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1 Introduction

In countries where resource revenue constitutes a large component of total government

revenues, commodity price fluctuations will have a direct impact on public spending.

Many resource-rich countries are therefore advised to adopt some type of fiscal policy

framework (i.e., a fiscal spending rule), which, if operated countercyclically, should shelter

the economy from commodity price fluctuations and prevent over-spending on the part of

the government, see e.g. Barro (1979) for related arguments from the tax and consumption

smoothing literature, or Portes and Wren-Lewis (2014) for a recent overview.

The adoption of a fiscal rule, however, does not in itself ensure that fiscal policy works

to insulate the domestic economy from commodity price fluctuations: The constructed

rule may be too lax over the commodity price cycle, the actual conduct of fiscal policy

might not be in accordance with the rule, or both. Hence, what works in theory may not

necessarily work in practice.

We examine whether fiscal rules actually work in practice. More specifically, we ana-

lyze fiscal policy’s response in a resource-rich economy to oil price shocks and the extent to

which this response insulated the domestic economy from oil price fluctuations or, indeed,

even exacerbated their effect. To account for the changing nature of economic conditions

and complexity of fiscal rules, we address this question by developing a time-varying Dy-

namic Factor Model (DFM), in which we allow the volatility of structural shocks, the

systematic fiscal policy responses, and the macroeconomic conditions, to change. Our

proposed model is comparable to existing time-varying DFMs, but differs in how the

factors are identified in terms of economic quantities, thus permitting the identification

of structural shocks. This is where we find the methodological novelty of our approach.

From the perspective of its empirical application, this, we believe, is the first time fiscal

policy has been evaluated in this way not only for a resource-rich country, but or for any

country.

We focus on a particular country, Norway, whose handling of its petroleum wealth has

been described as exemplary (see e.g. OECD (2005), OECD (2007) and Velculescu (2008)

among many others). Unlike most oil exporters, Norway has adopted a fiscal framework in

2001, with a view to shielding the fiscal budget, and therefore also the domestic economy,

from oil price fluctuations. Under the framework, revenue from the sale of oil and gas is

deposited into what is known as a Savings Fund. Only the expected real return of the
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fund is drawn annually to finance public spending or tax cuts. By comparing how fiscal

policy responds to oil price shocks before and after the rule’s implementation, our study

provides us with a natural experiment allowing us to assess fiscal policy performance over

commodity price cycles.

Having said that, analyses of fiscal procyclicality in oil rich economies come with an

important caveat: since the price of oil has moved in tandem with global demand changes

in the fiscal policy’s response to changes in oil price could be due to the role of global

demand in the most recent business cycles, not necessarily to an increase in the price of

oil. In fact, recent studies tend to emphasize the role of global demand as a driver of oil

prices, see, e.g., Kilian (2009).1

Therefore, and in line with these findings, we control for shocks to global activity in our

analysis of fiscal policy responses to oil price shocks. Previous studies addressing the role

of fiscal policy in resource rich countries have typically ignored this issue, treating instead

oil prices as exogenous, see e.g., Pieschacon (2012) and Céspedes and Velasco (2014)

among others. In particular, Céspedes and Velasco (2014) draw their conclusion after

estimating the response in government expenditures and revenues to commodity prices

using a large panel of commodity exporting countries over two different cycles, while

Pieschacon (2012) designs a counterfactual analysis comparing the impulse responses in

a series of variables to an exogenous oil price shock in Norway and Mexico in the period

1986-2006. In doing so, both studies provide evidence of reduced fiscal procyclicality to

commodity price changes in the recent commodity price boom, something they attribute to

improved institutional quality, i.e., adopted fiscal policy rules. Yet if global demand is an

important source of variation in commodity prices, in particular in the recent commodity

price boom, we would expect fiscal policy to be, exactly, countercyclical. Not necessarily

because governments has reduced spending relative to GDP, but simply because domestic

GDP has increased with global demand.

And indeed, when we control for global activity, we confirm that the countercyclical

1Kilian (2009) shows that if oil prices increase in response to spurs in demand (rather than disruptions

of supply capacity, see, e.g., Hamilton (1983, 2003)), global economic activity will be positively affected,

at least in the short run. Corroborating results are shown in, e.g., Barsky and Kilian (2002), Lippi and

Nobili (2012), Peersman and Van Robays (2012), Kilian and Hicks (2013), Kilian and Murphy (2014),

Charnavoki and Dolado (2014), Aastveit et al. (2015) and Bjørnland and Thorsrud (2016) for various oil

importing and oil exporting countries.
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fiscal responses found in the recent oil price boom should be attributed to global activity

shocks and their domestic propagation, rather than the adopted fiscal framework. In

particular, we find that in the wake of oil price shocks (that are orthogonal to global

activity), fiscal policy is procyclical on impact and over response horizons. If anything,

fiscal policy has become more (not less) procyclical since the adoption of the fiscal policy

rule in 2001, in absolute value and relative to GDP. Hence, taking everything else as given,

then the government’s spending rule has not effectively insulated the economy from oil

price shock. This finding stands in rather stark contrast to the arguments put forward

in, e.g., Pieschacon (2012).

Furthermore, following a global activity shock that increases oil prices, the picture

becomes somewhat more nuanced, with some components of public spending alternating

from countercyclical to acyclical in the last decade, while others are more procyclical. The

main takeaway, then, is that of a tendency for more (not less) fiscal procyclicality since

the adoption of the spending rule. At the same time, the non-resource economy responded

strongly procyclically following the global activity shock, and this shock also explains an

increasing share of the variation in the economy over time. The strong countercyclical

fiscal policy responses (relative to GDP) in the last boom, as reported by Céspedes and

Velasco (2014), among others, are therefore most likely to be due to global activity shocks

and their domestic propagation, rather than to fiscal policy governed by a rule.

Our framework contributes to the literature in two additional ways. First, a com-

parison of different countries’ fiscal policy responses, implicitly assumes that each of the

commodity countries is at the same stage of development. This is seldom the case, as

countries may have extracted the windfall gain at different points in time. For instance,

Mexico was producing oil as early as the turn of the twentieth century. Today it is a

mature oil exporter, with oil and gas production accounting for 7-8 percent of GDP. Nor-

way, on the other hand, discovered its oil fields 70 years later and oil and gas production

accounts today for close to 25 percent of total GDP. In this sense, a comparison of the

effects of oil price shocks on a mature and a new oil producer, as is done by, e.g., Piescha-

con (2012), is likely to indicate different responses which may ultimately have nothing to

do with the adoption of fiscal rules per se, but simply reflect different stages of develop-

ment.2 Moreover, apart from being commodity exporters, Mexico and Norway in most

2Applying a related argument, Alexeev and Conrad (2009) control for initial endowment when comparing
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other areas are highly dissimilar. We argue that it is more informative to compare fiscal

responses in one country consistently over time than to compare fiscal responses across

countries at a given time.

Second, countries adopt fiscal rules in response to changing economic conditions. Fiscal

policy design is often particularly complex insofar as countries combine the objectives of

sustainability with the need for flexibility in response to shocks, see Schaechter et al.

(2012) for details. Norway is no exception. Under the fiscal framework, the government’s

non-oil structural deficit is supposed to equal the long-run real return of the sovereign

wealth fund (GPF: Government Pension Fund - Global), projected to be 4 per cent. To

ensure against inherent procyclical behaviour, the fiscal guidelines allow for temporary

deviations from the rule over the business cycle. The GPF is therefore a hybrid of a

savings- and a stabilization fund. So when we compare the economic effects of fiscal

policy designs before and after their implementation, we need to control for time-varying

changes in macroeconomic conditions as much as in the specific policy implementation.

The Dynamic Factor Model we develop permits us to address these shortcomings in

the existing literature in a consistent manner. We include stochastic volatility components

to allow for changes in the size of the structural shocks, e.g., the Great Moderation effect

and the recent financial crisis and Great Recession,3 together with time-varying factor

loadings to allow for changes in systematic policy responses across time, e.g., due to

institutional changes in the fiscal rule,4 or due to persistent deviations from the adopted

rule. The time-varying Dynamic Factor Model developed here compares to the models

used by Lopes and Carvalho (2007), Del Negro and Otrok (2008), and Ellis et al. (2014),

but differs in the way we identify the dynamic factors, and in the way we model the law of

motion of the dynamic factors. In our contribution the dynamic factors are all identified in

terms of economic quantities. Importantly, this allows us, in contrast to most other factor

model studies, to build on the structural VAR literature, Primiceri (2005) in particular,

and to identify the structural shocks driving the dynamic factors. For this reason we

growth performance in resource-rich countries, and find natural resources to enhance long term growth,

findings quite contrary to the traditional resource curse literature.
3See, e.g., Cogley and Sargent (2005), Primiceri (2005), and Nakov and Pescatori (2010), and the references

therein, for a broader discussion of these effects and their possible causes.
4Norway has had a number of different fiscal guidelines, from a spend as you go policy in the 1980s, to a

neutral fiscal stance in the 1990s and a fiscal spending rule after 2001, see Section 2 for details.
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are also able to trace out the effect of different shocks, i.e., global demand and oil price

shocks, on a number of public and non-public variables.

The remainder of the paper is structured as follows. In Section 2 we briefly describe

the historical evolution of Norway’s fiscal framework, paying particular attention to the

introduction of the fiscal rule. Section 3 details the model and the estimation procedure.

Section 4 discusses the oil price and global activity shocks and analyses their effect on

fiscal policy and the domestic economy. Section 5 concludes.

2 The Fiscal framework

Since the mid 1990s, Norway has been transferring the totality of its petroleum cash flow

to a sovereign wealth fund. The fund, established in 1990 as the Government Petroleum

Fund, was renamed in 2006 as the Government Pension Fund Global (GPF).5 As noted

in the introduction, the GPF is a hybrid savings and stabilisation fund. As a savings

fund, its main purpose is to save and invest petroleum income in international capital

markets, the product of which can be put to use in the Norwegian economy at a later

date (i.e., for and by future generations). As a stabilization fund, it seeks to protect and

stabilize the budget, and the wider economy, from excess volatility in petroleum revenues,

see Johnson-Calari and Rietveld (2007) for details on saving and stabilization funds.

The idea of establishing a hybrid fund arose following large budget deficits and a poor

economic environment in Norway following the dramatic drop in the price oil in 1986, see

Lie (2013). In its first few years, however, the fund failed to generate a surplus, and fiscal

policy guidelines at the time suggested leaving the use of petroleum revenue unchanged,

i.e., a neutral fiscal stance, as measured by the structural, non-oil budget balance, see

Ministry of Finance (2001). High oil prices, large surpluses on the government budget

and high allocations to the GPF in the late 1990s, made it difficult to maintain such fiscal

neutrality. In 2001, the government therefore devised a strategy for fiscal policy accom-

modating a prudent increase in the spending of petroleum revenues. According to the

policy guidelines, only the expected real return on the Sovereign Wealth Fund (projected

to be 4 percent) could be returned to the budget for general spending purposes. Since

under the new fiscal rule the expected return from the Souvereign Wealth Fund would

5The change highlighted the fund’s role in saving government revenue to finance an expected increase in

future public pension costs. Despite its name, the fund has no formal pension liabilities.
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be used to finance the non-oil budget deficit, the budget would eventually balance.6 The

rule was expected to smooth the spending generated by the oil wealth, while maintaining

the strength of Norway’s internationally exposed sector, and insulating the economy from

Dutch disease (crowding out of the private sector).

However, fiscal policy also plays an important role in cushioning output fluctuations

in two additional ways. First, it stabilizes the fiscal impulse over and above longer term

smoothing by allowing deviations from the 4 percent rule to counteract large cyclical

variations in economic activity or sharp swings in the value of the Fund. This should give

the government manoeuvrability in fiscal policy should oil prices drop or the mainland

economy contract. As the government stated in its white paper, “Fiscal policy should

continue to have the main responsibility for stabilising developments in the Norwegian

economy.” (Ministry of Finance (2001), p. 8). Second, to prevent fiscal policy from

exacerbating the effect of oil price fluctuations on the Norwegian economy, the rule is

expressly defined in terms of the structural non-oil balance; allowing for the full effect of

the automatic fiscal stabilizers in contrast to inherently procyclical rules on the actual

deficit.

Since the 2001 adoption of the fiscal rule, the GPF has developed rapidly and is today

the largest sovereign wealth fund in the world; its value is currently close to 200 percent of

Norway’s GDP. This notwithstanding, very little is actually known about how, or indeed

if, the rule manages to shield the resource rich economy from oil price fluctuations, as

theory predicts.

A mere glimpse at some stylized facts in Figure 1, however, suggests that the Norwe-

gian economy is far from sheltered from oil price fluctuations. The figure displays rolling

correlations between oil prices and two key fiscal variables: value added and wages in the

public sector. Figure 1 indicates an upward drift in the correlation between either of the

fiscal policy variables and oil prices from the early 2000s. While these are unconditional

moments, they are nevertheless consistent with an interpretation whereby fiscal policy

has tended to respond more procyclically to higher oil prices since 2001. However, the

figure also indicates variation in the correlation coefficients across over the sample. In

particular, they were just as high in the late 1980s, when politicians pursued a policy of

6For this reason, the fiscal rule is defined as a balanced budget rule. Many other countries adopt additional

rules restricting spending. For instance, Sweden has both a balanced budget rule and an expenditure

rule, see Schaechter et al. (2012) for additional details.

6



Figure 1. Rolling 30 quarter (backward looking) correlations between public sector spending and oil

price growth. Dots indicate when the correlations are significant different from zero (at the 5% significance

level).

spend as you go, but fell during the financial crisis, when fiscal policy became counter-

cyclical in response to global demand shocks driving both the oil price and GDP in the

mainland (non-resource) economy downwards. This suggest that allowing for some form

of time variation and controlling for different macroeconomic shocks would seem to be

important, and it is what we seek to do in this paper.

3 The model

International fluctuations in the oil market affect macroeconomic developments in oil ex-

porters and oil importers differently. Bjørnland and Thorsrud (2016) proposed a simple

theoretical model aimed at capturing the most important transmission channels as seen

from an oil (or resource) exporter’s perspective. The model was successfully tested em-

pirically within a Dynamic Factor Model (DFM) framework. Here we extend this work

along two important dimensions. First, we focus on how fiscal policy in a resource rich

economy responds to international oil market fluctuations. Second, we focus on changes

through time by developing a structural time-varying DFM.

Importantly, the model allows a more parsimonious representation of the co-movement

of a large cross section of variables than with standard time series techniques; the direct

and indirect spillovers between the different sectors of the economy can, moreover, be

estimated simultaneously. In particular, the DFM includes four factors with associated

shocks with the potential to affect all sectors of the economy. First, we include a measure
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of global activity and the real price of oil as two separate factors in the model to capture

developments in the oil market as well as international business cycle conditions. This

allows us to identify two shocks that can affect oil prices: a global activity shock and an

oil price shock, both of which increase the real price of oil, though with potentially very

different macroeconomic implications.

Second, we include two separate activity factors for the resource and non-resource

(domestic) industries of the economy, thereby allowing the public sector, and the domestic

economy in general, to respond differently to a windfall gain due to an activity shock in

the resource sector (new discoveries, increased extraction rates etc.) and a windfall gain

due to higher oil prices. What’s more, we can now also account for spillovers from the

petroleum sector to the non-oil sectors due to increased demand for resources, in addition

to the spending effect coming via the public sector. Previous studies, such as Pieschacon

(2012), typically assume that since resource sector output only provides a source of income

from export sales, which the government collects, there will be no spillovers to the rest

of the economy while the resources are being extracted. Similar conclusions are drawn

by Husain et al. (2008). This is hardly the case for Norway. In particular, as shown

theoretically and empirically in Bjørnland and Thorsrud (2016), when the extraction

of resources demands complex technical solutions, as it does in Norway, the transfer of

learning-by-doing from the resource to the non-resource sectors of the economy can be

substantial.7

In total, the model identifies four structural shocks: a global activity shock, an oil

price shock, a resource activity shock and a domestic activity shock. While controlling

for the domestic disturbances and the systematic interaction between the four factors,

our main focus is on the fiscal responses caused by the global activity shock and the oil

price shock, both of which can affect oil prices. We therefore ask whether fiscal policy

has been less procyclical with higher oil prices since the adoption of the fiscal policy rule,

and whether the new rule helped shelter the economy from oil price fluctuations?

In the DFM, the factors and shocks will be linearly related to a large panel of domestic

variables, including tradable and non-tradable, e.g., public, sectors of the economy. The

large panel is needed to account for the sectoral spillovers that exists between the different

7Similar findings are also found for mineral-abundant Australia in Bjørnland and Thorsrud (2016), and,

albeit using a very different methodology, for a variety of resource-rich countries in Allcott and Keniston

(2018) and Smith (2014).
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industries of the economy, but also allows us to include a broad range of measures used

in the literature to assess the degree of fiscal pro- or countercyclicality. To account for

changing policy regimes, due to, e.g., the introduction of the fiscal rule in 2001, we allow

for time-varying factor loadings. Finally, to account for changes in the volatility of the

structural shocks, due to, e.g., Great Moderation effects, we allow for stochastic volatility.

3.1 A structural time-varying Dynamic Factor Model

Technically, the time-varying DFM we develop relates to the model proposed in Del Negro

and Otrok (2008).8 We deviate in the way we identify the latent factors, allowing us to

model the dynamics of the factors as an endogenous system, and thus to identify structural

shocks.

Formally, the observation and transition equations of the time-varying DFM can be

written as follows:

yt =z0,tat + · · ·+ zs,tat−s + et (1a)

at =Φ1at−1 + · · ·+ Φhat−h + A0−1t Σtεt (1b)

et =Φ1et−1 + · · ·+ Φpet−p + Υtut (1c)

Equation (1a) is the observation equation, and the N × 1 vector yt represents the observ-

ables at time t. zj,t is a N×q matrix with dynamic factor loadings for j = 0, 1, · · · , s, and

s denotes the number of lags used for the dynamic factors at.
9 As mentioned above, we set

q = 4 and identify two foreign factors, global activity and the real oil price; and two do-

mestic factors, one related to the resource sector, the other to the remaining non-resource

sectors.

8Del Negro and Otrok (2008) apply a time-varying DFM to analyse international business cycle synchro-

nization. Related models have also been applied in Aguilar and West (2000), Lopes and Carvalho (2007),

Eickmeier et al. (2011), Liu et al. (2014), and Ellis et al. (2014).
9In the proposed model the observables are a function of time-varying factor loadings and covariances. An

alternative assumption would have been to allow instead for time variation in the parameters associated

with the law of motion for the factors, as done in, e.g., Ellis et al. (2014) and Eickmeier et al. (2011).

We do not follow this route. As described in online Appendix E, the factor loadings in the observation

equation of the system can be estimated one equation at the time. The parameters of the law of motion

for the factors must be estimated jointly. With four factors and a substantial number of lags in the

transition equation, see Section 3.2, it increases the computational burden considerably, and would likely

not have resulted in any meaningful estimates.
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The dynamic factors follow a VAR(h) process, given by the transition equation in

(1b), with h > s. We work with the convention that εt ∼ i.i.d.N(0, I) such that we can

write:

A0tΩtA0′t = ΣtΣ
′
t (2)

where Ωt is the covariance of the error terms in the transition equation, and A0t and Σt

is a lower triangular matrix and a diagonal matrix, respectively:

A0t =


1 0 · · · 0

ao21,t 1
. . . 0

...
. . . . . .

...

aoq1,t · · · aoqq−1,t 1

 Σt =


σ1,t 0 · · · 0

0 σ2,t
. . . 0

...
. . . . . .

...

0 · · · 0 σq,t

 (3)

This decomposition of the covariance matrix Ωt builds on the work of Primiceri (2005),

and facilitates identification of the model’s structural shocks, εt, and their associated

time-varying volatility, captured by Σt. In particular, the lower triangular structure of

A0t implies that we identify the structural shocks using a recursive identification scheme.

The economic rationale for this choice is set out in Section 3.3.

Lastly, equation (1c) describes the time series process for the N × 1 vector of id-

iosyncratic errors et. We will assume these evolve as independent AR(p) processes with

stochastic volatility. The parameter matrix Φk for 1 ≤ k ≤ p is therefore:

Φk =


Φ1,k 0 · · · 0

0 Φ2,k
. . . 0

...
. . . . . .

...

0 · · · 0 ΦN,k

 (4)

As above, denoting the covariance matrix of the heteroscedastic errors in (1c) as Ht, and

under the assumption that ut ∼ i.i.d.N(0, I), we have that:

Ht = ΥtΥ
′
t (5)

where Υt is the diagonal matrix:

Υt =


η1,t 0 · · · 0

0 η2,t
. . . 0

...
. . . . . .

...

0 · · · 0 ηN,t

 (6)
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The model’s time-varying parameters and stochastic volatilities are assumed to follow

random walk processes. Let Zt = [z0,t, . . . , zs,t] and zt = vec(Z ′t) (the matrix Zt stacked

by rows) be a vector of the factor loadings at time t, aot the vector on non-zero and non-

one elements of the matrix A0t (stacked by rows), and σt and ηt the vectors of diagonal

elements of the matrices Σt and Υt, respectively. The dynamics of the model’s time-varying

parameters are consequently specified as follows:

zt =zt−1 + wt (7a)

aot =aot−1 + st (7b)

hσt =hσt−1 + bt (7c)

hηt =hηt−1 + vt (7d)

where hσt = log(σt) and hηt = log(ηt)

The time-varying factor loadings capture potential changes in how the variables in

the domestic economy relate to the factors across time, and, in particular, the changing

nature of fiscal policy in Norway in recent decades, see Section 2. The random walk

assumptions for hσt and hηt simplify estimation of the model, as no autoregressive param-

eters need to be estimated, and is common in the macroeconomic literature entertaining

stochastic volatility. Given that numerous studies have found evidence of time variation

in elasticities in the oil market in recent decades, see, e.g., Blanchard and Gali (2007),

Dargay and Gately (2010), and Baumeister and Peersman (2013), and given the increase

in the resource industry’s share of GDP in Norway from the early 1980s to today, we also

allow aot to vary across time, implying that the contemporaneous spillovers between the

factors in the model are time varying as well.

All the errors in the model are assumed to be jointly normally distributed, and we

work with the following assumptions on the covariance matrix of the errors:

var





ut

εt

wt

st

bt

vt




=



IN 0 0 0 0 0

0 Iq 0 0 0 0

0 0 W 0 0 0

0 0 0 S 0 0

0 0 0 0 B 0

0 0 0 0 0 V


(8)

Here, as already indicated above, IN and Iq are identity matrices of dimension N × N

11



and q × q. W and S are assumed to be block diagonal matrices:

W =


W1 0 · · · 0

0 W2
. . . 0

...
. . . . . .

...

0 · · · 0 WN

 S =


S1 0 · · · 0

0 S2
. . . 0

...
. . . . . .

...

0 · · · 0 Sq−1

 (9)

where Wi for i = 1, . . . , N is a m×m matrix, with m = q(s+ 1), and S1 is a 1×1 matrix,

S2 is a 2×2 matrix, and so on.10 B is a q×q matrix, while V is a diagonal N×N matrix.

The restrictions put on (8) imply that the structural shocks driving the dynamics

of transition equation, εt, are independent of the shocks driving the evolution of the

time-varying factor loadings, wt (and all other disturbances in the model). This allows

us to utilize the standard SVAR machinery to analyse impulse responses and variance

decompositions following εt shocks, while at the same time identifying changes in, e.g.,

systematic fiscal policy, captured by the wt shocks. However, although less restrictive

assumptions regarding (8) can be justified, see Primiceri (2005) for a broader discussion,

they would increase the computational burden and complexity. As the proposed model

is already heavily parametrized, it would not, in our opinion, be a feasible option in the

current setting.

3.2 Model specification and data

We build on extensive out-of-sample tests in Bjørnland and Thorsrud (2016) and earlier

findings in the oil market literature when we specify the lag orders in the baseline model.

Accordingly, we allow for one lag of the dynamic factors in the observation equation (1a)

of the system, i.e., s = 1. This is somewhat more restrictive than what was found to fit

the data best in the constant parameter model of Bjørnland and Thorsrud (2016). On the

other hand, allowing for time-varying parameters increases the potential for good model

fit, and therefore also the need for many lags in the observation equation of the system.

Further, as shown in, e.g., Hamilton and Herrera (2004) among others, a large number

of lags is needed to capture the dynamics in the oil-macro relationship. For this reason

we allow for up to eight lags in equation (1b) describing the law of motion of the factors,

implying that h = 8. Finally, to capture autocorrelation in the observables not explained

by the common factors we set p = 1 in the autoregressive processes for the idiosyncratic

10That is, S1 is associated with ao21,t in (3), S2 is associated with ao31,t and ao32,t in (3), etc.

12



errors. In Section 4.4 we show that our results are robust to more parsimonious model

specifications.

To accommodate resource movement and spending effects within the petroleum ex-

porting economy, as well the potential for learning spillovers between the resource sector

and the rest of the economy, the observable yt vector includes a broad range of sectoral

employment, production and wage series, see also Bjørnland and Thorsrud (2016). Turn-

ing to the fiscal variables, as described in, e.g., Kaminsky et al. (2004), many indicators

can be used to assess the degree of pro- or countercyclical fiscal policy. One of the ad-

vantages of the factor model methodology is that we can look at many variables at the

same time, possibly allowing for more robust conclusions. For this reason we include value

added, wages, and employment in the public sector from the quarterly national account

statistics. From the central government’s fiscal account we utilize fiscal revenues, expen-

ditures, transfers to municipalities, and operating costs. Naturally, we also include the

real exchange rate, a core variable in the Dutch disease literature. A full description of

the data is given in online Appendix A.

The two variables meant to capture the developments in the international commodity

market are the real price of oil and a world economic activity indicator. The real price

of oil is constructed on the basis of Brent Crude oil prices (U.S. dollars), deflated using

the U.S. CPI. Our main consideration when constructing the global (or world) activity

indicator was to include countries whose economic activity is most likely to affect the

global oil market. In addition, to capture possible direct trade linkages, we include the

most important trading partners. So, for Norway, we construct global activity as the

simple mean of four-quarter logarithmic changes in real GDP in Denmark, Germany, the

Netherlands, Sweden, the UK, Japan, China, and the U.S.

In sum, this gives a panel of roughly 50 international and domestic data series, covering

a sample period from 1981:Q1 to 2012:Q4. Correcting for the number of lags imposed on

the model leaves us with 124 observations which we have used for estimation, covering

the sample 1983:Q1-2012:Q4.11 To capture the economic fluctuations of interest, we

transform all variables to year-on-year growth. Lastly, we remove the local mean (of the

11The sample periods reflect the longest possible time for which a full panel of observables is available.

The vintage of quarterly national account statistics we use was generously provided to us by Statistics

Norway. In the official statistics, these numbers (for employment) do not cover the earlier part of our

sample. The prolonged vintage of data ends in 2012:Q4.
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growth rates) and then standardize the resulting data before estimation.12

3.3 Identification and estimation

As is common for all factor models, the factors and factor loadings in (1) are not identified

without restrictions. To separately identify the factors and the loadings, and to be able to

provide an economic interpretation of the factors, we enforce the following identification

restrictions on z0,t in (1a):

z0,t =

z̃0,t
ẑ0,t

 , for t = 0, 1, . . . , T (10)

where z̃0,t is a q × q identity matrix for all t, and ẑ0,t is left unrestricted. As shown

in Bai and Ng (2013) and Bai and Wang (2015), these restrictions uniquely identify

the dynamic factors and the loadings, but leave the VAR(h) dynamics for the factors

completely unrestricted. Accordingly, the innovations to the factors, εt, can be linked to

structural shocks that are implied by economic theory.

As the first two factors in the system - world activity and the real price of oil - are

treated as observables, they naturally load with one on the corresponding element in the

yt vector, and we set the two first elements of the idiosyncratic errors et equal to 0 for

all time periods t. The latent domestic factors - resource and non-resource activity -

must be inferred from the data. To ensure unique identification we require the domestic

resource factor to load with one on value added in the petroleum sector, and the domestic

non-resource factor to load with one on total value added excluding petroleum. Note

that while these restrictions identify the latent factors, the factors and the observables

are generally not identical due to the influence of the idiosyncratic errors.

Formally, Bai and Ng (2013) and Bai and Wang (2015) do not show in their work that

the proposed factor identification scheme applies in a time-varying parameter setting.

Although we do not provide a formal proof, we conjecture that it does. Like in Del Negro

and Otrok (2008), one could, for example, envision rescaling the factor loadings z0,t for all

i by say ct, z0,t−1 could be rescaled by ct−1, and so on. However, doing so would result in

āt = at/ct and z̄0,t = z0,tct, and therefore be in conflict with the dynamic processes for at

12We standardize the data to simplify the prior specification. Likewise, we remove the local mean of the

series to simplify the high dimensional estimation problem. See online Appendix A for further details

about the data.
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and zt given in (1b) and (7a). By estimating the model under the normalizing restrictions

in (10), such conflicts are avoided. Relatedly, one could be concerned about whether the

model is able to separately identify “common” shifts in the factor loadings from changes

in the stochastic volatility of the factors. Such “common” shifts are ruled out from the

start by assuming that the covariances W in (9) are independent across i.

Letting at = [agactt , aoilt , a
r
t , a

nr
t ]′, where the superscripts denote global activity (gact),

oil price (oil), resource activity (r) and non-resource activity (nr), the model identifies

four structural disturbances:

εt = [εgactt , εoilt , ε
r
t , ε

nr
t ]′ (11)

The recursive structure of A0t in (3) implies that we follow the usual assumption made

by both theoretical and empirical models of the commodity market, and restrict global

activity to respond to oil price disturbances with a lag. This restriction is consistent with

the sluggish behaviour of global economic activity after each of the major oil price hikes

in recent decades, see e.g., Hamilton (2009). Furthermore, we do not treat oil prices as

exogenous to the rest of the global macro economy. Any unexpected news regarding global

activity is assumed to affect real oil prices contemporaneously. This is consistent with

recent work in the oil market literature, see, e.g., Kilian (2009), Lippi and Nobili (2012),

and Aastveit et al. (2015). In contrast to these papers, and to keep our empirical model

as parsimonious as possible, we do not explicitly identify a global oil supply shock.13

Turning to the domestic factors, in the very short run, disturbances originating in the

Norwegian economy can not affect global activity and the real price of oil. These are

plausible assumptions insofar as Norway is a small, open economy. However, both of

the domestic factors respond to unexpected disturbances in global activity and the real

oil price on impact. In small, open economies such as Norway’s, news regarding global

activity will affect variables such as the exchange rate, the interest rate, asset prices,

and consumer sentiment contemporaneously, and in consequence overall demand in the

economy. Norway is also an oil exporter, and any disturbances to the real price of oil will

most likely rapidly affect both the demand and supply side of the economy.

13However, as shown in Kilian (2009), and a range of subsequent papers, such supply shocks explain a trivial

fraction of the total variance in the price of oil, and do not account for a large fraction of the variation

in real activity either (at least during the sample covered here). Also, Bjørnland and Thorsrud (2016)

have shown that the effect of an oil price shock on the Norwegian economy is robust to the exclusion of

oil supply shocks from the model.
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The restrictions suggested here are motivated by the Dutch disease theory model

presented in Bjørnland and Thorsrud (2016). As in that study, and as argued above, the

identification scheme employed is needed to correctly quantify the domestic spillovers from

unexpected windfall gains and changing international business cycle conditions in a small

and open resource-rich economy. However, in contrast to the Bjørnland and Thorsrud

(2016) study, the domestic shocks and their spillovers are not in focus here and we do not

discuss them other than to emphasize that by including the εrt shock we are able to control

for the fact that the domestic economy, and the public sector in particular, might respond

differently to a windfall gain due to an activity shock in the resource sector and a windfall

gain due to higher oil prices, see the discussion in Section 3. We note, however, that all

observable variables in the model, apart from the ones used to identify the factors, are

likely to respond to all shocks on impact inasmuch as they are contemporaneously related

to the factors through the unrestricted part of the loading matrix (i.e., the ẑ0,t matrix in

equation (10)). The recursive structure is therefore only applied to identify the shocks.

Unlike in the theoretical monetary policy literature, there does not exist a common

“Taylor rule” principle for modeling the systematic part of fiscal authorities response

function. However, like in the monetary policy literature, see, e.g., Bernanke et al. (2005)

and Baumeister et al. (2013), the DFM framework allows us to empirically approximate

the systematic response of fiscal policy to exogenous changes in the commodity market.

To highlight our primary object of interest, let yG,·i,t+k denote the impulse response of a

fiscal policy variable at horizon t+ k. We are then interested in analysing

yG,qacti,t+k = Zi,tft+k(ε
gact
t ) and yG,oili,t+k = Zi,tft+k(ε

oil
t ) (12)

where Zi,t is the i’th row of the factor loadings matrix at time t, ft+k(ε
·
t) is the impulse

response function implied by the transition equation of the system (the SVAR), and εgactt

and εoilt are respectively the structural orthogonal global activity and oil prices shocks,

as defined above. The systematic policy part, the Zi,t’s, are allowed to change through

time as described by equation (7a) above. We can then compare the responses in the

fiscal policy variables over time (say, before and after implementing the fiscal policy rule),

due to either the structural oil price shock, or due to an innovation in global activity,

controlling for changing volatility in all shocks.14

Finally, we estimate the time-varying DFM using Bayesian estimation, decomposing

14Note here that when computing the impulse response functions at any point in time we assume that all
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the problem of drawing from the joint posterior of the parameters of interest into a set

of much simpler ones using Gibbs simulations. Gibbs simulations are a particular variant

of Markov Chain Monte Carlo (MCMC) methods which samples a high dimensional joint

posterior by drawing from a set of lower dimensional conditional posteriors. In short, the

sampling algorithm involves sequentially drawing the model’s unobserved state variables,

at, et, zt, aot, h
σ
t , and hηt , and hyper-parameters, Φ, Φ, W , S, B, and V , utilizing 7 blocks

until convergence is achieved. In essence, each block involves exploiting the state space

nature of the model using the Kalman filter and the simulation smoother suggested by

Carter and Kohn (1994). A detailed description of the Gibbs algorithm is given in online

Appendix E.

To generate the posterior draws, the simulations in this paper are all based on 20000

iterations of the Gibbs sampler. The first 14000 are discarded and only every sixth of the

remaining are used for inference. The estimated factors are reported in Figure 7 in online

Appendix B.1. As shown in online Appendix C, the convergence checks seem satisfactory.

In online Appendix D we describe the priors used for the initial state variables a0, z0, ao0,

hσ0 , and hη0, and for the hyper-parameters Φ, S, B, W , Φ and V . In the appendix we also

report various sensitivity analyses, showing that our main results are robust to a set of

alternative assumptions regarding the prior specifications.

4 Oil price shocks and systematic fiscal policy

In the following we examine the estimated responses to a set of fiscal and macroeconomic

variables from the oil price and the global activity shocks. Our aim is to analyze the

response of fiscal policy over time, and in so doing, examine to what extent fiscal policy

has contributed to insulate the domestic economy from the effects of the oil price and

the global activity shocks, or, conversely, to exacerbate those effects. To organize the

discussion, we examine in particular examine whether we can observe changes in the

response patterns prior to and after the introduction of the fiscal rule in 2001.

A complicating factor is the use in the literature of different measures of fiscal pol-

future shocks equal 0. This does not account for slow moving drift in the parameters during the impulse

response horizons. As we are mainly focusing on short to medium horizon impulse responses, we do not

believe that this is problematic. Likewise, our interest centers on comparing fiscal policy responses across

time, and not the long-run responses implied by the time-varying parameter specification.
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icy to gauge the degree of pro- or countercyclical fiscal policy,15 which makes it difficult

to compare results across studies. In the following we define fiscal policy as procycli-

cal (countercyclical) if public value added, public wages, public employment, government

spending, government operating costs, or transfers increase (decrease) following a shock

that increase the real price of oil. We first examine the impulse responses in the level

of the variables (as in Pieschacon (2012)) and then relative to GDP (as Céspedes and

Velasco (2014) and others analyse). Finally, using the data from the central government

accounts we define the primary balance as income (non-oil tax revenues) minus spending.

A procyclical (countercyclical) fiscal policy implies that the primary balance responds

negatively (positively) to positive to a shock that increases oil prices, i.e, increasing (de-

creasing) spending ahead of income. In sum, these definitions are comparable to the

largely similar usage in Kaminsky et al. (2004).

4.1 The Great Moderation, Recession and the global

oil market

We start by examining the impulse responses in Figure 2 of the two oil market shocks on

world activity (upper row) and the real price of oil (lower row) across time, before taking

a more detailed look at the responses in the fiscal variables. Note that in so doing, we

control for changing volatility over time.16 In the figure we display the responses for three

different time periods: early (1983); intermediate (1997); and late (2012) in the sample.

As will be discussed in more detail below, these dates are chosen to reflect periods when

15For instance, while Pieschacon (2012) analyses impulse responses in government purchases and transfers to

an exogenous oil price shock, Céspedes and Velasco (2014) estimate the effect of a change in commodity

price on government expenditures relative to GDP. Some do not control for shocks at all, but simply

compare the fiscal impulse as a percentage of GDP relative to, say, the change in the output gap, see e.g.

Lopez-Murphy and Villafuerte (2010) and Takáts (2012) among many others.
16As shown in Figure 8 in online Appendix B.2, the volatility of the structural oil price and global activity

shocks have indeed varied considerable over the sample. There is a marked decline in the volatility of the

global activity shock during the 1980s and 1990s, with a subsequent pick up at the end of the sample.

These “facts” are well known and commonly attributed to the Great Moderation and the Great Recession.

The structural oil price shock also shows evidence of declining volatility in periods (i.e., during the 1990s),

but with marked spikes of heightened volatility, in the early 1990s (the first Gulf War) and during the

Great Recession. Similar patterns have also been reported in Baumeister and Peersman (2013), who

explain the decline by a fall in oil supply elasticity.
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fiscal policy was governed by different fiscal regimes. Details for other time periods can

be obtained on request.

The results confirm that our identified shocks are in line with the results found in

the oil market literature. After an unexpected one standard deviation increase in global

activity, the real price of oil rises substantially on impact, reflecting that the real price

of oil is not exogenous to the macro economy, see, e.g., Kilian (2009), Lippi and Nobili

(2012). Moreover, after a one standard deviation shock to the real price of oil, world

activity falls, although with a lag. This is consistent with the fact that it takes time

before the higher production costs associated with the higher oil price work their way

through to actual output, see, e.g., Hamilton (2009).

Note also the differences in the response path of world activity and the real oil price

to shocks over time. The differences in impact responses reflect the changes in volatility

of the structural shocks, as already mentioned. However, we also observe some changes

in the response path that relate to the changes in the overall covariance structure of the

oil market, see Section 3.1 and equation (3). In particular, a world activity shock has

stronger impact on the oil price at the end of the sample (2012) than it has in the earlier

part of the sample (1983). This is consistent with studies documenting the important role

of global demand as a driver for the real price of oil over the past decade, see, Aastveit

et al. (2015). For the oil price shock, the changing effects on world activity across time

are minor, with the middle 1990s displaying slightly fewer volatile oil price shocks, and

subsequently also a milder downturn in the world economy.

4.2 Procyclical or countercyclical fiscal policy?

We now discuss the fiscal responses to the oil price and the global activity shocks, both

normalized to increase oil prices. First, Figure 3 compares the evolution of the responses

of some key variables in the public sector (value added, wages, employment and spending)

to an oil price shock that increases the real price of oil. In each row, we first graph impulse

responses for three specific periods in time: 1983, 1997, and 2012. The dates are chosen

to reflect three comparable periods: the initial discovery period during which spending

increased rapidly; the period just after the GPF started to generate some revenue (fiscal

policy was yet to be governed by a rule, and was intended to remain neutral over the

business cycle); and 10 years after the adoption of the fiscal rule. The two subsequent
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Figure 2. The figure reports the estimated impulse responses at three different periods of time. The

initial shock corresponds to a one standard deviation innovation (of the normalized data). All responses

are reported in levels (of the normalized data).

graphs offer more detail on the time-varying responses after the first and fourth quarters,

but now measured over the whole sample, and with 68 percent posterior probability

bands.17 Figure 4 displays similar responses, but now due to a positive global activity

shock.18

Starting with the oil price shock, i.e., an increase in the oil price that is not due to

increased global activity, a few results stand out. First, fiscal policy responds procyclically

to the oil price shock over the sample, even more so after the 2001 adoption of the fiscal

framework. In particular, the positive effects of an oil price shock on value added, real

wages, employment, and spending in the public sector are more pronounced today than

in the decade preceding the rule, and for value added and spending, also more procyclical

than in the 1980s, see Figure 3.

17We report 68 percent posterior probability bands as the overall posterior uncertainty is large due to the

high dimensionality of the model.
18Note that from now on we normalize the oil price and global activity shocks such that we compare

similarly sized innovations across time (see the discussion in Section 4.1).
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Figure 3. Oil price shock and the public sector: Time-varying responses. The first column displays

estimated impulse responses at three different periods of time. The initial shock is normalized to one

percent (of the normalized data). All responses are reported in levels (of the normalized data). The

subsequent two columns report a snapshot of the responses across the whole sample for two specific

response horizons. The color shadings represent 68 percent posterior probability bands. The black line

is the median estimate. The line is solid (dotted) whenever the median estimate is outside (inside) the

68 percent area in 2001:Q1. Finally, we plot a vertical line in 2001:Q1 to indicate the introduction of the

fiscal rule.

Turning to the global activity shock that spurred a rise in oil prices, c.f. Figure 2, the

picture is somewhat more nuanced, with some components of public sector (value added,

spending and wages) shifting from a clear countercyclical to more acyclical pattern during
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Figure 4. Global activity shock and the public sector: Time-varying responses. See Figure 3.

the last decade, see Figure 4. The takeaway is still that of a tendency for more (not less)

fiscal procyclicality since the adoption of the spending rule. This suggests that following

a global downturn accompanied by a contraction of the domestic economy, there is less

room for fiscal policy maneuvering. Figures 9 and 10, in online Appendix B.3, provide

more details on the procylicality of fiscal policy by analysing the effect on additional public

sector variables. The graphs show that the increase in fiscal procyclicality was particularly

pronounced for spending (excluding pensions) and transfers to municipalities, while the

increase in administrative expenses to oil price shocks has been more muted over the
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sample.19

Summarizing, we find clear evidence of nonlinearities in the responses of fiscal policy

to the oil price shocks in particular, and to some extent to the global activity shocks. In

particular, public spending, employment, and wages have responded significantly more

(not less) procyclically to these shocks since the adoption of the fiscal policy framework.20

4.3 Transmission of shocks and the domestic economy

According to Pieschacon (2012), the fiscal framework adopted by Norway shields the

economy from oil price fluctuations, implying only minor responses in domestic variables

following an oil price shock. She further claims that had Norway been more like Mexico,

without the fiscal policy framework in place, Norway would have had a larger share of

variance in the domestic variables attributed to the oil price shock.21 Our focus here is

not to compare Norway with Mexico, but to examine the extent to which the adoption of

the fiscal rule lessened exposure to oil price shocks.22 This is done in Figure 5. The figure

shows the contribution of the different shocks in the model to the variance in public value

added and domestic GDP (measured as the average over all domestic industries except

the public sector), over time. We focus on the role of oil price and global activity shocks

for response horizons 1, 4, and 8.

Two features stand out. First, there is a marked difference in the role played by oil

price shocks in explaining activity in the public sector since 2001. One year after the

shock occurs (horizon 4), more than 40 percent of the variance in public value added is

explained by oil price shocks by the end of the sample (2012), compared to 10 percent

prior to the adoption of the fiscal rule (1998/1999). This pattern holds true for all public

variables (results can be obtained on request) and clearly emphasizes the increased role of

oil price shocks in fiscal policy since 2001. Global activity shocks, on the other hand, do

19While we have chosen to focus on the fiscal variables here, results for all variables can be obtained at

request. However, as can be shown, the time variation observed in the fiscal variables is not due to time

variation in variables such as the exchange rate.
20In Figure 11 in online Appendix B.4, we show that the fiscal policy response to the two types of shocks

are significantly different, at least for some horizons, and in some periods.
21The arguments are based on a counterfactual experiment, in which Norway and Mexico change parame-

ters, but otherwise face their original shocks.
22Clearly, there may be many reasons why Norway is less exposed to oil price shocks than Mexico, including,

for instance, less corruption, more efficient bureaucracy, less mature oil sector etc.
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Figure 5. Time-varying variance decompositions. The plots report the median of the estimated variance

decompositions associated with the levels response of the variables to the following shocks; gact = global

activity shock; oil = oil price shock.

not explain much of the variation in the fiscal variables over the past decade, suggesting

a more countercyclical or acyclical fiscal policy with regard to the global shocks.23 It is

noteworthy that our findings encompass those in Pieschacon (2012), although we reach

opposite conclusions. That is, based on an estimation period from 1986 to 2005 she finds

that approximately 10 percent of government purchases could be explained by oil price

shocks after two years, which is not very different from what we also observe on average

for the same period, see Figure 5. However, and as seen above, starting in 2001, the

pattern changes markedly, suggesting increased exposure of the public sector to the oil

price shocks.

Second, and turning to GDP in the domestic economy, we find that the oil price shocks

explain more than 10 percent of the variance in the domestic variables at horizon 4. This

is more than twice as much as is being explained in Pieschacon (2012). We also find an

increase in the share explained by oil price shocks since 2001, albeit not to the extent of

the public sector. Finally, the role played by the global activity shocks in explaining GDP

increases throughout the sample, in particular during the last decade.

Impulse responses for non-oil GDP to an oil price shock and a global activity shocks are

23For some public variables, i.e., public wages and spending, global activity shocks explain slightly more of

the variance in the last decade, but always less than the variance explained by the oil price shock.
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reported in Figures 12 and 13, in online Appendix B.5, respectively. In the same figures,

we also report the responses in manufacturing production, emphasizing also the (non-oil)

tradeable sector in the economy. As seen there, both GDP and manufacturing production

respond slightly positively to an oil price shock. Furthermore, while the responses have

increased slightly since the spending rule was adopted, suggesting that having a rule may

have benefited the (non-oil) tradeable sector, by the end of the sample the positive effect

is no longer significant. After a world activity shock, however, the response is clearly

significant and positive, although the effect has declined by the end of the sample.

As the above discussion shows there is evidence of nonlinearity also in the response

of the domestic economy to shocks that increase oil prices, suggesting a stronger pass-

through of oil related shocks to the economy after the 2001 adoption of the fiscal rule.

In short, then, the fiscal framework does not effectively shield the economy from oil price

fluctuations. If anything, fiscal policy has exacerbated the effects of oil price shocks on

the domestic economy, even more so in fact after the adoption of the fiscal rule. If Norway

has a more muted response to oil price shocks than countries like Mexico, as argued in

Pieschacon (2012), it must be for other reasons than the fiscal rule.

Having said that, one can easily argue that if the private sector is also stimulated by

the oil price and global activity shocks, as indicated by the results in Figures 12 and 13,

maybe the stimulus to the public sector is simply following the increase in the domestic

economy. Some studies, i.e., Céspedes and Velasco (2014) and Husain et al. (2008),

estimate the effect of a change in commodity prices on government expenditures relative

to GDP, and find that measured in relative terms, fiscal policy has been countercyclical.

Figure 6 addresses this issue, as well as highlights the importance of separating between

the shocks driving the oil market and their domestic implications. In particular, the figure

reports the response, across time and horizons, of value added, wages and employment in

the public sector relative to the response in the domestic economy. A value above zero

indicates the public sector responds more positively to the given shock than the private

sector. The last row in the figure reports the effect on the primary balance.24

We find that for a given oil price shock, the public sector has clearly grown at the

expense of the private sector. This again suggests that fiscal policy exacerbates the effect

24To enhance comparison across the graphs the global activity and real oil price shocks are normalized to

1 and 10 percent, respectively.
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Figure 6. Public sector relative to the domestic economy and the primary balance. Each plot reports the

response, across time (x-axis) and horizons (y-axis), of an outcome variable in the public sector relative

to the response in the domestic economy. Here, the domestic economy is defined as the average response

across all sectors, except the public sector. The initial shock is normalized to 1 percent. All responses

are reported in levels. A value above zero indicates a more positive response by the public sector to the

given shock than by the mainland economy as a whole. For readability the relative responses are also

smoothed by applying a 3 quarter moving average transformation. See the text for the definition of the

primary balance.



of the oil price shocks on the domestic economy. This is quite different to what Pieschacon

(2012) and others have asserted. There it is argued that fiscal policy regulates the size of

the pass-through.

Turning to global activity shocks, the results are reversed. The positive effect on GDP

is stronger than that on the public sector; as seen by the negative effect in the figures.

Hence, when the oil price rises due to global demand, the direct spillovers to the domestic

economy are substantial, much stronger than the pass-through via government spending.

Yet, we note that, since the start of the millennium, the spillovers to the private sector

(relative to the public sector) have diminished, in line with the more procyclical fiscal

policy responses reported above.

The transmission of shocks via the primary balance confirms our claim. Following an

oil price shock that generates procyclical fiscal responses, we would expect to see negative

numbers for the primary balance, all else being equal. We see evidence of this in the lower

right frame of Figure 6. However, all else is not equal, as emphasized above. In particular,

the oil price shocks are also transmitted to the domestic economy, implying increased tax-

receipts and an improvement in the primary balance: hence the more muted response in

Figure 6. For the global activity shock, however, we should observe positive numbers

for the primary balance, since the stimulus to the domestic economy (and subsequent

tax-receipts) is more substantial now than the effect via increased public spending. This

is confirmed in the lower left frame in Figure 6. However, note also the steep decline in

the primary balance from 2000/2001, consistent with the findings of a more procyclical

fiscal policy in recent times.

We therefore conclude that studies suggesting a countercyclical fiscal policy response,

as a share of GDP or based on the primary balance, in the recent boom, should attribute

it to global activity shocks and their domestic propagation, rather than the adopted fiscal

framework.

4.4 Interpretations and extensions

After reading our conclusion, it would be reasonable to ask why the fiscal rule has induced,

against the government’s intentions (c.f. Section 2), a procyclical fiscal policy with regard

to oil price fluctuations? The answer is not that the fiscal rule has been violated. In fact,

the fiscal authorities have managed in large part to actually follow the rule by using only
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roughly 4 percent of the Fund every year, see e.g. Ministry of Finance (2015). Instead,

we believe the answer has to do with the design of the fiscal framework and bad luck in

timing. When the rule was promulgated, in 2001, the Fund’s market value amounted to

roughly 20 percent of Norwegian GDP. Going forward, the fiscal authorities assumed the

price of oil would remain more or less unchanged, at 200 NOK per barrel. This expectation

turned out to be wrong. During the 10-year period from 2001 to 2011, the price of oil

increased considerably, to over 600 NOK per barrel. Accordingly, the inflow of money

to the Fund was much higher than expected, and by 2013 its market value exceeded 180

percent of Norwegian GDP. Thus, almost by construction, it has been difficult to restrain

the close to automatic increase in spending that has followed from taking out a close to

constant fraction (4 percent) of a Fund that, for long periods, has been highly correlated

with the oil price.25

Figure 7 illustrates this point, and shows the close connection between the growth in

the price of oil and the revisions of the fiscal rule from 2001 to 2014. Over this period,

public spending implied by the 4 percent rule has been revised upwards in line with growth

in the oil price. According to our results, the discretionary deviations from the 4 percent

rule that may have taken place during the recent commodity price boom have simply not

been large enough to counteract the changes in structural policy parameters induced by

the introduction of the rule and the associated increase in spending potential from the

higher oil prices.

Our narrative about fiscal policy differs from earlier studies in the literature because

we allow for time-varying parameters, and because we allow for two different oil market

shocks. Additional exercises provide some further intuition, as well as a check for robust-

ness. First, regarding the role of shocks, from the late 1990s the unconditional correlation

between oil prices and public spending gradually increase, (c.f. Figure 1), suggesting a

more procyclical fiscal policy. During the financial crisis, however, the positive uncondi-

tional correlation fell (again, c.f. Figure 1), suggesting a more countercyclical fiscal policy.

However, as the financial crisis is a period of negative global demand shocks (reducing

both oil prices and global activity), the countercyclical behaviour in this period is most

likely due to the changing composition of oil market shocks, not to changing policy. Hence,

25That developments in the Fund have been highly correlated with the oil price in the past ten years has

also been emphasized by Norges-Bank (2012).
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Figure 7. The price of oil and spending revisions. Spending revisions refer to the difference between

the assumed path for the fiscal rule in the budget year 2014 (in percentage of GDP) minus the assumed

path in the original budget in 2001 (in percentage of GDP).

even investigating simple correlations, we see that the composition of shocks matters.

Second, the results documented in this analysis are conditional on, but not driven by,

the proposed time-varying DFM. In fact, when we estimate a constant parameter DFM

model over two different samples, pre and post 2001, we find clear evidence of increased

procyclicality post 2001 for both the structural oil price shocks and the global activity

shocks, see Figure 14 in online Appendix B.6. Still, using a simple split sample framework

is sensitive to the subjectively chosen break date, and may under/over estimate the true

coefficients if there is variation within each sub-sample, as the analysis in Section 4.2

clearly suggests. To capture such behavior, one needs a flexible model allowing for time-

varying parameters, such as the one used in our analysis.

Third, to further illustrate significance of results, we graph in Figure 15 in online

Appendix B.6 impulse response distributions using the time-varying DFM at two different

points in time: in 2012:Q1 (After fiscal rule) and in 1999:Q1 (Before fiscal rule). Thus,

the figure is comparable to Figure 14. Again we find evidence of significant increased

procyclicality, but now only following the oil price shocks. However, this is not very

surprising, as posterior uncertainty is large due to the high dimensionality of the time-

varying parameter specification.

Relatedly, the fact that we find a more procyclical fiscal policy after the introduction

of the fiscal rule is not driven by changes in how global activity responds to oil price

shocks or vice versa. In particular, when we normalize the oil price (world activity) shock

to have the same effect on global activity (oil prices) throughout the sample, we confirm
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the results we have already obtained, see Figure 16 in online Appendix B.7.

Fourth, as Figure 17 in online Appendix B.8 shows, changing the dynamic specification

used in the baseline model does not change our qualitative conclusions. That is, estimating

the time-varying DFM with s = 0 (no lags of the dynamic factors in the observation

equation of the system), h = 4 (four lags in the transition equation of the system), or

both s = 0 and h = 4, result in the same conclusion regarding procyclical fiscal policy

after 2001.

Finally, the assumption that global economic activity does not react on impact to oil

price shocks could be debated. To address this concern we identify the shocks with sign

restrictions as a robustness check. Specifically, exogenous oil price shocks are identified

as shocks that have the opposite (sign) contemporaneous impact on oil prices and global

economic activity, whereas global activity shocks are shocks that have the same (sign)

impact on both variables (see e.g. Peersman (2005)). Such an identification strategy does

allow for an immediate effect of oil price shocks on global economic activity. Doing so,

we find that our earlier results are robust, see Figures 18 and 19 in Appendix B.9.

5 Conclusion

This paper questions whether the adoption of fiscal spending rules insulates resource-

rich economies from oil price fluctuations. In pursuing the question we develop a time-

varying Dynamic Factor Model, in which both the volatility of structural shocks and the

systematic fiscal policy responses are allowed to change over time. We focus on Norway.

Unlike most oil exporters, Norway has established a sovereign wealth fund operated as a

hybrid between a savings- and stabilization fund, and a fiscal rule designed specifically to

shield the domestic economy from oil price fluctuations. We find that, contrary to common

perceptions, fiscal policy has been more (not less) procyclical with oil price fluctuations

since the adoption of the fiscal rule. That is to say, fiscal policy has not effectively sheltered

the economy from oil price shocks. However, following a global activity shock that also

increases oil prices, the picture is more nuanced, with some components of public spending

being countercyclical relative to GDP. We suggest that studies that find a countercyclical

fiscal policy response in the recent boom, should put it down to global activity shocks

and their domestic propagation, rather than the adopted fiscal framework.
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Still, although the fiscal rule has not managed to shelter the Norwegian economy

from oil price fluctuations, the goal of saving resource revenue for future usage has been

accomplished. The fiscal authorities have in large managed to actually follow the rule, and

by only using roughly 4 percent of the Fund every year the Norwegian sovereign wealth

fund is today the largest in the world. From a policy point of view, the implications of our

findings are therefore of general interest since they highlight the strengths and weaknesses

of the fiscal framework adopted in a resource rich economy whose handling of its resource

wealth has been described as exemplary.
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Appendices

Appendix A Data

Table 2 summarizes the data entertained, their sources, and the transformations used.

As described briefly in Section 3.2 of the main paper, we also remove the local mean (of

the transformed data) and then standardize the resulting data before estimation. The

local mean adjustment is done prior to the standardization to control for low frequent

movements in the growth rates (changes in the mean) across time, see, e.g., Stock and

Watson (2012). We have experimented with different methods of doing the local mean

adjustment. In the benchmark case we simply subtract a deterministic linear time trend

from the transformed data. In two alternatives we estimate the local mean as the average

of the transformed data over a centered moving window of +
−30 quarters, and as the

components of the time series with fluctuations between 150 and 200 quarters, obtained

from a band-pass filter. Irrespective of which method we use the resulting time series

are highly similar. The band-pass and the deterministic linear trend removal approaches

result in time series with a correlation coefficients well above 0.95 for most series. Finally,

some of the series also inhabit clear outliers or measurement errors (e.g., Transfers). We

define outliers as observations being outside 3 × interquartile range, and automatically

remove them by using linear interpolation.

As in the factor model proposed in Bjørnland and Thorsrud (2016), all data are

transformed to year-on-year growth. In Norway, and with the data used here, the factor

structure is much stronger using this data transformation than for example using quarter-

on-quarter growth. In particular, estimating two factors using the principal component

method explains only roughly 20 percent of the variation in the data when quarter-on-

quarter growth is used, but 40 percent when using year-on-year growth. Still, in Figure

20, in Appendix B.10, we show that our main results are qualitatively robust to estimating

the DFM using quarter-on-quarter growth.
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Table 2. Data. The vintage of Norwegian data are collected from Statistics Norway (SSB). We use data

from the quarterly national account and the central government fiscal account. In the official statistics,

data for some of the series (e.g. for employment), do not cover the earlier part of our sample, but were

generously made available to us by SSB. The international data, with the exception of the exchange

rate, were sourced from the GVAR database constructed by Gang Zhang, Ambrogio Cesa Bianchi, and

Alessandro Rebucci at the Inter-American Development Bank. In the column head “Empl.”, an “x”

indicates that we use both value added and employment data for the variable at hand. All value added

data are measured in real terms, as calculated by SSB. The following transformation codes applies: 9 =

year-on-year percentage growth (yt = xt/xt−4 × 100 − 100), 11 = year-on-year logarithmic difference

(yt = ln(xt)− ln(xt−4)). See Section 3.2 and the text for additional details.

Source Variable Empl. Trans. Description

N
a
t
io

n
a
l
A

c
c
o
u
n
t

Res. extraction x 11 Oil and natural gas extraction/mining

Res. service x 11 Service activities in oil and gas/mining

Manufacturing x 11 Manufacturing

Construction x 11 Construction

Retail x 11 Wholesale and retail trade

Transp. ocean x 11 Ocean transport

Transportation x 11 Transport activities excl. ocean transport

Hotel and food x 11 Accommodation and food service activities

Financial x 11 Financial and insurance activities

Scientific x 11 Professional, scientific and technical activities

Business x 11 Administrative and support service activities

Non-resource x 11 Total excl. oil and gas extraction/mining

Public x 11 General government

Public consumption 11 General government

Wages petroleum 11 Wages petroleum sector

Wages public 11 Wages public sector

Wages non-res. 11 Total excl. wages to petroleum sector

F
is
c
a
l
a
c
c
o
u
n
t Spending 11 Central government total expenditures

Spending excl. pensions 11 Central government total expenditures excluding pensions

Operating costs 11 Central government operating costs

Transfers 11 Central government transfers to municipalities and county authorities

Tax revenue 9 Tax revenue excl. petroleum

Tax revenue petroleum 9 Tax revenue from petroleum

I
n
t
. World activity 11 World economic activity indicator, see Section 3.2

Oil price 11 Real price of oil, see Section 3.2

Exchange rate 11 Bank of International Settlements (BIS) effective exchange rate index,

broad basket
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Appendix B Additional results

B.1 Business cycle factors

World activity Real price of oil

Resource activity Mainland (domestic) activity

Figure 7. Observable and latent factors. The figures display the two observable factors together with

the two estimated latent factors. The color shadings represent 68 percent posterior probability bands.

The black line is the median estimate.
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B.2 Volatilty of shocks
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Figure 8. Time-varying volatility and oil price- and global activity shocks. The figures report the

estimated standard deviation of the shocks across time. The color shadings represent 68 percent posterior

probability bands. The black line is the median estimate. The line is solid (dotted) whenever the median

estimate is outside (inside) the 68 percent area in 2001:Q1.
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B.3 Components of public spending
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Figure 9. Oil price shock and the fiscal budget: Time-varying responses. The first column displays

estimated impulse responses at three different periods of time. The initial shock is normalized to 1

percent (of the normalized data). All responses are reported in levels (of the normalized data). The

subsequent two columns report a snapshot of the responses across the whole sample for two specific

response horizons. The color shadings represent 68 percent posterior probability bands. The black line

is the median estimate. The line is solid (dotted) whenever the median estimate is outside (inside) the

68 percent area in 2001:Q1.
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Figure 10. World activity shock and the fiscal budget: Time-varying responses. See Figure 9.
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B.4 Response differences in public sector variables
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Figure 11. Response differences and public variables. The graph reports the response difference in value

added, wages and employment in the public sector following a world activity relative to oil price shock

(world activity - oil price) at horizon 1 (left column) or horizon 4 (right column). The color shadings

represent 68 percent posterior probability bands. The dotted black line is the median difference.
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B.5 Responses in the non-oil economy
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Figure 12. Oil price shock and the macroeconomy: Time-varying responses. See Figure 3.
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Figure 13. World activity shock and the macroeconomy: Time-varying responses. See Figure 3.
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B.6 Sub-sample analysis and significance

Word activity shock Oil price shock

Figure 14. Box plots of impulse responses estimated using a constant parameter DFM on two sub-

samples, pre and post 2001. The response horizon is 4 quarters. The width of each box reflects the

interquartile range. The median (mean) estimate is displayed by a horizontal line (circle).

Word activity shock Oil price shock

Figure 15. Box plots of impulse response distributions using the time-varying DFM at two different

points in time: in 2012:Q1 (After fiscal rule) and in 1999:Q1 (Before fiscal rule). The initial shock is

normalized to 1 percent (of the normalized data). The response horizon is 4 quarters. The width of each

box reflects the interquartile range. The median (mean) estimate is displayed by a horizontal line (circle).
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B.7 Alternative normalizations
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Figure 16. World activity and oil price shocks and the public sector: Time-varying responses. The

first two columns display estimated impulse responses following a world activity shock. The initial shock

is normalized to increase the price of oil with one percent (at each point in time). The subsequent two

columns display estimated impulse responses following an oil price shock. The initial shock is normalized

to decrease global activity by one percent after 8 quarters (at each point in time). All responses are

reported in levels. The color shadings represent 68 percent posterior probability bands. The black line

is the median estimate. The line is solid (dotted) whenever the median estimate is outside (inside) the

68 percent area in 2001:Q1. Finally, we plot a vertical line in 2001:Q1 to indicate the introduction of the

fiscal rule.
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B.8 Different model specifications
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Figure 17. World activity and oil price shocks and the public sector: Scatter plots and time-varying

responses for different model specifications. The initial shock is normalized to one percent (of the nor-

malized data). All responses are reported in levels (of the normalized data). The scatter plots report

time-varying responses at all horizons for different model specifications relative to the baseline model.

The comparisons use the median estimate at each point in time and compares the baseline predictions

(x-axis) against three alternative model specifications: Model alternative 1 is identical to the baseline

model but with s = 0, i.e., no lags of the dynamic factors in the observation equation of the system;

Model alternative 2 is identical to the baseline model but with h = 4, i.e., only four lags in the transition

equation of the system; Model alternative 3 is identical to the baseline model but with s = 0 and h = 4. In

the horizon specific impulse response plots, the color shadings represent 68 percent posterior probability

bands from the baseline model. The black lines are the median estimates from three alternative model

specifications. We plot a vertical line in 2001:Q1 to indicate the introduction of the fiscal rule.
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B.9 Sign restrictions
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Figure 18. The figure reports the estimated impulse responses at three different periods of time. The

shocks are identified with sign restrictions. That is, the world activity shock is restricted to increase

world activity and the oil price on impact. The oil price shock is restricted to decrease world activity and

increase the oil price on impact. The lines reflect the median estimate from the sign identified admissible

sets. The initial shock corresponds to a one standard deviation innovation (of the normalized data).
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World activity shock Oil price shock
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Figure 19. World activity and oil price shocks and the public sector: Time-varying responses using

sign restrictions. The first two columns display estimated impulse responses following a one standard

deviation world activity shock. The shock is restricted to increase world activity and the oil price on

impact. The subsequent two columns display estimated impulse responses following a one standard

deviation oil price shock. The shock is restricted to decrease world activity and increase the oil price on

impact. All responses are reported in levels. The color shadings represent 68 percent posterior probability

bands from the baseline model (identified using recursive ordering). The dotted black line is the median

estimate from the sign identified admissible set. Finally, we plot a vertical line in 2001:Q1 to indicate the

introduction of the fiscal rule.
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B.10 QoQ model specification
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Figure 20. World activity and oil price shock and the public sector: Time-varying responses. The

model is specified using quarterly growth rates (as opposed to year-on-year growth as in the baseline

model). The initial shock is normalized to one percent (of the normalized data). All responses are

reported in levels (of the normalized data). The color shadings represent 68 percent posterior probability

bands. The black line is the median estimate. The line is solid (dotted) whenever the median estimate

is outside (inside) the 68 percent area in 2001:Q1. Finally, we plot a vertical line in 2001:Q1 to indicate

the introduction of the fiscal rule.

Appendix C Convergence of the Markov Chain Monte

Carlo Algorithm

Table 3 summarizes the main convergence statistics used to check that the Gibbs sampler

mixes well. In the table we first report the mean, as well as the minimum and maximum,

of the 10th-order sample autocorrelation of the posterior draws across all parameters. A
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Table 3. Convergence statistics. The AutoCorr row reports the 10th-order sample autocorrelation of

the draws, the RNE row reports the relative numerical efficiency measure, proposed by Geweke (1992),

while the IRL row reports the i-statistic, proposed by Raftery and Lewis (1992). For each entry we

report the mean value together with the minimum and maximum value obtained across all parameters in

parentheses. Finally, for computational convenience, the scores for Q∗t , H∗t , and Z∗t are only computed

for observations 10, 40, 70, and 100.

Parameters

Statistic W S B V Q∗t H∗t Z∗t at

AutoCorr −0.0
(−0.1,0.1)

−0.0
(−0.1,0.0)

−0.0
(−0.0,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

0.0
(−0.1,0.1)

RNE 0.9
(0.4,1.7)

0.3
(0.3,0.5)

0.7
(0.4,1.0)

0.2
(0.1,0.3)

0.5
(0.2,1.5)

1.0
(0.6,1.8)

0.8
(0.3,2.1)

0.4
(0.1,1.2)

IRL 1.0
(1.0,1.1)

1.3
(1.3,1.3)

1.1
(1.1,1.1)

1.5
(1.0,2.1)

1.2
(1.1,1.3)

1.0
(1.0,1.0)

1.0
(0.9,1.6)

1.0
(1.0,1.0)

low value indicates that the draws are close to independent. The second row of the table

reports the relative numerical efficiency measure (RNE), proposed by Geweke (1992).

Here we use an RNE version controlling for autocorrelation in the draws by employing

a 4 percent tapering of the spectral window used in the computation of the RNE. The

RNE measure provides an indication of the number of draws that would be required to

produce the same numerical accuracy if the draws represented had been made from an

i.i.d. sample drawn directly from the posterior distribution. An RNE value close to or

below unity is regarded as satisfactory. The last row, labeled IRL, reports the mean of

the i-statistic. This statistic was proposed by Raftery and Lewis (1992). In essence it

measures the ratio of two other statistics: the total number of draws needed to achieve

the desired accuracy for each parameter, and the number of draws that would be needed

if the draws represented an i.i.d. chain, see Raftery and Lewis (1992) for details.1 Values

of IRL exceeding 5 indicate convergence problems with the sampler.

As can be seen from the results reported in Table 3, the sampler seems to have con-

verged. That is, the mean autocorrelations are all very close to zero, and the minimum or

maximum values obtained seldom exceed 0.1 in absolute value. Moreover, the mean RNE

statistic does not exceed unity by a large margin for any of the parameters. However,

for W , Q∗t , H
∗
t , and Z∗t there are signs that some of the parameters have higher scores.

1The parameters used for computing these diagnostics are as follows: quantile = 0.025; desired accuracy

= 0.025; required probability of attaining the required accuracy = 0.95.
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For example, for Z∗t , the maximum obtained score is 2.1, indicating that only roughly 20

percent of the numbers of draws would be required to achieve the same accuracy from

an i.i.d. set of draws. Finally, the IRL statistics are always well below 5. Additional

convergence results can be obtained on request.

Appendix D Prior specification and sensitivity

As noted in Section 3, to estimate the model, we need priors for the initial state variables

a0, z0, ao0, hσ0 , and hη0, and for the hyper-parameters Φ, S, B, W , Φ and V . Below,

we first describe the prior specification used in the benchmark model, i.e., the model on

which the results in Section 4 build. We then discuss in greater detail the reasons for why

this specific prior specification was adopted, and subsequently also discuss the sensitivity

of our main results to other prior specifications.

The priors for the initial states take the following form:

a0 ∼N(
¯
y, Iqh) z0 ∼N(ẑOLS, Im̃)

ao0 ∼N(0, Iqq) hσ0 ∼N(0, Iq)

hη0 ∼N(0, IN)

where m̃ = q(s + 1)N , qq = q(q−1)
2

, and
¯
y is a stacked column vector of the observed

values for the first q variables in yt for t = 0, . . . ,−h. ẑOLS are constant parameter

OLS estimates of the matrix Z (stacked by rows) in equation (1a), covering the sample

1981:Q3-1990:Q1. In these initial estimates the unknown elements of at are approximated

by principal components estimates of the panel of observables in ỹT .2

The priors for the hyper-parameters Φ and Φ are set to:

¯
Φ ∼N(Φ̂OLS, V (Φ̂OLS))

¯
Φi ∼N(0, Ip · 0.5) for i = 1, . . . , N

where Φ̂OLS are OLS estimates of equation (1b), covering the sample 1982:Q1-2012:Q4.

As above, when estimating the OLS quantities, the unknown elements of at are approx-

imated by principal components estimates of the panel of observables in ỹT . V (Φ̂OLS) is

2These estimates do not take into account the potential autocorrelation and stochastic volatility associated

with the idiosyncratic errors.
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a diagonal matrix where the non-zero entries are the variance terms associated with the

Φ̂OLS elements.

The priors for the remaining hyper-parameters are all from the Inverse-Wishart dis-

tribution:

¯
Wi ∼IW (

¯
TW ,

¯
TW · Im · κ2

W )
¯
TW = 125, κW = 0.1 for i = 1, . . . , N

¯
Sl ∼IW (

¯
T S,

¯
T S · Il · κ2

S)
¯
T S = 25, κS = 0.05 for l = 1, . . . , q − 1

¯
B ∼IW (

¯
TB,

¯
TB · Iq · κ2

B)
¯
TB = 100, κB = 0.1

¯
Vi ∼IW (

¯
T V ,

¯
T V · Ip · κ2

V )
¯
T V = 10, κV = 0.1 for i = 1, . . . , N

where the first element in each prior distribution is the degrees of freedom parameter,

and the second the scale parameter. We note that for the Inverse-Wishart distribution

the prior scale matrix has the interpretation of the prior sum of squared residuals.3

D.1 Prior discussion

In the following we elaborate our reasons for choosing the prior specification described

above. We focus our discussion of alternative specifications of
¯
Tν and κν for ν = {W,S,B, V },

since the prior specifications for the other priors, ẑOLS, Φ̂OLS, and V (Φ̂OLS), seem to be

of minor empirical importance.4

Before going into the details it is worth considering a simplified example. Assume a

parameter αt follows a random walk like αt = αt−1 + et ∼ N(0, Q), where Q ∼ IW (
¯
T,

¯
T ·

κ2). Then, for a given
¯
T , varying the size of κ will result in very different prior beliefs about

the amount of time variation in αt. For example, letting κ = {0.05, 0.1, 0.15}, will result

in a roughly 95 percent prior probability of a 100 percent, 200 percent and 300 percent

cumulative change in αt, respectively, over a period of 100 observations. Accordingly, the

priors on V , S, B and W , defines our prior belief on the amount of time variation in the

parameters. We will discuss the latter three first, since our results do not seem to be

sensitive to the prior settings for
¯
TV and κV .

3Therefore, each scale matrix is multiplied by the degrees of freedom parameter. Also, for the Inverse-

Wishart prior to be proper, the degrees of freedom parameter must be larger than the dimension of the

scale matrix. This is the case in all our prior specifications.
4This finding is common in the literature entertaining time-varying parameter models, and is also found

in, e.g., Primiceri (2005) and Del Negro and Otrok (2008), all of whom estimate models that are related

to ours.
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The setting of S and B defines our prior beliefs about the amount of time variation

in equations (7b) and (7c), and ultimately the stochastic volatility part of the transition

equation in (1b). The setting of W defines our prior belief about the amount of time

variation in (7a), i.e., the time-varying factor loadings (zt). Unfortunately, there is a

trade-off between these two. For example, for a similarly sized prior belief on
¯
TB,

¯
TS, and

¯
TW , setting κB and κS very low, but κW very high, will force most of the model fit to be

explained by the time-varying factor loadings. In the reverse case, setting κB and κS very

high and κW very low, will almost remove the time variation in zt.

The trade-off faced in setting the priors for κB, κS and κW make their role important.

However, our research question and earlier literature can guide us in setting these priors.

The time-varying parameters and stochastic volatilities are introduced in the Dynamic

Factor Model to capture important “stylized facts” associated with global business cycles

in general and the Norwegian domestic business cycle in particular. That is, we want

to allow for: 1) A changing dependence structure, where the panel of domestic variables

have a time-varying exposure to the aggregate business cycle factors, due to, e.g., changes

in systematic fiscal policy, and 2) Great Moderation and Recession effects, where the

volatility in aggregate business cycle variables seems to have fallen and then increased

again over the last decades.

To allow for 1) we set κW = 0.1 and
¯
TW = 125. This prior belief permits the factor

loadings to vary considerably across time. For our purpose, which is to uncover any po-

tential changes in the parameters due to structural changes in the conduct of fiscal policy,

this seems reasonable. Importantly, as described in Appendix E, the sampling algorithm

used to estimate the time path for the structural parameters is essentially a smoothing

algorithm. However, across the time period evaluated in this analysis many fiscal regimes

have been present, see Section 2. Each new regime will plausibly be associated with a

new set of policy parameters, that should not be smoothed out. Thus, by allowing for a

high degree of variability in the process driving the time evolution of the structural factor

loadings, we ensure these parameters are free to jump in response to new policy regimes.

The downside of imposing this prior belief is, of course, that the factor loadings might

change considerably over time, but just in order to explain outliers and push the in-sample

errors to zero. As noted in Primiceri (2005), this type of behavior by the time-varying

parameters is typical of very narrow likelihood peaks in possibly uninteresting regions of
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the parameter space, where the level of the likelihood is not informative of the model’s

fit. However, our focus is not on, e.g., forecasting, where the above problem might be a

bigger concern, but on uncovering jumps in the systematic policy parameters across time

and the associated implications for the Norwegian macro economy.

To allow for 2), we set κS = 0.05 and κB = 0.1. This belief is in accordance with a

large literature that have already established that the volatility of international business

cycle shocks have indeed changed significantly in recent decades. For example, both Stock

and Watson (2005) and Del Negro and Otrok (2008) document drops in volatility among

G7 countries of over 50 percent since the late 1970s. The findings in Del Negro and

Otrok (2008) suggest moreover that the fall in the volatility in the Norwegian business

cycle is even bigger, close to 150 percent over the period from the early 1980s to the

mid 2000s. Likewise, according to findings in Baumeister and Peersman (2013), the

conditional standard deviation in the change in the real price of oil has moved from

around 20 in the mid 1980s, to 10 in the mid 1990s, and back again to above 20 at

the late 2000s, reflecting changes of over 100 percent within a period of 10 years. Our

setting of
¯
TB = 100 reflects our confidence in this evidence. Conversely, our setting of

¯
TS = 25 reflects our lack of strong prior beliefs about time-variation in aot, at least for

the Norwegian economy. Moreover, as described above, both κS, κB, and their associated

degrees of freedom parameters must be set in relation to κW and
¯
TW . Since we allow for

a large degree of variation in the factor loadings, we must also allow for a large degree of

variation in the volatilities. If not, our experience is that most of the model fit is tilted

toward variation in one of them, which is not a desirable property.5

We have neither good evidence nor prior beliefs as to the amount of time variation

to expect in the stochastic volatilities associated with the idiosyncratic errors. Therefore,

κV is set equal to κB for consistency, and
¯
TV = 10, reflecting that we are reasonably

uninformative about this parameter.

5As a check of whether or not these priors are sensible we have also estimated a Dynamic Factor Model

with constant parameters over two different sub-samples, pre and post 2001. By computing the absolute

change in the factor loadings and the standard deviation of the errors in equation (1b) across those two

sub-samples we find that the absolute change in z is well above 100 percent, for many variables, and that

the absolute change in Σ is in fact close to 150 percent for the Norwegian business cycle factors. Thus,

although somewhat on the high end, our prior belief on the amount of time variation in zt (reflected by

the W prior) and Σt (reflected by the B prior) seem reasonable also according to this criteria.
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D.2 Prior sensitivity

To gauge the extent to which our results are sensitive to the specific prior specification

discussed above, we have estimated the time-varying DFM with a set of alternative prior

specifications. In the light of our discussion in Section D.1, we focus on the priors for

B and W , and the setting of κ. Especially, we estimate the model letting κ be in the

set κ = {0.05, 0.1, 0.15} for all combinations of B(κ) and W (κ). In total this amounts

to 9 different model estimates, encompassing our benchmark model but also allowing for

models which a-priori allow for somewhat lower and higher parameter variability. We

evaluate the appropriateness of these models both informally and formally.

In a Bayesian setting, the natural formal scoring metric is the marginal likelihood.

However, for high dimensional and complex time-varying factor models such as ours, com-

puting this statistic is difficult, and we are not aware of any good agreed upon method for

how to do so. For this reason we developed a Reversible Jump Markov Chain Monte Carlo

(RJMCMC) algorithm to assess the marginal likelihood implied by the different model

and prior specifications. A full description of how our implementation of the RJMCMC

algorithm is provided in Appendix F. Here we note that we in a simulation experiment

have validated that the algorithm seems to be able to select the correct model among

a set of competing specifications, but that the convergence properties of the algorithm

are poor and that the estimates have a large degree of uncertainty.6 Still, conditional on

these shortcomings, the marginal likelihood assessment seems to favor models with prior

specifications where κ = 0.05 for the W prior and κ ≥ 0.05 for the B prior, or in other

words, a somewhat lower variability in the factor loadings than what we believe to be

true in the benchmark model, but more or less the same variability for the time-varying

volatilities. Given the attendant caveats explained above, however, we do not put too

much confidence in these results.

More important, then, is the informal evaluation in which we assess the extent to

which our main results change depending on the prior specification. As explained in

Section D.1, we want to allow for substantial time variation in the factor loadings and the

volatilities, but not enforce it such that the results are solely driven by our prior beliefs.

6This might be because the likelihood surface is highly complex, or because our implementation of the

algorithm is inefficient. Another reason might be that we have to be parsimonious regarding the number

of simulations due to computational issues, see the discussion in Appendix F.1.
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Figure 21. Public sector relative to the mainland economy using different priors. Each plot reports the

response, across time (x-axis) and prior specification (y-axis), of an outcome variable in the public sector

relative to the response in the mainland economy. Here, the mainland economy is defined as the average

response across all sectors, except the public sector. The initial shock is normalized to 1 percent (of the

normalized data). All the relative responses are reported as averages across impulse response horizons

1 to 8. A value above zero indicates that the public sector responds more positively to the given shock

than the mainland economy as a whole. The different prior specifications listed on the y-axis correspond

to different combinations of κ for the B and W priors. In particular, we compare models letting κ be

in the set κ = {0.05, 0.1, 0.15} for all combinations of B(κ) and W (κ). Thus, B1W1 corresponds to

setting κ = 0.05 for both B and W , B1W2 corresponds to setting κ = 0.05 for B and κ = 0.1 for W ,

etc. The main results reported in Sections 4.1 and 4 correspond to using a model with the B2W2 prior

specification.
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As documented in Section 4, when allowing for a large degree of time variation in both

the volatilities and factor loadings, i.e., setting κW and κB high, the results point to a

large degree of time-varying impulse responses. However, the main conclusion regarding

increased procyclical fiscal policy after the implementation of the fiscal rule also holds for

models with priors that allow for much less time variation. Indeed, even for combinations

of B(κ) and W (κ) where κ = 0.05, we observe time variation in the result implying a

more procyclical fiscal policy after the adoption of the fiscal rule. These additional results

are summarized in Figure 21. The figure reports the same type of results as reported

in Figure 6, but for different prior specifications.7 As is clearly seen in the figure, after

a positive world activity shock, fiscal policy has become less countercyclical over time.

After a positive oil price shock, the public sector grows relative to the mainland economy,

and particularly so after the adoption of the fiscal rule. Both findings confirm what have

already documented in Section 4.

In sum, the sensitivity analysis shows that our main results are not driven by the prior

specification. We leave it to future research to devise better ways of formally computing

posterior model probabilities, or marginal likelihoods, for high dimensional and complex

models as the one entertained here.

Appendix E The Gibbs sampling approach

Section 3.3 of the main paper gives a short overview of how the DFM is estimated. Here we

provide a more detailed overview. For convenience, we repeat the main system equations:

yt =z0,tat + · · ·+ zs,tat−s + et (16a)

at =Φ1at−1 + · · ·+ Φhat−h + A0−1
t Σtεt (16b)

et =Φ1et−1 + · · ·+ Φpet−p + Υtut (16c)

where (16a) is the observation equation, (16b) the transition equation, and finally, (16c)

the equation describing the law of motion for the idiosyncratic errors. Moreover, the

7To make the results across different prior specifications presentable in one figure, we report average

impulse responses across horizons 1-8 for each time period. Additional results for each prior specification

and all impulse response horizons can be obtained on request.
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time-varying parameters and covariances of the model follow random walk processes:

zt =zt−1 + wt ∼ N(0,W ) (17a)

aot =aot−1 + st ∼ N(0, S) (17b)

hσt =hσt−1 + bt ∼ N(0, B) (17c)

hηt =hηt−1 + vt ∼ N(0, V ) (17d)

where Zt = [z0,t, . . . , zs,t] and zt = vec(Z ′t) (the matrix Zt stacked by rows). aot is

the vector on non-zero and non-one elements of the matrix A0t (stacked by rows), and

hσt = log(σt) and hηt = log(ηt), see equations (2), (3), (5) and (6). Thus, the model’s

hyper-parameters are defined by Φ, Φ, W , S, B, and V , while the model’s unknown state

variables are defined by at, et, zt, aot, h
σ
t , and hηt .

This system is then estimated using Gibbs simulations, which draw the conditional

posterior utilizing 7 blocks. Blocks 1 to 4 draws the states and hyper-parameters associ-

ated with equations (16b), (17b) and (17c). Block 5 draws the state and hyper-parameter

associated with equation (17a), and Blocks 6 and 7 draw the state and hyper-parameters

associated with equations (16c) and (17d). Below we describe each block in greater

detail. For future reference and notational simplicity it will prove useful to define the

following: ỹT = [y1, . . . , yT ]′, ãT = [a1, . . . , aT ]′, z̃T = [z1, . . . , zT ]′, ẽT = [e1, . . . , eT ]′,

ãoT = [ao1, . . . , aoT ]′, h̃σT = [hσ1 , . . . , h
σ
T ]′, h̃ηT = [hη1, . . . , h

η
T ]′, Φ = [Φ1, . . . , Φh], and

Φ = [Φ1, . . . ,Φp].

E.1 Block 1: ãT |ỹT , z̃T , ẽT , h̃ηT , ãoT , h̃σT ,Φ, Φ

Equations (16a) and (16b) constitute a state space system we can use to draw the un-

observed state at using the Carter and Kohn’s multimove Gibbs sampling approach, see

Section E.8. However, to do so we need to make the errors in the observation equation

conditionally i.i.d. This is easy, given knowledge of equation (16c) and Φ, we can define

Φ(L) = (I−
∑p

k=1 ΦkL
k) and pre-multiply equation (16a) by Φ(L) to obtain the system:

y∗t =z∗0,tat + · · ·+ z∗s,tat−s + Υtut Υtut ∼ N(0, Ht) (18a)

at =Φ1at−1 + · · ·+ Φhat−h + A0−1
t Σtεt A0−1

t Σtεt ∼ N(0,Ωt) (18b)

where y∗t = (I −
∑p

k=1 ΦkL
k)yt and z∗j,t = (I −

∑p
k=1 ΦkL

k)zj,t for j = 0, . . . , s.
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Since all hyper-parameters and state variables, less ãT , are known (or conditionally

known), it follows from equations (2), (3), (5) and (6) that Ωt and Ht are also known

for all t. Accordingly, we can use the equations in (18) together with Carter and Kohn’s

multimove Gibbs sampling approach, to sample at from:

aT | · · · ∼ N(aT |T , P
a
T |T ), t = T (19a)

at| · · · ∼ N(at|t,at+1 , P
a
t|t,at+1

), t = T − 1, T − 2, · · · , 1 (19b)

to get ãT .

E.2 Block 2: Φ|ãT , ãoT , h̃σT

Conditional on ãT , the transition equation in (16b) is independent of the rest of the model.

As above, conditional on knowing ãoT and h̃σT , also makes Ωt known. Accordingly, we can

draw Φ based on a conditional posterior that accounts for the heteroscedasticity in the

error terms in (16b). This can be achieved by putting the transition equation on SUR

form.8 To do so, we define:

Yt =


a1,t

a2,t

...

aq,t

 Xt =


xt,1 0 · · · 0

0 xt,2
. . . 0

...
. . . . . .

...

0 · · · 0 xt,q

 εt =


ωA1,t

ωA2,t
...

ωAq,t

 βΦ =


βΦ1

βΦ2
...

βΦq

 (20)

where βΦl = [Φl,1, . . . , Φl,h]
′ and xt,l = [Y ′t−1, . . . , Y

′
t−h] for l = 1, . . . , q, i.e., the autoregres-

sive coefficients from the lth equation in the transition equation and the lagged dependant

variables, and ωAt = A0−1
t Σtεt.

Stacking Yt, Xt and εt together across time lets us write the transition equation as:

Y = XβΦ + ε ∼ N(0,Ψ) (21)

where Y = [Y ′1 , . . . , Y
′
T ]′, X = [X1, . . . , XT ]′, ε = [ε′1, . . . , εT ]′, and Ψ is a (T × q)× (T × q)

block diagonal matrix given by:

Ψ =


Ω1 0 · · · 0

0 Ω2
. . . 0

...
. . . . . .

...

0 · · · 0 ΩT

 (22)

8With the transition equation specified in SUR form it becomes easy to adjust the VAR(h) model such

that different regressors enter the q equations of the VAR(h).
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The conditional posterior draws of βΦ, and thus Φ, are:

βΦ| · · · ∼ N(β
Φ
, V βΦ)I[s(βΦ)] (23)

where I[s(βvarphi)] is an indicator function used to denote that the roots of β lie outside

the unit circle, and:

V βΦ = (V −1
βΦ

+X ′Ψ−1X)−1 (24a)

β
Φ

= V βΦ(V −1
βΦ
βΦ +X ′Ψ−1Y ) (24b)

E.3 Block 3: ãoT |ãT , h̃σT , Φ, S and S|ãoT

Conditional on ãT and Φ we can define ât = at − (Φ1at−1 + . . . + Φhat−h), and write

equation (16b) as:

A0tât = Σtεt (25)

Since A0t is a lower triangular matrix with ones on the diagonal, equation (25) together

with equation (17b) can be written as the state space system:

ât =Z̃taot + Σtεt Σtεt ∼ N(0,Σ′tΣt) (26a)

aot =aot−1 + st st ∼ N(0, S) (26b)

where Z̃t is the following q × q(q−1)
2

matrix:

Z̃t =



0 · · · · · · 0

−â1,t 0 · · · 0

0 −â[1,2],t
. . . 0

...
. . . . . .

...

0 · · · 0 −â[1,...,q−1],t


(27)

where â[1,...,j],t denotes the row vector [â1,t, â2,t, . . . , âj,t].

Now, although the equations in (26) have a (conditional) Gaussian state space rep-

resentation, the system is nonlinear since ât essentially shows up on both sides of the

equality sign in equation (26). Still, under the assumption that the S matrix is block

diagonal, see equation (9), we can apply Carter and Kohn’s multimove Gibbs sampling

approach, see Section E.8, and draw ãoT in a recursive manner that is consistent with the

assumptions on A0t. That is:
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aoT | · · · ∼ N(aoT |T , P
ao
T |T ), t = T (28a)

aot| · · · ∼ N(aot|t,aot+1 , P
ao
t|t,aot+1

), t = T − 1, T − 2, · · · , 1 (28b)

Once ãoT has been drawn in this manner, the innovations in (17b) are observable, and

we can compute the residual sums of squares. Thus, the conditional posterior of Sl for

l = 1, . . . , q − 1 can be sampled from the Inverse-Wishart distribution:

Sl| · · · ∼ IW (v̄S, S̄l) (29)

where v̄S = T+TS, S̄l = [Sl+
∑T

t=1 ξ
S′

l,tξ
S
l,t], and ξSl,t = aol,t−aol,t−1 are the errors associated

with the lth block.9

E.4 Block 4: h̃σT |ãT , ãoT , Φ,B and B|h̃σT

Conditional on ãoT , Φ and ãT , the L.H.S of equation (25) is known, and can be written

as:

â∗t = Σtεt (30)

where â∗t = A0tât is an observable.

Together with the transition equation in (17c), the observation equation in (30) con-

stitutes a nonlinear state space system. The nonlinearity can be converted into a linear

one by squaring and taking logarithms of every element of (30), yielding:

â∗∗t =2hσt + dσt (31a)

hσt =hσt−1 + bt (31b)

where dσl,t = log(ε2l,t), h
σ
l,t = log(σl,t), â

∗∗
l,t = log[(â∗l,t)

2 + c̄] for l = 1, . . . , q. c̄ = 0.001 is an

offsetting constant added to the latter expression to avoid potentially taking the log of

zero.

Now the system in (31) is linear, but it has a non-Gaussian state space form, because

the innovations in the observation equation are distributed as log χ2(1). In order to

further transform the system into a Gaussian one, a mixture of normals approximation of

the log χ2(1) distribution is used. Following Kim et al. (1998), we select a mixture of seven

9Remember that the l = 1 elements of ξSl,t and Sl are associated with the l + 1 row of A0t. Accordingly,

for l = 1, S1 will be a 1× 1 matrix, for l = 2, S2 will be a 2× 2 matrix, etc. See also Section 3.1.
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normal densities with component probabilities qγ, mean mγ−1.2704, and variances v2
γ, for

γ = 1, . . . , 7. The constants qγ,mγ, v
2
γ are chosen to match a number of moments of the

log χ2(1) distribution. Since the covariance matrix of ε is an identity matrix, this implies

that the covariance matrix of dσ is also a diagonal, and we can use the same (independent)

mixture of normals approximation for any element of dσ. Accordingly, conditionally on

â∗∗j,t and ht, we can sample a selection matrix s̃T = [s1, . . . , sT ]′ as:

Pr(sl,t = γ|â∗∗l,t, hσl,t) ∝ qγfN(â∗∗l,t|2hσl,t +mγ − 1.2704, v2
γ) γ = 1, . . . , 7 l = 1, . . . , q (32)

and use this to select which member of the mixture of the normal approximations that

should be used to construct the covariance matrix of dσ and adjust the mean of â∗∗t at

every point in time.

Denoting the adjusted observations and covariances as â∗∗∗t = â∗∗t −mγ=st +1.2704 and

Dσ
t , respectively, the system in (31) finally has an approximate linear and Gaussian state

space form. Again, like above, this allows one to recursively recover hσt for t = 1, . . . , T

using the Carter and Kohn algorithm:

hσT | · · · ∼ N(hσT |T , P
hσ

T |T ), t = T (33a)

hσt | · · · ∼ N(hσt|t,hσt+1
, P hσ

t|t,hσt+1
), t = T − 1, T − 2, · · · , 1 (33b)

Likewise, conditional on h̃σT , the posterior of B is drawn from the Inverse-Wishart

distribution:

B| · · · ∼ IW (v̄B, B̄) (34)

where v̄B = T + TB, B̄ = [B +
∑T

t=1 ξ
B′
t ξ

B
t ], and ξBt = hσt − hσt−1.

E.5 Block 5: z̃T |ỹT , ãT , ẽT , h̃ηT ,Φ,W and W |z̃T

Conditionally on ãT the errors in (16a) are independent across i. Moreover, we have

assumed that the covariance matrix of zt in equation (17a) is block diagonal. Conse-

quently, we can draw z̃T one equation at a time. As in Appendix E.1 we deal with the

fact that the errors in the observation equation are not conditionally i.i.d. by applying

the quasi differencing operator, Φ(L) = (I −
∑p

k=1 ΦkL
k), to each equation. Thus, for

each i = q+ 1, . . . , N , we define ẑj,t as the ith row of zj,t and ŵj,t as the errors in (17a) as-

sociated with ẑj,t (for j = 0, . . . , s), and obtain the following Gaussian state space system:
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y∗i,t =a∗t ẑ0,t + · · ·+ a∗t−sẑs,t + ηi,tui,t ηi,tui,t ∼ N(0, η′i,tηi,t) (35a)

ẑt =Ξẑt−1 + ŵt ŵt ∼ N(0,Wi) (35b)

where a∗t = [(I −
∑p

k=1 ΦkL
k)at]

′, ẑt = [ẑ0,t, . . . , ẑs,t]
′, ŵt = [ŵ0,t, . . . , ŵs,t]

′ and Ξ is a

(s + 1) × (s + 1) identity matrix. Since Wi and η′i,tηi,t are conditionally known for each

i, the Carter and Kohn algorithm is implemented on (35), in the same manner as before,

to sample:

ẑT | · · · ∼ N(ẑT |T , P
ẑ
T |T ), t = T (36a)

ẑt| · · · ∼ N(ẑt|t,ht+1 , P
ẑ
t|t,ẑt+1

), t = T − 1, T − 2, · · · , 1 (36b)

Conditionally on ˜̂zT , we sample Wi from the Inverse-Wishart distribution:

Wi| · · · ∼ IW (v̄W , W̄i) (37)

where v̄W = T + TW , W̄i = [Wi +
∑T

t=1 ξ
W ′
i,t ξ

W
i,t ], and ξWi,t = ẑt − ẑt−1.

Repeating this algorithm for i = q + 1 . . . , N , gives us z̃T and W .10

E.6 Block 6: ẽT |ỹT , ãT , z̃T and Φ|ẽT , h̃ηT

For each observation we have that:

et = yt − z0,tat + · · ·+ zs,tat−s (38)

Thus, conditional on ỹT , ãT and z̃T , ẽT is observable.

As above, since ẽT is independent across i, we can sample Φ in (16c) one equation at

the time. Conditional on hηT , this is done in the same manner as in Appendix E.2, with the

difference that now the definitions in (20) are replaced by: Yt = [e1,t, . . . , eN,t]
′, and εt =

[ωE1,t, . . . , ω
E
N,t]
′, with ωEt = Υtut. Further, βΦ = [βΦ

1 , . . . , β
Φ
N ]′ with βΦ

i = [Φi,1, . . . ,Φi,p]
′,

and

Ψ =


H1 0 · · · 0

0 H2
. . . 0

...
. . . . . .

...

0 · · · 0 HT

 (39)

10For the first q elements in yt, the identification restriction given by (10) implies that the factor loading

is equal to one for all t.
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The conditional posterior draws of βΦ, and thus Φ, are therefore:

βΦ| · · · ∼ N(β
Φ
, V βΦ)I[s(βΦ)] (40)

where I[s(βΦ)] is an indicator function used to denote that the roots of β lie outside the

unit circle, and:

V βΦ =(V −1
βΦ +X ′Ψ−1X)−1 (41a)

β
Φ

=V βΦ(V −1
βΦβ

Φ +X ′Ψ−1Y ) (41b)

E.7 Block 7: h̃ηT |ẽT ,Φ, V and V |h̃ηT

Conditionally on having sampled ẽT and Φ, we can continue to sample h̃ηT for each equation

independently. This is done as in Appendix E.4.

For concreteness, we define, for i = 1, . . . , N :

ê∗i,t = ηi,tui,t (42)

where ê∗i,t = [ei,t − Φi,1ei,t−1 + · · · + Φi,pei,t−p] is now an observable. Squaring and tak-

ing logarithms on each element in (42) and using the law of motion for the stochastic

volatilities in (17d), we get the following non-Gaussian state space system:

ê∗∗i,t =2hηi,t + dηi,t (43a)

hηi,t =hηi,t−1 + vi,t (43b)

where dηi,t = log(u2
i,t), h

η
i,t = log(ηi,t), ê

∗∗
i,t = log[(ê∗i,t)

2 + c̄], and c̄ = 0.001.

The state space system in (43) is linear but non-Gaussian, and simulation of:

hηT | · · · ∼ N(hηT |T , P
hη

T |T ), t = T (44a)

hηt | · · · ∼ N(hη
t|t,hηt+1

, P hη

t|t,hηt+1
), t = T − 1, T − 2, · · · , 1 (44b)

is conducted as described in Appendix E.4.

Finally, conditionally on h̃ηT , we sample Vi, for i = 1, . . . , N , from the Inverse-Wishart

distribution:

Vi| · · · ∼ IW (v̄V , V̄i) (45)

where v̄V = T+TV , V̄i = [Vi+
∑T

t=1 ξ
V ′
i,t ξ

V
i,t], and ξVi,t = hηi,t−h

η
i,t−1 are the errors associated

with the ith equation.
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E.8 The Carter and Kohn algorithm

Consider a generic state space system, written in companion form, and described by:

yt =Ztat + et ∼ N(0, Ht) (46a)

at =Γat−1 +Gut ∼ N(0,Ωt) (46b)

where we assume Zt, Γ , G, Ht and Ωt are known, and we wish to estimate the latent

state at for all t = 1, . . . , T . To do so, we can apply Carter and Kohn’s multimove Gibbs

sampling approach (see Carter and Kohn (1994)).

First, because the state space model given in equation (46) is linear and (conditionally)

Gaussian, the distribution of at given ỹT and that of at given at+1 and ỹt for t = T−1, · · · , 1

are also Gaussian:

aT |ỹT ∼ N(aT |T , PT |T ), t = T (47a)

at|ỹt, at+1 ∼ N(at|t,at+1 , Pt|t,at+1), t = T − 1, T − 2, · · · , 1 (47b)

where

aT |T = E(aT |ỹT ) (48a)

PT |T = Cov(aT |ỹT ) (48b)

at|t,at+1 = E(at|ỹt, at+1) = E(at|at|t, at|t+1) (48c)

Pt|t,at+1 = Cov(at|ỹt, at+1) = Cov(at|at|t, at|t+1) (48d)

Given a0|0 and P0|0, the unknown states aT |T and PT |T needed to draw from (47a) can

be estimated from the (conditionally) Gaussian Kalman Filter as:

at|t−1 = Γat−1|t−1 (49a)

Pt|t−1 = ΓPt−1|t−1Γ
′ +GΩtG

′ (49b)

Kt = Pt|t−1Z
′
t(ZtPt|t−1Z

′
t +Ht)

−1 (49c)

at|t = at|t−1 +Kt(yt − Ztat|t−1) (49d)

Pt|t = Pt|t−1 −KtZtPt|t−1 (49e)

That is, at t = T , equation (49d) and (49e) above, together with equation (47a), can

be used to draw aT |T . Moreover, at|t,at+1 for t = T − 1, T − 2, · · · , 1 can also be simulated

30



based on (47b), where at|t,at+1 and Pt|t,at+1 are generated from the following updating

equations:

at|t,at+1 = at|t + Pt|tΓ
′(ΓPt|tΓ

′ +GΩtG
′)−1(at+1 − Γat|t) (50a)

Pt|t,at+1 = Pt|t + Pt|tΓ
′(ΓPt|tΓ

′ +GΩtG
′)−1ΓPt|t (50b)

Appendix F Marginal Likelihood computation and

the Reversible Jump Markov Chain Monte

Carlo (RJMCMC) algorithm

The RJMCMC was first proposed by Green (1995), and has since been applied, and

modified, in a number of different settings, including model selection. Dellaportas et al.

(2002) and Lopes and West (2004) provide two, of many extant, examples. The algorithm

derived here extends that presented in Primiceri (2005) to a dynamic factor model setting,

accounting for time-varying parameters.

Following the notation in Primiceri (2005) we consider a set of M competing models.

In our setting these models differ in the prior assumptions, see Section D.2. Essentially, the

RJMCMC algorithm is nothing more than a Metropolis-Hastings (MH) sampler, where

the goal is to sample the joint posterior distribution of model m ∈M and the associated

model parameters, here denoted θm. This is done by generating a proposal value of

(m′, θm
′
) from a proposal distribution qp(m

′, θm
′
) = q(θm

′|m′) · J(m′). The new proposal

is accepted using a MH acceptance probability. If the proposal is rejected, it is replaced by

the previous element of the chain. After a sufficient number of draws, an approximation to

the posterior of (m′, θm
′
) can be computed, as can posterior probabilities over the models’

space.

More specifically, the sampler used is an independence chain Metropolis Hastings

algorithm, and we proceed as follows:

1. For every m ∈ M we approximate the posterior based on the Gibbs sampler al-

gorithm explained in Section E. These approximate posteriors are then used as
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proposal distributions for the elements in θm:

q(Φm|m) =N(Φm, var(Φm) · 1)

q(Φm|m) =N(Φm, var(Φm) · 1)

q(Wm|m) =IW (125,Wm · 125)

q(Sm|m) =IW (25, Sm · 25)

q(Bm|m) =IW (100, Bm · 100)

q(V m|m) =IW (10, V m · 10)

The variables denoted with an upper bar are the posterior means and variances from

the initial Gibbs sampler. The variances are made more diffuse than the exact ones

to facilitate the convergence of the MH algorithm.11

2. Initialize m and draw θm from the proposal distribution q(θm|m).

3. Draw m′ from an unconditional proposal distribution J(m′) over the models (here

we use the uniform distribution), and draw θm
′

from the conditional proposal dis-

tribution q(θm
′|m′), such that qp(m

′, θm
′
) = q(θm

′ |m′) · J(m′).

4. Accept the new couple (m′, θm
′
) with probability:

α(m,m′) = min
{

1, p(yT |m
′,θm

′
)p(θm

′ |m′)p(m′)qp(m,θm)

p(yT |m,θm)p(θm|m)p(m)qp(m′,θm′ )

}
where p(yT |m, θm) is the likelihood of the model, computed using a particle filter,

see Appendix F.1. p(θm|m) being the prior of θm within model m, with p(m) being

the prior model probability. We employ equal prior probabilities, so these terms

cancel out. If the new draw is not accepted, keep the previous couple (m, θm).

5. Go to 3.

The MH sampler is run using a handful of independent chains. The approximate

posteriors, constructed in step 1, are based on 8000 iterations of the Gibbs sampler for

eachm ∈M . The first 4000 iterations are discarded and only every fourth of the remaining

iterations is used for inference.
11However, as noted in Section D.2, the convergence properties of the proposed algorithm are not good.

Although we have not been able to do this, it could probably be improved upon by a better specification

of the proposal distributions. See also the discussion at the end of Appendix F.1.
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F.1 The particle filter and likelihood computation

In step 4 of the reversible jump algorithm described above we need to calculate the

likelihood of the proposed model; p(yT |m, θm). For traditional (conditional) Gaussian

state space models the likelihood can easily be computed through the Kalman filter,

which integrates out the dependence of the stochastic latent factors. However, computing

the likelihood of the state space model described by the equations in (16) and (17) is more

complicated since the parameters are stochastic and the expressions involve products of

stochastic variables. To evaluate the likelihood we therefore employ a Rao-Blackwellized

particle filter. This particle filter is particularly suitable for state space systems, like ours,

where part of the problem can be solved analytically, see Creal (2009) for a short overview

and further references. Below we provide a brief description of the algorithm.

Consider a non-linear state space system with hyper-parameters θ, state variable x

(in our model the state variable x contains both the time-varying factor loadings, the

stochastic volatilities, and the factors), and observable data given by yt . Then, the goal

is to estimate the joint smoothing distribution of the latent state, given by:

p(x0:t|y1:t; θ) =
p(y1:t, x0:t; θ)

p(y1:t; θ)
=
p(yt|xt; θ)p(xt|xt−1; θ)

p(yt|y1:t−1; θ)
p(x0:t−1|y1:t−1; θ) (52)

However, solving (52) analytically is difficult due to the assumed non-linearity of the

system. This motivates the use of Sequential Monte Carlo methods, such as the particle

filter. Instead of solving (52) directly, these methods utilize the recursive structure of

the joint smoothing distribution, as highlighted by the last equality sign in (52), and two

of it’s marginal distributions, namely the predictive distribution p(xt|y1:t−1; θ) and the

filtering distribution given by:

p(xt|y1:t; θ) =
p(yt, xt|y1:t−1; θ)

p(yt|y1:t−1; θ)
=
p(yt|xt; θ)p(xt|y1:t−1; θ)

p(yt|y1:t−1; θ)
(53)

Here, p(yt, xt|y1:t−1; θ) = p(yt|xt; θ)p(xt|y1:t−1; θ) is the joint distribution of the data and

the state variables, and p(yt|yt−1; θ) is the contribution to the likelihood function (or the

normalizing constant). Accordingly, to sequentially solve 52, starting from an initial draw

of the state, the last period’s filtering distribution is projected forward using the predictive

distribution and then updated using the filtering distribution. These iterations continue

until the end of the sample.

Difficulty arises because the predictive distribution (p(xt|y1:t−1; θ)) and the contribu-

tion to the likelihood (p(yt|yt−1; θ)) involves integrals that typically cannot be calculated
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analytically. To see this, we can re-write the two terms as:

p(yt|y1:t−1; θ) =

∫
p(yt|xt; θ)p(xt|y1:t−1; θ)dxt (54)

and

p(xt|y1:t−1; θ) =

∫
p(xt|xt−1; θ)p(xt−1|y1:t−1; θ)dxt−1 (55)

Still, these integrals can be approximated using Monte Carlo integration. Draw N particles

from p(x0|y0; θ) and use (55) to calculate the predicted value of the state. Then update

the value of the state variables based on the information in the data using (53). The

latter step is conducted as an importance sampling step, where the particle draws are

re-weighted. By conducting these prediction and updating steps for t = 1, . . . , T , the

joint smoothing distribution in (52) can be obtained. Importantly for our purpose, the

contribution to the likelihood at each time period, equation (54), can in most cases be

obtained directly from the estimated importance weights.

Partly due to the importance sampling step, which creates options regarding impor-

tance distribution, many different particle filters have been proposed. In our model, part of

the joint smoothing distribution can be solved analytically, and we take advantage of this

fact when designing the filter by decomposing the state xt into two blocks; xt = (x′1,t, a
′
t)
′.

That is, we group the time-varying factor loadings and the stochastic volatilities into x1,t

while the factors are grouped into at. In short, we have the state space system:

yt =Zt(xt)at + et ∼ N(0, Ht(xt)) (56a)

at =Γat−1 +Gut ∼ N(0,Ωt(xt)) (56b)

The marginal filtering distribution can then be decomposed as:

p(x1,t, at|y1:t; θ) = p(at|x1,t, y1:t; θ)p(x1,t|y1:t; θ)

Particles are only simulated randomly from p(x1,t|y1:t; θ) while conditional on each draw of

xi1,t, the distribution of p(at|xi1,t, y1:t; θ) can be evaluated analytically. In sum, we proceed

as follows:

1. At t = 0 and for i = 1, . . . , N , draw x1,0 and a0 from some unconditional distribu-

tions and set wi0 = 1
N

2. Set t = t+1. For i = 1, . . . , N , run the prediction step of the Kalman filter to obtain

the conditional likelihood (using the prediction error decomposition), and calculate
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the importance weights as ŵit =
wit∑N
j=1 w

j
t

, where wit is the conditional likelihood

associated with particle i.

3. By the law of large numbers, the contribution to the likelihood can be approximated

as log(p(yt|yt−1; θ)) = log(
∑N
i=1 w

i
t

N
)

4. Re-sample the N particles {xi1,t−1|t−1, a
i
t−1|t−1}Ni=1 with probabilities {ŵit}Ni=1, and set

wit = 1
N

5. For i = 1, . . . , N , draw x1,t conditional on x1,t−1 and run the Kalman filter on each

particle to obtain at|t.

6. Return to 2.

We confirmed in a simulation experiment the ability of the particle filter approach

described above to estimate the latent state variables (the time-varying factor loadings,

the stochastic volatilities, and the factors) with a high degree of precision. That said, in

systems with a high number of states, as is the case here, a substantial number of particles

needs to be entertained to obtain reliable estimates of the joint smoothing distribution.

This, however, makes the use of the particle filter within the RJMCMC algorithm de-

scribed above infeasible. The computation time is simply too large. However, it is our

experience that a substantially lower number of particles is needed to obtain reasonably

stable estimates of the contribution to the likelihood function. We take advantage of this

when we employ the particle filter within the RJMCMC sampler, but emphasize that this

downscaling of the number of particles likely contributes to increased sampling variation

and thus worse convergence properties of the algorithm as a whole, cf. the discussion in

Section D.2.
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