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HOW GENERAL IS THE VALE-MAURELLI SIMULATION

APPROACH?

NJÅL FOLDNES AND STEFFEN GRØNNEBERG

Abstract. The Vale-Maurelli (VM) approach to generating non-normal mul-

tivariate data involves the use of Fleishman polynomials applied to an underly-

ing Gaussian random vector. This method has been extensively used in Monte

Carlo studies during the last three decades to investigate the finite-sample per-

formance of estimators under non-Gaussian conditions. The validity of con-

clusions drawn from these studies clearly depends on the range of distributions

obtainable with the VM method. We deduce the distribution and the copula

for a vector generated by a generalized VM transformation, and show that it

is fundamentally linked to the underlying Gaussian distribution and copula.

In the process we derive the distribution of the Fleishman polynomial in full

generality. While data generated with the VM approach appears to be highly

non-normal, its truly multivariate properties are close to the Gaussian case.

A Monte Carlo study illustrates that generating data with a different copula

than that implied by the VM approach severely weakens the performance of

normal-theory based ML estimates.
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1. Introduction and summary

Multivariate data simulation is the main tool in evaluating the finite-sample per-

formance of estimation methods and goodness-of-fit measures in structural equa-

tion modeling (SEM). A popular and seemingly rather general data generation

technique is the use of Fleishman polynomials (Fleishman, 1978) applied to an un-

derlying multivariate normal vector, as presented by Vale & Maurelli (1983). Here,

a Gaussian random vector Z is transformed to a non-Gaussian random vector X

through applying third degree polynomials to each of its marginals. The polyno-

mials are chosen so that X has prespecified univariate moments up to fourth order

and the covariance matrix of Z is thereafter chosen so that X has a prespecified

covariance structure. The Vale-Maurelli (VM) approach is implemented in popular

software packages like Mplus (Muthén & Muthén, 2010), EQS (Bentler, 2006), Lis-

rel (Jöreskog & Sorbom, 2006) and lavaan (Rosseel, 2012). Over a span of several

decades, Monte Carlo studies have employed the VM technique for data generation

(e.g., Bentler & Tong, 2013; Fouladi, 2000; Curran et al., 1996).

In this paper we investigate the dependence structure of a generalization of the

VM transformation. The generalization consists in allowing each marginal trans-

form to be any function whatever, not just a low-degree polynomial, and we also

allow the generator vector Z to be non-Gaussian. We point out some fundamental

limitations of these type of transformations through deriving a precise expression of

the resulting copula of the non-Gaussian distribution. These limitations are essen-

tially due to the lack of interaction terms in the transformation from Z to X. The

copula – or dependence properties – of the simulated vector is found to be closely

linked with the copula of Z. In the classical VM framework, were Z is Gaussian,

this means that the truly multivariate properties of the random vectors generated

by VM approach is either very close to or equal to the Gaussian case, even though

it would seem that the resulting highly kurtotic random variables are very far away

from the Gaussian case. It follows that evaluating the finite-sample behaviour of

estimators and goodness-of-fit statistics with data generated by the VM approach

may give biased conclusions favoring methods performing well with observations

from Gaussian copulas. This is a conceptually serious issue, as most non-likelihood

based methods are designed to work well irrespective of the underlying distribution

– except for certain moment properties such as the covariance structure.

Tadikamalla (1980) criticized the Fleishman transform for having an unknown

distribution and quantile function, and Kotz et al. (2000, Chap. 44.10) similarly

criticized the VM transform for not having a known distribution. We derive the

full VM distribution, which unfortunately is computationally difficult to use, ex-

cept in cases where the Fleishman transforms are mostly monotonous. We also

produce a concrete formula for the cumulative distribution function of the Fleish-

man approach. While numerical methods are needed for its inversion to produce
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the quantile function, this inversion is well-behaved by the strict monotonousness of

the cumulative distribution function. The computational complexity of calculating

quantiles of the Fleishman transform is therefore admittedly more complex than

merely applying a formula, but is well within reach for modern computers. To

a large degree, this counters the critique of the Fleishman transform raised by

Tadikamalla (1980) .

An alternative method for simulating data with pre-specified covariance ma-

trix from Gaussian variables is the NORTA method of Cario & Nelson (1997).

Although NORTA has the advantage of allowing completely arbitrary marginals

while the classical VM transform only controls lower-order moments, it has not to

our knowledge been employed in the SEM literature. Also the NORTA method

yields data whose full distribution is easily calculated and understood. However,

NORTA shares the limitation of the classical VM transform that its dependence

structure is strongly tied to the Gaussian case.

Our basic perspective for studying multivariate dependence in a random vector

is the perspective of Joe (1997): We will study multivariate dependence through

the copula. Since the concept of a copula is fundamental to both our arguments

concerning the limitations of the VM approach, we start our paper with a brief

introductory section concerning copulas focused towards moment based models,

such as covariance structure models. The concept of tail dependence is introduced,

and we explain how properties of moment based estimators depend not just on the

marginal distribution of the data, but also on the copula of the data. In Section 3,

we deduce the distribution and copula of the generalized VM transform and provide

a basic investigation of its properties. Section 3.3 investigates some consequences

for the classical VM method. We next illustrate by simulation how the finite-sample

behavior of factor model estimates are affected by changing the copula of the data

in Section 4. A concluding discussion is given in Section 5.

2. The concept of dependence and copulas

SEM and covariance structure analysis are usually seen as moment based meth-

ods, where dependency among random variables is typically modeled not by a full

specification of the distribution of the data, but merely by the covariance matrix Σ

of a random vector X induced by relationships between postulated latent variables.

As is well known, if X is Gaussian, the dependence structure is indeed completely

described by Σ. However, in the non-Gaussian case two multivariate distributions

may differ fundamentally in terms of dependence structure, but still have the same

covariance matrix Σ. By dependence structure, we mean a copula, i.e. a func-

tion that binds together marginal distributions to obtain a joint distribution. In

psychometric and SEM literature, the use of copulas is relatively limited. Braeken

et al. (2007) used copulas for modeling residual dependencies in Rasch models.
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Mair et al. (2012) propose to use copulas to generate data with a pre-specified

covariance matrix, offering an alternative to the VM method. Their copula-based

method has the disadvantage relative to the VM method that it does not control

the marginals. That is, an exact specification of univariate skewness and kurtosis

allowed for in the VM approach is not possible with the copula-based approach

proposed by Mair et al. (2012). However, their approach can generate data with

a wide scope of copulas, and the method does give some control of the marginal

properties of the generated random vector.

2.1. Copula Theory. We refer to the monograph by Joe (1997) for a thorough

review of copula theory, and limit ourselves here to some basic definitions. We will

focus exclusively on the case when the marginal distributions Hi(x) = P (Xi ≤ x),

i = 1, . . . , d are continuous. In this case, Sklar (1959) noticed that a full description

of a random vector X = (X1, X2, . . . , Xd)
t may be uniquely obtained by separating

the marginal distributions Hi(x) = P (Xi ≤ x), i = 1, . . . , d, from the dependence

structure, i.e. the copula. More precisely, the integral transform applied to each

component of X gives the random vector (U1, . . . , Ud) = (H1(X1), . . . ,Hd(Xd)),

with uniform margins. The copula C of X is the joint cumulative distribution

function of (U1, · · · , Ud). So a copula is a cumulative distribution function with

uniform marginals. Sklar’s theorem states that, for any d-dimensional cdf H

with marginals H1, . . . ,Hd, there exists a unique copula function C such that

H(x1, . . . , xd) = C(H1(x1), . . . ,Hd(xd)), and conversely, given a copula C and any

marginals H1, . . . ,Hd, the function

H(x) = C(H1(x1), . . . ,Hd(xd))

is a cumulative distribution function.

To measure the dependence in a pair (Xi, Xj) rank-based parameters like Kendall’s

tau and Spearman’s rho are functions only of the copula of (Xi, Xj), and not their

marginals. This is unlike the more familiar correlation coefficient of Pearson, which

depends upon both marginal distribution and the copula. To illustrate the limi-

tation of the VM approach we will investigate another dependence measure that

is a copula property, namely tail dependence. Upper tail dependence in (Xi, Xj)

is the probability that Xi exceeds its q-quantile, given that Xj exceeds its own

q-quantile. More precisely, the upper tail dependence parameter λu, if it exists,

is defined as the limit of this conditional probability as q → 1−. The lower tail

dependence parameter λl is motivated similarly. Mathematically, upper and lower

tail dependence can be expressed in terms of the copula C of (Xi, Xj) as

λu = lim
q→1−

1− 2q + C(q, q)

1− q
, λl = lim

q→0+

C(q, q)

q

provided the limits exist. When (Xi, Xj) has a bivariate Gaussian distribution both

lower and upper tail dependence are equal to zero. We will show that this property
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is carried over to the VM transformed vector, which exemplifies the restrictions of

the types of non-normality achievable under the VM method.

2.2. The role of copulas in SEM. Covariance models only specify a parametric

structure of second order moments of the data, and estimation techniques aim at

estimating these parameters without assuming anything else of the observations

except the correctness of these moment assumptions. In SEM, all standard esti-

mators in use are minimum distance (MD) estimators that match model implied

moments with empirical moments. The finite sample distribution of these estima-

tors is a function of the full joint distribution of the data. As the copula point of

view is simply a re-phrasing of the joint distribution into a univariate part and a

dependency part, this obviously means that finite sample behaviour is a function

of the copula and the univariate marginals.

We are unaware of any uniform bounds on the behaviour of MD estimates in the

whole class of all distributions pertaining to the correct covariance structure. The

traditional technique for assessing finite sample behaviour is to simulate data from

a particular class of distributions. It is then hoped that the estimation behaviour

under the chosen class of distributions reflects real world data sets.

The selection of simulation distributions is typically based on two considerations.

Firstly, one tries to emulate distributional aspects of real world datasets. Secondly,

one can use asymptotic theory to motivate which design factors to vary. As we

will shortly summarise, in asymptotic theory, the fourth order moments is the most

important aspect of the distribution of the estimates, and most simulation studies

have focused on varying these.

Both considerations are related to copulas. The distributional aspects that are

emulated are typically only univariate, or – rarely – bivariate. However, the full

multivariate distribution will play a role, and the type of higher dimensional copulas

that can be expected in social science data seems to be unknown. This perspective

could lead to new and more realistic classes of distributions to simulate from, and

to the identification of other distributional aspects that have important influence

on the finite sample behaviour of MD estimators.

In large samples, mathematical theory shows exactly what part of the data-

generating mechanism influences the distribution of parameter estimates. SEM

estimation involves MD estimators that fulfil the conditions of Browne (1984). This

implies that MD estimators are asymptotically normal and with covariance matrix

of the vectorized parameters as given in eq. (2.12a) in Browne (1984), namely

(1) (∆′0V∆0)−1∆′0V ΓV∆0(∆′0V∆0)−1 = AΓA′.

Here, the matrix constituents of A depend solely on the chosen estimator or the

model. The matrix Γ, however, depends on the distribution of the data. Γ is the

asymptotic covariance matrix of the vectorized sample covariance matrix s:
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√
n(s− σ)

L−→ N(0,Γ).

The elements of Γ have the form

(2) Γij,kl = σijkl − ΣijΣkl,

where the fourth-order moments σijkl are given by

σijkl = E(Xi − µi)(Xj − µj)(Xk − µk)(Xl − µl), µi = EXi,

see eq. (2.2) in Browne (1984). When Σ is pre-specified, as is always the case

in simulation studies, the asymptotic behaviour of the MD estimator is entirely

determined by σijkl, which depends on the multivariate aspects of the data, i.e.

the copula. More precisely, assume for simplicity that all variables have zero mean,

then we have that

σijkl =

∫
R4

xixjxkxldHijkl(xi, xj , xk, xl),

where Hijkl is the cumulative distribution function of (Xi, Xj , Xk, Xl). With a

change of variables this can be reformulated in terms of the copula, as

σijkl =

∫
[0,1]4

H−1
i (ui)H

−1
j (uj)H

−1
k (uk)H−1

l (ul)dCijkl(ui, uj , uk, ul),

where Cijkl is the copula of (Xi, Xj , Xk, Xl) and H−1
i is the quantile function of Xi.

This shows how Γ is a function of both the univariate marginals and the underlying

copula C of X.

The popularity of the VM approach is due to its ability to control univariate

kurtosis, motivated by the above form of Γ. However, as is clearly seen from the

above display, the VM approach only specifies the special case where i = j = k = l,

but offers no control in the general case. This means that even though only the first

four (multivariate) moments of the data matters for the large sample behaviour of

MD estimators, the classical VM method, and its generalisation defined in the next

section, is not general enough to replicate all possible values of Γ.

3. The multivariate distribution of the generalized Vale-Maurelli

transform

Suppose given a random vector Z = (Z1, Z2, . . . , Zd)
t with joint distribution

F (z1, . . . , zd) = P (Z1 ≤ z1, . . . , Zd ≤ zd)

and marginal distributions

Fi(zi) = P (Zi ≤ zi).

We assume that Z is a continuous random vector, and our canonical example is the

multivariate Gaussian distribution, denoted Z ∼ Nd(µ,Σ). Consider the variable
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X = (X1, X2, . . . , Xd)
t, where X = p(Z), in which p : Rd 7→ Rd is defined through

continuous functions p1, p2, . . . , pd where pi : R 7→ R, and

p(z1, z2, . . . , zd) = (p1(z1), . . . , pd(zd))
t
.

That is, the k’th coordinate of p(z) only depends on zk.

Let us denote the cumulative distribution function of X by

H(x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd) = P (p1(Z1) ≤ x1, . . . , pd(Zd) ≤ xd)

and the i’th marginal distribution of X by

Hi(xi) = P (Xi ≤ xi) = P (pi(Zi) ≤ xi).

The transformation p(Z) does not induce any interactions between the elements

of Z. When the pi are polynomial functions, this is the VM transform. Hence, we

will call this class of transformations the generalized VM approach.

Note that the choice pi(z) = G−1
i (Fi(z)) where Gi is a continuous CDF induces

Hi = Gi. Hence, the generalized VM transformation supports any marginal dis-

tribution of X. This follows because of the well-known fact that Fi(Zi) ∼ U [0, 1],

and that G−1
i (U) ∼ Gi when Gi is a CDF and U ∼ U [0, 1]. Hence, the generalized

VM transformation not only supports any univariate skewness and kurtosis, but

any marginal distribution whatever.

We will show that despite this seeming generality, the fact that p(Z) does not

induce any interactions between the elements of Z implies that the generalized VM

approach has a copula which is closely linked to the copula of the generator variable

Z.

3.1. The univariate distribution. Let d = 1 and suppose that Z is a random

variable with a continuous cumulative distribution function. Note that Z may be

any random variable, not necessarily normally distributed. Let us consider the

transformed variable

X = p(Z)

for some continuous function p : R 7→ R. Our canonical example of the kinds of

transformations we will focus on is the polynomial case of Fleishman (1978). Here,

Z is standard normal variable and p is a third-degree polynomial.

For analytical tractability the transformation p has been previously restricted

to be strictly monotone (Headrick, 2007; Headrick & Pant, 2012). Tadikamalla

(1980) noted that the exact distribution of X was not known, even for third-degree

polynomials. The following result provides the closed form expression of the density

of X under fairly general assumptions on p, including non-monotonous polynomials

of any degree. While this result is surely not new, we have been unable to find a

reference for it in the literature. As the multivariate results in Section 3.2 will use

the technical details of the following univariate proof, we feel justified in providing

a full technical proof for this fundamental result.
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We will need the following notation. Let {Ai}i=0,...,n be the maximal intervals

of R such that that p(z) is strictly monotonous for z ∈ Ai. We denote

Ai = (ai, ai+1], for i = 0, 1, . . . , n,

where a0 = −∞ and an+1 = +∞ so that An = (an,∞). We assume that the

minimum possible partition is chosen. If n is allowed to be infinite, this can always

be arranged for any continuous function p. While our proof technique applies also

when n is infinite, we focus attention to the case when n is finite, which means that

p is non-monotonic only in a finite region.

We will make the following assumption in the rest of the paper.

Assumption 1. We assume that the cdf F of Z and p are continuous, n is

finite and that p is not constant on any open interval.

In the traditional VM method this assumption is fulfilled, since the p’s are poly-

nomials and Z is multivariate Gaussian. The techniques of this paper can be ex-

tended to cases where p has jump discontinuities and is constant on intervals. We

will not deal with these cases in the present paper in order to reduce the technical

level of our presentation, as well as limiting our treatment to cases similar to the

traditional VM method.

Partition the indices {0, 1, . . . , n} into two subsets I and D such that i belongs to

I (D) if p(z) increases (decreases) on Ai. For each Ai let pi(z) denote the function

p(z) restricted to Ai. As each pi is monotonous, it is injective on Ai and has an

inverse function we will denote by p−1
i . Let us extend the domain of p−1

i to all of

R through the re-definition

p−1
i (x) =



p−1
i (x), x ∈ p(Ai)
ai+1, x > p(ai+1) and i ∈ I
ai, x > p(ai) and i ∈ D
ai, x < p(ai) and i ∈ I
ai+1, x < p(ai+1) and i ∈ D

where p(Ai) = {p(z) : z ∈ Ai} is the image-set of Ai. An illustration of these

definitions is given in Figure 1. Also, let us introduce δ : {0, . . . , n} 7→ {0, 1} by

δ(i) = I{i ∈ D},

so that δ(i) is the indicator function for the event that p(z) is decreasing in Ai.

Proposition 1. Under Assumption 1, the cumulative distribution function of

X is

H(x) = δ(n) +

n∑
i=0

(−1)δ(i)F (p−1
i (x)).
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p(z)

z

x

p−1
0 (x) = p−1

1 (x) p−1
2 (x)

A0 A1 A2

Figure 1. Illustration for the description of p−1
i (x)

If Z has a density f(x) with respect to Lebesgue measure, the density of X with

respect to Lebesgue measure is

h(x) = I{x ∈ Im(p)}
n∑
i=0

(−1)δ(i)
f
(
p−1
i (x)

)
p′(p−1

i (x))
I{x ∈ Ai}.

where Im(p) := {p(z) : z ∈ R} is the image of p. Note that this density is only

defined on x ∈ R \ {a1, a2, . . . , an}, whose complement has Lebesgue-measure zero.

Proof. Let us first note that P (X ≤ x) is either zero or one if x /∈ {p(z) : z ∈ R}.
Assume that this is not the case. We have

P (X ≤ x) = P (p(Z) ≤ x) =

n∑
k=0

P ({p(Z) ≤ x} ∩ {Z ∈ Ak})

=
∑
i∈I

P
(
{Z ≤ p−1

i (x)} ∩ {Z ∈ Ai}
)

+
∑
j∈D

P
(
{Z ≥ p−1

j (x)} ∩ {Z ∈ Aj}
)

=
∑
i∈I

P
(
ai ≤ Z ≤ p−1

i (x)
)

+
∑
j∈D

P
(
p−1
j (x) ≤ Z ≤ aj+1

)
,

where the last line uses the extended definition of p−1
i . We hence have that

H(x) =
∑
i∈I

[
F
(
p−1
i (x)

)
− F (ai)

]
+
∑
j∈D

[
F (aj+1)− F

(
p−1
j (x)

)]
.

Note that we have hitherto not used the assumption that n is finite. If n = ∞,

the above display is clearly still valid. However, this case will not interest us in the

remainder of our investigation.

Because the function must alternate between increasing and decreasing, for each

i except i = 0 and i = n + 1, the first sum in the above display includes −F (ai)

while the second sum includes F (ai). Hence, similar to telescoping sums, these

terms cancel out. Note that if 0 ∈ D, then a0 is not in any of the sums in the above

display. Similarly, if n ∈ I, then an+1 is not included in the above expression.
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Hence,

H(x) = (1− δ(0))F (a0) + δ(n)F (an+1) +

n∑
i=0

(−1)δ(i)F (p−1
i (x)).

As we always have a0 = −∞ and an+1 =∞, we can conclude that

H(x) = (1− δ(0))F (−∞) + δ(n)F (∞) +

n∑
i=0

(−1)δ(i)F (p−1
i (x))(3)

= δ(n) +

n∑
i=0

(−1)δ(i)F (p−1
i (x)).(4)

The density is found through identifying H ′(x), and equals

h(x) =

n∑
i=0

(−1)δ(i)I{x ∈ Ai}f
(
p−1
i (x)

) dp−1
i (x)

dx

=

n∑
i=0

(−1)δ(i)I{x ∈ Aj}
f
(
p−1
j (x)

)
p′(p−1

i (x))
,

when x ∈ Im(p). �

3.2. The multivariate distribution. We will now provide an expansion of the

cdf and copula of X in terms of the cdf and copula of Z. While the copula of X

is in general not identical to that of Z, the copula is a particular type of linear

combination of the copula of Z. An immediate conclusion is that the copula of X

is fairly restrictively connected to the copula of Z.

In order to understand the copula of X, we need to extend the notation of Section

3.1 to take care of each coordinate pk in the mapping

X = p(Z) = (p1(Z1), . . . , pd(Zd))
t
.

For each 1 ≤ k ≤ d, let {Aki }i=0,...,nk
be the maximal intervals of R such that

pk(zk) is strictly monotonous for zk ∈ Aki . We denote

Aki = (aki , a
k
i+1], for i = 0, 1, . . . , nk,

where ak0 = −∞ and aknk+1 = +∞ so that Aknk
= (aknk

,∞). For each Aki let pk,i(z)

denote the function pk(z) restricted to Aki . As each pk,i is monotonous, it is injective

on Aki and has an inverse function denoted by p−1
k,i . Furthermore, the definitions of

I and D are naturally extended for each k to subsets of {0, . . . , nk} denoted by Ik
and Dk, respectively. The function δ(i) is also extended to δk : {0, . . . , nk} 7→ {0, 1},
so that δk(i) is the indicator function for the event that pk(zk) is decreasing on Aki .
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Finally, let us extend the domain of p−1
k,i to all of R through

p−1
k,i(x) =



p−1
k,i(x), x ∈ pk(Aki )

aki+1, x > p(aki+1) and i ∈ Ik
aki , x > p(aki ) and i ∈ Dk
aki , x < p(aki ) and i ∈ Ik
aki+1, x < p(aki+1) and i ∈ Dk.

We now extend Proposition 1 to the multivariate case. Note that, on the basis of

this result, one can clearly derive the density of X. However, we will not introduce

the necessary notation to calculate this density, and will be content to present the

cumulative distribution function

H(x) = H(x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd)

and the copula

C(u) = CX(u) = C(u1, . . . , ud) = P (H1(X1) ≤ u1, . . . ,H1(X1) ≤ u1)

of X = p(Z). We start with the cumulative distribution function.w

Theorem 1. If Assumption 1 is valid for each marginal, we have that

H(x) =
∑

J⊆{1,2,...,d}

( ∏
k∈JC

δk(nk)

) ∑
0≤ij≤nj

j∈J

(−1)
∑

l∈J δl(il)P

(⋂
l∈J

{Zl ≤ p−1
l,il

(xil)}

)
,

where the outer sum is over all unique subsets of {1, 2, . . . , d}, including the empty

set, JC denotes the complement of J with respect to {1, 2, . . . , d} and the prod-

uct operator
∏

equals 1 when indexed by the empty set. We here also use the

convention that the sum over the empty set equals one.

Before we give the proof, we would like to comment upon how to read sums of

the form ∑
0≤ij≤nj

j∈J

(−1)
∑

l∈J δl(il)P

(⋂
l∈J

{Zl ≤ p−1
l,il

(xil)}

)
.

Suppose J = {1, 4, 6}. Then this sum equals

∑
0≤i1≤n1

∑
0≤i4≤n4

∑
0≤i6≤n6

(−1)
∑

l∈{1,4,6} δl(il)P

 ⋂
l∈{1,4,6}

{Zl ≤ p−1
l,il

(xil)}


=

∑
0≤i1≤n1

∑
0≤i4≤n4

∑
0≤i6≤n6

(−1)δ1(i1)+δ4(i4)+δ6(i6)

P
(
Z1 ≤ p−1

1,i1
(xi1), Z4 ≤ p−1

4,i4
(xi4), Z6 ≤ p−1

6,i6
(xi6),

)
.

That is, the sum in the statement of the result expands to a total of 2d
∏d
k=1 nk

terms, many of which will be zero.
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Proof. Let us denote Li = {pi(Zi) ≤ xi}, so that

H(x1, x2, . . . , xd) = P

(
d⋂
i=1

Li

)
= P

([
d−1⋂
i=1

Li

]⋂
Ld

)
.

All the steps in the proof of Proposition 1 can be applied to the probability of Ld

– when one only considers the events where ∩d−1
i=1Li occurs – except the step going

from eq. (3) to eq. (4). We have

H(x) = δd(nd)P

(
d−1⋂
i=1

Li

)
+

nd∑
id=0

(−1)δd(id)P

(
d−1⋂
i=1

Li ∩ {Zd < p−1
d,id

(xd)

)
.

The same expansion, restricted to events where {Zd < p−1
d,id

(xd)} occurs, results in

H(x) =δd(nd)δd−1(nd−1)P

(
d−2⋂
i=1

Li

)

+ δd(nd)

nd−1∑
id−1=0

(−1)δd−1(id−1)P

(
d−2⋂
i=1

Li ∩ {Zd−1 < p−1
d−1,id−1

(xd−1)

)

+ δd−1(nd−1)

nd∑
id=0

(−1)δd(id)P

(
d−2⋂
i=1

Li ∩ {Zd < p−1
d,id

(xd)

)

+

nd−1∑
id−1=0

(−1)δd−1(id−1)
nd∑
id=0

(−1)δd(id)P

(
d−2⋂
i=1

Li ∩ {Zd−1 < p−1
d−1,id−1

(xd−1)}

∩ {Zd < p−1
d,id

(xd)}

)
.

This procedure can be iterated until we get the stated formula. To see this, first

notice that the above expansion includes the four possible subsets of {d − 1, d}.
Then notice that the numbering of the marginals is irrelevant for the iteration

argument: For example,

P

(
d−2⋂
i=1

Li ∩ {Zd−1 < p−1
d−1,id−1

(xd−1)

)
has the same structure as the original problem, but with d− 1 marginals. �

An immediate consequence of Theorem 1 is that the copula of X is

(5) C(u) =
∑

J⊆{1,2,...,d}

( ∏
k∈JC

δk(nk)

)
∑

0≤ij≤nj

j∈J

(−1)
∑

l∈J δl(il)P

(⋂
l∈J

{Ul ≤ Fl(p−1
l,il

(H−1
l (uil)))}

)
.

We note that when all pk are strictly monotonously increasing, i.e. when δk(nk) =

δk(0) = 0 for all k, the copula of X is equal to that of Z, as is well known.
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Since Fl, p
−1
l,il

and H−1
l are all monotonic functions, the above display shows

the copula of X is a linear combination of monotonic transformations of marginal

copulas of Z. Note that both Fl and H−1
l are strictly increasing, while p−1

l,il
is strictly

monotonous in pl(Al,il) and constant elsewhere. While the p-transformation will

change the copula of X, it will only do so in a limited sense.

As a consequence of eq. (5), we note that several quantities of interest, such

as σijkl, the central constituent appearing in eq. (2) for Γ, and many measures of

multivariate dependence of the random vector X, are of the form

τh :=

∫
[0,1]d

h(u) dCX(u)

where CX is the copula of X. For example, both Kendall’s tau and Spearman’s

rho can be written in this form (see Section 2.1.9 of Joe, 1997). The linearity of

the Lebesgue-Stieltjes integral in the integrand means that eq. (5) provides a way

to calculate such integrals through finite sums.

The use of eq. (5) in computations is complicated by its inclusion of H−1
k . As Hk

is a sum of functions, there is no generally available expression for H−1
k except in

special regions. In these regions, where all pk have inverses, we will now identify the

copula of X. Let us defineM to be the subset of Rd with elements x = (x1, . . . , xd)

such that for all k = 1, . . . , d the equation pk(zk) = xk has an unique solution in

some neighbourhood of xk. Also define

Mu = {(H1(x1) . . . , Hd(xd)) : (x1, . . . , xd) ∈M} ⊆ [0, 1]d.

Define ∆k(xk) to be equal to 0 if pk is increasing at zk where zk is the unique root

of pk(zk) = xk, and 1 otherwise. Similarly, define ∆u
k(uk) = ∆k(H−1

k (uk))).

Proposition 2. Assume that Assumption 1 holds for all d marginals. Then we

have the following property of CX , the copula of X = p(Z), described in terms of

the copula of Z, i.e. the distribution of U = (U1, . . . , Ud) = (F1(Z1), . . . , Fd(Zd)).

For u ∈Mu, we have that

CX(u1, u2, . . . , ud) = P

(
d⋂
k=1

{∆u
k(uk) + (−1)∆u

k (uk)Uk ≤ uk}

)
.

If, in addition each pk has image Im(pk) = R, then the complement ofM has finite

Lebesgue-measure.

Proof. Suppose that x ∈M. Then for any k

Hk(xk) = P (pk(Zk) ≤ xk) = P ((−1)∆k(xk)Zk ≤ (−1)∆k(xk)p−1
k (xk)).
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Let u = (u1, . . . , ud) ∈ Mu. Then for any k ∈ {1, . . . , d} we can write the inverse

function as

H−1
k (uk) =

{
pk(F−1

k (uk)), for ∆u
k(uk) = 0

pk(F−1
k (1− uk)), for ∆u

k(uk) = 1

= pk(F−1
k (∆u

k(uk) + (−1)∆u
k (uk)uk)).

Let Kk(uk) := {Hk(Xk) ≤ uk} and recall that

Kk(uk) = {Xk ≤ H−1
k (uk)} = {pk(Zk) ≤ H−1

k (uk)}.

Since u ∈Mu we have

Kk(uk) = {pk(Zk) ≤ pk(F−1
k (∆u

k(uk) + (−1)∆u
k (uk)uk))}

= {(−1)∆u
k (uk)Zk ≤ (−1)∆u

k (uk)F−1
k (∆u

k(uk) + (−1)∆u
k (uk)uk)}

= {∆u
k(uk) + (−1)∆u

k (uk)Uk ≤ uk},

where Uk = Fk(Zk). The result follows, as CX(u) = P (∩dk=1Kk(uk)). In the case

that each Im(pk) = R, the pk are unbounded as xk → ±∞. Hence MC is a

bounded region and has finite measure.

�

Given a d-dimensional variable U = (U1, . . . , Ud) distributed according to a

copula C, there are 2d − 1 so-called associated copulas (Section 1.6 Joe, 1997).

These are the distributions of random vectors of the form

(q1 + (−1)q1U1, . . . , qd + (−1)qdUd) , where q1, . . . , qd ∈ {0, 1}.

Proposition 2 says that the copula of X evaluated in Mu is equal to an associated

copula of Z. Hence, in Mu, the generalized VM transform can only change the

copula of Z in the same way as multiplying the elements of Z by either 1 or −1.

While we could in theory re-phrase Proposition 2 in terms of the CDFs of these

associated copulas, this is only practical in lower-dimensional cases. For simplicity,

we will only give this more direct expression for d = 2 and when u ∈Mu.

Corollary 1. Assume that d = 2 and that Assumption 1 holds for both

marginals. Then, for u ∈Mu, we have that

CX(u1, u2) =


CZ(u1, u2), for ∆u

1 (u1) = 0,∆u
2 (u2) = 0

u1 + u2 − 1 + CZ(1− u1, 1− u2), for ∆u
1 (u1) = 1,∆u

2 (u2) = 1

u1 − CZ(u1, 1− u2), for ∆u
1 (u1) = 0,∆u

2 (u2) = 1

u2 − CZ(1− u1, u2), for ∆u
1 (u1) = 1,∆u

2 (u2) = 0

.

Proof. As mentioned in Section 1.6 in Joe (1997), for (U1, U2) ∼ CZ , the three

associated copulas of Z are the distributions of

U(1) = (1− U1, 1− U2), U(2) = (U1, 1− U2), U(3) = (1− U1, U2),
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and are given by

C(1)(u1, u2) = u1 + u2 − 1 + CZ(1− u1, 1− u2)

C(2)(u1, u2) = u1 − CZ(u1, 1− u2)

C(3)(u1, u2) = u2 − CZ(1− u1, u2)

respectively. The result then follows directly from Proposition 2.

�

3.3. Limitations of the classical Vale-Maurelli approach. The classical VM

method uses the Gaussian distribution for Z, and third-degree polynomials for pk.

As long as the third-order coefficient of pk is non-zero, the image set of pk is equal to

R. This means that points sufficiently close to the edge set of [0, 1]d are contained

in Mu. It follows immediately from Corollary 1 that the copula of the classical

VM transform is equal to an associated copula of the Gaussian copula in the tail

region. Such an associated copula equals the copula of a random vector obtained

by multiplying some elements of Z by −1. Clearly, such a random vector is itself

Gaussian. As no Gaussian copula has tail dependence this immediately implies that

the classical VM transform X has zero tail dependence. Note that this argument

is also valid for odd-degree polynomials of higher order than three.

That the Gaussian copula has no tail dependence is a striking feature, since

many popular copulas exhibit tail dependence. Most approximations in statistics

are based on the central limit theorem, whose convergence speed decreases as we

move further away from the Gaussian case. This means that the classical VM

transform X inherits a Gaussian-like property, indicating that simulation studies

based on the VM approach might give overly optimistic impressions of finite-sample

properties of estimators with non-Gaussian data.

4. A Monte Carlo illustration

Through our general analytical results in the previous sections, the limitation

implicit in the VM approach should be clear. Our simulation study therefore fo-

cuses on a simple and clear-cut case in contrast to performing a large simulation

study for many SEM setups. We illustrate how the finite sample behaviour of the

popular normal theory based maximum likelihood (ML) estimator is affected by

the underlying copula in a simple confirmatory factor model. The model, given

in Figure 2, has two factors ξ1 and ξ2, each with two indicators. In our model

formulation there is only one free parameter to estimate, namely φ = Cov (ξ1, ξ2).

The other parameters are constants: the variances of ξ1 and ξ2 are fixed to one,

the four factor loadings are fixed to one, and the residual variances Var (δi), for

i = 1, . . . , 4, are fixed to 0.5.
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δ1

δ2

δ3

δ4

x1

x2

x3

x4

ξ1 ξ2

φ

Figure 2. A two-factor model.

4.1. Data generation. Simulation of data proceeds according to these fixed pa-

rameters, so that the model is correctly specified. We generate independent mea-

surement errors δi from the Gaussian distribution N(0, 0.5) while the vector (ξ1, ξ2)

is simulated from distributions with varying copulas. These copulas generate var-

ious degrees of dependence between ξ1 and ξ2. However, as next described, the

data-generating process ensures that Cov (ξ1, ξ2) = 0, i.e. there is no correlation

between ξ1 and ξ2.

Let Q0 = 2Z3 − 3Z2 where Z ∼ N(0, 1), which is the result of the non-

monotonous third degree polynomial transformation p(z) = 2z3−3z2. The skewness

and kurtosis of Q0 are, respectively, β1 = −5 and β2 = 54.8. The function p(z)

is increasing for z ≤ 0, decreasing for 0 < z ≤ 1 and increasing for z > 1.For

x > p(0) = 0 and x < p(1) = 2− 3 = −1, there is only one real root. In the region

−1 ≤ x ≤ 0, we have three real roots.

The CDF of Q0 is, according to Proposition 1,

H(x) = Φ
(
p−1

0 (x)
)
− Φ

(
p−1

1 (x)
)

+ Φ
(
p−1

2 (x)
)
,

where Φ is the cdf for the standard normal distribution. In order to describe p−1
i ,

we need A0 = (−∞, 0], A1 = (0, 1], A2 = (1,∞), and the function

W (x) =
3

√
2
√
x2 + x+ 2x+ 1.

Recall the extended definition of p−1
i . We have that for xi ∈ p(Ai) = {p(z) : z ∈

Ai},

p−1
0 (x0) = −1− i

√
3

4
W (x0)− 1 + i

√
3

4W (x0)
+

1

2

p−1
1 (x1) = −1 + i

√
3

4
W (x1)− 1− i

√
3

4W (x1)
+

1

2

p−1
2 (x2) =

1

2
W (x2) +

1

2W (x2)
+

1

2
.

Now, let (U1, U2) have the so-called Joe-copula with dependence parameter θ as

its joint distribution. The CDF is given by

Cθ(u1, u2) = 1− [(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ]1/θ
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for a θ ≥ 1. Then

Q =

(
Q1

Q2

)
=

(
H−1(U1)

H−1(U2)

)
has the exact same marginal distributions as Q0 for both marginals, and Q has the

same copula as (U1, U2) because H−1 is a strictly monotonous transformation. In

order to generate non-correlated ξ1 and ξ2 based on Q, we need to calculate the

covariance of Q1 and Q2. Because the marginals of Q are identical, we thus need

to calculate the moments EQ1,EQ2
1 and EQ1Q2. Using standard properties of the

Normal distribution, we see that EQ1 = −3 and EQ2
1 = 87. As a function of θ, the

expectation EQ1Q2 equals

(6)

∫
[0,1]d

H−1(u)H−1(v)c(u, v; θ) dudv

expressed through the copula density

c(u, v; θ) = (ūθ + v̄θ − ūθv̄δ)−2+1/θ ūθ−1v̄θ−1[θ − 1 + ūθ + v̄θ − ūθv̄θ],

where ū = 1−u, v̄ = 1−v. Note that because θ = 1 corresponds to the independence

copula, we know that in this case EQ1Q2 = (EQ1)(EQ2) = 9, from normal theory.

For the other values of θ employed in this study, EQ1Q2 and similar higher moments

were calculated to a high level of precision by numerical integration of integrals of

type (6). Finally, to ensure that the covariance φ between ξ1 and ξ2 is zero, we

define (
ξ1

ξ2

)
= Cov (Q1, Q2)−

1
2 ·

(
Q1

Q2

)
.

For the special case θ = 1 we have that U1 and U2 are independent, which implies

that Q1 and Q2 are independent. It follows that Cov (Q1, Q2), and hence also

Cov (Q1, Q2)−
1
2 , are diagonal matrices. Therefore, for θ = 1, the multiplication

with Cov (Q1, Q2)−
1
2 does not introduce any cross terms. This implies that for

θ = 1, ξ1 and ξ2 are produced by a classical VM transform, i.e. from an underlying

Gaussian copula. When θ > 1, however, the distribution of (ξ1, ξ2) is a linear

combination of a generalized VM transform with a non-Gaussian underlying copula.

4.2. Design of study. Our design conditions are as follows. We consider three

sample sizes, n = 50, 200 and 500. We consider four underlying Joe copulas, defined

by θ = 1, 1.5, 5 and 10. These copulas generate various degrees of upper tail de-

pendence λu and heterogeneous kurtosis in (ξ1, ξ2). The Joe copula has zero lower

tail dependence, while the upper tail dependence is given by Joe (1997, p. 35) as

λu = 2−21/θ. In Table 1 we tabulate λu and Mardia’s (Mardia, 1970) multivariate

kurtosis statistic β2 for (Q1, Q2). The values of β2 were calculated by numerical

integration, and also apply to (ξ1, ξ2). This is because β2 is invariant under affine

transformations, and (ξ1, ξ2) is a linear transformation of (Q1, Q2). This linear

transformation unfortunately distorts λu for (ξ1, ξ2) in a non-trivial way, and λu
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was only calculated for (Q1, Q2). Note that under multivariate normality λu = 0

and β2 = 8. Table 1 clearly indicates that as θ increases, the dependence structure

of the resulting distribution becomes increasingly non-Gaussian.

θ 1 1.5 5 10

λu 0 0.41 0.85 0.93

β2 111.5 115.4 132.5 156.4

Table 1. Upper tail dependence and heterogeneous kurtosis for (Q1, Q2)

In each of the resulting 12 design cells we run 2000 replications. Simulation and

estimation was obtained through the use of the R (R Core Team, 2013) packages

copula (Hofert et al., 2013) and lavaan (Rosseel, 2012), respectively.

n=50 n=200 n=500

−1.0

−0.5

0.0

0.5

1.0

1 1.5 5 10 1 1.5 5 10 1 1.5 5 10
θ

φ

Figure 3. The estimation of φ for varying dependence parameters

θ and sample sizes n.

4.3. Results and remarks. The results are visualised in Figure 3 as boxplots.

Clearly, the true population parameter value φ = 0 is best estimated when θ = 1,

across all sample sizes. That is, the ML estimator performs best under the classical

VM transform. With increasing levels of θ, both bias and standard errors become

larger. This shows that when the underlying copula introduces more and more

dependence between ξ1 and ξ2, which nevertheless remain uncorrelated, the ML
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estimation of φ in finite samples becomes more biased and less efficient. Predictably,

as the ML estimator is consistent, parameter bias decreases with increasing n. Note

however that the standard error, even for large sample sizes, is clearly affected by

the underlying copula, in accordance with the asymptotic equation (1). Even for

the case θ = 1.5, which in practice is barely distinguishable from the VM case

using standard tools such as scatter plots, there is an increased variability in the

estimation. In fact, the empirical standard error increased by about 20 % for sample

sizes n = 200 and n = 500 when moving from θ = 1 to θ = 1.5. We conclude that

the underlying copula of (ξ1, ξ2) has a marked effect on the quality of the ML

estimator.

As a final note, one might wonder whether the deteriorating performance of the

ML estimator with increasing θ is solely explained by the increase in multivariate

kurtosis β2 that accompanies increasing values of θ. To investigate this issue we

compared ML estimation in the following two distributions. The first distribution

is based on uncorrelated ξ1 and ξ2 generated by a VM transform such that skewness

and kurtosis in ξi equals −5 and 77.2, respectively. The resulting bivariate kurtosis

parameter is then equal to (Mardia, 1970, eq. 3.9) β2 = 2(1 + 77.2) = 156.4. This

value of β2 is equal to the distribution of (ξ1, ξ2) obtained from the Joe copula with

θ = 10, see Table 1. Hence we consider two distributions, one obtained from Vale-

Maurelli generation of (ξ1, ξ2), and the other obtained from using the Joe copula

with θ = 10 to generate (Q1, Q2) and then multiplying by Cov (Q1, Q2)−
1
2 . So

although the marginal kurtosis in the VM distribution is higher than in the Joe

distribution, the bivariate kurtosis β2 equals 156.4 in both distributions. Monte

Carlo simulation from these two distributions, with 2000 replications in each case,

and with sample sizes n = 50, 200, 500 yields the results presented in Table 2.

Clearly, the ML estimator is much better behaved under data generation with VM

than with Joe. In accord with the information in Figure 3, and even when we

control for bivariate kurtosis, the bias and standard errors become inflated under a

copula that departs from the Gaussian-like copula obtained from the VM transform.

n = 50 n = 200 n = 500

φ̂ S.E. φ̂ S.E. φ̂ S.E.

VM 0.001 0.443 0.001 0.185 -0.003 0.088

Joe 0.181 0.525 0.090 0.282 0.042 0.171

Table 2. Mean and standard error (S.E.) of φ̂ under a VM and a

Joe distribution with equal β2.
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5. Conclusion

Simulation and distributional assumptions are in some sense two sides of the

same coin. If one has a distribution that one cannot simulate from, it is difficult

to claim that one has fully understood it. And similarly, a simulation method that

one does not know the precise distribution of cannot be said to be fully understood.

The main mathematical contribution of this paper is to derive the distribution of

a generalized version of the Vale-Maurelli technique.

This mathematical result has several important practical consequences. In moment-

based models, such as SEM, simulation studies are important in assessing the finite

sample behavior of estimators. To get a realistic picture of this behaviour, it is

important to be able to generate data that deviates from Normality in a variety

of ways. In this paper, we have worked with a generalized version of the VM ap-

proach of generating non-Normal observations with a given covariance structure.

The method enables the researcher to specify marginal skewness and excess kur-

tosis, which are two of the univariate features most in contrast with Normality.

Inspection of marginal distributions will therefore clearly give the impression that

the resulting data-set is far from Normal. However, marginal distributions are only

a small portion of the full distribution, and one of the main conclusions in our paper

is that the truly multivariate aspects of data generation using the VM approach is

exactly equal to the Normal model, except in regions where the Fleishman poly-

nomials are non-monotonous. Hence, evaluating the robustness of Gaussian ML

estimation with the VM method may give a false impression that this popular es-

timator is more well-behaved under even severely non-Normal data than it really

is. Gaussian ML may seem to outperform other estimators that are not based on

the Normality assumption, such as unweighted least squares or Brownes asymptot-

ically distribution-free estimator, due to the use of a simulation method that only

appears to generate data far from the Normal case. In conclusion, this accentuates

the need for more general and flexible simulation methods that incorporates the

copula perspective to better evaluate the behaviour of SEM estimators.
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