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Abstract

The paper proposes a model of on-the-job search and industry dynamics in which search
is directed. Firms permanently differ in productivity levels, their production function features
constant returns to scale, and search costs are convex in search intensity. Wages are determined
in a competitive manner, as firms advertise wage contracts (expected discounted incomes) so
as to balance wage costs and search costs (queue length). Firms are assumed to sort out their
coordination problems with their employees in such a way that the on-the-job search behavior of
workers maximizes the match surplus. Our model has several novel features. First, it is close in
spirit to the competitive model, with a tractable and unique equilibrium, and is therefore useful
for empirical testing. Second, on-the-job search is an efficient response to firm heterogeneities
and convex search costs. Third, the equilibrium leans towards a job ladder, where unemployed
workers apply to low-productivity firms offering low wages, and then gradually move on to more
productive, higher-paying firms. With a continuum of firm types, the job ladder i strict, in the
sense that there is a one-to-one correspondence between the productivity of the current employer
and that of the firms she searches for. The paper also contributes methodologically, as the
existence proof requires a version of Schauder’s fixed point theorem that is not commonly used
by economists. Finally, our model offers different implications for the dynamics of job-to-job
transitions than existing models of random search.
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1 Introduction

There is broad evidence that job-to-job transitions play an important role in the labour market.

The last decade has witnessed a growing literature modeling and estimating firm dynamics, job-to-

job and unemployment-to-employment transitions, as well as wage distributions. This literature is

broadly coherent with the the DMP (Diamond, Mortensen, Pissarides) search paradigm. Most of

these contributions assume that search is random, and firms can not use wages as an instrument for

fast recruiting.

In the present paper we set up and analyze a model of directed search with identical workers and

large and (ex post) heterogeneous firms. In competitive search equilibrium, firms advertise wages and

workers choose optimally which firms to apply to. On-the-job search is efficient, in the sense that

workers search behaviour maximizes the joint income of workers and firms. We obtain a tractable

model of on-the-job search, which delivers an efficient allocation of resources, and in which on-the-job

search is an optimal response to search frictions and heterogeneous firms.

The equilibrium leans towards a job ladder, where unemployed workers search for low-productivity

firms offering low wages, and then gradually advance to higher paid jobs. Productive firms pay higher

wages and grow faster than less productive firms. The economic logic underlying the job ladder is

that workers with low current wages are the most eager to get a job quickly, while the productive

firms are the most eager to get workers quickly. If one side of the market matches quickly, it follows

from the matching function that the other side matches slowly. Hence, efficiency requires that the

most eager workers (the unemployed) search for the least eager firms (low-productivity firms), while

the least eager workers (employed in the second most productive firm) search for the most eager firms

(the most productive ones).

In the first part of the paper, we only allow for a finite number of firm types. In the resulting

equilibrium, worker search is not completely ordered, in the sense that workers employed in the same

firms may search for firms with different productivities. Furthermore, when the number of firm types

increases, no clear convergence pattern emerges. We therefore extend the model and allow for a

continuum of firm types. In the resulting equilibrium there is a one-to-one correspondence between
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the productivity of a worker’s current employer and of the productivity of the firm she is searching

for. Unemployed workers randomize over an interval of low productivity firms.

Our proof of existence of an equilibrium for continuous types relies on Schauders fixed point theo-

rem. We do not employ the commonly used version found in Stokey and Lucas (1989), which requires

equicontinuity. Instead we define equilibrium in terms of distribution functions, the distribution of

workers over firms and the distribution of applications. Since Helly’s selection theorem ensures that

distribution functions form a compact and convex set (in the set of all functions on the unit interval),

we can apply Schauder’s fixed theorem in it’s general topological formulation. This approach may

be of broader interest, since it circumvents the technical complication of equicontinuity and makes

Schauders fixed point theorem applicable to a larger class of equilibrium models.

The paper also delivers a method for mapping, continuously, the set of all distribution functions

(which may be discontinuous) into a set of continuous distribution functions. As equilibrium in search

models (and other models as well) often can be characterized by distribution functions, we believe

that our methods may be useful in many applications.

Our model is consistent with some stylized facts regarding job-to-job movements: 1) productivity

differences across firms are large and persistent and different productivity level across firms coexist

in the labor market, 2) on-the-job search is prevalent and worker flows between firms are large, and

3) more productive firms are larger and pay higher wages than less productive firms. In addition,

our model gives rise to empirical predictions that differ substantially from those of existing models

of on-the-job search. For instance, the Burdett-Mortensen (1998) model predicts a weak relationship

between the wage before the job switch and the distribution of wages after the job switch. More

specifically, the wage after successful on-the-job search is a draw from the wage offer distribution

truncated at the wage in the previous job. According to our model, workers employed in firms offering

relatively high wages (i.e., have high productivity) search for jobs that offer strictly higher wages than

do workers employed in firms offering lower wages initially, and thus different workers face different

distributions.

There is a substantial literature on job-to-job movements. First, Davis and Haltiwanger (1999)

show that job-to-job flows are huge. Lentz and Mortensen (2005) find that reallocation of workers from
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low- to high productivity firms are important for economic growth. Postel-Vinay and Robin (2002)

were among the first to structurally estimating a search model with on-the-job search. Other recent

papers on on-the-job search include Lentz and Mortensen (2008, 2012), Bagger and Lentz (2014),

Bagger et al (2013), Lise and Robin (2013), and Lamadon et al (2013). We deliver an alternative

framework, based on directed search, suitable for empirical analysis.

There exist papers with directed on-the-job search. Moen and Rosen (2004) analyse human capital

investments in the presence of on-the-job search. Shi (2009) and Menzio and Shi (2010, 2011) study

directed on-the-job search. These model have similar structure to our theory in terms of employment

contracts, but there are fundamental differences. Most importantly, in these papers firms are identical

and differences in productivity are match specific. Furthermore, as firms are identical in the search

phase, the equilibrium in Menzio and Shi is block recursive, essentially implying that a zero profit

condition applies in all submarkets.

Our key motivating factor is that productivity difference across firms are large and persistent (Lentz

and Mortensen, 2008). Hence, the model should capture this fact. In our model firms productivity are

indeed permanently heterogeneous. After sinking a cost K, firms draw productivity yi and will keep

this productivity until they exit the market. Hence a zero profit condition only applies ex ante, not

when firms are searching for workers. This dramatically changes the nature of equilibrium and breaks

the block recursivity of Menzio and Shi (2011). Delacroix and Shi (2006) analyse an urn-ball model of

the labour market with on-the-job search, and show that equilibrium is characterized by a job ladder.

Again it is assumed that firms are identical. Furthermore, on-the-job search is inefficient, and solely

caused by imperfect contracting between workers and firms. Our modeling of firms are similar to that

of Kaas and Kircher (2013), but they do not allow for on-the-job search. Finally, our paper is related

to Mortensen and Wright (2002), who analyze competitive search equilibrium when workers differ in

income during unemployment. Some preliminary results are in Garibaldi and Moen (2010), where we

solve a simple equilibrium model with on the job search and two permanently different productivity

level.

The paper proceeds as flows. Section 2 presents the model with a discrete firm type space, it

characterizes the equilibrium and briefly discusses convex hiring costs. Section 3 presents the model
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with a continuum of type. Section 4 discusses the empirical implications of our model, while the last

section concludes.

2 Model with finite number of firm types

The labor market is populated by a measure 1 of identical, risk neutral and infinitely lived workers

with discount rate r. Workers can search on and off the job at no cost.1 Time is continuous.

Ex ante identical and risk neutral firms enter at cost K > 0. Conditional upon entry, the firm

learns its productivity level y ∈ {y1, y2, ..., yn}, with y1 < y2 < ... < yn. The probability of obtaining

productivity yi is denoted by αi with Σiαi = 1. The productivity of a firm is fixed throughout its life.

Firms discount the future at the rate r, and die at rate δ. In addition, workers separate from firms at

an exogenous rate s. Unemployed workers have access to an income flow y0 < y1. As the vacancies

are continuously filled up, the firm costlessy create new vacancies.

Firms post vacancies and wages to maximize expected profits. Vacancy costs c(v) are convex in

the number of vacancies posted. Unless otherwise stated, we assume that c′(0) = c(0) = 0.2

As will be clear below, the search market may endogenously separate into submarkets, consisting

of a set of workers and firms with vacancies searching for each other. Firms can not simultaneously

search in more than one sub-market. In each submarket, the flow of matches is determined by a

constant-returns-to scale matching function. If a measure ul of workers search for a measure vl of

vacancies in a sub-market l, the flow of matches is x(ul, vl). Let θl = vl/ul, and define p(θl) = x(1, θl)

and q(θl) = x(1/θl, 1). Finally, let η(θl) = |q′(θl)θl/q| denote the absolute value of the elasticity of q

with respect to θl. In order to ensure that a firm’s profit as a function of the advertised wage has a

unique maximum (for each type), we assume that η(θl) is non-decreasing in θl. It can be shown that

this is not necessary for the equilibrium to exist.

We assume that a worker’s on-the-job search behaviour is chosen so as to maximize the joint

income of the worker and his employee. Thus, the worker, when choosing between different firms to

1We relax this assumption in Section 3.
2Convex hiring costs are often assumed in search models, see Bertola and Cabalero (1994) and Bertola and Garibaldi

(2001). Convex hiring costs may be rationalized by decreasing returns to scale in the firm’s recruitment department.
Convex hiring costs can be seen as a generalization of Burdet Mortensen (1998), where the number of vacancies is
exogenously fixed. Analogously, the search costs of workers are usually assumed to be convex (Pissarides 2000). Finally,
our assumption of convex hiring costs have empirical support, see Yashiv (2000a,b).
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search for, internalizes the loss for the employer if she quits. This assumption is convenient, and first

made in Moen and Rosen (2004) and later in Shi (2009) and in Menzio and Shi (2010,2011). There

are various wage contracts that implement this behavior, see Moen and Rosen (2004). In particular,

the worker may buy the job from the firm, in which case the worker is the residual claimant. Or the

wage contract may include a quit fee equal to the capital loss for the firm associated with losing the

worker. In principle the worker and the firm may also contract directly upon the wages the worker

should target for when doing on the-job-search.

Efficient on-the-job search implies that the wages paid to the worker in the current job do not

influence her on-the-job search behavior. It follows that a worker employed in a firm of type i will

never search for a job in another firm of type j ≤ i. Such jobs cannot profitably offer a wage that

exceeds the productivity in the current firm.

Firms advertise and workers search for contracts. A contract σ is a payment rule that ensures that

the worker’s on-the-job search is efficient. For any given contract σ, let W (σ) denote the associated

net present income of the worker that obtains the job. As will be clear below, W (σ) is a rather

complicated object, as it includes the expected income to the worker from on-the-job search, which

again depends on wages advertised by more productive firms and the probability rates of getting these

jobs.

Consider an economy where a countable set of NPV wages W1, ...,Wl, ... are advertised, each by

a strictly positive measure of firms. Let θ1, ..., θl, ... denote the associated vector of labor market

tightness. Sub-market l is indicated by the pair (θl,Wl), and we shall indicate with Ω, the set of such

pair. Ω is endogenously determined in equilibrium.

Let Mi i = 0, 1, ..., n denote the joint expected discounted income flow of a worker and a job in a

firm of type i, where the gains from on-the-job search is included. Since on-the-job search is efficient,

it follows that Mi is given by

rMi = yi + (s+ δ)(M0 −Mi) + max
l∈I

p(θl)[Wl −Mi] (1)

where I is the set of submarkets. The first term is the flow production value created on the job. The

second term captures the expected capital loss due to job separation, which happens at rate s + δ,

6



and reduces the joint income to M0 (since the firm then earns zero on this match). The last term

shows the expected joint gain from on-the-job search. Since the current wage is a pure transfer from

the employer to the worker, it does not appear in the expression.

The maximization term in equation (1) implies that the optimal search behavior of a worker

depends on her current position, as it is influenced by Mi. Hence, our model features endogenous

worker heterogeneity when it comes to search behaviour.. We refer to a worker that currently works

in a firm of type i as of type i−searching worker or just type i worker (note that all worker ‘‘ types’’

are equally productive, the difference in output reflects differences in the productivity of the current

employer).

The indifference curve of a worker of type i shows combinations of θ and W that gives a joint income

equal to Mi, defined by equation (1). We can represent this as θ = fi(W ;M), for any combination of

W and the vector M , which collects the n values of Mi.
3 It follows that fi is defined implicitly by

the equation

rMi = yi + (s+ δ)(M0 −Mi) + p(fi(W,M))[W −Mi] (2)

where Mi is the equilibrium joint income in firm i. It follows that for Mi < W

fi(W ;Mi) = p−1(
(r + s+ δ)Mi − yi − (s+ δ)M0

W −Mi
) (3)

Let us now define the market function f(W,M) as

f(W ;M) = min
i∈{0,1,...,n}

fi(W ;M) (4)

The function f(W ;M) is the lower envelope of the set of functions fi(W ;M). For any pdf wage W ,

f(W ;M) shows the relationship between the wage advertised and the labor market tightness in a

submarket. Suppose that for a given W , the minimum in (4) is obtained for worker type i′. This

worker type will then flow into the market up to the point where θ = fi′(W ;M). At this low labor

market tightness, no other worker types want to enter this submarket. The labor market tightness is

thus given by fi′(W ;M), and only workers of type i′ enter the market.

Then we turn to the firms. For notational clarity, we let j indicate the searching firm with

productivity yj , and with i the searching worker employed in firm with productivity yi. It follows

3Strictly speaking, fi only depends on Mi and M0, but we write it as a function of the vector M for convenience.
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that at any point in time, a firm of type j maximizes the value of search given by4

πj = −c(vj) + vjq(θ)[Mj −Wj ]. (5)

where Wj is the pdv of wages paid by the firm. The first part is the flow cost of posting vj vacancies,

while the second part is the gain from search. The firm’s maximization problem thus reads

max
vj ,Wj

{−c(vj) + vq(θ)[Mj −Wj ]} s.t. θ = f(W,M)

Denote the associated maximum profit flow by π∗j . The expected profit of a firm entering the market

as a type j firm is thus

Πj =
π∗j
r + δ

(6)

Let us denote the set of wages that solves j’s maximization problem by Wj(M). Below we show

that Wj has a finite number of elements. Denote the optimal measure of vacancies by vj(M). Note

that the net gain from search is the same for all W ∈ Wj(M), and that the number of vacancies

posted by firm j is the same for all advertised wages W ∈Wj(M).

Define N = (N0, N1, ..., Nj , ...), where Nj denotes the measure of workers employed in type j firms.

Let the vector τj = (τj1, τj2, ...) denote the distribution of vacancies posted by firms of type j over

the different submarkets. Similarly, let κj = (κj1, κj2, ...) denote the distribution of searching type j

workers over the different submarkets. Finally, let k denote the total number of firms in the market.

In steady state, inflow of workers into type j firms has to be equal to outflow, hence

k
∑
l

αjvjτjlq(θl) = Nj [s+ δ +
∑
l

p(θl)κjl] (7)

for all j. For unemployed workers, the corresponding inflow-outflow equation reads

(s+ δ)(1−N0) =
∑
l

p(θl)κ0lN0 (8)

The labor market tightness θl in market l is given by

θl = k

∑
j αjτjlvj∑
j κjlNj

(9)

We are now in a position to define the steady state general equilibrium.

4At any point in time, the firm decides on the number of vacancies and the wages attached to them. This only
influences profits through future hirings, and is independent of the stock of existing workers.
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Definition 2.1 General equilibrium is defined as a vector of asset values M∗,wages W ∗, vacancies v∗,

employment stocks N∗, labor market tightness θ∗, distributions of searching workers κ∗j , distributions

of vacancies τ∗j , and a number of firms k such that

1. Profit maximization: i) W ∗ = ∪nj=1Wj(M
∗) ii) v∗j = vj(M

∗) iii) If τjl > 0, then W ∗l ∈Wj(M
∗).

2. Optimal worker search: rM∗i ≥ yi+(s+δ)(M∗0 −M∗i )+p(θ∗l )[W ∗l −M∗i ], with equality if κ∗il > 0.

3. Optimal entry: The expected profit of entering the market is equal to the entry cost K, i.e.,

EΠj = K

4. Aggregate consistency: Equations (7), (8) and (9) are satisfied.

In addition we make the following equilibrium refinement : if more than one allocation satisfies the

equilibrium conditions, the market picks the equilibrium where aggregate output is highest.5 This

can be rationalized by assuming that a market maker sets up the markets (as in Moen 1997).

2.1 Characterizing equilibrium

Before we prove existence of equilibrium, we will derive some properties of the equilibrium (assuming

that it exists). First we will derive properties for f(W,M).

Consider an arbitrary set of submarkets Ω, and let M denote the corresponding vector of asset

values defined by (1). Let W s denote the highest wage in Ω. By construction, M exists and is unique.

Workers in the most productive firrm type do not search, hence Mn = yn+sM0

r+s+δ . Workers in all

the other firm types do search on the job. To see why, suppose workers of type n− 1 did not search.

Then a firm of type n could post a wage slightly above Mn−1, attract workers infinitely quickly, and

obtain unbounded profits. The same holds for any i < n. On the other hand, no firm advertizes a

NPV wage as high or higher than Mn, as this willl give zero or negative profit. Let Wmax denote the

highest NPV wage posted in the economy. It follows that

Wmax ∈ (
yn−1 + sM0

r + s+ δ
,
yn + sM0

r + s+ δ
) (10)

5We cannot rule out that the first order conditions of the planner’s maximization problem has more than one solution,
in which case the equilibrium of the model may have more than one solution as well.
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For all i < n, fi(W,M) = f(W,M) for some W (at least the wages they actually search for). Since

search yields a capital gain, it follows that for any i < n, (r + s + δ)Mi > yi + (s + δ)M0, and it

follows from (3) that fi(W ;M) > 0 for all W > Mi. Furthermore, in the appendix we show that

y0/r ≤M0 < M1 < ... < Mn and (r + s+ δ)Mi − yi is decreasing in i.

Lemma 2.1 Consider a vector Ω and associated vector M defined by (1). Then the following holds

a) For any i, j, i < j < n, the equation fi(W ;M) = fj(W ;M) has exactly one solution, and at

this point

|dfi(W ;M)

dW
| < |dfj(W ;M)

dW
|

b) For i ∈ {0, 1, 2..., n− 1}, define W i as the solution to fi(W ;M) = fi+1(W ;M). Then it follows

that

i) W 0 < W 1 < · · · < Wn−1

ii) If W ∈ (W i,W i+1), then f(W ;M) = fi(W ;M)

iii) If W > Mn then f(W ;M) = fn(W ;M) = 0,

c)) For all W in (M0,Mn), f is strictly decreasing continuous function (in W ). Furthermore, it

is differentiable everywhere except at the points (W 1,W 2, ...,Wn−1).

Property a) captures that workers employed in more productive firms are more willing to trade off

a high job finding rate for a high wage than are workers employed in less productive firms. Property

b) states that there are line segments [W i,W i+1] such that firms advertising a wage W ∈ [W i,W i+1]

attracts workers hired in firms of type i only. In addition, if no wages above Mn are advertised

in equilibrium, and a submarket with wages above Mn did open up, it would obtain a labor mar-

ket tightness of zero, since all workers of type n would enter this market. Property c) states that

f(W ;M) is continuous on (M0,Mn) and differentiable everywhere except at the intersection points

(W 1,W 2, ...,Wn−1). Note that f(W,M) is discontinuous at w = Mn, where it jumps from a strictly

positive number to zero. This is not important for our analysis, as no firm will pay more than Mn.

In order to characterize the equilibrium of the market, the following result is useful (recall that

η(θ) = −q′(θ)θ/q(θ)):
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Lemma 2.2 a) In any non-empty submarket there is exactly one type of firms, say j, and one type

of workers, say i (working in a type i firm). The equilibrium wage W ∗ij in this submarket is uniquely

determined as

η(θ∗l )

1− η(θ∗l )
=
W ∗ij −M∗i
M∗j −W ∗ij

(11)

where θ∗l is the labor market tightness in that submarket.

The lemma simplifies characterization of equilibrium. Each worker-firm combination leads to at

most one operating submarket, and each submarket can be attributed to exactly one worker-firm

combination. Hence we can index by ij a submarket in which workers currently employed in firms of

type i and firms of type j search for each-other. Furthermore, the vectors of distributions of searching

workers on submarkets, κj , can be described as an n×n matrix κ, where where κij gives the fraction

of workers employed in firms of type i that search in the ij-submarket. Note that κij = 0 for all j ≤ i.

Similarly, the vector of distributions τj of vacancies on submarkets as an n × n matrix τ , where τij

denote the fraction of firms of type j searching in the ij-submarket. Again τij = 0 if i ≥ j. It follows

trivially that the equilibrium satisfies the following conditions (with M∗ij = M∗j −M∗i )

rM∗i = yi − (s+ δ)M∗0i + max
j
p(θ∗ij)η(θ∗ij)M

∗
ij (12)

W ∗ij = M∗i + η(θ∗ij)M
∗
ij for all i, j|κij > 0 (13)

c′(vj) = (1− η(θ∗ij))M
∗
ijq(θ

∗
ij) for all i, j|κij > 0 (14)

The first condition defines joint income and ensures efficient on-the-job search. The second equation

defines the traditional efficient rent sharing in competitive search equilibrium, the Mortensen-Hosios

condition. The third condition equates the marginal cost of vacancy posting to its expected benefit.

Since the value of search is the same in all submarkets a firm operates, vj is independent of i.

Remark 2.1 Note that all firms with productivity strictly higher than y0 are active in equilibrium.

Since workers search equally well on and off jobs, the joint income of a worker and a firm of the lowest

type, M1, is then strictly greater than M0. Since, by assumption c′(0) = c(0) = 0, firms of type 1

offers a wage strictly greater than M0 and attracts workers.
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We are now ready to show that the equilibrium exists. In the standard competitive search equi-

librium, a zero profit condition applies to all submarkets, and make the model block recursive (see

Menzio and Shi 2010). In this model, the zero profit condition only holds ex ante, not for each firm

type separately.

Proposition 2.1 The equilibrium exists.

In Moen (1997) and Shimer (1996), it is shown that with no on-the-job search, wages are set so

that search externalities are internalized. As a result, the equilibrium allocation is socially efficient.

We want to show that this result carries over to our model with on-the-job search. We say that

the equilibrium allocation is efficient if it maximizes the net present income of the economy along the

steady state path, where the net present income is defined as

W =

∫ ∞
0

[

n∑
j=0

Njyj −
n∑
j=1

αjkc(vj)− aK]e−rtdt

wheer a is the inflow of new firms, a control variable for the planner.

Proposition 2.2 The equilibrium is efficient in the sense that it maximizes W given the law of

motions of N0, N1, ..., Nn.

Our next proposition characterizes wage distributions and search behavior of workers and firms

Proposition 2.3 Maximum separation:

a) Let k < l < n. Then workers in a firm of type l always search for jobs with strictly higher wages

than workers employed in firms of type k. Firms of type l always offer a strictly higher wage than

firms of type k.

b) Let Ik denote the set of worker types searching for firms of type k. Consider Ik and Il, k > l.

Then all elements in Ik are greater than or equal to all elements in Il. Hence Ik and Il have at most

one common element.

From a) it follows that high-type firms grow quicker than low-type firms, even if they search for

the same worker types. Thus, firms of different productivities may offer different wages and attract

workers at different speeds, as an efficient response to search frictions. Furthermore, for all firm types,
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the hiring flow is constant, while the separation flow is proportional to size. Thus, even the most

productive firms don’t grow indefinitely, conditional upon survival the size converges to a steady state

level.

From b) it follows that the market, to the largest extent possible, separates workers and firms so

that the low-type workers search for the low-type firms. Note the similarity with the non-assortative

matching results in the search literature (Shimer and Smith, 2001, Eeckout and Kirkcher, 2008). If

the production technology is linear in the productivities of the worker and the firm, it is optimal that

the high-type firms match with the low-type workers and vice versa. Similarly, workers in a firm with

a high current productivity search for vacancies with high productivity, and vice versa. 6

From an efficiency point of view, the result can be understood by recalling that quick vacancy

filling requires long worker queues, so that workers find jobs slowly. It is therefore optimal that the

most “patient”workers, i.e., the workers employed in firms with high productivity, search for the most

“impatient”firms, the firms with the highest productivity. Similarly, the most impatient workers (the

unemployed workers) search for the most patient firms (with the lowest productivity).

A detour: Linear adjustment costs and convex hiring costs

In standard search models, it is common to assume linear vacancy costs. With linear vacancy costs,

our model cannot deliver on-the-job search. The most productive firm type will open vacancies up to

the point where the marginal value of posting a vacancy is equal to the cost. At this point no other

firm type will find it profitable to open vacancies. In order to have linear vacancy costs and more

than one firm type active in equilibrium, we follow Lucas (1978), and Sargent (1987), and introduce

convex hiring costs. We assume that hiring cost can be written as γ(h), where h = qv. Furthermore,

we assume that γ(0) = γ′(0) = 0 , that γ′() and γ′′() are strictly positive for h > 0, and that

limh→∞ γ′(h) =∞. The profit flow from hiring can then be written as

πj = hMj − γ(h)− h[
c0
q(θ)

+W ]

6See also Chade et al (2015), who points out the relationship between generalized increasing differences (Legros
and Newman 2007) and positive assortative matching in frictionless models, which again resembles the single-crossing
property in our model.
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where θ = f(W ). The firm maximizes profit with respect to W and H. The first order condition for

W reads

− c

q2
q′(f(W ))fw(W ) = 1

Mj − [
c0

q(θ∗)
+W ∗] = γ′(h)

The first equation defines the optimal wage, W ∗, which is independent of the firm’s productivity as

well as the hiring rate h. Denote the solution by W ∗ and define θ∗ = f(W ∗). The left-hand side of the

second equation is the value of filling a position less the associated search-and wage costs associated

with filling it (which is unique even if W ∗ is not). The right-hand side shows the hiring costs. Given

our assumptions on γ, the solution is unique. The rest of the model is unaltered. It follows that in

equilibrium, there will be no on-the-job search, as all firms will find it more profitable to hire a worker

from the unemployment pool.7 This is also efficient, as the value of a match net of hiring costs are

equalized between firms. The next proposition sumarises our findings (the proof is omitted)

Proposition 2.4 Suppose the vacancy costs are linear while hiring costs are convex in the hiring rate

h = vq. Then the following is true

a) The optimal wage is independent of the productivity of the firm.

b) The optimal hiring rate is increasing in firm productivity

c) If K is sufficiently high, all firm types open vacancies.

d)) There is no on-the-job search, all firms hire workers from the unemployment pool.

3 Continuum of types

With a discrete distribution of firm types, our model does not give rise to a pure job ladder. Proposition

2.3 gives us some ordering of the search behaviour of workers and firms at different rings of the job

ladder, but the ordering is not complete. Workers employed by firms with the same productivity

7To be more specific, suppose on-the-job search does take place. Suppose workers in a firm of type i searches for
a job in a firm of type j. Let Wij denote the wage in the associated submarket. Efficient on-the-job search requires
that Wij > Mi. Since the type-i firm hired the worker in the first place, Mi >

c0
q(θ∗) + W ∗. Hence it would be more

profitable for the j-firm to follow the same hiring strategy as the i-firm, a contradiction.
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initially, may end up in firms with different productivities after successful on-the-job search. Likewise,

firms with the same productivity may attract and hire workers employed in firms with different

productivities. Furthermore, as the number of firm types increases, no clear pattern of convergence

of search strategies emerge. This calls for a model with a continuum of firm types.

In this subsection we therefore analyze the equilibrium of the model with a continuum of types.

In this case there is a one-to-one mapping between the productivity of a worker’s current employer

and future employer. Our main objective is to show that such an equilibrium exists.

To this end, let G(y) denote the cumulative distribution function of a continuous distribution on

the set Y ≡ [ymin, ymax], where ymin > y0, so that the lowest firm productivity is strictly larger than

unemployed income. The associated density is denoted g(y). We will define the equilibrium in terms

of cumulative distribution functions.

To simplify the proofs we assume that each firm advertises one vacancy, hence the total measure of

vacancies in the economy is equal to the measure of firms. While the number of firms is endogenous,

the idea of a fixed measure of vacancy per firm is an extreme form of convexity, and it is thus coherent

with the model of Section 2. Note that this does not imply that firms will have the same size; more

productive firms will set a higher wage, attract workers more quickly, and hence grow more quickly

than less productive firms.

In order to avoid technical issues at the top of the distribution, we assume that there is an

(arbitrarily small) cost of worker search. We denote the cost by ε. For notational simplicity we

assume that the firm incur the cost (for instance due to lower worker effort), and that y measures

output net of search costs. A firm of type y where the worker does not search thus has output flow

y + ε, while it has an output flow of y if the employees search.8

Suppose the market consists of a continuum of submarkets (θ(y),W (y)), where as above i is an

index. Since there is a cost associated with worker search, workers in firms with productivity above

a certain threshold ys will not search. We write the expected joint income of a worker and a job in a

firm as

8Delacroix and Shi (2006) make a similar assumption.
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(r + s+ δ)M(y) = y + max
y∈Y

p(θ(y)) [W (y)−M(y)] for y < ys (15)

M(y) =
y + ε

r + s+ δ
for y ≥ ys (16)

At the threshold ys, the firm is indifferent between searching and not searching. Hence, the flow cost

is equal to the flow gain from search. It follows that ys is implicitly defined by the equation

ε = max
y

p(θ(y))(W (y)−M(ys)) (17)

As above, define θ = f(W ;M(y)) as a family of indifference curves of searching workers of type y.

Define f(W ) ≡ miny f((W ;M(y)). As f and M are continuous functions, this minimum problem is

well defined.

Firms set wages so as to maximize the profit flow. As in the finite case, the firms thus maximize

π = q(θ)[M(y)−W ] S.T. θ = f(W )

For any y, let y(W ) denote the wage(s) that solves the maximization problem, and z(y) the worker

types that are attracted to the firm. Hence z(y) solves

f(W (y)) = f(W (y,M(z(y)))

It is straight-forward to show that z(y) is single-valued for all y and continuous for all y ∈ [ymin, ymax]

except at one point yu. The value yu is defined as the highest productivity a firm will have and still

attract unemployed workers. Thus, z(y) = y0 for all y ≤ yu while z(y) > ymin for all y > yu (with

limy→yu+ z(y) = ymin). As will be clear below, it follows by construction that z(y) is differentiable

on (ymin, ymax) except at the point yu. Furthermore, z(y) is strictly increasing in y and hence has an

inverse on (yu, z(ymax)). Finally, z(ymax) = ys.

It follows easily that the optimal sharing rule still applies,

(r + s+ δ)M(y) = y + ηp(θ(z−1(y))[M(z−1(y))−M(y)] (18)

This optimal sharing rule implies that given the worker type y that firms attract, the wage is optimally

set. Furthermore, from the envelope theorem it follows that
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M ′(y) =
1

r + s+ δ + p(θ(z−1(y))
(19)

Note that (19) is a necessary condition for efficient on-the-job search from the worker side. From

the sharing rule (15), W is strictly increasing in y, and hence that θ is strictly decreasing in y. The

single-crossing property then ensures that this is also a sufficient condition for maximum. Hence it

follows that f(W (y),M(z−1(y)) = f(W (y)).

Let N(y) denote the cumulative distribution of workers on firms (including unemployment) in the

economy. In other words, N(y) is the fraction of workers either unemployed or employed in firms

with productivity at most y. For notational convenience we denote the fraction of unemployed by u

as before.

Let X(y) denote the measure of workers searching for jobs with productivity at most y. Unem-

ployed workers randomize over which firms to search for on the interval [ymin, yu]. For yu < y < ymax,

it follows that X(y) can be written as

X(y) = u+

∫ z(y)

yu
n(y)dy

Denote the associated density by x(y) Let θ(y) denote the labor market tightness in the market in

which firms of type y recruits. Note that the workers in this submarket is of type z(y). It follows that

θ(y) =
kg(y)

x(y)
(20)

Finally, firms enter up to the point where the net present value of expected profits equals the entry

cost K, ∫ ymax

ymin

π(y)

r + s+ δ
dy = K (21)

Definition 3.1 The equilibrium of the model is two distribution functions X(y) and N(y) with densi-

ties x(y) and n(y), a wage distribution W (y), a labor market tightness distribution θ(y), a distribution

of joint incomes M(y), a search function z(y), and numbers yu, ys and k such that

1. M(y) satisfies (15)

2. Optimal wages: W (y) maximizes the profit flow q(θ)(M(y)−W (y)) subject to θ = f(W ),
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3. Optimal search: f(W (y)) = f(W (y),M(z(y))) for y ≤ ys.

4. For y ≥ ys, employees do not search. The threshold ys is implicitly defined by (17).

5. Zero profit: The zero profit condition (21) is satisfied.

6. Labor market consistency: θ(y) = kg(y)
x(y) .

7. Inflow equals outflow in all markets:

kgq(θ(y)) = [s+ δ]n(y) for y > ys (22)

kgq(θ(y)) = [s+ δ + p(θ(z−1(y))n]n(y) for y ∈ [ymin, ys] (23)

(1− u)(s+ δ) =

∫ yu

ymin

x(y)p(θ(y))dy

8. Aggregate consistency: ∫ yu

ymin

x(y)dy = u (24)∫ z(y)

yu
n(y)dy = u+X(y) (25)

u+

∫ ymax

ymin

n(y)dy = 1 (26)

Our goal is to define a mapping of which a fixed point is an equilibrium. Before entering that task,

we point out two important properties of cumulative distribution functions which form the basis of

our existence proof.

Property 1

Cumulative distributions are monotone functions, and thus by Lebesgue’s Theorem (Royden Fitzpatrick

p. 112) are differentiable almost everywhere. This implies that any cumulative distribution function

gives rise to a probability density function (with potential mass points).

Property 2

The subset of cumulative distribution functions on a closed interval [a, b], is contained in the topo-

logical vector space of all functions (with the sup norm) on [a, b]. This subset is obviously convex.

Furthermore, Helly’s selection theorem (Helly 1912, Surhone et al., 2010) gives that this subset is

compact.
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The first property ensures the existence of the distribution functions x(y), n(y) or z′(y) almost

everywhere (since z(y) is a distribution).

The second property is important when applying Schauder’s fixed point theorem. The theorem

asserts that if K is a convex subset of a topological vector space V and Γ is a continuous mapping of

K into itself so that Γ(K) is contained in a compact subset of K, then T has a fixed point. See also

Istratescu (2001), which provides an equivalent definition.

In many economic applications, the mapping is defined on the set of continuous functions, and

this set is not compact. It is therefore usual to apply a variant of Schauder’s fixed point theorem that

does not require that Γ(K) is contained in a compact subset of K, but instead requires that Γ(K) is

an equicontinuous family of functions , see Stokey and Lucas (1989), p 520. Showing equicontinuity

of Γ(K) is often cumbersome. In our case, the set of cumulative distributions do not form an equicon-

tinuous family. However, the set of cumulative distributions have two redeeming properties that we

recalled above. Therefore, the requirements of Schauder’s fixed point theorem is trivially satisfied as

long as Γ is continuous.

Below we will construct a mapping

Γ : (X(y), N(y), k,M0, y
s)→ (X̂(y), N̂(y), k̂, M̂0, ŷ

s),

where X(y) ∈ CD[ymin, ymax], N(y) ∈ CD[y0, y
max], k ∈ [0, kmax], M0 ∈ [0,M0,max] and ys ∈

[ymin, ymax].

The mapping will make sense for all pairs of distributions X(y) and N(y), but we will restrict the

subset of pairs where N(y) > X(y) (which also is a convex set), as the search technology is directed

towards more productive firms.

Although Schauders’s fixed point theorem does not require the elements in the domain to be

continuous functions (although the mapping as such has to be continuous), it is convenient in the

updating algorithm (which we will state below) to have continuity. We solve this technical challenge

by mapping a given cumulative distribution to a continuous cumulative distribution satisfying a growth

constraint. In technical terms the continuous cumulative distributions have a derivative bounded by

a fixed positive number a. In other words, we construct a mapping Φ : CD[b, c] to CCD[b, c], where
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CCD[b, c] denotes the set of all continuous distributionson the interval [b, c]. As the mapping Φ

will be part of the Γ : (X(y), N(y), k,M0, y
s) → (X̂(y), N̂(y), k̂, M̂0, ŷ

s), the map Φ itself needs to

be continuous. This severely restricts the list of candidate maps. In particular, any mapping that

leaves already continuous distributions unchanged, and only removes discontinuities for discontinuous

distributions, is necessarily discontinuous. A proof of this result is given in the appendix.

Before we give the formal definition of Φ, it may be helpful to give the intuition behind the

construction. Consider a cumulative distribution F defined on the interval [b, c]. Imagine that we

start at b and construct a cumulative distribution that meets the growth constraint a, in the following

way: whenever F grows faster than ax, we divide F into two parts, F aLs , a continuous function

with derivative equal to a, and store the excess probability mass in a function T aF . That is, F (y) =

F aLs (y) + T aF (y) for all y. As soon as the growth rate falls below a again, we start to redistribute

the accumulated probability mass by letting F aLs have the maximal derivative a until the “tank” of

excess probability mass is empty. This redistribution, which we may say is redistribution from the

left, may give a mass point in c, but not elsewhere. Moreover, redistribution from the right by starting

in c instead of b can be constructed in the same way. For expository purposes will we consider only

redistribution from the left and introduce the notation F aLs . The corresponding results for F aHs ,

redistribution from the right, follows by symmetry. Note that in this case of redistribution from the

right the continuous distribution may have a mass point at b.

To ease the notation let

F (x−) = limt→x−F (t) and Fjump(x) = F (x)− limt→x−F (t).

Definition 3.2 Let F ∈ CD[b, c] and define T aLF (Y ) by

i) T aLF (b) = F (b)

ii) if F is differentiable at x, then

T aL′F (x) = F ′(x)− a if F ′(x)− a > 0 or T aLF (x) > 0, and T aL′F (x) = 0 otherwise.

iii) if F not differentiable at x, then

T aLF (x) = T aLF (x−) + Fjump(x)
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Note that at any point the difference F (y) − T aLF (y) is by construction a continuous function

obeying the growth constraint a.

Definition 3.3 Let

ΦaL : CD[b, c] −→ CCD[b, c],

where CCD[b, c] denotes the set of continuous distributions defined on the interval [b, c], be given by

ΦaL(F ) = F aLs = F − T aLF .

In order to use Schauder’s fixed point theorem, we need continuity of ΦaL (and ΦaH) :

Proposition 3.1 The mapping ΦaL : CD[b, c] −→ CCD[b, c] is continuous.

The proof of this proposition is given in the appendix. We will use the maps ΦaL and ΦaH to ensure

that the distributions X(y) and N(y) are at desired form. In particular, that X(y) be a distribution

without mass points, and N(y) has potentially a mass point in y0, no probability mass between y0

and ymin and is continuous elsewhere.

We are now ready to describe the mapping

Γ : (X(y), N(y), k,M0, y
s)→ (X̂(y), N̂(y), k̂, M̂0, ŷ

s)

1. We replace X(y) by X(y) = ΦaL(ΦaH(X(y))). Note that a redistribution from the left followed

by a redistribution from the right gives a distribution without mass points (if a ≥ 1).

The replacement of N(y) is done in two steps. First consider only the part of N(y) defined on

[ymin, ymax], Nemp(y), and compute ΦaH(Nemp(y)).

Second we define N(y) = ΦaH(Nemp(ymin)) for all y in [y0, ymin]. With this replacement N(y)

has a potential mass point in y0, no probability mass between y0 and ymin), is continuous for

all y in [y0, ymax] and N(y) = ΦaH(N(y)) for all y in < ymin, ymax].

2. Note that u = N(y0). Let yu be determined by u = X(yu). (The unemployed randomly search

jobs in the interval [ymin, yu].) Furthermore let θ(y) = min(θmax, kg(y)/x(y)). Let θ(y) = θmax
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when x(y) = 0. Note that θ is naturally bounded from above (θmax) and below (θmin). These

bounds are explicitly given in the appendix.)

Finally, determine z(y) by the equality X(y) = N(z(y)) for y > yu.

3. For y > ys, M(y) = (y + ε+ (s+ δ)M0)/(r + s+ δ). For y ≤ ys

M(y) =
ys + ε+ (s+ δ)M0

r + s+ δ
−
∫ ys

y

dy

r + s+ δ + p(θ(z−1(y))

4. Update M0 as follows:

rM̂0 = y0 + p(θ(ymin)η(M(ymin)−M0).

5. Update of k. Calculate the profit flow π(y) = q(θ(y))η(M(y) −M(z(y)) and the npv profit

Π(y) =
π(y)

r + δ
, and update k as follows:

k̂ =
EΠ(y)

K
k

6. Update of ys. Calculate ∆ = q(θ(ymax))η(M(ymax)−M(ys)). Update ys as follows

ŷs = ys +
∆− ε

q(θ(ymax))ηM(ymax)
(ymax − ys)

7. Update of N(y). This goes in several steps. First define define θ(y) on y ∈ [ymin, ymax] as

(r + s+ δ)M(z(y)) = y + p((θ(y)))η[M(y)−M(z(y))] + (s+ δ)M(y0)

Given θ̃(y), calculate ñ(y) and û from the formula

k̃q(θ̃(y)) = [s+ δ + p(θ̃(z−1(y))]ñ(y) (27)

(1− û)s =

∫ ỹu

ymin

x(y)p(θ̃(y))dy

and define

N̂(y) =

∫ y
ymin ñ(y)dy + û∫ ymax

ymin ñ(y)dy + û
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8. Update X(u). First define

x̃(y) = k̂θ̃(y)

Then update as follows:

X̂(y) =

∫ y
ymin x̃(y)dy∫ ymax

ymin x̃(y)dy

Note that each step of updating algorithm is continuous in the arguments of Γ. Moreover, that

Schauder’s fixed point theorem ensures existence of a fixed point. Denote all the variables at the

fixed-point by an asterix. First, at the fixed-point, M∗(y) satisfies (19). Furthermore, θ∗ satisfies

(18). Hence the search behaviour of workers and firms is optimal. By construction, expected profit is

zero, and the consistency requirements 6-8 are all satisfied.

Theorem 3.1 The equilibrium with continuous types exists.

4 Empirical implications

In this section we will briefly discuss testable differences in predictions between our model and some

other important models of on-the-job search. To this end, let Dw(w|wo) denote the distribution of

wages obtained after successful on-the-job search of a worker with a wage wo prior to the job switch.

Let Df (w|wn) denote the distribution of wages prior to the job switch for a worker that obtains a

wage wn after successful on-the-job search. Finally, Dp(y|y0) denote the distribution of productivities

in the new firms contingent on the productivity of the employer prior to the job change.

The Burdett-Mortensen (BM) model (Burdett-Mortensen, 1998). In the BM model, search is

random. With identical firms, firms play with mixed strategy, and a distribution of wages arise

endogenously. With heterogeneous firms, there is a one-to-one correspondence between wages and

productivities, as high-productivity firms pay more.

Since workers and firms match randomly, the distribution of wages Dw after successful on-the-job

search is equal to the wage offer distribution, truncated at previous wage wo. If the wage distribution

over vacancies is denoted by Fw(w), it follows that

Dw(w|wo) =
Fw(w)− Fw(wo)

1− Fw(wo)
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The support of the distribution D is [wo, ws], where ws is the supremum of the support of advertised

wages. Let Dw≥wj (w|woi ) denote the distribution function of new wages w, contingent on w ≥ wj , as

a function of the old wage woi . Then for any wj ≥ woh,

Dw≥wj
w (w|woi ) =

Dw(w|woi )−Dw(wj |woi )
1−Dw≥wj

w (wj |woi )

=
Fw(w)− Fw(wj)

1− Fw(wj)

independently of woi . Hence D
w≥wj
w (w|wol ) = D

w≥wj
w (w|woh) for any wj > who . In words, the distribu-

tion of new wages, contingent on being above wj , is independent on the previous wage, as long as the

previous wage is below wj .

Similarly, the distribution of prior wages Df (w|wn) is equal to the distribution of wages over

employees (including unemployment benefit) truncated at w ≤ wn. Consider two wages wnl and wnh ,

wnl ≤ wnh , and let D
w≤wj

f (w|wn) denote the distribution of the prior wage w prior to the job change.

It follows that as long as wj ≤ wnl , D
w≤wj

f (w|wnl ) = D
w≤wj

f (w|wnh).

If firms are heterogeneous, there will be a one-to-one correspondence between a firm’s wage and

its wage offer. Hence, as with wages, the productivity distribution in new firms, D
y≥yj
p (y|y0) will be

independent of y0 as long as y0 < yj .

The Postel-Vinay and Robin (PR) wage setting procedure. Postel-Vinay and Robin (2002) assume

that after successful on-the-job search, the incumbent firm and the new firm compete for the worker

in a Bertrand fashion. Furthermore, firms compete in NPV wages, hence a worker takes into account

that expected future wages (after encountering another job offer) will be higher the higher is the

productivity of the employer. The latter is referred to as the option value of the job.

Since workers meet firms randomly, and change employer if and only if she matches with a firm

that is more productive than the current employer, the results for the BM model on productivity

distributions carry over to the PR model. In particular, the productivity distribution in new firms,

D
y≥yj
p (y|y0) will be independent of y0 as long as y0 < yj

The distribution of wages after a job shift is less clear. Betrand competition will tend to increase

wages after a job swithc. On the other hand, the fact that the option value is increasing in productivity

implies that, given the productivity of the current employer, there is a negative relationship between
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wages in the new job and the productivity of the new employer.

Competitive on-the-job search (CS). Our model is not a model of wages, but rather of NPV wages.

However, we can assume that the wage that the worker obtains in a firm is constant, and that the

workers’ search behaviour is contracted upon directly. With a continuum of types, the wage before he

job switch is an increasing function of the wage before the job switch. It follows that the distribution

Dw(w|wo) then has a spike, at a discrete distance above wo, and the wage at the spike will be

increasing in wo. The same is true for the productivity distribution Dy(y|yo). Another prediction

from competitive on-the-job search (with discrete types) is that more productive firms pay higher

wages than less productive firms, even if they attract workers from firms with the same productivity.

Thus, the BM model and the competitive search model have different predictions regarding the

relationship between wages before and after a job change. The same is true for the productivity of

the previous employer relative to the new one. In the PR model, the productivity distributions before

and after the wage change is as in the BM model, and thus very different from the predictions of the

CS model. The relationship between wages before and after wage changes is more involved in the PR

model. Still there is one clear difference. The competitive search model predicts that if two firms with

different productivities attract workers with equally productive employers, the high-productivity firm

pays the higher wage. The PR model predicts the opposite.

5 Conclusion

We have developed a competitively flavored matching model where on-the-job search is an optimal

response to productivity differences between firms in the presence of search frictions. The equilibrium

features a job ladder, where workers gradually moves to jobs with higher wages. With a continuum

of firm types, the job ladder is strict. Unlike existing models of labor turnover, the model predicts a

strong relationship between the productivity of the present and future employer.

The papers also contributes methodologically. When proving existence of equilibrium, we do not

follow the standard route, which is to apply a version of Schauder’s fixed point theorem presented in

Stokey and Lucas (1989). Instead we exploit the fact that the equilibrium is formulated in terms of
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distribution functions, which allows for a different approach. We believe that our methodology may

be a usefull tool for showing existence of equilibrium in search models more generally.
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Appendix 1, finite number of firm types

Proof of claim prior to lemma 2.1

We want to show that y0/r ≤ M0 < M1 < ... < Mn and (r + s + δ)Mi − yi is decreasing in i. An

unemployed worker that never finds a job obtains y0/r, hence y0/r ≤ M0. A type n worker cannot

gain from on-the-job search since W ≤ yn, and hence Mn = yn+sM0

r+s+δ . A worker of type j can always

obtain a strictly higher joint income than a worker of type i < j by following exactly the same search

strategy as the type i worker, hence Mj > Mi. Analogously, a worker of type i can always mimic the

search strategy of a worker of type j > i. Let the associated joint income be denoted M ′i . From (1),

(r + s+ δ)(Mj −M ′i) = yj − yi
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or

(r + s+ δ)Mj − yj = (r + s+ δ)M ′i − yi

Since M ′i ≤Mi it follows that (r + s+ δ)Mj − yj ≤ (r + s+ δ)Mi − yi.

Proof of lemma 2.1

a) We want to show that the indifference curve has the following single crossing property. Note that

the single crossing property is equivalent to proving:

Let i < j ≤ n − 1. Then there exists a wage W ′ such that fi(W
′,M) = fj(W

′,M), fi(W,M) <

fj(W,M) for all W < W ′, and fi(W,M) > fj(W,M) for all W > W ′.

To show the claim, note that limW→M+
j
fj = ∞ while fi(Mj ,M) < ∞ (where the notation

limW→M+
j

means that the limit is taken from above). Thus, for W close to but above Mj we have

that fi(W,M) < fj(W,M). The ratio of p(fi) to p(fj) reads

p(fi)

p(fj)
=

(r + s+ δ)Mi − yi − (s+ δ)M0

(r + s+ δ)Mj − yj − (s+ δ)M0
· W −Mj

W −Mi

lim
W→∞

p(fi)

p(fj)
=

(r + s+ δ)Mi − yi − (s+ δ)M0

(r + s+ δ)Mj − yj − (s+ δ)M0
< 1

(see appendix 1). Thus, for sufficiently large values of W , p( fi(W ;M)) < p(fj(W,M)), and hence

fi(W ;M) < fj(W,M). Since fi and fj are continuous it follows that there exists a value W ′ such

that fi(W
′;M) = fj(W

′,M).

The slope of fi(W ;M) is obtained by taking the derivative of Mi given by (1) with θ replaced by

fi(W ;M). It follows that

∂fi(W ;M)

∂W
= − p(f(i(W ;M))

p′(fi(W ;M))(W −Mi)
(28)

Consider the intersection between fi and fj , j > i. At this point,

∂fi(W ;M)
∂W

∂fi+1(W ;M)
∂W

=
W −Mi+1

W −Mi

Since Mi < Mi+1 it follows that |∂fi(W ;M)
∂W | < |∂fi+1(W ;M)

∂W |. Hence fj crosses fi from above, and the

intersection is unique. This proves the claim as well as Lemma 2.1. a)

29



b) i) Suppose i < j. Then |∂fi(W ;M)
∂W | < |∂fi+1(W ;M)

∂W |. Hence if a worker of type i prefers to search

for a wage W ′ to a wage W ′′ < W ′, then it follows that so does a worker of type j. This rules out

that W i > W j .

ii) Consider a wage W in the interval (W i,W i+1). Then it follows from the claim and i) that

fi(W ;M) < fi−1(W ;M) < · · · < f0(W ;M) and that fi(W, ;M) < fi+1(W ;M) < · · · < fk(W ;M),

where k is the highest type such that Mk < W . The result thus follows.

c) For all i < n, each of the functions fi(W ;M) is continuously differentiable for W > Mi. Since

the value of search for workers of type n is zero, workers of this type are willing to join any market that

offers a wage W > Mn, so that fn(W ;M) = 0 for W > MN . It follows that f(W ;M) = mini fi(W ;M)

is continuous and piecewise differentiable for all W < Mn save the discontinuity at W = Mn. Not

that f(W ;M) = 0 for all W > Mn.

Proof of lemma 2.2

Suppose a submarket attracts i−workers and j-workers, i < j. Denote the npv wage in the submarket

by W ′. Then fi(W
′,M) = fj(W

′,M) = f(W ′,M). From Lemma (2.1) this can only be the case if

j = i + 1, that is, if W ′ = W i. But Lemma 2 states that f(W ;M) is discontinous at this point, so

that

lim
W→W i−

∂q(f(W i))

∂W
= lim

W→W i−
q′(f(Wi))

∂fi(W
i)

∂W

< lim
W→W i−

q′(f(Wi+1))
∂fi(W

i)

∂W

= lim
W→W i−

∂qf(θ(W i)))

∂W

i.e, q′ jumps up at W i. Hence the second order condition is not satisfied, and W = W i cannot be a

solution to any firm’s maximization problem. Suppose then that two firm types i and j, i < j offer

the wage W ′. The optimal wage for firm j solves

max
v,W
−c(v) + vq(f(W ))[Mj −W ]
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with first order condition for W given by

q′(f(W ))f ′(W )

q
=

1

Mj −W
(29)

The left-hand side is independent of j, while the right hand side is increasing in j. It follows that the

first order conditions cannot be satisfied for two different firm types simultaneously.

In order to derive (11), first note that

dp−1(θ)

dθ
=

1

p′(θ)
=

1

q + θq′(θ)

(since p(θ) = θq(θ)). From (3) it thus follows that

f ′(W ) = − 1

q + θq′(θ)

θq(θ)

W −Mi
(30)

which inserted into (29) gives

− q′(θ)

q + θq′(θ)

θq(θ)

W −Mi
=

q

Mj −W

Inserting η(θ) = −q′(θ)θ/q(θ) and reorganizing slightly gives

η(θ)

1− η(θ)
=
W −Mi

Mj −W

By assumption, the left-hand side is decreasing and the right-hand side is increasing in W . Thus, for

given Mi and Mj the equation uniquely defines W .

Proof of existence of equilibrium

The strategy for the proof is to construct a mapping for which the equilibrium of the model is a fixed

point, and then apply Brouwer’s fixed point theorem to show existence.

The domain of the mapping is κ, a matrix describing submarket choices of workers κij , Σni=0κij = 1,

a matrix θ consisting of labor market tightnesses θij , and a real number k denoting the measure of

firms in the economy. We impose that 0 ≤ θij ≤ θmax for all i < j, and that k ≤ kmax, where θmax

and kmax will be defined below. It follows that the domain Dn ∈ R2n2+1 of (κ, θ, k) is closed and

convex.

31



We construct the mapping Γ : Dn → Dn as follows: Let p(θ) denote the matrix of transition

probabilities pij = p(θij). Define

(r + s+ δ)Mi = yi + (s+ δ)M0 + max
j
pijη(θij)(Mj −Mi) (31)

(r + s+ δ)Mij = yi + (s+ δ)M0 + pijη(θij)(Mi −Mj) for any j > i (32)

Let M denote the matrix of values Mij . Given the matrix p(θ), the matrix M = M(θ) is uniquely

defined as a continuous function of the matrix θ. To see this, first note that Mn is independent of θ.

Suppose Mi is uniquely defined and continuous functions of θ for all i > i′. But then it follows from

(31) that Mi′ is uniquely defined and continuous in θ as well. The claim thus follows.

The gross income flow of a firm of type j of posting a vacancy in submarket i is given by

ρij = q(θij)(1− η(θij))(Mj −Mij) (33)

ρj = max
i
ρij . (34)

Now define θaij implicitly by the function

q(θaij)(1− η(θaij))(Mj −Mij) = ρj (35)

Given our assumption that η(θ) is nondecreasing in θ we know that θaij is well defined. The equation

thus shows values θaij such that the firm of type j is indifferent between searching in submarket i and

in the income maximizing submarket given θ. Let vaj be defined by the equation

c′(vaj ) = ρj

i.e., vaj is the optimal number of vacancies given ρj . It follows that both θa and vaj are continuous in

θ.

The expected profit of a firm of type j entering the market reads (from (34))

Πj =
1

r + δ

{
vaj ρj − c(vaj )

}
Define
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EΠ =
∑
j

αjΠj

The updating rule for k reads

knew = k
EΠ

K
(36)

unless the upper bound kmax binds, in which case knew = kmax.

Given the initial matrices θ and κ, we can calculate the distribution N0, N1, ..., Nn. The outflow of

workers of type i to firms of type j > i is Nip(θij)κij . Hence, the inflow equal to outflow requirement

can be written as

Ni(s+ δ + Σnj=i+1p(θij)κij) = Σi−1j=0p(θij)κijNj for i = 1, ..., n− 1

which uniquely defines N1, ..., Nn as continuous functions of θ. The measure of unemployed workers

can be defined residually, N0 = Σnj=1Nj .

Generically, consistency requires that for each firm type,

∑
i

Niκijθij ≡
∑
i

vij = kαjvj

(where vij is the total measure of vacancies in the i, j market). Define the constant ζj(θ) by the

expression ∑
i

Niκijθ
a
ij = ζjk

newαiv
a
j (37)

Define

θnew

ij = ζj(θ)θ
a
ij(θ)

This is our updating rule for rule for θ unless the upper bound θmax binds, in which case θnew
ij = θmax.

Consider the searching workers. Let zi denote the set of firm types j such that Mij = Mi. For

all i, j, j /∈ zi, define

κaij =
Mij

Mj
κij

Note that κaij is continuous in θ and κij . Define the constant σi by the expression

σi
∑
j∈zi

κij +
∑
j /∈zi

κaij = 1
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For all i, j such that j ∈ Ji, the updating rule reads

κnew

ij = ηiκij

(It thus follows that
∑
j κ

new
ij = 1 for all i.)

We have thus constructed a mapping Γ : Dn → Dn, which by construction is continuous. It follows

from Brouwers fixed point theorem that the mapping has a fixed point.

Our next step is to show that a fixed point of Γ is an equilibrium of our model (given that the

bounds are sufficiently large, see below). First, the asset values M∗i and M∗ij are determined using the

optimal sharing rule (equation 31 and (32). Second, κ∗ij > 0 only if M∗ij = M∗i , which ensures efficient

on-the-job search. It follows that the other markets are empty. Firms are indifferent between which

of the non-empty submarkets to enter, hence their search decisions are optimal.9 Finally, (36) implies

that EΠ∗ = K at the fixed point, hence the entry condition is satisfied.

At the fixed point, ζj = 1 for all j. Hence (37) is satisfied. However, this means that the weights

τij give us enough degrees of freedom to satisfy the consistency requirement N∗i θ
∗
ijκ
∗
ij = v∗j τ

∗
ijk
∗ in

each submarket.

Finally, we characterize the upper bounds. First consider k. An upper bound on the expected

profit of entering the market is given by

Π̃ =
yn
αn

1

k

which converges to zero as k →∞. Hence it is trivial to pick an upper bound that is not binding at

the fixed point. For instance, we may let k̂ be defined by yn
αn

1

k̂
= K/2.

Then consider θ. The proof is by contradiction. Suppose θij is infinite for some i, j, i > j. Then

no firm of type l < j will attract any workers. Without loss of generality we therefore assume that

i = 0. Unless θik = ∞ for some k > j, κij = 1, it is always be better to search further with higher

present income. Suppose first that θik is finite for k > j. Since outflow from unemployment has to be

equal to inflow, we have that

x(u, v0j) = x(0, v0j) = 0 = s+ δ

9The labor market tightness θ∗ij in empty submarkets are pinned down by iso-profit curve of firms, see equation (35).
Workers flow to the submarkets that maximize their income given the iso-profit curve of the workers. In the model, it
is the indifference curve of the workers that defines θij in empty submarkets. Since maximizing worker income given
the iso-profit of firms and maximizing profits given the indifference curves of workers are dual problems, they give the
same solution.

34



a contradiction. Suppose then that θik =∞ for some k > j. Then the argument can be repeated for

the highest type for which θ is infinite. Hence θij is finite for all ij, and hence has an upper bound

θmax. This completes the proof.

Proof of efficiency

The welfare function is defined as

W =

∫ ∞
0

[

n∑
j=0

Njyj −
n∑
j=1

αjkc(vj)− aK]e−rtdt

Where vj is the number of vacancies of a firm of type j. The law of motions are

Ṅj =

j−1∑
i=0

x(κijNi, αjkτijvj)−
n∑

k=j+1

x(κjkNj , αikτkjvj)− (s+ δ)Nj

k̇ = a− δk

The initial conditions take care of the requirement that
∑
iNi = 1. The controls are a, κij , τij and vj .

All κij , τij have to be between zero and 1, this will be discussed later. The current-value Hamiltonian

reads

H =

n∑
j=0

Njyj −
n∑
j=1

αjkc(vj)− aK

+

n∑
j=0

λj [

j−1∑
i=0

x(κijNi, αjkτijvj)−
n∑

k=j+1

x(κjkNj , αkkτjkvj)− (s+ δ)Nj ]

+A[a− δf ]

The controls are chosen so as to maximize H. Note that xv = (1−η)q(θ), where η = −q′(θ)θ/q.10The

first order conditions for the other controls read

A = K (38)

pij(λj − λi) = max
k

pik(λi − λk) if κij > 0 (39)

qij(λj − λi) = max
k

qkj(λj − λk) if τij > 0. (40)

10To see this, note that q(θ) = x( 1
θ
, 1). From the Euler equation it follows that

xu(
1

θ
, 1)

1

θ
+ xv = x(

1

θ
, 1) = q

which gives the expression in the text.
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We thus get the following first order conditions for vacancy creation:

c′(vj) = (1− β)q(θij)[λj − λi] (41)

for all ij for which κij>0 (note that the right-hand side is the same for all active submarkets). Finally,

the value functions for the adjoint variables are given by (in steady state)

(r + s+ δ)λj = yj + βmax
k>j

pjk(λk − λj) + (s+ δ)λu (42)

(r + δ)A =

n∑
j=1

αj [(1− β)vj max
k

qjk(λk − λj)− c(vj)]

It follows that the first order conditions of the planner is exactly equal to the market solution. More

than that, the maximization problem for the controls is exactly equal to the maximization problem

of the firm. Thus, the planner’s solution and the decentralized solution is the same.

Proof of proposition 2.3

a) Let h > l, and suppose a firm of type h advertise a wage Wh with job finding rate qh, while the

firm of type l advertise a wage W l with job finding rate ql. From worker indifference it follows that

Wh > W l if and only if qh > ql, otherwise all workers would prefer to search for firm h rather than

firn l. Profit maximization then implies that

qh(Mh −Wh) ≥ ql(Mh −W l)

ql(Ml −W l) ≥ qh(Ml −Wh)

Combining the two gives

qh(Mh −Wh)− qh(Ml −Wh) ≥ ql(Ml −W l)− ql(Mh −W l)

or

(qh − ql)(Mh −Ml) ≥ 0 (43)

The proof is by contradiction. Suppose W l > Wh. Then ql > qh. Since Ml < Mh, this contradicts

(43).
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From lemma 2.1 we know that f(W ) = fi(W ) at the interval [W i,W i+1]. Furthermore, from the

proof of lemma 2.2 we know that W i cannot be an equilibrium point. It follows that a worker of type

j always searches for higher wages than a worker of type i < j.

b) Suppose on the contrary that Il has an element, say i, that is strictly greater than one element

in Ik, say j. From a) it follows that worker i searches for strictly higher wages than worker j. Hence

firm l advertises a wage that is strictly higher than a wage advertising by firm k, l < k. We know

from a) that this is a contradiction.

Appendix 2, continuum of firm types

Proof of Proposition 3.1

The key ingredient is the following lemma.

Lemma 5.1 Let F,G ∈ CD[b, c], and let G be in a δ-neighborhood of F with the sup-norm, then

T aLF (y)− T aLG (y) < 2δ.

Let t(y) be defined by F (y) + δ = G(y) + t(y). In other words t(y) is the distance to the “roof”

of the δ-neighborhood for every y. Note that ∆F −∆G = ∆t for all intervals in [b, c]. This implies

that F ′(y) − G′(y) = t′(y), for all y where both F and G are differentiable. Moreover, this relation

also applies to jump points, as by definition : Fjump(y) = Gjump(y) + tjump(y).

We want to show that T aL′F (y) − T aL′G (y) ≤ t′(y). Note that T aL′F (y) − T aL′G (y) = F ′(y) − a −

(G′(y) − a) = F ′(y) − G′(y) = t′(y) if F ′(x) − a > 0 and G′(x) − a > 0. Similarly if only F surpass

the growth constraint: T aL′F (y) − T aL′G (y) = F ′(y) − a ≤ F ′(y) − G′(y) = t′(y) since G′(y) ≤ a. The

inequality is trivially satisfied when only G surpass the growth constraint. The subcases regarding

jump points follows by the same kind of computation. Intuitively, the difference in incremental growth

at any point y, is precisely the change in the distance to the “roof” of the δ-neighborhood. Since this

difference in incremental growth necessarily is the maximum difference of accumulated mass that may

arise in any point, the inequality follows

Since this applies for any point y, it follows that
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T aLF (y)− T aLG (y) =

∫ y

b

(T aL′F (x)− T aL′G (x))dx ≤
∫ y

b

t′(x)dx = t(y)− t(b) < 2δ

The result now follows readily from the triangle inequality:

Proposition 5.1 ΦaL : CD[b, c] −→ CCD[b, c] is continuous.

Let F ∈ CD[b, c], and let G be a CD in a δ-neighborhood of F (with the sup-norm). Since

F (y) = Fs(y)+T aLF (y) and G(y) = Gs(y)+T aLG (y), we get by the triangle inequality |Fs(y)−Gs(y)| ≤

|F −G|+ |T aLF (y)−T aLG (y)| < δ+2δ = 3δ. In other words, for any given ε, we will ensure |Fs−Gs| < ε

provided we choose |F −G| < ε
3 .

Proposition 5.2 Let Φ : CD[b, c] −→ CCD[b, c]. IF Φ(G) = G whenever G is continuous, then Φ is

discontinuous.

Let Φ denote a mapping that leaves continuous distributions unchanged. Let G denote a distribu-

tion that is continuous everywhere except at at y0, where it has a jump point. Construct a sequence

Gn of continuous functions by letting Gn(y) = G(y) for all y except the interval < y0− 1
n , y0 >. In this

interval the graph of the function Gn is the line between the points (y0− 1
n , G(y0− 1

n ) and (y0, G(y0)).

By construction Gn is continuous and converges to G as n approaches infinity. The contradiction now

follows from invoking continuity of Φ, as continuity implies Φ(limn→∞Gn) = limn→∞Φ(Gn). Hence,

we get: Φ(G) = Φ(limn→∞Gn) = limn→∞ Φ(Gn) = limn→∞Gn = G. But Φ(G) 6= G, since Φ(G) is

continuous and G is not.

Upper and lower bounds for key parameters in the updating algorithm of Γ

Definition of θmin: A natural lower bound arise from solving p(θ)y
max−y0
r+s+δ = ε. In other words, θmin is

given by:

θmin = p−1(
ε(r + s+ δ)

ymax − y0
)
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Definition of kmax: The upper bound for the aggregate output in the economy is achieved if all workers

work in the most productive firms. This gives rise to the following steady state condition:

ymax/k = (r + δ)K

Hence kmax is given by:

kmax =
ymax

(r + δ)K

Definition of θmax: The highest value of θmax is realized in the submarket with the firms with the

lowest productivities, since they offer the lowest wages. We will show that since ymin > y0, the labour

market tightness in this submarket has an upper bound.

First we derive a lower bound for the unemployment rate. For a given number of firms, the number

of matches is maximized by if all submarkets have the same θ. Moreover, the unemployment rate

is the lowest if all firms hire unemployed workers only. This give rise to the following steady state

condition:

umin(s+ δ + p(
kmax

umin
)) = s+ δ

Let θh = Kmax

umin , and ph be the corresponding value of p. It follows that ph is an upper bound for

the average value of the hazard rate out of unemployment. Since p(θ(yu)) < p(θ(y)) for all y < yu,

it follows that p(θ(yu)) < ph. Suppose that the workers employed in firms with ymin join the same

submarket as workers searching for the yu-jobs. This is feasible, but not optimal. Let M̃(ymin) denote

the corresponding expected income. (Note that M̃(ymin) < M(ymin)) It follows that

(r + s+ δ)M̃(ymin) = ymin + p(θ(yu))(W (y)− M̃(ymin)

Or
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(r + s+ δ)(M(ymin)−M(y0)) > (r + s+ δ)(M̃(ymin)−M(y0)) >
ymin − y0

r + s+ δ + ph

Let

∆ ≡ ymin − y0
r + s+ δ + ph

An upper bound for M(y0), Mmax
0 , is

Mmax
0 =

ymax

r + s

Finally, define θmax by

(r + s+ δ)Mmax
0 = y0 + p̄(θmaxη(θmax)∆

Since η(θ) is nondecreasing in θ, this equation defines θ∗ uniquely.

Endogenous number of vacancies per firm

Assume now that the number of vacancies is a (contiuous) choice variable of the firm, and that the

maintainance cost is c(v). We make the same assumptions as in the discrete case. In addition we

assume that there exists an upper bound vmax on v, and that limv→vmax− =∞.

Let v(y) denote the number of vacancies posted by a firm of type y. The first order condition for

v(y) writes (analogue with (14) in the discrete case)

c′(v(y)) = (1− η)q(θ)[M(y)−M(z(y))] (44)

Define v̄ as the aggregate number of vacancies, v̄ =
∫ ymax

ymin v(y)g(y)dy. Define g̃(y) ≡ g(y)v(y)/v̄.

Define k̃ = kv̄. Finally, write the profits as π(y) = vq(θ)[M(y)−W ]− c(v).

An equilibrium can now be defined as above, with v(y) as an additional equilibrium object, with

firms maximizing profit with respect to w and v (not only w), and with g and k replaced by g̃ and k̃

in the aggregate consistency equations. In all other respects the equilibrum conditions are unchanged.
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The next step is to modify the mapping. Define V (y) =
∫ y
ymin v(y′)dy′. Clearly V (y) is monotone

and increasing, and bounded above by V̄ = (ymax − ymin)vmax. Let V (y) be an element of the

mapping, and in the first step of the mapping, write V (y) = ΦaL(ΦaH(V (y))) After step 5 in the

updating procedure, update v(y) by (44). It follows that the mapping is continuous, and that the

conditions for using Schauder’s fix-point theorem still applies. Hence the equilibrium exists.

41


