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Abstract

We investigate conditions for endogenous incompleteness and completeness in continuous-
time �nancial markets driven by di�usion processes with multiple consumption goods and
heterogeneous agents. We show that for a class of utility functions the �nancial market is
endogenously incomplete. A su�cient condition for market completeness is that the dividend
di�usion matrix in units of the numeraire good is invertible. Further, �nancial market
completeness can depend on the choice of the numeraire good since changing the numeraire
good implies a change of the risk-free asset and the asset structure.

Keywords: Multi-good economies; Financial market incompleteness; Financial market
completeness
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1 Introduction

We consider a continuous-time Lucas tree economy driven by di�usion processes with mul-

tiple consumption goods and agents with heterogeneous preferences. We derive su�cient

conditions for �nancial market incompleteness and completeness without having to calculate

the equilibrium stock price di�usion matrix. Instead, the conditions rely solely on the utility

function of the representative agent and an invertibility condition on dividends.

First, we de�ne a class of utility functions for which the span of the risky assets is strictly

smaller than the span of the dividends. Hence, the �nancial market is incomplete. This

class of utility functions covers the preferences employed, among others, in the following

papers: Cole and Obstfeld (1991), Zapatero (1995), Serrat (2001), Cass and Pavlova (2004),

and Berrada et al. (2007). Within this class is, for instance, the widely used Cobb-Douglas

utility function. When the representative agent has Cobb-Douglas utility, as in Cole and

Obstfeld (1991), then the commodity price is proportional to the relative dividends and,

consequently, dividends measured in units of the numeraire correlate perfectly with each

other. Hence, in equilibrium stock prices are linearly dependent.1

Second, we de�ne a class of utility functions for which the �nancial market is complete.

Speci�cally, our completeness condition only requires veri�cation of an invertibility condition

on dividends in terms of the numeraire good for one realization of the state variables at the

terminal time. In contrast, to verify market completeness without such a condition one

has to calculate the equilibrium stock price di�usion matrix and to check if the matrix is

invertible for every possible realization of the state variables at every point in time. Without

an explicit closed-form solution for the equilibrium stock price di�usion matrix, this is a

hopeless task.

In a Lucas tree economy the typical asset structure consists of claims on the Lucas trees

1Rosenberg and Ohlson (1976) study a related problem in multi-asset purely �nancial models with �xed
asset supplies. Assuming that the aggregate investor has constant relative risk aversion utility and that asset
prices follow a joint lognormal process implies that asset proportions are constant. In equilibrium, this can
only be the case if risky asset returns are perfectly correlated.



and a locally risk free asset in units of the numeraire good. We show that �nancial market

completeness depends on the choice of the numeraire good, since changing the numeraire

good and keeping the number of available assets �xed implies that the original risk-free asset

is non-tradable under the new numeraire good. Therefore, changing the numeraire good can

move an economy from incomplete to complete and vice versa. Numeraire good irrelevance

holds2 when our su�cient condition for incompleteness is satis�ed; thus, for this class of

utility functions the market remains incomplete under any numeraire good.

Even if the �nancial market is endogenously incomplete, the numeraire good can be

important. We show that the choice of numeraire good can determine whether trading in

the available assets implements the Arrow-Debreu equilibrium. For example, for a certain

choice of the numeraire good the equilibrium is of the peculiar type as in Cass and Pavlova

(2004), even though agents do not have log-linear utility functions. For any other choice

of the numeraire good, the endogenous incompleteness has real e�ects, as agents cannot

implement the Arrow-Debreu equilibrium.

The departure point for our work is that in several multi-good models in the literature

the span of the stocks drops relative to the span of the dividends. Speci�cally, Serrat (2001)

solves a continuous-time international Lucas (1978) tree economy with multiple consumption

goods and derives an explicit formula for stock price di�usion coe�cients. Yet, it appears

that even with an explicit formula for stock price di�usion coe�cients it can be di�cult to

detect an inherently incomplete market. In the end, Kollmann (2006) shows that the econ-

omy studied by Serrat (2001) has incomplete �nancial markets. Importantly, Serrat (2001)

claims that the presence of non-traded goods leads to portfolio home bias in stocks that are

claims to traded goods and, hence, apparently proposes a solution to the portfolio home bias

puzzle. Unfortunately, given that portfolios are indeterminate, we cannot learn anything

about portfolio home bias from Serrat (2001). To our knowledge, each model where the

span of the stocks drops relative to the span of the dividends is a multi-good variant of the

2We use the term numeraire good irrelevance to mean that the �nancial market does not switch from
complete to incomplete when we change the numeraire good.
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Lucas (1978) model. To us, it seems important to obtain imperfectly correlated stock mar-

ket returns in frictionless multi-good economies, when the span of the dividends allows for

completeness. In this regard and since the asset pricing literature with multiple consumption

goods continues to grow,3 our simple conditions for veri�cation of �nancial market incom-

pleteness and completeness can guide future modeling assumptions about utility functions

in economies with multiple consumption goods and heterogeneous agents.

Our paper relates to Anderson and Raimondo (2008), who derive conditions for market

completeness in a continuous time economy with a single consumption good. They prove

that imposing certain smoothness conditions on the primitives of an economy in addition

to invertibility of the payo� matrix imply invertibility of the stock return covariance ma-

trix. Prior to Anderson and Raimondo (2008), every single model without a closed form

solution for the stock return covariance matrix assumed in some form completeness (Du�e

and Huang (1985); Du�e and Zame (1989)). More recently, Hugonnier et al. (2010), Riedel

and Herzberg (2013), and Kramkov and Predoiu (2014) work out generalizations of the con-

ditions for market completeness in a continuous time economy with a single consumption

good. However, with multiple consumptions goods, these results do not rule out that generic

incompleteness may arise.

Our paper also relates to Magill and Shafer (1990).4 They show that in the real asset

model of �nancial equilibrium theory the market is generically complete as long as the

aggregate endowment satis�es a regularity condition, i.e., it spans all the uncertainty in the

economy.5 However, Cass and Pavlova (2004) show that the Lucas tree economy, although a

special case of the real asset model, has some embedded structures that make it signi�cantly

di�erent from the real asset model. Importantly, the generic existence result of Magill and

3Recent general Lucas (1978) type asset pricing models with multiple consumption goods include Ait-
Sahalia et al. (2004), Yogo (2006), Piazzesi et al. (2007), and Lochstoer (2009) among others. International
asset pricing models with multiple consumption goods that are Lucas (1978) trees include Lucas (1982),
Cole and Obstfeld (1991), Zapatero (1995), Baxter et al. (1998), Serrat (2001), Kollmann (2006), Pavlova
and Rigobon (2007, 2008, 2010), and Li and Muzere (2011) among many others.

4See Hart (1975) for an early contribution.
5See also Du�e and Shafer (1985) and Du�e and Shafer (1986).
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Shafer (1990) does not apply, as one cannot perturb endowments independently of the cash

�ows of assets.

2 The economy

We consider a frictionless continuous time pure exchange economy over a �nite time span

[0, T ].6 Uncertainty is represented by a �ltered probability space,
(
Ω,F ,P , {Ft}t≥0

)
,7 on

which is de�ned a N -dimensional Brownian motion Z = (Z1, ..., ZN)>. In the following,

all stochastic processes are assumed to be progressively measurable and all equalities are

assumed to hold in the almost surely sense.

There are N + 1 securities, of which N are dividend paying stocks and one asset that

is locally risk-free in units of the numeraire good. All dividend-paying stocks are in unit

supply, while the risk-free asset is in zero net supply. There are N di�erent consumption

goods, where stock i = 1, ..., N pays out dividends in consumption good i.8 Dividends of

stock i are paid at a rate δi (X(t)), where δi denotes a nonnegative function and where X(t)

is a N -dimensional vector of state variables with dynamics

X(t) = X(0) +

∫ t

0

µX(X(τ), τ)dτ +

∫ t

0

σX(X(τ), τ)dZ(τ). (1)

Assumption 1. The unique solution of Equation (1) takes values in X ⊆ RN and for all

(x, t) ∈ RN×[0, T ] the di�usion of the state variable process is invertible, i.e., rank(σX(x, t)) =

N .

Assumption 2. The dividends, δi(x), are functions of class C2.

De�nition 1. We de�ne I to be the N ×N identity matrix and for a vector y with y ∈ RN ;

6Our setup is close to the workhorse macro-�nance model described in Pavlova and Rigobon (2013).
7The �ltered probability space is de�ned over the �nite horizon [0, T ], where Ω de�nes the state space,

F denotes the σ-algebra, P is the probability measure, and the information structure or �ltration F(.) is
generated by the Brownian motion of the state variable processes with F = FT .

8It is easy to extended the economy to a setting where stocks pay out in more than one good.
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and we de�ne Iy to represent a N ×N-dimensional matrix with yi as element (i, i) and zero

elsewhere.

Given the process in Equation (1), an application of Ito's lemma to δ (X(t)) = (δ1(t), .., δN(t))

yields the di�usion of dividends: λ(t) ≡ λ(X(t), t) = ∂δ(X(t))
∂x

σX(X(t), t).9

Assumption 3. The dividend di�usion matrix is invertible, i.e., rank(λ(t)) = N .

Assumption 3 ensures that the market is potentially complete, i.e., that the dividends

span all the uncertainty in the economy.

Let P = {p1, p2, ..., pN} denote the vector of the N commodity prices and let consumption

good l ∈ {1, ..., N} serve as the numeraire. Thus, the price of consumption good l is normal-

ized to one, pl(t) = 1, for all t ∈ [0, T ]. Commodity prices are determined in equilibrium.

The N -dimensional commodity price evolves according to10

P (t) = P (0) +

∫ t

0

IP (τ)µP (τ)dτ +

∫ t

0

IP (τ)σP (τ)dZ(τ), (2)

where µP and σP denote expected growth rates and di�usion coe�cients in RN and RN×N ,

respectively.

De�nition 2. We de�ne the N-dimensional dividend rate process, δ̃(t), in units of the

numeraire as

δ̃(t) = IP (t)δ(t). (3)

There are N stocks, each representing a claim to its respective dividend rate process. In

a complete market equilibrium, the N -dimensional stock price processes, S(t), are given by

S(t) +

∫ t

0

δ̃(τ)dτ = S(0) +

∫ t

0

IS(τ)µ(τ)dτ +

∫ t

0

IS(τ)σ(τ)dZ(τ). (4)

9We will occasionally drop the explicit reference to the state variable X and write F (t) rather than
F (X(t), t).

10To simplify notation, we do not explicitly indicate the numeraire good, i.e., P (t) = P l(t) denotes the
relative commodity prices when good l serves as numeraire. Yet, it is important to recognize that equilibrium
quantities depend on the choice of numeraire good.
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The di�usion term σ(t) denotes a N ×N matrix with the i'th row given by σi(t)>.11 Both

the N -dimensional drift rates and the N × N -dimensional di�usion terms in Equation (4)

represent endogenous quantities.

A locally risk-free asset in zero net supply pays out in the numeraire good; and, thus, it

is only risk-free in the numeraire good. Its price process, B(t), is

B(t) = B(0) +

∫ t

0

r(τ)B(τ)dτ, (5)

with B(0) = 1. The risk-free rate, r, is to be determined endogenously in equilibrium.

The economy is populated by J ≥ 1 agents indexed by j. The utility function of agent

j, Uj, is

Uj
(
Cj
)

= E

[∫ T

0

e−ρτuj(C
j(τ))dτ

]
, (6)

where ρ > 0, u is a classical time-additive von Neumann-Morgenstern utility function, and

Cj =
{
cj1, c

j
2, . . . , c

j
N

}
denotes the vector containing the N consumption goods.

Assumption 4. The utility function uj : (0,∞)N → R is assumed to be increasing, strictly

concave function of class C3, and to satisfy the multidimensional Inada conditions.

Agent j maximizes Uj (Cj) subject to the dynamic budget constraint

W j(t) = W j(0) +

∫ t

0

W j(τ)r(τ)dτ −
∫ t

0

P (τ)>Cj(τ)dτ (7)

+

∫ t

0

πj(τ)> (µ(τ)− r(τ)1N) dτ +

∫ t

0

πj(τ)>σ(τ)dZ(τ),

where πj(t) =
(
πj1(t), π

j
2(t), ..., π

j
N(t)

)
is a vector process of amounts held in the stocks by

agent j and W j(t) is the wealth of agent j in units of the numeraire good. Agents are

endowed with initial shares ηj =
(
ηj1, . . . , η

j
N

)
of each stock. Hence, W j(0) = (ηj)

>
S(0) and

11In Equation (4), µ(τ) is the vector of instantaneous expected returns. To see this, note that the instan-

taneous return on stock i is dRi(t) = Si(t)+δ̃i(t)dt
Si(t)

= µi(t)dt + σi(t)
>dZ(t), which is the di�erential form of

Equation (4) divided by Si(t).
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∑J
j=1 η

j
i = 1 for i = 1, . . . , N . We impose the conditions that for all j = 1, .., J we have

ηji ≥ 0 for all i = 1, ..., N and ηji > 0 for at least one i = 1, ..., N . These conditions imply

W j(0) > 0 and, therefore, if an agent never trades away from his initial portfolio, wealth

remains positive for all times and states. This is similar to the condition in Equation (4)

in Anderson and Raimondo (2008). However, in their setting, agents receive an endowment

stream in addition to initial shares of equity; thus, they impose a less strict condition as

agents may be endowed with short positions.

De�nition 3. Equilibrium is a collection of allocations (Cj, πj) for j = 1, 2, ..., J , and a

price system (B, S, P ) or price coe�cients (r, µ, σ, µP , σP ), such that
(
Cj, πj, πjB

)
denote

optimal solutions to agent j's optimization problem and good and �nancial markets clear

∑
j

Cj(t) = δ(t),
∑
j

πj(t) = S(t),
∑
j

πjB(t) = 0,

for t ∈ [0, T ] where πjB is the amount held in the bond market.

To derive su�cient conditions for incompleteness and completeness, we start with a social

planner's problem and then ask whether we can decentralize it.

De�nition 4. De�ne the following social planner's problem

u(a, δ) = max∑
j
Cj=δ

∑
j

ajuj(C
j), (8)

where a ∈ ς denotes the Pareto weights and ς is the unit simplex of RJ .

For a given set of Pareto weights, a, the social planner maximizes the weighted average

of the individual agents utility functions state by state and time by time, subject to the

feasibility constraint. It is well know that an allocation (Cj)
J
j=1 is Pareto e�cient if and only

if it solves the social planner's problem in Equation (8). By the second welfare theorem,

there exist Arrow-Debreu prices that imply a competitive equilibrium. However, agents in
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our economy cannot directly trade Arrow-Debreu securities, but only trade the N stocks

and the locally risk-free asset. Hence, one needs to show that agents can use the available

securities to implement the allocations. A su�cient condition for implementability of Pareto

e�cient allocations is that the �nancial market is complete, which in our setting is equivalent

to σ(t) being invertible.

Next, we de�ne an Arrow-Debreu equilibrium.

De�nition 5. An Arrow-Debreu equilibrium is de�ned as a state price density, ξ, commodity

prices, P , and consumption allocations, (Cj)
J
j=1, such that Cj maximizes Uj given the static

budget constraint E
[∫ T

0
ξ(τ)

(
P (τ)>Cj(τ)− (ηj)

>
δ̃(τ)

)
dτ
]
≤ 0, and all markets clear.

Relative to the social planner's problem where only the aggregate feasibility constraints

are imposed, the Arrow-Debreu equilibrium also requires the allocations to be a�ordable for

a given initial wealth allocation, i.e., we require that the individual budget constraints are

satis�ed. For a given set of exogenous Pareto weights, a, we can de�ne the equilibrium as

�nding the initial wealth allocations such that the solution to the social planner's problem

in Equation (8) also satis�es the individual agents' budget constraints. For such an initial

wealth allocation, the solution to the social planner's problem corresponds to an Arrow-

Debreu equilibrium. In Section 3, we derive su�cient conditions for incomplete markets.

In this case, we start with the social planner problem in Equation (8), which is always

well de�ned even if �nancial markets are incomplete, and show that for a given set of Pareto

weights, a, the candidate stock prices do not complete the market. When discussing su�cient

conditions for completeness in Section 4, we solve the competitive equilibrium by �rst solving

the Arrow-Debreu equilibrium. Next, we show that the candidate stock price di�usion matrix

is invertible, and hence agents can implement the Arrow-Debreu equilibrium by trading the

N -stocks and the money market account.

Assumption 5.
J∑
j=1

E

[∫ T

0

e−ρτ∇uj (δ(τ)/J)> δ(τ)dτ

]
<∞. (9)
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By imposing Assumption 5, Proposition 1 shows that for a given initial wealth allocation,

there exists an Arrow-Debreu equilibrium.

Proposition 1. There exists an Arrow-Debreu equilibrium in which the state price density,

ξ(t), is

ξ(t)

ξ(0)
≡ ξ(a, t)

ξ(a, 0)
= e−ρt

∂u(a,δ(t))
∂δl

∂u(a,δ(0))
∂δl

. (10)

Moreover, the N-dimensional equilibrium commodity price vector, P (t), is

P (t) ≡ P (a, t) =
∇u(a, δ(t))
∂u(a,δ(t))

∂δl

. (11)

The utility weights, a, correspond to solutions to

E

[∫ T

0

ξ(a, τ)
(
P (a, τ)>Cj(a, τ)−

(
ηj
)>
δ̃(a, τ)

)
dτ

]
= 0, (12)

where the above is evaluated at the optimal solution for j = 1, ..., J .

In Proposition 1, the state price density, ξ, is proportional to the representative agent's

marginal utility of the numeraire good.

Lemma 1. The commodity price di�usion coe�cients, σP (t), are given by

σP (t) = ε(t)λ(t), (13)

where ε(t) is a N ×N matrix with element (i, k) given by

εi,k(t) = δk(t)
∂ lnMRSi,l(t)

∂δk
, (14)

where MRSi,l(t) =
∂u(a,δ(t))

∂δi
∂u(a,δ(t))

∂δl

stands for the marginal rate of substitution and k = 1, ..., N .
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Proposition 2. The di�usion coe�cients of the dividend rate processes in units of the

numeraire good, σδ̃(t), are

σδ̃(t) = (I + ε(t))λ(t). (15)

From Proposition 2, we see that even though the dividend di�usion matrix, λ, is invertible,

the di�usion of the dividend processes in units of the numeraire, σδ̃, might be non-invertible

due to the dynamics of relative prices in equilibrium.

Given an Arrow-Debreu equilibrium, the natural candidate for a stock price, Si(t), is the

discounted future value of dividends

Si(t) = Et

[∫ T

t

ξ(τ)

ξ(0)
pi(τ)δi (X(τ)) dτ

]
, (16)

for i = 1, .., N .

3 Incomplete markets

In this section, we study conditions for when the market is endogenously incomplete. Before

we present the theory, it is useful to consider a simple economy with one agent and two

goods.

Example 1. The representative agent has Cobb-Douglas utility over the two goods

u(C(t)) = c1(t)
α1c2(t)

α2 , (17)

with 0 < α1 + α2 < 1. Let good one be the numeraire good. In equilibrium, the commodity

price satis�es

P (t) =
δ1(t)

βδ2(t)
, (18)

where β = α1

α2
. The value in units of the numeraire of dividends at time t of the two goods

are δ̃1(t) = δ1(t) and δ̃1(t) = P (t)δ2(t) = δ1(t)
β
, respectively. We see that the value of the
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second dividend is proportional to the �rst dividend for any time and state of the economy.

Hence, the second stock is co-linear with the �rst stock and, therefore, �nancial markets are

incomplete. 4

The example shows that commodity prices can render a stock price to not depend at

all on its own dividends. Instead, the stock price depends only on the numeraire good.

Thus, the two stocks in the example correlate perfectly. To answer the question whether this

example generalizes to a larger set of utility functions, we de�ne a class of utility functions

for which this will indeed be the case.

De�nition 6. A utility function u : RN
+ → R is in U IC, where IC stands for incompleteness,

if it has a representation

u(c1, ..., cN) = ϕ
(
c2c

β2
1 , ..., cNc

βN
1

)
, (19)

where ϕ : RN−1
+ → R is such that u(c1, ..., cN) satis�es Assumption 4.

For the two-good case, De�nition 6 corresponds to a constraint on the elasticity of sub-

stitution. If the elasticity of substitution equals one, then the market is incomplete. This is

the argument put forward in Proposition 2 in Berrada et al. (2007). Yet, moving from the

two− good case to the N − good case implies that unit elasticity of substitution between any

two goods is not necessary for the utility function to satisfy the De�nition 6.

Therefore, how can we interpret De�nition 6 more generally? It turns out that De�nition

6 imposes a particular structure on the marginal utilities. For a utility function u ∈ U IC ,

the directional derivative in the direction (−c1(t), β2c2(t), . . . , βNcN(t)) is zero for all times

and states. This feature of utility functions in U IC has important implications for �nancial

market completeness. To see this, consider the social planner's problem in Equation (8) and

assume that the corresponding utility function, u(a, δ), satis�es the condition in De�nition

6. Then, for any time and state, the directional derivative of the utility function in the

direction v(t) = (−δ1(t), β2δ2(t), . . . , βNδN(t)) is ∂u(a,δ(t))
∂δ

v(t)
‖v(t)‖ = 0. Using the expression for
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commodity prices in Proposition 1, this is equivalent to
∑N

n=2 βnpn(t)δn(t) = p1(t)δ1(t), and,

consequently, stock one can be perfectly replicated by a buy-and-hold portfolio consisting

of (β2, . . . , βN) units of stock 2, . . . , N . Hence, the market must be incomplete. The next

theorem summarizes this result.

Theorem 1. If the utility function from the social planner's problem in Equation (8), u, is

such that u ∈ U IC, then σ(t) is non-invertible and the �nancial market is incomplete.

Theorem 1 is a statement about the utility function derived from the social planner's

problem in De�nition 4. Hence, to apply Theorem 1, one �rst needs to calculate the utility

function from the social planer's problem, then verify if it is in U IC . Yet, this is a simple

task relative to calculating the endogenous stock price di�usion matrix and checking its

invertibility for all possible states and times. As the next proposition illustrates, for certain

utility functions for the individual agents one can directly infer that the utility function of

the social planner's problem belongs to U IC without explicitly solving the social planner's

problem.

Proposition 3. Let uj (C) = ϕj

(
c2c

β2
1 , ..., cNc

βN
1

)
for j = 1, ..., J , i.e., every agent's utility

function is in U IC and agents share the preference parameters β = (β2, ..., βN), then the

�nancial market is incomplete.

The proposition states that �nancial markets are incomplete even if the functional form

of the aggregator, ϕj, di�er across all agents as long as preferences are in U IC and agents

share the preference parameters β = (β2, ..., βN). However, this is only su�cient for the

market to be incomplete. For example, log-linear preferences such as in Cass and Pavlova

(2004), which are in U IC , lead to incomplete markets even with heterogeneity in β across

agents.

Since our condition for market incompleteness is only su�cient, preferences other than

those that are in U IC can lead to endogenously incomplete �nancial markets, as the example

below shows.
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Example 2. Let the utility function of the representative agent be u (c1, c2) = log (c1)+
c1−γ2

1−γ

for γ > 1. It is easy to verify that this utility function is not in U IC . Further, assume that

δi(x) = eXi(t) for i = 1, 2, with dX1(t) = µX1dt+σX1dZ1(t) and dX2(t) = µX2dt+σX2dZ2(t).

If we use good 2 as numeraire good, then the dividends in units of the numeraire are δ̃1(t) =

P (t)δ1(t) = δ2(t)
γ and δ̃2(t) = δ2(t), respectively. Hence, the dividend di�usion matrix in

units of the numeraire, σδ
δ̃
, is non-invertible. Since X1 and X2 are independent, it can be

shown that the price of stock one and two only depend on Z2. Therefore, the �nancial market

is incomplete. 4

A natural question to ask is what distinguishes the above example from utility functions

in U IC . As we illustrate in Section 4, if we instead choose good one as numeraire in Example

2, then the market is in fact complete. Hence, �nancial market completeness can depend

crucially on the de�nition of the available assets. For instance, in Example 2, the agents can

trade claims to the two dividend streams in addition to an asset that is locally risk-free in

units of the numeraire. If we instead use good one as a numeraire, and assume that agents

trade the two stocks and an asset that is locally risk-free in units of good one, then the

market is complete. The reason for why the �nancial market switches from incomplete to

complete when we change the numeraire is that we also change the set of available assets.

To formalize these observations, consider that there is a change in the numeraire good

and the number of available assets is �xed. To maintain the assumption that the locally risk-

free asset pays out in the numeraire good, we change the asset structure to accommodate

this requirement. This implies that under a new numeraire good the previous risk-free asset

is not tradeable. Using these assumption, we now provide a de�nition for numeraire good

irrelevance.

De�nition 7. A multi-good economy, with an asset structure as in Section 2, exhibits nu-

meraire good irrelevance when an arbitrary choice of the numeraire good does not a�ect

�nancial market incompleteness or completeness.
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De�nition 7 can also be expressed in terms of the stock price di�usion matrix, σ. Specif-

ically, a multi-good economy exhibits numeraire good irrelevance when an arbitrary choice

of the numeraire good does not e�ect the rank of the stock price di�usion matrix σ. These

de�nitions turn out to be equivalent in our setting. In Example 2, the stock price di�usion

matrix, σ, has full rank when good one is used as numeraire, but the rank drops when good

two is used as numeraire. If De�ntion 7 holds, i.e., there is a locally risk-free asset in the

numeraire good in addition to the N stocks, then a drop in the rank of the stock price

di�usion matrix is equivalent to incomplete markets.

We now present a proposition that, unlike the utility function in Example 2, shows that

for any utility function in U IC the market is incomplete regardless of the choice of numeraire.

Proposition 4. If u ∈ U IC, then the �nancial market exhibits numeraire good irrelevance.

It might be that, although �nancial markets are incomplete, the agents can still im-

plement the e�cient allocations. Indeed, Cass and Pavlova (2004) show that when agents

have log-linear utility functions over the di�erent consumption goods, then the market is

incomplete. Yet, the agents can implement the Arrow-Debreu equilibrium. They label such

an equilibrium as peculiar �nancial equilibrium. However, as the next example shows, en-

dogenous incompleteness, in general, has real e�ects as the agents cannot implement the

Arrow-Debreu equilibrium by trading in the available assets.12

Example 3. Let J = N = 2. The utility function of agent j = 1, 2 is

uj(c
j
1, c

j
2) = ϕj

(
cj2
(
cj1
)β)

. (20)

By Proposition 3, we know that the �nancial market is incomplete. Now we state, through a

12It can be shown that introducing N pure discount bonds with maturity T , where bond i pays out one
unit of good i, always completes the �nancial market. While the availability of N pure discount bonds does
not resolve the counter factual equilibrium property that stock market returns are perfectly correlated, it
does allow for solving models in which the market is incomplete without the bond contracts. Hence, such
a complete market equilibrium with N pure discount bonds di�ers, in general, from the incomplete market
equilibrium.
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proposition, the result that endogenous incompleteness of �nancial markets matter in general

for more than just portfolio indeterminacy.

Proposition 5. Let preferences be as in Equation (20) and assume that δi(x) = eXi(t) for

i = 1, 2, with dX1(t) = µX1dt + σ>X1
dZ(t) and dX2(t) = µX2dt + σ>X2

dZ(t). Then, we have

the following:

• Independently of whether good one or two is used as a numeraire good, the Arrow-

Debreu equilibrium cannot be implemented by trading in the available assets, unless ϕj

is such that the optimal consumption is cji (t) = fδi(t) for all t for some f ∈ (0, 1).

• If the consumption basket δ2(t)δ1(t)
β is used as numeraire good, then the Arrow-Debreu

equilibrium can be implemented by trading in the available assets.

Thus, it is di�cult to model an economy that yields a peculiar �nancial equilibrium. 4

We close this section by applying Theorem 1 to the economy in Serrat (2001).

Example 4. Serrat (2001) studies portfolio policies in an economy with two countries and

argues that the model can rationalize the portfolio home bias puzzle. Kollmann (2006),

however, proves that the di�usion matrix in the Serrat (2001) economy is non-invertible

and, therefore, portfolio policies are in fact indeterminate. Hence, the model of Serrat

(2001) cannot explain the portfolio home bias puzzle. In this example, we apply Theorem

1 to show that the preferences in Serrat (2001) are in U IC and, therefore, the market is

incomplete. Speci�cally, the utility function of the representative agent in Serrat (2001) can

be expressed, with a small simpli�cation, as follows

u(c1, c2, c3, c4) =
1

q
(cq1 + cq2)

(
acα3 + bcβ4

)
. (21)
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We rewrite Equation (21) as

u(c1, c2, c3, c4) =
1

q

(
1 +

(
c2
c1

)q)(
a
(
c3c

q
α
1

)α
+ b
(
c4c

q
β

1

)β)
= ϕ

(
c2c

β2
1 , c3c

β3
1 , c4c

β4
1

)
, (22)

where ϕ (v, w, z) = 1
q

(1 + vq)
(
awα + bzβ

)
, β2 = −1, β3 = q

α
, and β4 = q

β
. From Equation

(22), we see that the utility function in Serrat (2001) implies incomplete �nancial markets

since it satis�es the su�cient condition for incompleteness in Theorem 1. 4

Therefore, our theory should help avoiding such unfortunate modeling assumptions about

utility functions in economies with multiple consumption goods.

4 Complete markets

To derive su�cient conditions for market completeness, we introduce additional assumptions

on the primitives of the economy. The �rst assumption imposes conditions on the state vector

X. It corresponds to assumptions A(c) and A(d) in Hugonnier et al. (2010).

Assumption 6. The solution to Equation (1) admits a transition density φ(t, x, τ, y) that

is smooth for t 6= τ . Moreover, there are locally bounded functions (K,L), a metric d that is

locally equivalent to the Euclidean metric, and constants ε, ι, % > 0 such that φ(t, x, τ, y) is

analytic with respect to t 6= τ in the set

P2
ε ≡ {(t, τ) ∈ C2 : <(t) ≥ 0, 0 ≤ <(τ) ≤ T and |= (τ − t) | ≤ ε< (τ − t)}, (23)

and satis�es

|φ(t, x, τ, y)| ≤ K(x)L(y)|τ − t|−ιe%|τ−t|−d(x,y)2/|τ−t| ≡ φ̄(t, x, τ, y), (24)

for all (t, τ, x, y) ∈ P2
ε ×X 2.
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Assumption 7. The dividends, δi(x), are real analytic functions.

Assumption 8. The utility function of agent j = 1, ..., J , uj, is analytic and there are

constants R ≤ ρ and ν > 1 such that

∫ T

0

J∑
j=1

(∫
X
e−Rτ

∂uj (δ(y)/J)

∂δ

>

δ(y)φ̄(0, x, ντ, y)dy

)
dτ <∞. (25)

Assumptions 6, 7, and 8 are imposed to guarantee that the candidate prices in Equation

(16) are jointly real analytic in (t, x) ∈ (0, T )×X . Speci�cally, Assumption 6 covers a wide

range of processes typically used in the �nance literature. For instance, arithmetic Brownian

motions and vector autoregressive processes both satisfy Assumption 6.13 The requirement

that dividends are real analytic functions is satis�ed by most Lucas tree economies in the

literature, where it is typically assume that dividends are exponential functions of the state

variables, i.e, δi(X) = eAi+B
>
i X for Ai ∈ R and Bi ∈ RN . However, option like payo�s such

as (Xi − A)+ are in general not real analytic. In Assumption 8, we assume that every agent

has real analytic utility functions. This is satis�ed for all conventional utility functions.

As for the case of incomplete �nancial markets, we start out with a de�nition for when

a utility function leads to complete �nancial markets. The following theorem presents the

main result of this section.

De�nition 8. A utility function is in UC,l, where C stands for completeness and l denotes

the numeraire good, if

I + ε(T, x), (26)

is invertible for at least one x ∈ X .

Theorem 2. If the utility function of the representative agent, u, is such that u ∈ UC,l, then

σ(t) is invertible and the �nancial market is complete when good l serves as the numeraire

good.

13Hugonnier et al. (2010) discuss several examples of processes that satisfy Assumption 6.
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Our condition for completeness, unlike the invertibility condition on the dividend di�usion

matrix in Anderson and Raimondo (2008), Hugonnier et al. (2010), Riedel and Herzberg

(2013), and Kramkov and Predoiu (2014) involves marginal rates of substitution, ε, derived

from endogenous commodity prices.14 Nevertheless, I + ε(T, x), is easy to compute. Since

market completeness is guaranteed if I + ε(T, x) is invertible at one point the veri�cation

of completeness is easy. It is easy even in a situation where the utility of the representative

agent is not known in closed form. Using standard aggregation techniques, one can check if

the resulting �nancial market is complete by numerically solving for the utility function of

the representative agent and applying the theorem. In contrast, without the condition for

market completeness in Theorem 2, one has to calculate the stock price di�usion coe�cients,

which are conditional expectations, for every possible realization (t, x) ∈ [0, T ]×X . Clearly,

this seems, in general, computationally infeasible.

The condition in Anderson and Raimondo (2008) represents, a long anticipated, missing

building block in the theory of continuous time asset pricing with heterogeneous agents. Yet,

at least from Du�e and Huang (1985), Du�e and Zame (1989), Huang (1987), and Karatzas

et al. (1990), it is expected that such equilibrium exists. Further, although essentially all

models before Anderson and Raimondo (2008) assume complete markets in one way or

another, many papers in this literature, especially the applied ones, contain examples or

numerical work that demonstrate that equilibrium holds at least for some parameter values.

In contrast, the literature on multi-goods contains a series of models that imply in-

complete �nancial markets (e.g. Cole and Obstfeld (1991), Zapatero (1995), and Serrat

(2001)). For instance, as shown by Cole and Obstfeld (1991), the popular Cobb-Douglas

utility function implies that markets are incomplete. Hence, it appears that our condition

for completeness might prove useful for future modeling of utility functions in economies

with multiple consumption goods.

Further, the next proposition shows that one can extend the result in Theorem 2 to a

14Theorem 2 in Hugonnier et al. (2010) also depends on preferences as it involves a second order expansion
of the stock return volatility.
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condition on the utility functions of individual agents.

Proposition 6. If uj ∈ UC,l for some j = 1, . . . , J , then the market is complete when good

l serves as the numeraire good for almost every vector of Pareto weights a ∈ ς.

Proposition 6 shows that as long as one agent has a utility function in UC,l, then the

market is complete for all Pareto weights outside a set of measure zero. Since the dividend

di�usion matrix in Equation (15) is jointly real analytic in (t, x, a) and, therefore, if it is

invertible for one x and a, then it is always invertible. Hence, if one can show that the

market is complete when the social planner puts all weight on one agent, then the market is

complete for almost every other set of Pareto weights due to real analyticity.

Theorem 2 covers a larger set of economies than implied by Proposition 6, as it is not

necessary that any of the individual agents utility functions are in UC,l, but only that the

representative agent's utility function is in UC,l. The next Proposition presents such a case.

Proposition 7. Let J = N = 2. The utility function of agent j = 1, 2 is

uj(c
j
1, c

j
2) = ϕj

(
cj1
(
cj2
)αj)

, (27)

for some real analytic function ϕj. Assume that α1 6= α2 and ϕj (x) 6= Ajln (x) + Bj for

some constants Aj, Bj, then the market is complete for almost all a ∈ ς.

The reason for why we cannot use Proposition 6 is that none of the agents have utility

functions in UC,l. In fact, both agents have utility functions in U IC and, therefore, the

market would be incomplete if the social planner puts all the weight on one of the two

agents. However, incomplete �nancial markets only occur at the boundary points aj = 1 for

j = 1, 2. For any other set of Pareto weights the market is complete as the utility function

of the representative agent satis�es the condition in Theorem 2.

Our condition for �nancial market completeness is only su�cient. The next example,

which builds on Example 2, presents an economy where the utility function is not in UC,l,

but the �nancial market is complete when good l serves as the numeraire good.
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Example 5. Let the utility function of the representative agent be

u (c1, c2) = log (c1) +
c1−γ2

1− γ
, (28)

for γ > 1. If good one is used as the numeraire, then the market is complete since

det (1 + ε(T, x)) = 1− γ 6= 0. Let δi(X(t)) = eXi(t) with

dX1(t) = α
(
X̄1 −X1(t)

)
dt+ σX1dZ1(t), (29)

dX2(t) = α (X1(t)−X2(t)) dt+ σX2dZ2(t). (30)

This speci�cation of the dividend streams satis�es Assumption 3, i.e., the market is poten-

tially complete. However, if good two is used as numeraire, then det (1 + ε(T, x)) = 0 and,

hence, the utility function does not satisfy the su�cient condition for completeness as it is

not in UC,2. In this case, the span of the dividends in units of the numeraire drops relative

to the span of the dividends. Still, in this example, the �nancial market is in fact complete,

as the next proposition shows.

Proposition 8. Let N = 2 and J = 1 with utility given as in Equation (28). Moreover,

assume that δi(X(t)) = eXi(t) with the dynamics of X = (X1, X2) given by Equation (29) and

(30). If good two is used as numeraire, then σδ̃ is not invertible, yet the market is complete.

Therefore, it is not necessary that the dividend di�usion matrix in units of numeraire,

σδ̃, is invertible for the market to be complete. 4

In Example 5, the �rst stock only depends on δγ2 , while the second stock depends on

both the current value of δ2(t)γ and the conditional expectation of δ2(s)γ for t < s. The

distribution of δ2(s) given the information at time t < s depends on both X1 and X2 and,

therefore, the second stock price not only correlates with the Z2 as the �rst stock, but also

Z1. Thus, the �nancial market is complete.
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5 Conclusion

In this paper, we investigate the determinants of �nancial market incompleteness and com-

pleteness in a continuous time Lucas (1978) model with multiple consumption goods and

agents with heterogeneous preferences. First, we show that for a class of utility functions,

including the Cobb-Douglas utility function and the preferences in Serrat (2001), the �nan-

cial market is endogenously incomplete. While it is possible that even when the �nancial

market is endogenously incomplete agents can implement the Pareto optimal allocations,

as for example in Cass and Pavlova (2004), in general endogenous incompleteness prevents

the agents from implementing the Pareto optimal allocations. Consequently, endogenous

�nancial market incompleteness usually has real e�ects.

Second, we derive a su�cient condition for market completeness that only depends on

the properties of aggregate output and the utility function of the representative agent. The

condition is easy to verify, even in cases in which the utility function of the representative

agent is not known in closed form. The major advantage of our condition is that it only

requires veri�cation of an invertibility condition for one realization of the state variables

at the terminal time. In contrast, to verify market completeness without such a condition

requires the calculation of the stock price di�usion matrix and checking whether the matrix

is invertible for every possible realization of the state variables at every point in time.

In an economy with multiple consumption goods, one has to take a stand on the numeraire

good. In turn, the numeraire good determines how the risk free asset is de�ned. We illustrate

that whether a market is complete or not, might depend on the speci�cation of the risk-free

asset, and, hence, the numeraire good. In addition, we illustrate that even in the case

when the market is guaranteed to be endogenously incomplete, the choice of numeraire good

might be crucial in terms of the real e�ects of incompleteness. In particular, depending on

the choice of numeraire, the agents might or might not be able to implement the Pareto

optimal allocations by trading in the available assets.

Our conditions for market incompleteness and completeness should be useful for applied
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work in asset pricing theory. A large body of the literature in asset pricing theory is based

on the Lucas tree economy. Recently, more papers consider economies with multiple con-

sumption goods, even in settings outside of international �nance. Multiple consumption

goods usually lead to complex models. Thus, it can be di�cult to explore the properties

of the stock price di�usion matrix. Simple conditions for verifying market incompleteness

and completeness will be useful in such cases. Serrat (2001) is an example for which our

condition for market incompleteness would have been useful.
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6 Proofs

Proof. Proposition 1: The result follows from standard aggregation in complete markets

extended to a multiple good setting (see Huang (1987), Du�e and Zame (1989), Karatzas

et al. (1990), Dana and Pontier (1992), and Hugonnier et al. (2010)). For completeness,

we sketch parts of the proof. The details can be found in Anderson and Raimondo (2008),

Huang (1987), Karatzas et al. (1990), Dana and Pontier (1992), and Hugonnier et al. (2010),

with slight modi�cation to accommodate for multiple consumption goods, and in Lakner

(1989) for the case of multiple commodities. First, consider agent j's optimization problem
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in Equations (6) and (7) when prices are given and �nancial markets are complete. The

dynamic optimization problem can be reduced to the static optimization problem (see Cox

and Huang (1989), Karatzas et al. (1990)):

max
Cj

E

[∫ T

0

e−ρsuj(C
j(τ))dτ

]
s.t. E

[∫ T

0

ξ(τ)P (τ)>Cj(τ)dτ

]
≤ W j(0) =

(
ηj
)>
S(0).

(A.1)

The utility gradient, ∇uj : (0,∞)N → (0,∞)N , has an inverse Dj : (0,∞)N → (0,∞)N that

inherits the basic properties of ∇uj. We have that

e−ρtuj
(
Dj(e

ρt$)
)
−$>Dj(e

ρt$) = max
{
e−ρtuj(C(t))−$>C(t)

}
, (A.2)

holds for any non-negative$. Then, Cj(t) = Dj (yje
ρtΨ(t)) solves the maximization problem

in Equation (A.1), where Ψ(t) = ξ(t)P (t) and yj is the solution to

E

[∫ T

0

ξ(τ)P (τ)>Dj (yje
ρsΨ(τ)) dτ

]
= W j(0). (A.3)

Since equilibrium is Pareto optimal, we can consider the following social planner problem

u(δ; a) = max∑
j
Cj=δ

∑
j

ajuj(C
j), (A.4)

where a ∈ ς is the vector of utility weights. Next, it can be shown that the maximization in

Equation (A.4) is achieved by

Cj(t) = Dj

(
eρtΨ(t)

aj

)
, (A.5)

where Ψ(t) = e−ρt∇u(δ(t); a) and the weights, a, are solutions to

E

[∫ T

0

e−ρs∇u(δ(τ); a)>Dj

(
eρs∇u(δ(τ); a)

aj

)
dτ

]
=

N∑
i=1

ηjiE

[∫ T

0

e−ρs
∂u(δ(τ); a)

∂δi
δi(τ)dτ

]
.(A.6)

Comparing Equation (A.6) with Equation (A.3), we can identify aj = 1
yj
. De�ning ej(a) =

1
aj
E
[∫ T

0
e−ρs

(
∇u(δ(τ); a)>Dj

(
eρs∇u(δ(τ);a)

aj

)
−
∑N

i=1 η
j
i
∂u(δ(τ);a)

∂δi
δi(τ)

)
dτ
]
as the excess util-

ity map, one can show that e(a) = (e1 (a) , . . . , eJ (a)) has all the properties of a �nite

dimensional demand function (see Lemma C.1 in Hugonnier et al. (2010) with slight mod-

i�cation to accommodate for multiple consumption goods) and, consequently, there exists

some strictly positive a∗ such that e(a∗) = 0.
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Proof. Lemma 1: In equilibrium, the commodity price vector, P (t), is given by

P (t) =
∇u(δ(t))
∂u(δ(t))
∂δl(t)

= [MRS1,l(t), ...,MRSN,l(t)]
> . (A.7)

Applying Ito's lemma to P (t) yields the lemma.

Proof. Proposition 2: The lemma follows directly from applying Ito's lemma to the con-

sumption process in units of the numeraire.

Proof. Theorem 1: Assume that there exists a solution to the following equation

∂u (δ(t))

∂δ1
δ1(t) = β2

∂u (δ(t))

∂δ2
δ2(t) + ...+ βN

∂u (δ(t))

∂δN
δN(t). (A.8)

Integrate from t to T to get∫ T

t

∂u (δ(τ))

∂δ1
δ1(τ)dτ =

∫ T

t

(
β2
∂u (δ(τ))

∂δ2
δ2(τ) + ...+ βN

∂u (δ(τ))

∂δN
δN(τ)

)
dτ. (A.9)

Take conditional expectation on both sides

Et

∫ T

t

∂u (δ(τ))

∂δ1
δ1(τ)dτ = Et

∫ T

t

(
β2
∂u (δ(τ))

∂δ2
δ2(τ) + ...+ βN

∂u (δ(τ))

∂δN
δN(τ)

)
dτ. (A.10)

From dividing the above equation by ξ(t) and comparing it with the pricing formula in

Equation (16), we infer that the following equation is satis�ed

S1(t) = β2S2(t) + ...+ βNSN(t), (A.11)

for all t. Hence, the stock prices are linearly dependent and the �nancial market is incomplete.

Finally, note that any utility function u ∈ U IC satis�es the partial di�erential in Equation

(A.8).

Proof. Proof of Proposition 3. Let ϕji be the partial derivative of ϕj with respect to argument

i. Consider the �rst order conditions (FOC) from the social planner's problem

aj

N−1∑
i=1

ϕjic
j
i+1βi+1

(
cj1
)βi+1−1

= y1, (A.12)

ajϕji
(
cj1
)βi−1

= yi, i = 2, .., N. (A.13)
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We rewrite the above as

cj1 =
N−1∑
i=1

yi+1

y1
βi+1c

j
i+1. (A.14)

Summing over Equation (A.14) for j = 1, ..., J and applying market clearing yields

δ1 =
N−1∑
i=1

yi+1

y1
βi+1δi+1. (A.15)

Finally, noting that yi+1

y1
= pi+1

p1
, we have that the following equation must hold

N−1∑
i=1

βi+1pi+1δi = p1δ1, (A.16)

which implies that the market is incomplete.

Proof. Proposition 4: This follows directly from noting that the PDE in Equation (A.8) does

not depend on the choice of numeraire.

Proof. Proof of Proposition 5. First, we derive the optimal consumption allocations in the

Arrow-Debreu equilibrium. Next, we calculate the dynamics of the stock prices and check

whether the Arrow-Debreu consumption allocations can be implemented by trading in the

available assets. The FOC of the central planner problem is

ajϕ
′
j

(
cj2
(
cj1
)β)

c2β
(
cj1
)β−1

= y1, (A.17)

ajϕ
′
j

(
cj2
(
cj1
)β) (

cj1
)β

= y2, (A.18)

for j = 1, 2. This implies that
c11
c12

=
c21
c22

=
δ1
δ2
, (A.19)

where the last equality follows from the market clearing. Furthermore, this means that

optimal consumption allocations take the form

c1i = fδi, (A.20)

c2i = (1− f) δi. (A.21)

De�ne e = δ2δ
β
1 . Then, we have by Ito's lemma

de(t) = e(t)
(
µedt+ σ>e dZ(t)

)
, (A.22)
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where σe = σX2 + βσX1 . Inserting e into the �rst order conditions, we get

a1ϕ
′
1

(
f 1+βe

)
fβ = a2ϕ

′
2

(
(1− f)1+β e

)
(1− f)β . (A.23)

Thus, by the implicit function theorem, the consumption share f is a function of the con-

sumption basket e. Next, consider the stock prices

ξ(t)S1(t) = Et

[∫ T

t

ξ(u)δ1(u)du

]
= a1Et

[∫ T

t

ϕ′1
(
f(e(u))1+βe(u)

)
f(e(u))βe(u)du

]
, (A.24)

and ξ(t)S2(t) = ξ(t)
β
S1(t). Hence, the �nancial market is incomplete. Now, assume that

the �rst good is the numeraire good.15 Then, in equilibrium, the state price density, ξ,

is proportional to ϕ′j
(
cj2
(
cj1
)β)

c2β
(
cj1
)β−1

. Applying Ito's lemma on the left hand side of

Equation (A.24) and Clark-Ocone Theorem (see Ocone and Karatzas (1991)) of Malliavin

Calculus (see Nualart (1995), Detemple and Zapatero (1991) and Detemple et al. (2003)) on

the right hand side of Equation (A.24) and, then, equating the di�usion coe�cient on both

sides, we get

σ(t) = Ae(t)σe + (β − 1)σX1 + σX2 +BS(t)σe, (A.25)

whereAe(t) = ∂
∂e
log
(
ϕ′1
(
f(e(u))1+βe(u)

)
f(e(u))β

)
andBS(t) =

Et[
∫ T
t

∂
∂e(ϕ′1(f(e(u))1+βe(u))f(e(u))βe(u))du]

Et[
∫ T
t ϕ′1(f(e(u))1+βe(u))f(e(u))βe(u)du]

.

Next, consider the wealth of agent 1

ξ(t)W1(t) = Et

[∫ T

t

ξ(u)
(
c11(u) + p(u)c12(u)

)
du

]
= a1 (1 + β)Et

[∫ T

t

ϕ′1
(
f(e(u))1+βe(u)

)
f(e(u))1+βe(u)du

]
. (A.26)

Applying Ito's lemma on the left hand side and Clark Ocone Theorem on the right hand

side, we get

σW1(t) = Ae(t)σe + (β − 1)σX1 + σX2 +BW1(t)σe, (A.27)

where BW1(t) =
Et[

∫ T
t

∂
∂e(ϕ′1(f(e(u))1+βe(u))f(e(u))1+βe(u)du)]

Et[
∫ T
t ϕ′1(f(e(u))1+βe(u))f(e(u))1+βe(u)du]

. As BS and BW1 are not identical, the

optimal wealth will load onto a di�erent linear combination of the two Brownian motions than

the stock price, and, hence, it is not possible to implement the Arrow-Debreu equilibrium if

good one is the numeraire good.16 Next, consider the case when e is the numeraire good.

15The proof when the second good is the numeraire good follows similarly.
16If f(e(t)) = f for all e(t), then the Arrow-Debreu equilibrium is implementable. However, we rule out

any utility function that leads to such a no-trade equilibrium.
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Then, in equilibrium the state price density, ξ, is proportional to ϕ′j
(
cj2
(
cj1
)β)

. De�ning

Âe(t) = ∂
∂e
log
(
ϕ′1
(
f(e(u))1+βe(u)

))
and following a similar calculation, we have that the

stock price di�usion coe�cients are

σ(t) =
(
Âe(t) +BS(t)

)
σe, (A.28)

and the di�usion of the wealth of the �rst agent is

σW1(t) =
(
Âe(t) +BW1(t)

)
σe, (A.29)

and, thus, e�ectively the market is complete as the optimal wealth and the stock prices

depend on the same linear combination of the two Brownian motions.

Proof. Theorem 2: We establish that the consumption prices Ψ(t) = ξ(t)P (t) are jointly

real analytic in (t, x) ∈ (0, T ) × X . This follows from Theorem 2.3.5 (analytic implicit

function theorem) in Krantz and Parks (2002) (Theorem B.2 in Anderson and Raimondo

(2008)). According to the analytic implicit function theorem, the utility function of the

representative agent is real analytic in (t, x) ∈ (0, T )×X . The fact that the candidate price
functions S are jointly real analytic in (t,x) follows from Proposition 2 in Hugonnier et al.

(2010). Following Hugonnier et al. (2010), adapted to the multiple good setting, one can

show that the di�usion matrix of the candidate stock prices is

σ(t, x) = (T − t)σδ̃(T, x) + o(T − t) = (T − t) (I + ε(T, x))λ(T, x) + o(T − t). (A.30)

As S(t, x) is jointly real analytic, it follows that σ(t, x) is jointly real analytic. Equa-

tion (A.30) shows that the stock price di�usion coe�cients, σ(t, x), are proportional to

the di�usion coe�cients of the dividends in unit of the numeraire in a neighborhood of

the terminal time. Following Theorem 1 in Hugonnier et al. (2010), one can show that

a su�cient condition for the market to be complete is that det ((I + ε(T, x))λ(T, x)) =

det (I + ε(T, x)) det (λ(T, x)) is non-zero. As det (λ(T, x)) 6= 0 by Assumption 3, it follows

that det (I + ε(T, x)) 6= 0 for at least one x ∈ X is su�cient for market completeness.

Proof. Proposition 6: Let uj ∈ UC,l for some j and choose aj = 1. This is equivalent to

studying the economy with only agent j, and, hence, the market is complete for this choice

of a as uj ∈ UC,l. Next, note that Ψ(t) = ξ(t)P (t) is jointly real analytic in (t, x, a) ∈
(0, T )×X × ς. Again, this follows from Theorem 2.3.5 (analytic implicit function theorem)

in Krantz and Parks (2002) (see Theorem B.2 in Anderson and Raimondo (2008)). The fact

that S(t, x, a) is jointly real analytic follows from Proposition 2 in Hugonnier et al. (2010),
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and it then follows that σ(t, x, a) is jointly real analytic. Using similar arguments as the

proof of Theorem 2, it then follows that the market is complete for almost every a ∈ ς.

Proof. Proposition 7: From the FOC, it follows that

p2(t) = α1

(
c11
c12

)
= α2

(
c21
c22

)
. (A.31)

Using the equilibrium commodity price and the market clearing in the second good, we have

p2(t)
(
c12(t) + c22(t)

)
= p2(t)δ2(t) = δ̃2(t),

α1c
1
1(t) + α2c

2
1(t) = δ̃2(t). (A.32)

From the market clearing in the �rst good, we have

c11(t) + c21(t) = δ1(t) = δ̃1(t). (A.33)

Combining Equation (A.32) and (A.33), we have[
1 1

α1 α2

][
c11(t)

c21(t)

]
=

[
δ̃1(t)

δ̃2(t)

]
. (A.34)

Let

dc11(t) = φ1(t)dt+ Σ1(t)
TdZ(t), (A.35)

dc21(t) = φ2(t)dt+ Σ2(t)
TdZ(t), (A.36)

and

Σ(t) =

[
Σ1(t)

T

Σ2(t)
T

]
=

[
Σ11(t) Σ12(t)

Σ21(t) Σ22(t)

]
. (A.37)

Applying Ito's lemma to both sides of Equation (A.34) yields[
1 1

α1 α2

]
Σ(t) = Iδ̃(t)(I + ε(t))λ(t). (A.38)

Hence, for the �nancial market to be complete it is su�cient to show that the left hand side

of the above equation is invertible for at least one x ∈ X at time T . If ai > 0 for i = 1, 2, then

cij(t, x) > 0 for all (t, x) ∈ (0, T )× X . As α1 6= α2 by assumption,

[
1 1

α1 α2

]
is invertible.
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Hence, we need to show that Σ(T ) is invertible. Calculating Σ(t) by Ito's lemma, we have

Σ(t) = J(c1(t))Iδ(t)λ(t), (A.39)

where J(c1(t)) denotes the Jacobian of c1(t) = (c11(t), c
2
1(t)) and is given by

J(c1(t)) =

[
∂c11(t)

∂δ1

∂c11(t)

∂δ2
∂c21(t)

∂δ1

∂c21(t)

∂δ2

]
. (A.40)

Note that det (Σ(T )) = det (J(c1(T ))) det
(
Iδ(T )

)
det (λ) . By de�nition, det

(
Iδ(T )

)
6= 0 and

det (λ(T )) 6= 0, implying that det (Σ(T )) 6= 0 if and only if det (J(c1(T ))) 6= 0. From the

clearing of the commodity market, we obtain

c11(t) + c21(t) = δ1(t). (A.41)

Taking the derivative with respect to δ2, we get

∂c11(t)

∂δ2
= −∂c

2
1(t)

∂δ2
. (A.42)

Next, taking the derivative with respect to δ1, we get

∂c21(t)

∂δ1
= 1− ∂c11(t)

∂δ1
. (A.43)

Inserting Equation (A.42) and (A.43) into J(c1(T )), we have

det (J(c1(T ))) = −∂c
1
1(t)

∂δ1

∂c11(t)

∂δ2
− (1− ∂c11(t)

∂δ1
)
∂c11(t)

∂δ2
= −∂c

1
1(t)

∂δ2
, (A.44)

and, therefore, if we can show that ∂c11(x,T )

∂δ2
6= 0 for some x ∈ X then J(c1(T )) is invertible

and the market is complete. Solving Equation (A.34) for c11(t), we have

c11(t) =
1

α1 − α2

(
α2δ̃1(t)− δ̃2(t)

)
. (A.45)

Using the expression for the commodity price in Equation (A.31), one can rewrite Equation

(A.45) as

c11(t) =
A

1 + A
(
δ2(t)

c12(t)

)δ1(t), (A.46)

29



where A = α1

α1−α2
. Next, di�erentiating Equation (A.46) with respect to δ2 yields

∂c11(t)

∂δ2
= − 1

δ1(t)

(
c12(t)− δ2(t)

∂c12(t)

∂δ2

)
. (A.47)

Note that the partial derivative above is only zero if

c12(t)− δ2(t)
∂c12(t)

∂δ2
= 0. (A.48)

Solving Equation (A.48), we get that

c12(t) = f2δ2(t), (A.49)

where f2 is a constant (not depending on δ1) due to the symmetry of the problem. Hence,

we have that the optimal consumption of the �rst agent of the �rst good can be written as

c11(t) = f1δ1(t). Using the �rst order conditions together with the expressions for c11(t) and

c12(t) we have

a1ϕ
′

1 (f1δ1(t)(f2δ2(t))
α1)) (f2δ2(t))

α1 = a2ϕ
′

2 ((1− f1)δ1(t)((1− f2)δ2(t))α2)) ((1− f2)δ2(t))α2 .

(A.50)

Since dividends are less than perfectly correlated, the above cannot hold unless φj (x) = A+

log(x), i.e., log-linear preference. Hence, as long as agents do not have log-linear preferences,

then we have ∂c11(t)

∂δ2
6= 0 and, therefore, Σ(T ) is invertible and the market is complete.

Proof. Proposition 8:

First, we show that the dividend di�usion matrix in units of the numeraire good is non-

invertible when good two is the numeraire. The commodity price of the �rst good is P (t) =
δ2(t)γ

δ1(t)
. Therefore, in units of numeraire the dividends are δ̃1(t) = P (t)δ1(t) = δ2(t)

γ and

δ̃1(t) = δ1(t). Applying Ito's lemma to dividends in units of numeraire, we have

σδ̃(t) =

[
0 γσ2

0 σ2

]
, (A.51)

and, therefore, σδ̃ is non-invertible. The stock price is jointly real analytic in (t, x) ∈ (0, T )×
X (see proof of Theorem 2) and it is su�cient to �nd one realization x ∈ X for which the

stock price di�usion matrix is invertible. It can be shown that the value of the �rst stock is

S1(t) =
δ2(t)

γ

ρ

(
1− e−ρ(T−t)

)
. (A.52)
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Applying Ito's lemma to Equation (A.52), we have that the di�usion coe�cients are

σ1,1 = 0,

σ1,2 = γσX2 ,

and, therefore, the �rst stock only loads onto the second Brownian motion. To calculate the

value of the second stock, we need the joint distribution of the state variables, X(t). Note

that X(t) is jointly normal and one can show that the conditional variance of X(s) at time

t for t < s is only a function of s − t and not the current value of the state variable X(t).

Denote the conditional covariance matrix V (s− t). The conditional mean of X(s) is

Et (X1(s)) = e−α(s−t)X1(t) + X̄1

(
1− e−α(s−t)

)
, (A.53)

Et (X2(s)) = e−α(s−t)X2(t) + X̄1

(
1− e−α(s−t)

)
+ αe−α(s−t)

(
X1(t)− X̄1

)
(s− t) .(A.54)

The value of the second stock is

S2(t) = eγX2(t)Et

[∫ T

t

e−ρs+(1−γ)X2(s)ds

]
= eγX2(t)

∫ T

t

e−ρs+(1−γ)Et(X2(s))+
1
2
(1−γ)V2(s−t)ds. (A.55)

Next, applying Ito's lemma to Equation (A.55), we have that the di�usion coe�cients are

σ2,1 = (1− γ)eγX2(t)

∫ T

t

e−ρs+(1−γ)Et(X2(s))+
1
2
(1−γ)V2(s−t)αe−α(s−t) (s− t) dsσX1 ,(A.56)

σ2,2 =

(
γ + (1− γ)eγX2(t)

∫ T

t

e−ρs+(1−γ)Et(X2(s))+
1
2
(1−γ)V2(s−t)e−α(s−t)ds

)
σX2 . (A.57)

As σ2,1(t) and σ1,2(t) are non-zero for some x ∈ X , the market is complete. Note that one

can also apply the second order approximation in Hugonnier et al. (2010) (see Theorem 2)

adapted to multiple goods.
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