience, which determines when the dominance of the adjustment-

loop switches over to the reevaluation-loop.   

 

5.1 Sensitivity analysis of expected leadtime (el) 

As we explained earlier, the progress of the venture is determined by the expected leadtime, the 

lead time that the entrepreneur perceives as normal. Based on this leadtime, the entrepreneur 

determines or plans what a normal venture progress is. When progress keeps up with this plan, 

the progress of the venture is good (not decreasing), when progress falls behind this plan, 

progress is perceived as bad (decreasing). Obviously, if the plan is less ambitious (e.g., if the 

entrepreneur expects that it takes longer than 2 months to execute an event), we would expect 

more ventures in a complex market to succeed, just because the entrepreneur still perceives the 

performance as increasing (which has a positive influence on perceived fairness and cooperation 

through the reevaluation loop). On the other hand, if the plan is more ambitious (e.g., if the 

entrepreneur expects that it takes less than 2 months to execute an event) we would expect less 

ventures to succeed, because the entrepreneur perceives the performance as decreasing (which 

has a negative influence on perceived fairness and cooperation through the reevaluation loop). 

Therefore, we have varied the value of the expected leadtime from 0.25 to 4 months (with steps 

of 0.25) to see how this influences the results. We have depicted the effects of varying the 

expected leadtime on the number of executed events (EE), perceived fairness (PF) and relative 

progress of the venture (rpv) in Figure C. The dotted lines in Figure C denote the original pattern 

(in which the expected leadtime is 2 months).  

 

Figure C shows that indeed, with less ambitious planning (longer expected leadtimes) the vicious 

cycles in the unsteady development pattern can be turned around into virtuous cycles. If the 

expected leadtime is at least 2.75 months (38% longer than in the original pattern), the low 

relative progress of the venture in the beginning will be defeated and later, sufficient progress 

will be made to catch up on the initial delays. If the expected leadtime is shorter than 2.75 

months, the initial unfair situation may improve a little in the beginning, but it will decrease and 

become even more unfair in the end. In other words, our modeled system is sensitive to changes 

in the expected leadtime. However, the expected leadtime has to increase with 38% compared to 

the case-based leadtime values before the behavior of the unsteady development pattern 

fundamentally changes (before unfair-unfair becomes unfair-fair). So, a venture process that in 

the original pattern was planned to take 32 months (16 events, 2 months per event), would have 

to be replanned to 44 months (+38%) to change the unfair process to a fair process. Because this 

is a rather large step (adding one year to a 2.67 year-plan), we believe that the unsteady 

development pattern is modeled in a realistic way. 
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Executed Events (EE) in the Unsteady development pattern (unfair-unfair)
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Figure C: Sensitivity analysis of expected leadtime (el). The graphs on top of each figure reflect the situation in 

which el = 4 months, the lowest graph reflects the situation in which el = 0.5 months 
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5.2 Sensitivity analysis of weight of experience (we) 

As we have explained earlier, the weight of experience determines to what extent the Perceived 

Performance (PP) is determined by the relative experience of the entrepreneur (relEx) and by the 

progress of the venture (pv) (equation 28): 
 

pvwerelExwePP  )1(
 

 

Based on our case study material, we is defined as a non-linear decreasing function (Ef2) of time 

(t), starting at 1 and decreasing to 0, as shown in Figure D. 
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Figure D: Weight of experience as a non-linear decreasing function of time 

 

Changing the shape of this function changes the way PP is determined, and as a result it may 

change the unsteady development pattern. Therefore we also have performed a sensitivity 

analysis of we. Obviously, there are many ways to change the curve of  Figure D. It can be 

shifted to the left or right, squeezed, flipped horizontally and vertically, et cetera. In order to 

limit the multitude of options we decided to change the weight of experience curve into a linear 

curve and to let the curve shift from being monotonic decreasing to monotonic increasing, to get 

a good impression of the influence of the values of we on the simulation results (note that this 

also includes the possibility of having a constant value of 0.5). Figure E shows the different 

values we have used in this sensitivity analysis. The sensitivity results are shown in Figure F. 
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Figure E: Different weights used in the sensitivity analysis (the original weight is showed with a dashed line) 
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Figure F: Sensitivity analysis of weight of experience (we). The graphs on top of each figure reflect the situation in 

which we is low in the beginning and high in the end. 

 



11 
 

Figure F shows that if experience is given a different weight in determining PP, it can influence 

the unsteady development pattern in such a way that the unfair perceptions turn into almost 

stable fair perceptions. These are the situations in which the weight of experience is extremely 

low in the beginning and extremely high in the end. As Figure F shows, there is one situation in 

which the unsteady development pattern (unfair-unfair) ends with fair perceptions and in which 

all 16 events are executed, and one situation in which this pattern ends with almost fair 

perceptions (close to 0.5) and in which 15 events got executed. These two situations have a 

weight of experience in the beginning of respectively 0 and 0.1 (and consequently in the end the 

weight is 1 and 0.9). These results do not suggest that it is better to have no experience in the 

beginning, but that it would be better not to take this experience into account when assessing the 

performance of the venture. However, it seems hard or even almost impossible to change the 

subconscious cognitive effects of past experiences, in particular the effect of successful 

experiences (Burmeister and Schade 2007, Ucbasaran et al. 2003, Busenitz and Barney 1997). 

Therefore we believe that the unsteady development pattern is robust to changes in the weight of 

experience and that this pattern could be a realistic pattern.  

 

What we can learn from the two sensitivity analyses is that if there is a way to turn the unfair-

unfair situation around, it is by less ambitious planning and by ignoring previous experience 

when assessing the preliminary performance in a new venture. It is as if the entrepreneur should 

start with a clean sheet, no plans, no expectations. In theory, if the stock of experiences in the 

human mind could be „emptied‟ this could work, but it also has the danger of never-ending 

ventures that do not fail, but also never get anywhere.  

 

 

6. Exogenous Variables 
 

An overview of the values of all these exogenous variables appears in Table 1. 
 

Table 1 

Values of Exogenous Variables 

Variable Description Value Units 
 

TE Total startup events 16 events 

tts Time to start an event 1 month 

EiE(0) Initial events in execution 1 event 

EE(0) Initial executed events 1 event 

stm Short-term memory 6 months 

ltm Long-term memory 12 months 

refEx Reference experience 100 events 

relEx Relative experience 0.4 or 0.6* dimensionless 

el Expected leadtime 2 months 

nl Normal leadtime 2 months 

elc Exponent learning curve -0.15 dimensionless 

mcf Market complexity factor 0.5 or 0.75** dimensionless 

pat Perception adjustment time 2 months 
    

* 0.4 for an inexperienced entrepreneur, 0.6 for an experienced entrepreneur. 

** 0.5 for a low complexity market, 0.75 for a high complexity market. 
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