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THE COPULA INFORMATION CRITERIA

STEFFEN GRØNNEBERG AND NILS LID HJORT

Abstract. We derive two types of AIC-like model selection formulae for the semiparametric

pseudo maximum likelihood procedure. We first adapt the arguments leading to the original

AIC formula, related to empirical estimation of a certain Kullback–Leibler information distance.

This gives a significantly different formula compared to the AIC, which we name the Copula

Information Criterion (CIC). However, we show that such a model-selection procedure cannot

exist for copula models with densities that grow very fast near the edge of the unit cube. This

problem affects most popular copula models. We then derive what we call the Cross-Validation

Copula Information Criterion (xv-CIC), which exists under weak conditions and is a first order

approximation to exact cross validation. This formula is very similar to the standard AIC

formula, but has slightly different motivation. A brief illustration with real data is given.

1. Introduction and summary

A fundamental practical issue in any statistical investigation is the problem of model selection:

Suppose several candidate models are available, which model is the best? Many approaches to what

“best” means have been suggested in the literature, and the following two are the most common.

Firstly, the best model may be the one containing the parameter configuration that minimizes

some distance to the postulated true model. Secondly, the best model may be the one giving best

predictions for new, and as of yet unobserved cases. Both of these approaches require assumptions

on the true data generating mechanism to lead to clear recipes, and in the most famous case – the

AIC case of classical parametric statistics – they are connected through an asymptotic equivalence

between a certain version of cross-validation and an extended version of the AIC formula called

the TIC formula. These basic issues are discussed in Chapter 2 of Claeskens & Hjort (2008).

The AIC formula famously reads

AIC = 2
(
`#n,max − length(θ)

)
(1)

where `#n,max is the maximized likelihood for the model and length(θ) is the dimensionality of the

parameter set. One computes this AIC score for each candidate model and in the end chooses the

model with highest score. This formula is derived under certain rather specific settings, and it is not

at all obvious that it is valid outside these conditions. However, it is extremely simple to compute

in all likelihood-based investigations, and is heuristically justified as a penalization for complexity.

Penalizing for the number of parameters is also attempted for estimation methods which are not

purely likelihood based, but usually have names relating to likelihoods, such as pseudo likelihoods.

However, this is a very weak justification by itself: it does not give any rational way to prefer the

AIC formula compared to, say, the BIC formula

BIC = 2`#n,max − log n× length(θ).

We believe that there is a genuine need to clarify the use of such formulas in several applied

statistical investigations where the classical arguments leading to the AIC formula are invalid,
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2 STEFFEN GRØNNEBERG AND NILS LID HJORT

especially when pseudo likelihoods are used. We provide a general description of this problem in

Section 2, which are then specialized to the copula case.

When using the unjustified AIC formula, it is implicitly hoped that when an estimation method

heuristically resembles the maximum likelihood estimator, there is a continuous relationship be-

tween the two technique’s model selection behavior, so that the AIC formula is approximately

valid. Our current paper investigates the validity of the AIC formula in a semiparametric esti-

mation problem related to copula models. We investigate both the loss-function and prediction

perspectives, and the two resulting cases illustrate drastically different levels of continuity regard-

ing model selection behavior. We show that under certain assumptions, the AIC formula is indeed

approximately valid from a loss-function perspective. However, outside these rather restrictive con-

ditions, we observe a strong discontinuity in the form of a non-existence of such model selection

procedures. This discontinuity does not extend to the prediction-perspective of the AIC formula,

where a continuous relationship is demonstrated by deriving a generally applicable model-selection

formula that approximately equals the classical formula under weak conditions. In this light,

our paper motivates further investigation of the AIC formula’s use also in other likelihood-like

estimation methods.

Our technical setting is as follows. Suppose given independent, identically distributed d-

dimensional observations X1, X2, . . . , Xn with density f◦(x) and distribution function

F ◦(x) = P (Xi,1 ≤ x1, Xi,2 ≤ x2, . . . Xi,d ≤ xd) = C◦(F ◦⊥(x)).

Here, C◦ is the copula of F ◦ and F ◦⊥ is the vector of marginal distributions of F ◦, that is,

F ◦⊥(x) := (F ◦1 (x1), . . . , F ◦d (xd)), Fj(xj) = P (Xi,j ≤ xj).

We want to fit parametric models to the copula, but leave the marginals unspecified. The copula

models are specified through a set of densities c(u, θ) for Θ ⊆ Rp and u ∈ [0, 1]d.

A popular estimator for the copula parameter is the maximum pseudo likelihood estimator θ̂n,

also called the MPLE. It is defined as the maximizer of the so-called pseudo likelihood

`n(θ) :=

n∑
i=1

log c(Fn,⊥(Xi), θ).

This estimator sometimes goes by other names, such as the Canonical MLE (Panchenko, 2005).

We also note that unrelated estimation techniques are sometimes called the maximum pseudo

likelihood estimator in the literature. The pseudo likelihood is expressed in terms of the so-called

pseudo observations Fn,⊥(Xi) ∈ [0, 1]d, in which Fn,⊥ is the vector of re-normalized marginal

empirical distribution functions

Fn,⊥(x) := (Fn,1(x1), . . . , Fn,d(xd)) , where Fn,j(xj) :=
1

n+ 1

n∑
i=1

I{Xi,j ≤ xj}.

The non-standard normalization constant 1/(n + 1) – instead of the classical 1/n – is to avoid

evaluating u 7→ log c(u, θ) at the boundary u ∈ ∂
(
[0, 1]d

)
where most copula models of interest

are infinite. Hence, we consider any size defined in terms of u 7→ c(u, θ) as being restricted to

u ∈ (0, 1)d.

Many investigations, such as Chen & Fan (2005) and McNeil et al. (2005, Chapter 5), use

AIC? = 2`n,max − 2length(θ) (2)

as a model selection criterion for the MPLE, with `n,max = `n(θ̂n) being the maximum pseudo

likelihood. Despite its frequent use, there is no justification for this formula in the literature other

than the less than satisfactory heuristic argument mentioned above.
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The arguments underlying the derivations of the traditional AIC do not apply here – since

`n(·) is not a proper log-likelihood function for a model, but a pseudo likelihood, based on the

multivariate rank statistics Fn,⊥. In other words, the AIC? formula above ignores the noise inherent

in the transformation step that takes Xi to Fn,⊥(Xi). Such a formula would be appropriate only

if we could use F ◦k (Xi,k) – instead of the pseudo observations, or if we would model the marginals

F ◦1 , . . . , F
◦
d by parametric models F1,γ(1), . . . , Fd,γ(d). This last case would return the estimation

problem to a fully parametric one, where the classical AIC formula

2
(
`#n,max − δc − δm

)
, δc = length(θ), δm =

d∑
k=1

length(γ(k)) (3)

is justified by classical theory. Here `#n,max is the standard maximized likelihood, δc and δm each

corrects for bias introduced by the estimation of the copula and the marginals respectively.

Note that eq. (3) is only valid when the likelihood is maximized simultaneously in all parameters

of the model. The use of multi-stage estimation routines, such as the MPLE or the IFM estimator

described in Joe (1997), invalidates the AIC formula. Our paper will focus exclusively on the

more complicated MPLE case, but through mimicking the developments of our paper, one could

derive a copula model selection procedure based on the IFM, analogous to the AIC formula. Note

that because the least false IFM parameter configuration for the copula depends on the marginal

misspecification – a deficiency not shared by the MPLE – an IFM-AIC formula would only be valid

when the parametric marginal models include the true marginal distributions.

The present paper centres around two contributions. First, we reconsider the steps leading to

the original AIC formula in the MPLE setting and derive the appropriate modifications. This

leads to two model selection formulae – one valid when the copula model is correctly specified and

one valid in general. We will refer to both as the Copula Information Criterion when the context

makes it clear which one is meant (or when it does not matter), and will refer to them as the

AIC-like and the TIC-like CIC formula when this distinction is needed. These formulae and their

derivations are presented in Section 2.1.

The AIC-like CIC formula is of the form

2
(
`n,max − δ̂c − δ̂m

)
, δc = length(θ) + Tr

(
Î−Ŵ

)
.

Again, δ̂c and δ̂m each takes the estimation of the copula and the marginals into consideration

respectively. Now, δ̂c has an additional term because we are working with a pseudo likelihood, and

δ̂m is an estimator of the size 1tΥ1 where Υ = (Υa,b)1≤a,b≤d is the symmetric matrix with

Υa,a =
1

2

∫
[0,1]d

ζ ′′a,a(u, θ◦)ua(1− ua) dC◦(u),

Υa,b =
1

2

∫
[0,1]d

ζ ′′a,b(u, θ
◦) [Ca,b(ua, ub)− uaub] dC◦(u) (when a 6= b),

and ζ ′′a,b is the (a, b)’th element of the matrix function

ζ ′′(u, θ◦) =
∂2

∂ut∂u
log c(u, θ◦). (4)

and Ca,b is the bivariate margin of C corresponding to dimensions a and b.

Section 2.4 includes a simulation illustrating the superiority of the CIC formula to the unmoti-

vated AIC formula for a mixture of Frank and Plackett copulas.

A major difference from the fully parametric case is that 1tΥ1 may be infinite. The AIC formula

provides a certain type of bias-correction, and it turns out that the random variable that causes the

systematic deviation we wish to correct for does not even possess a first moment for most popular
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copula-models. In a sense made precise in Section 2.1, we show that there does not exist any model

selection formula analogous to the AIC for many popular copula models when using the maximum

pseudo likelihood estimator. Further differences is that while δ̂c is always strictly positive, δ̂m may

be both positive and negative. Also, in contrast to the penalty term of the classical AIC formula

that do not depend on the data, CIC’s penalty terms must always be estimated from data.

The second part of the paper pursues the second main path of model selection methodology:

prediction. As mentioned above, a certain version of cross-validation and the classical AIC formula

are first order equivalent. In Section 4 we show that this is not the case for the CIC and derive a

formula that is first order equivalent to a version of cross-validation. We name this formula the

Cross-Validation Copula Information Criterion, or xv-CIC. This non-equivalence provides a further

contrast between MPLE- and MLE-based estimation, and it turns out that the xv-CIC formula is

applicable to all common copula models. Thus, the reader who is simply interested in a generally

applicable model selection formula for the MPLE can focus on Section 4.

When the parametric copula model is assumed to include the true copula c◦(·), the xv-CIC

formula is given by

2 (`n,max − δc) , δc = length(θ) + Tr
(
J−1
n K̂

)
,

where Jn and K̂ are defined below. When Tr
(
J−1
n K̂

)
is small, this formula provides motivation

for the original AIC-formula. A brief illustration of the xv-CIC formula in Section 5 using the Loss-

ALAE data. This dataset is used in many papers on copulas, including Frees & Valdez (1998) and

Genest et al. (2006).

At the end of our paper, we give some concluding remarks, including some advice on model

selection for practitioners in Section 6.2.

We have not conducted a comprehensive simulation study of the small sample performance of

the xv-CIC formula, and consider this to be a theme for a separate paper. Because the unmotivated

AIC formula has no terms that are estimated from data, it may under certain settings be superior

to the xv-CIC formula as an approximation to cross validation. A large scale simulation study

would be able to investigate whether or when this is the case.

The paper includes an appendix in the form of a supplementary note, available on the journal

web-site. This appendix gathers all but the simplest technical proofs, and includes a script for the

R system (as described in R Development Core Team, 2010) to calculate the xv-CIC for certain

simple copula models.

We will consistently apply the perpendicular subscript to indicate vectors of marginal distri-

butions, such as Fn,⊥. Note that we will sometimes use the multivariate empirical distribution

function Fn, which is defined with the standard scaling 1/n in contrast to our marginal empirical

distributions that are scaled according to 1/(n+ 1). We will also use the circle superscript to de-

note sizes defined in terms of F ◦ and will usually let hats and/or n-subscripts indicate estimators.

For example, the Kullback–Leibler least false parameter configuration θ◦ has a circle superscript,

because it is defined in terms of F ◦, while its estimate is denoted by θ̂n. We will denote generic

elements of [0, 1]d or [0, 1] by u or v, while elements of Rd not constrained to [0, 1]d will be denoted

by x or y. For a general introduction to copula models, see Joe (1997), and for a general intro-

duction to the model selection problem, see Claeskens & Hjort (2008). Finally, we will usually let

df(x0)/dx denote df(x)/dx|x=x0
.

2. The Copula Information Criterion

Let us take a step back, and consider a fairly abstract summary of the derivation of the AIC

formula. Through this discussion, we place the structure of the CIC problem in relation to the
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AIC and the so-called Generalized Information Criterion, and indicate the calculations that are

required for solving the problem at hand. A detailed derivation of the CIC is then given in Section

2.1.

Maximum likelihood estimation features two statistical functionals – in the sense, say, of Shao

(2003) – given by

Φ[F ](f(·)) =

∫
f(x) dF (x)

and

T [F ] = argmax
θ∈Θ

Φ[F ](f(·, θ)). (5)

Here F is some cumulative distribution function, and T is defined in terms of a parametric family

of densities {f(·, θ) : θ ∈ Θ}. The MLE is θ̂ML = T (Fn), where Fn is the (multivariate) empirical

distribution function.

The Kullback–Leibler divergence between two densities g and h is given by

KL(g(·), h(·)) =

∫
g(x) log

g(x)

h(x)
dx =

∫
log g(x) dG(x)−

∫
log h(x) dG(x)

where G(x) =
∫ x
−∞ g(y) dy. Hence,

Φ[F ◦](log f(·, θ̂n)) = −KL(f◦(·), f(·, θ̂n)) + C (6)

is the negative attained Kullback–Leibler divergence between f◦(·) and f(·, θ) except for a constant

C not depending on θ̂n. Let us therefore call Φ[F ◦](log fθ) the model-relevant part of the KL-

divergence (between f◦(·) and f(·, θ)). Under regularity conditions, we have

θ̂n = T (Fn)
P−−−−→

n→∞
T (F ◦) = argmin

θ∈Θ
KL(f◦(·), f(·, θ)) := θ◦

so that θ̂n approaches the least false Kullback–Leibler parameter configuration θ◦. Also, eq. (6)

shows that Φ[F ◦](f(·, θ̂n)) is the attained model-relevant part of KL-divergence. If we are given

several candidate models, the AIC-perspective is to use the model with the least attained KL-

divergence, or equivalently, the largest attained model-relevant part of KL-divergence. We typically

have

Φ[Fn](log f(·, θ̂n))
P−−−−→

n→∞
Φ[F ◦](log f(·, θ◦)),

and we will study the finite sample bias variable

∆n := Φ[Fn](log f(·, θ̂n))− Φ[F ◦](log f(·, θ◦)) (7)

up to a precision level specified shortly. The linearity of Φ in both arguments shows that

∆n = Φ[Fn − F ◦](log f(·, θ̂n))

= Φ[Fn − F ◦](log f(·, θ̂n))− Φ[Fn − F ◦](log f(·, θ◦)) + Φ[Fn − F ◦](log f(·, θ◦))

= Φ[Fn − F ◦](log f(·, θ̂n)− log f(·, θ◦)) + Φ[Fn − F ◦](log f(·, θ◦)). (8)

Under regularity conditions (Claeskens & Hjort, 2008) we get

∆n = Zn +
1

n
δn + oP (n−1) (9)

where

Zn = Φ[Fn − F ◦](log f(·, θ◦)) (10)

is a zero mean variable, δn
W−−−−→

n→∞
δ where Eδ 6= 0. When the model is correct in the sense that

f(·, θ◦) = f◦(·), we get Eδ = length(θ). The AIC formula of eq. (1) is a sample bias correction for

Φ[Fn](log f(·, θ̂n)) as an estimator for Φ[F ◦](log(·, θ̂n)) based on eq. (9). It is a bias-correction in

the weak sense that oP (n−1) is considered low-level noise and is ignored, and that we only try to
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approximate the expectation of the weak limit of δn, and not the actual attained expectation of

δn (which may be infinite, see Claeskens & Hjort (2008)).

A generalization of these developments is the Generalized Information Criterion (Konishi &

Kitagawa, 2008). Here, the functional T does not have to take on the rather specific form of

eq. (5) but may be defined as the maximizer of, say, a penalized likelihood function such as for

shrinkage estimators. The GIC development concerns reaching an expansion for ∆n that takes into

consideration the general form of T . The functional Φ is, however, maintained as in the original

AIC formula.

The CIC exceeds the generality provided by the GIC in the following way. Our model is defined

in terms of a parametric copula model {c(u, θ) : θ ∈ Θ}. The marginal distributions f◦1 , . . . , f
◦
d

of the observations are unknown and completely unspecified. Concretely, our model is therefore

given by

{f(x, θ) : θ ∈ Θ} =

{
f(x, θ) = c (F ◦1 (x1), . . . , F ◦d (xd), θ)

d∏
k=1

f◦k (xk) : θ ∈ Θ

}
for x ∈ Rd. Through a change of variables, we see that the Kullback–Leibler least false parameter

configuration is

θ◦ = argmax
θ∈Θ

∫
Rd

log f(x, θ) dF ◦(x) (11)

= argmax
θ∈Θ

[∫
Rd

log c (F ◦1 (x1), . . . , F ◦d (xd), θ) dF ◦(x) +

d∑
k=1

∫
R

log f◦k (xk) dF ◦k (x)

]
= argmax

θ∈Θ

∫
Rd

log c (F ◦1 (x1), . . . , F ◦d (xd), θ) dF ◦

= argmax
θ∈Θ

∫
[0,1]d

log c (v1, . . . , vd, θ) dC◦(v)

= T (C◦).

Hence, the KL least-false copula parameter only depends on the true copula of the data. Because

C◦ is invariant to monotone transformation of the marginals, empirical estimators of θ◦ should

share this invariance. This point is further discussed in Grønneberg (2010). The rank-based MPLE

θ̂n = T (Cn),

defined in terms of the empirical copula

Cn(u) :=
1

n

n∑
i=1

I{Fn,⊥(Xi) ≤ u} =
1

n

n∑
i=1

d∏
j=1

I{Fn,j(Xi,j) ≤ uj}, (12)

shares this invariance, and consistently estimates θ◦ under various conditions (Genest et al., 1995).

In order to provide a model selection formula for the MPLE, we must again study an analogue of

∆n defined in eq. (7).

By following the same logic in going from eq. (7) to eq. (8) we get that

∆n = Φ[Cn](log c(·, θ̂n))− Φ[C◦](log c(·, θ◦)) = ∆c,n + ∆m,n (13)

where

∆c,n := Φ[Cn − C◦](log c(·, θ̂n)− log c(·, θ◦))

and

∆m,n := Φ[Cn − C◦](log c(·, θ◦)).
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The notation of the two components of ∆n is chosen as mnemonics to reflect that ∆c,n is domi-

nated by bias originating from estimating the parametric copula and ∆m,n is dominated by bias

originating from estimating the marginals non-parametrically. This will be shown in Sections 2.1

and 2.2.

The expansion of eq. (13) is seemingly similar to that in eq. (8). However, in the fully parametric

case, ∆m,n, which we then denoted by Zn, had zero mean and could therefore be ignored when

providing bias corrections. This zero mean property is a consequence of

EΦ[Fn](log f(·, θ◦)) = Φ[F ◦](log f(·, θ◦)),

which follows by the definition of the sizes involved. In contrast, we now have Cn(u) = Ψ[Fn](u)

for the statistical functional Ψ implicit in eq. (12), which means that

EΦ[Cn](log c(·, θ◦)) = EΦ ◦Ψ[Fn](log c(·, θ◦)) 6= Φ ◦Ψ[F ◦](log c(·, θ◦)), (14)

and hence, E∆m,n 6= 0 due to the presence of the Ψ functional. In order to derive a model selection

formula for the MPLE, we need an expansion such as eq. (9) in terms of some (new) zero mean

variable Zn and some δn. This computation will be performed in the following subsection, where

we will see that

δn = δc,n + δm,1,n + δm,2,n.

Here, δc,n has contributions from ∆c,n and δm,1,n + δm,2,n has contributions from ∆m,n. Precisely,

we isolate the sizes with non-zero mean that are not oP (n−1). We split up the contributions from

∆m,n in two, as δm,1 is zero when the model is correct. The CIC formula consists of correcting the

maximized pseudo likelihood with an estimate of the expectation of the weak limit of δn.

Finally, we note that the above formulation should apply to many estimation schemes similar to

the MPLE. Such a general formula – a generalized GIC – seems to be possible to derive using second

order functional expansions. However, this would require a detailed study of the second order

functional differentiation of the statistical functional that defines the MPL estimator. This would

be technically challenging, as most functional differentiation theory for functionals of interest in

statistics (see e.g. van der Vaart & Wellner, 1996; Shao, 2003) focuses on first order differentiation,

as this suffices to prove asymptotic Normality – and not the second order differentiation that would

be required in order to isolate the terms in ∆n that are not oP (n−1).

2.1. Derivation of The Copula Information Criterion. Like the AIC, the Copula Information

Criterion is based on asymptotic (pseudo) likelihood theory. Before we continue our detailed

study of ∆n, we need the following theory for the pseudo likelihood function, some of which

generalize previously published results. Central to our investigation is the behavior of the pseudo

log-likelihood normalized by sample size

An(θ) :=
1

n
`n(θ) =

∫
[0,1]d

log c(u, θ) dCn(u).

The maximum pseudo likelihood estimator can be written as

θ̂n = argmax
θ∈Θ

1

n
`n(θ) = argmax

θ∈Θ

∫
u∈[0,1]d

log c(u, θ) dCn(u)

where Cn is the empirical copula of eq. (12). Under conditions such as A1-A5 in Tsukahara (2005),

we have

θ̂n
P−−−−→

n→∞
argmax
θ∈Θ

∫
u∈[0,1]d

log c(u, θ) dC◦(u) =: θ◦
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in which θ◦ is the least false parameter according to the Kullback–Leibler divergence between the

true model c◦(·) and {c(·, θ) : θ ∈ Θ}. That is,

θ◦ = argmin
θ∈Θ

KL(c◦(·), c(·, θ)) = argmin
θ∈Θ

∫
u∈[0,1]d

log
c◦(u)

c(u, θ)
c◦(u) du = argmax

θ∈Θ
A(θ) (15)

where

A(θ) :=

∫
[0,1]d

c◦(u) log c(u, θ) du =

∫
[0,1]d

log c(u, θ) dC◦(u). (16)

We typically have

An(θ)
P−−−−→

n→∞
A(θ)

for each θ, for example under the conditions given in Proposition A1.i in Genest et al. (1995).

Let

φ(u, θ) = (∂/∂θ) log c(u, θ) (17)

be the vector of derivatives of θ 7→ log c(u, θ) and let

Un :=
∂An(θ◦)

∂θ
=

1

n

∂`n(θ◦)

∂θ
=

∫
[0,1]d

∂

∂θ
log c(u, θ◦) dCn(u) =

∫
[0,1]d

φ(u, θ) dCn(u) (18)

be the normalized pseudo score function, evaluated at θ◦. To state the asymptotic distribution of

the MPLE, we need the Information matrix

I = Eφ(ξ, θ◦)φ(ξ, θ◦)t (19)

and

W = VarZ, (20)

which is the covariance matrix of

Z :=

d∑
k=1

∫
[0,1]d

∂φ(u, θ◦)

∂uk
(I{ξk ≤ uk} − uk) dC◦(u) (21)

where ξ is a random vector distributed according to C◦.

The asymptotic Normality of the normalized score function
√
nUn is central to proving the

asymptotic Normality of the MPLE. This asymptotic result may be established either through

functional weak convergence of the empirical copula process or through the more direct arguments

of Ruymgaart et al. (1972) and Ruymgaart (1974). While the direct route is followed in Genest

et al. (1995) and Tsukahara (2005), Theorem 6 of Fermanian et al. (2004) shows that the score

function is asymptotically normal as a consequence of the process convergence of the empirical

copula. Segers (2012) substantially weakened the conditions given in Fermanian et al. (2004) for

this process convergence to take place, which in turn implies that using the process convergence

of the empirical copula process to prove asymptotic normality of the score function is now of more

general applicability. Because we will use this perspective to prove Theorem 1 a bit later, we

include the following extension of Theorem 6 of Fermanian et al. (2004). The Lemma features

the following condition, which Segers (2012) shows is sufficient for the empirical copula to have a

weak limiting distribution. The condition is also necessary for the Gaussian limiting process of the

empirical copula to exist and have continuous sample paths.

Condition 1. For each j ∈ {1, . . . , d}, the j’th first-order partial derivative Ċ◦j exists and is

continuous on the set Vd,j = {u ∈ [0, 1]d : 0 < uj < 1}.

Lemma 1. Suppose one of the following conditions are fulfilled.

(1) The score function fulfills condition A1 of Tsukahara (2005).
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(2) That u 7→ log c(u, θ) is of bounded Hardy–Krause-variation (defined in A.3 in the supple-

mentary notes) and Condition 1 is fulfilled.

Then
√
nUn

W−−−−→
n→∞

U ∼ Np(0,Σ), Σ := I +W (22)

where I and W are defined in equations (19) and (20) respectively.

Proof. We extend the proof of the bivariate case given in Theorem 6 of Fermanian et al. (2004).

Proposition 3.1. of Segers (2012) implies the desired result using the general change of variables

formula provided in Section A.3 of the supplementary notes. Other than using the theory of

Segers (2012), our only addition to the proof of Fermanian et al. (2004) is to correct their omission

of mentioning that their result requires bounded Hardy–Krause-variation and not some other

multivariate variational concept. �

Assumptions on the topology of the parameter set Θ analogous to the classical conditions

securing asymptotic Normality of the MLE, such as assumptions A1-A5 of Tsukahara (2005),

shows
√
n(θ̂n − θ◦)

W−−−−→
n→∞

J−1U ∼ Np(0, J−1ΣJ−1), (23)

where

J := −A′′(θ◦) = −
∫

[0,1]d
c◦(u)

∂2 log c(u, θ◦)

∂θ∂θt
du = −

∫
[0,1]d

∂2 log c(u, θ◦)

∂θ∂θt
dC◦ (24)

is assumed to be of full rank. We will also assume that

Jn := −A′′n(θ◦) = −
∫

[0,1]d

∂2 log c(u, θ◦)

∂θ∂θt
dCn (25)

converges in probability to J .

We are now in a position to study the asymptotic behavior of

∆n = An(θ̂n)−A(θ̂n). (26)

As was the case in the more abstract notation of eq. (13), we get that

∆n = An(θ̂n)−A(θ̂n)

= An(θ̂n)−A(θ̂n)− [An(θ◦)−A(θ◦)] + [An(θ◦)−A(θ◦)]

=
{
An(θ̂n)−A(θ̂n)− [An(θ◦)−A(θ◦)]

}
+ [An(θ◦)−A(θ◦)]

= ∆c,n + ∆m,n

where

∆c,n = An(θ̂n)−A(θ̂n)− [An(θ◦)−A(θ◦)] =

∫
log c(u, θ̂n)− log c(u, θ◦) d [Cn − C◦]

and

∆m,n = An(θ◦)−A(θ◦) =

∫
log c(u, θ◦) d [Cn − C◦] . (27)

While ∆c,n may appear to be more complex than ∆m,n, it is ∆m,n that causes complications when

providing an AIC-like model selection formula for the MPLE. Intuition behind this is that the

integrand of ∆c,n is small, so bias in the integrator d[Cn − C] turns out not to be as much of a

problem as in ∆m,n, where the integrand is constant. Because the mathematical structure behind

∆c,n is fairly unproblematic when discarding its oP (n−1) components, we only provide a heuristic

justification for the condition using classical Taylor-expansions and smoothness conditions. A

rigorous proof would basically replicate the expansions performed in Theorem 1 of Tsukahara
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(2005) and would involve expansions very similar to but simpler than those of Appendix A.2 in the

supplementary notes. In order to maintain brevity and focus, we do not include a formal proof.

Condition 2. Assume that

∆c,n =
1

n
δc,n + oP (n−1), δc,n =

√
n(θ̂n − θ◦)t

√
nUn

W−−−−→
n→∞

Dc,

where Un is the score function of eq (18). Also assume that

δc := EDc = Tr
(
J−1I

)
+ Tr

(
J−1W

)
where I and W are defined in equations (19) and (20) respectively and J is defined in eq. (24).

Justification 1. A two-term Taylor-expansion of log c(u, θ) around θ◦ gives

∆c,n = (θ̂n − θ◦)t
∫

∂

∂θ
log c(u, θ0) d [Cn − C◦]

+
1

2
(θ̂n − θ◦)

∫
∂2

∂θ∂θt
log c(u, θ0) d [Cn − C◦] (θ̂n − θ◦)t + oP (|θ̂n − θ◦|2)

As ∫
∂

∂θ
log c(u, θ0) dC◦ = 0

and both

1

2
(θ̂n − θ◦)

∫
∂2

∂θ∂θt
log c(u, θ0) d [Cn − C◦] (θ̂n − θ◦)t = oP (n−1), |θ̂n − θ◦|2 = oP (n−1),

we have that

∆n =
1

n
δc,n +

∫
log c(u, θ◦) d [Cn − C◦] + oP (n−1).

When these types of expansions are valid, Lemma 1 implies that

√
n(θ̂n − θ◦)t

√
nUn

W−−−−→
n→∞

U tJ−1U = P

where

δc = EP = EU tJ−1U = Tr(J−1Σ) = Tr
(
J−1I

)
+ Tr

(
J−1W

)
.

by eq. (22). �

Note that similarly to the fully parametric case, we have δc ≥ 0 since all matrices involved are

positive definite, and the trace of positive definite matrices are positive.

Before we study ∆m,n in detail, let us first give a bound for the stochastic order of the bias ∆m,n

introduces. This bound shows that if we count low-level noise as oP (n−3/4−ε) for some 0 < ε < 1/4

– and not oP (n−1) – we can ignore ∆m,n. However, under Condition 2, the bias originating from

∆c,n would also be considered low-level noise, and so would the correction terms in the xv-CIC

formula derived in Section 4.

In order to state this result, we need the following condition on the copula of the data found in

Segers (2012), where the condition is verified for several popular copulas.

Condition 3. Let Vd,j = {u ∈ [0, 1]d : 0 < uj < 1} for j ∈ {1, . . . , d} and write C̈◦ij as the

second order partial derivative of C◦ with respect to the i’th and j’th coordinates. Suppose that

for every i, j ∈ {1, . . . , d} the function C̈◦ij is defined and continuous on the set Vd,i∩Vd,j and there

exists a constant K > 0 such that

|C̈◦ji(u)| ≤ K min

(
1

ui(1− ui)
,

1

uj(1− uj)

)
, u ∈ Vd,i ∩ Vd,j .
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Theorem 1. If Condition 3 is fulfilled and the function v 7→ log c(v, θ◦) has finite Hardy-Krause

variation, then

∆m,n =

∫
Rd

log c(F ◦⊥(x), θ◦) d[Fn − F ◦](x) + Z̆n +O
(
n−3/4(log n)1/2(log log n)1/4

)
almost surely, where Z̆n is a random variable with zero mean.

Proof. See Appendix A.3 in the supplementary notes. �

2.2. The study of ∆m,n. We now study ∆m,n defined in eq. (27). If u 7→ log c(u, θ◦) is two

times continuously differentiable, a two-term Taylor-expansion of each term in An(θ◦) around

Fn,⊥(Xi)− F ◦⊥(Xi) gives the fundamental relation

∆m,n = An(θ◦)−A(θ◦) =

∫
log c(F ◦⊥(x), θ◦) d[Fn − F ◦](x) +

1

n
(δm,1,n + δm,1,n) + rn (28)

where the m-subscript indicates that the terms originates from the estimation process of the

marginals. We have that

δm,1,n/n =
1

n

n∑
i=1

ζ ′(F ◦⊥(Xi), θ
◦)t(Fn,⊥(Xi)− F ◦⊥(Xi)),

δm,2,n/n =
1

2n

n∑
i=1

(Fn,⊥(Xi)− F ◦⊥(Xi))
tζ ′′(F ◦⊥(Xi), θ

◦)(Fn,⊥(Xi)− F ◦⊥(Xi)),

in which

ζ ′(u, θ) =
∂ log c(u, θ)

∂u
and ζ ′′(u, θ) =

∂2 log c(u, θ)

∂u∂ut
(29)

and finally

rn =
1

2n

n∑
i=1

(Fn,⊥(Xi)− F ◦⊥(Xi))
t [ζ ′′(Gn(Xi), θ

◦)− ζ ′′(F ◦⊥(Xi), θ
◦)] (Fn,⊥(Xi)− F ◦⊥(Xi)), (30)

where Gn is a vector function with entries Gn,i(x) = F ◦i (xi) + τn,i(x)[Fn,i(xi) − Fi(xi)] for some

stochastic vector τn(x) = (τn,1, . . . , τn,d) ∈ (0, 1)d.

Theorem 2 will give conditions for when rn is oP (n−1), and thus considered low-level noise.

Clearly, the first term of eq. (28) has zero mean, and it remains to find the expectation of the

stochastically significant parts of δm,1,n and δm,2,n. This is described by the following two lemmas,

proved in Appendix A.1 of the Supplementary Notes.

Lemma 2. We have the decomposition δm,1,n = δ̃m,1,n + Z1,n where EZ1,n = 0 and

δ̃m,1,n =
n

n+ 1

∫
ζ ′(F ◦⊥(x), θ◦)t (1− F ◦⊥(x)) dFn(x)

and hence

Eδm,1,n =
n

n+ 1

∫
[0,1]d

ζ ′(u, θ◦)t (1− u) dC◦(u).

Lemma 3. Let Ca,b be the copula of (X1,a, X1,b). We have Eδm,2,n → 1tΥ1 where Υ =

(Υa,b)1≤a,b≤d is the symmetric matrix with

Υa,a =
1

2

∫
[0,1]d

ζ ′′a,a(u, θ◦)ua(1− ua) dC◦(u),

Υa,b =
1

2

∫
[0,1]d

ζ ′′a,b(u, θ
◦) [Ca,b(ua, ub)− uaub] dC◦(u) (when a 6= b).

Here ζ ′′a,b are the elements of the matrix function ζ ′′ defined in eq. (29). Further, Eδm,2,n is finite

only if 1tΥ1 is.
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This leads to the following result, based on certain growth assumptions of u 7→ log c(u, θ) near

∂
(
[0, 1]d

)
. A discussion of these assumptions is given at the end of this sub-section.

Theorem 2. If u 7→ log c(u, θ) is twice continuously differentiable on (0, 1)d and if the condi-

tions of Proposition 1 in Appendix A.2 are met, then

∆m,n = An(θ◦)−A(θ◦) =
1

n
(δm,1,n + δm,2,n) + Z̃n + oP (n−1), (31)

in which EZ̃n = 0 and

δm,1 := lim
n→∞

Eδm,1,n =

∫
[0,1]d

ζ ′(u, θ◦)t (1− u) dC◦(u) (32)

δm,2 := lim
n→∞

Eδm,2,n = 1tΥ1 (33)

where Eδm,1,n and Eδm,2,n are infinite only if δm,1 and δm,2 respectively are infinite.

Proof. This is a direct consequence of Lemma 2, Lemma 3 and Proposition 1 in Appendix A.2. �

To recapitulate, we are now in the possession of the desired expansion of ∆n of eq. (26). Under

Condition 2 and the assumptions of Theorem 2, we have that

∆n = ∆c,n + ∆m,n = Ẑn +
1

n
[δc,n + δm,1,n + δm,2,n] + oP (n−1) (34)

where EZn = 0 and δc,n converges in distribution to a variable with mean δc = Tr
(
J−1I

)
+

Tr
(
J−1W

)
defined in terms of the sizes defined in Section 2.1 and where δm,1,n and δm,2,n have

asymptotic means given by δm,1 and δm,2 in equations (32) and (33) respectively.

As announced in the introduction, δm,1 is usually finite but Υ usually has infinite elements

which implies that δm,2 is infinite. To illustrate this problem, let d = 2 and assume that the model

is correctly specified, so that c◦(u1, u2) = c(u1, u2, θ
◦) for (u1, u2) ∈ [0, 1]2. We then have

ζ ′′a,b(u, θ
◦) =

∂

∂ub

∂c◦(u)/∂ua
c◦(u)

=
∂2c◦(u)/∂ua∂ub

c◦(u)
− [∂c◦(u)/∂ua] [∂c◦(u)/∂ub]

c◦(u)2
,

yielding

Υ1,2 =

∫
[0,1]2

[
c◦(u1, u2)− [∂c◦(u1, u2)/∂u1][∂c◦(u1, u2)/∂u2]

c◦(u1, u2)

]
[C◦(u1, u2)− u1u2] dC◦(u1, u2),

Υ1,1 =

∫
[0,1]2

[
c◦(u1, u2)− [∂c◦(u1, u2)/∂u1][∂c◦(u1, u2)/∂u1]

c◦(u1, u2)

]
u1(1− u1) dC◦(u1, u2),

Υ2,2 =

∫
[0,1]2

[
c◦(u1, u2)− [∂c◦(u1, u2)/∂u2][∂c◦(u1, u2)/∂u2]

c◦(u1, u2)

]
u2(1− u2) dC◦(u1, u2).

Example 1. Consider the bivariate Kimeldorf & Sampson family of copulae with density

c(u1, u2, δ) =
1 + δ

(u1u2)δ+1

(
1/uδ1 + 1/uδ2 − 1

)2+1/δ
, δ ≥ 0

which is copula B4 in Joe (1997, p. 141). The B4 density is simply a rational polynomial when

δ = 1. This enables us to give closed form expressions for Υa,b with the help of a computer algebra

system, in contrast to most copula densities where numerical integration is needed to compute Υ.
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We find that

Υ1,2 =

∫ 1

0

[
1

5
u−1

2 −
3

10
u2 +

1

10

]
du2,

Υ1,1 =

∫ 1

0

[
u−1

2 +
1

2
u−2

2 +
3

2

]
u2(1− u2) du2,

Υ2,2 =

∫ 1

0

1

2
u−1

2 du2.

As
∫ 1

0
u−1

2 du2 =∞, we get that Υ, and hence also Eδm,2,n, is infinite.

In fact, the B4 copula is not a pathology. Although it is typical that δm,2,n = OP (1), it is also

typical that Eδm,2,n is infinite. Almost all of the copula models categorized in Joe (1997) have

infinite Υ-values, i.e. the distribution of δm,2,n has very heavy tails.

Let us now discuss the assumptions underlying Theorem 2. We see that the central size in the

definition of rn in eq. (30) is ζ ′′ of eq. (29). Hence, in order to prove that rn = oP (n−1), we need

to impose some growth conditions on ζ ′′ near the edge of the unit cube to avoid that rn diverges.

The assumptions we use, inspired by Ruymgaart et al. (1972) and Ruymgaart (1974), is that for

certain sets of functions Q and R, there exist functions qk ∈ Q and rk, r̃k,l,1, r̃k,l,2 ∈ R such that

|ζ ′′(u, θ0)| ≤ r̃a,b,1(ua)r̃a,b,2(ub)
∏

1≤k≤d,k 6=a,b

rk(uk) (35)

with ∫
[0,1]d

qa(ua)qb(ub)r̃a,b,1(ua)r̃a,b,2(ub)
∏

1≤k≤d,k 6=a,b

rk(uk) dC◦(u) <∞. (36)

Typical elements in Q and R are

q(t) = [t(1− t)]ζ , 0 < ζ < 1/2, r(t) = ρ[t(1− t)]−ζ , ζ ≥ 0, ρ ≥ 0.

Hence, for all copula models c(·, θ◦) for which there exists functions in R to secure eq. (35) – an

assumption not depending on the true copula C◦ – the validity of eq. (36) is quite a lot weaker

than the existence of Υ in Lemma 3.

We must, however, admit that similarly to previous investigations on copula models using the

quite complicated assumptions of Ruymgaart et al. (1972) and Ruymgaart (1974), we have not

conducted a detailed study that proves their validity for a selection of copula models. As Υ

is usually infinite, our argument is that we have provided some assumptions securing that the

reminder term rn defined in eq. (30) is oP (n−1), and this conclusion is conjectured to be true

also under weaker conditions than ours. Let us also indicate why it should be expected that rn is

oP (n−1). Because

2nrn =

∫
Gn,⊥(x)t [ζ ′′(Gn(Xi), θ0)− ζ ′′(F ◦⊥(x), θ0)]Gn,⊥(x) dFn(x),

where Gn,⊥ is the vector of marginal empirical processes and Gn is defined immediately after

eq. (30), it is expected that stochastic process techniques can be used to argue that 2nrn is close

to ∫
W⊥(x)tρn(x)W⊥(x) dF ◦(x), ρn(x) = ζ ′′(Gn(x), θ0)− ζ ′′(F ◦⊥(x), θ0), (37)

where W⊥(x) is defined in terms of an F ◦-Brownian Bridge W through

W⊥(x) = (W (π1(x1)), . . . ,W (πd(xd)))

where πi(xi) maps xi to (∞, . . . ,∞, xi,∞, . . . ,∞) with xi as the i’th coordinate. Because ρn(x)

converges to zero uniformly in any compact set contained in (0, 1)d, some bounds on ρn(x) near the
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edge-set ∂
(
[0, 1]d

)
would provide the desired 2nrn = oP (1) based on the approximation indicated

in eq. (37). However, if this argument were made precise, Υ would still be infinite for all popular

copula models, and the general conclusion of our investigation would still apply.

We will briefly mention a way around these infinite expectation terms in Section 3 by using

a weighted version of the MPLE, where the edge of the unit cube is given zero or small weight.

The need for such weighting procedures indicates that the MPLE’s use of marginal empirical

distribution functions blinds the estimation routine from distinguishing between copula densities

with different behavior near the edge of the unit cube – at the precision level prescribed by the

AIC-programme. This is of practical interest as the MPLE is often used precisely in contexts where

the behavior of the copula near the edge of the unit cube is of central interest. Our results can be

interpreted as a demarcation for when this use is justified.

Let us finally mention that the finitude of Υ depends on both the least false copula c(·, θ0) and

the true, unknown copula c◦(·). As the true copula is unknown, one cannot know if Υ is finite or

not in a given investigation.

2.3. Empirical estimates. The CIC formulae now follow from eq. (34) when empirical estimates

of the asymptotic expectation of δc,n, δm,1,n and δm,2,n are found. Significant simplifications can

be made when the model is assumed correct. This leads to a CIC formula that we call the AIC-

like CIC formula, derived in Section 2.3.1. If the model is not assumed correct, nonparametric

estimates are required and we get the so-called TIC-like CIC formula, given in Section 2.3.2.

2.3.1. AIC-like formula. This section works under the assumption of a correct model, as was the

case for the original AIC formula. This assumption leads to several simplifications, as shown by

the following result, whose proof is deferred to Appendix A.3.

Proposition 1. If the parametric model is correctly specified, we have δm,1 = 0 and δc =

length(θ) + Tr(I−1W), where I and W is defined in equations (19) and (20) respectively.

This motivates the AIC-like Copula Information Criterion

CIC = 2`n,max − 2(δ̂c + δ̂m,2), (38)

where δ̂c and δ̂m,2 estimates δc and δm,2 respectively.

An obvious estimator of δm,2 is δ̂m,2 = 1tΥ̂1 where

Υ̂a,a =
1

2

∫
[0,1]d

c(u, θ̂n)ζ ′′a,a(u, θ̂n)ua(1− ua) du,

Υ̂a,b =
1

2

∫
[0,1]d

c(u, θ̂n)ζ ′′a,b(u, θ̂n)
[
Ca,b(ua, ub, θ̂n)− uaub

]
du

in which Ca,b(ua, ub, θ̂n) is the cumulative copula of (Ya, Yb) when (Y1, Y2, . . . , Yd) ∼ C(u, θ̂n). We

estimate δc by

δ̂c = length(θ) + Tr
(
Î−Ŵ

)
denoting the generalized inverse of Î by Î− and where Î is the pseudo empirical information matrix

Î = Eθ̂nφ(ξ̃, θ̂n)φ(ξ̃, θ̂n)t (39)

estimating the information matrix I of eq. (19). Here φ(u, θ) = (∂/∂θ) log c(u, θ) as in eq. (17),

and

Ŵ = Var θ̂n

{∫
[0,1]d

(
∂2

∂θ∂ut
log c(u, θ̂n)

)t
(I{ξ ≤ v}⊥ − u) dC(u, θ̂n)

}
(40)
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estimates W of eq. (20). The above covariance matrix is taken with respect to the random vector

ξ̃ ∼ C(v, θ̂n), paralleling the random vector ξ in definition of Z in eq. (21). These integrals can be

evaluated in practice through numerical integration routines such as Monte Carlo simulation. We

could also use the rank based estimators

Î? =

∫
u∈[0,1]d

φ(u, θ̂n)φ(u, θ̂n)t dCn(u) =
1

n

n∑
k=1

φ(ξ̂(k), θ̂n)φ(ξ̂(k), θ̂n)t

where Ŵ ? as the empirical variance of∫
[0,1]d

(
∂2

∂θ∂ut
log c(u, θ̂n)

)t
(I{ξ̂(k) ≤ v}⊥ − u) dCn(u)

for ξ̂(k) = Fn,⊥(Xk) together with analogues for δ̂m,2. While ξ̂(k) is simply the set of pseudo

observations, note that it parallels ξ̃ above. An advantage with the rank-based estimators is that

they do not require numerical integration. However, numerical integration needs only to be done

once for a given copula model, in a grid of θ-values.

2.3.2. TIC-like formula. We now have to rely on nonparametric estimators. A natural estimator

for δm,1 is the plug-in estimator

δ̂m,1 =

∫
[0,1]d

ζ ′(u, θ̂n)t
(
1− u

)
dĈn(u)

while for δm,2 we use δ̂m,2 = 1tΥ̂1, where now

Υ̂a,a =
1

2

∫
[0,1]d

ζ ′′a,a(u, θ̂n)ua(1− ua) dĈn(u),

Υ̂a,b =
1

2

∫
[0,1]d

ζ ′′a,b(u, θ̂n)
[
Ĉn,a,b(ua, ub)− uaub

]
dĈn(u).

Here, Cn,a,b is the empirical copula based on (X1,a, X1,b), (X2,a, X2,b), . . . , (Xn,a, Xn,b). As for the

estimation of δc, we use δ̂c = Tr
(
J−1
n Σ̂

)
where Jn is defined in eq. (25) and

Σ̂ =
1

n

n∑
i=1

{
φ(ξ̂(i), θ̂n) + Ẑi

}{
φ(ξ̂(i), θ̂n) + Ẑi

}t
with

Ẑi =

d∑
j=1

1

n

n∑
s=1,s6=i

∂φ(u, θ̂n)

∂uj

∣∣∣∣
u=ξ̂(s)

(
I
{
ξ̂

(i)
j ≤ ξ̂

(s)
j

}
− ξ̂(s)

j

)
using ξ̂(k) = Fn,⊥(Xk).

2.4. Confirmation of the CIC formula through simulation. This section summarizes a small

scale simulation study that confirms the validity of the CIC formula. Some additional numerical

illustrations are given in Grønneberg (2010). We will study simulated samples with standard

Normal marginals and a mixture copula with CDF λCF (u, θ) + (1 − λ)CP (u, θ) with λ = 80%.

Here,

CF (u, θ) = CF (u1, u2, θ) = −θ−1 log
(
[(1− e−θ)− (1− e−θu1)(1− e−θu2)]/(1− e−θ)

)
is the CDF of a Frank copula, while

CP (u, θ) = CP (u1, u2, θ) =
1

2
(θ − 1)−1

{
1 + (θ − 1)(u1 + u2)

− [(1 + (θ − 1)(u1 + u2))2 − 4θ(θ − 1)u1u2]1/2
}
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is the CDF of a Plackett copula (see chapter 5.1. in Joe, 1997). We will let θ vary, but will use the

same parameter value for both copulas.

Because of the Frank and Plackett copula densities’ slow growth near ∂
(
[0, 1]2

)
, the CIC formula

exists. We want to use the known (near) unbiasedness of the AIC in the fully parametric case to

illustrate that the CIC works as it should, and that the unmotivated AIC formula does not. We

can do this by the following procedure.

When fitting parametric models with standard Normal marginals and either a Frank or a Plack-

ett copula, our model is

fi(x, y, θ) = ci
(
Φ−1(x),Φ−1(y), θ

)
φ(x)φ(y), i ∈ {F, P}

where Φ and φ is the CDF and density function of the standard Normal distribution. The true

copula is known to be a mixture of the two. Denote this density by c◦, and let f◦ be the full

data-generating mechanism of (X,Y ). We have

f◦(x, y) = c◦
(
Φ−1(x),Φ−1(y)

)
φ(x)φ(y).

By a change of variables, as in eq. (11), the Kullback–Leibler divergence between f◦(·) and fi(·, θ)
is

KL(f◦(·), fi(·, θ)) = E log
f◦(X,Y )

fi(X,Y, θ)
= E log

c◦
(
Φ−1(X),Φ−1(Y )

)
ci (Φ−1(X),Φ−1(Y ); θ)

= KL(c◦(·), ci(·, θ)).

implying

∆KL(f◦) := KL(f◦, fF (·, θ))−KL(f◦, fP (·, θ))

= KL(c◦, cF (·, θ))−KL(c◦, cP (·, θ)).

Hence, when estimating a fully specified probability model using the correct marginal models, the

difference in AIC values when using the Frank or Plackett copula should be similar on average as

to the correct copula-based model selection formula. We let θ vary in a grid of values between

5 and 24 and ran 500 simulations as described above, each with a sample size of 2000. The

parameter configurations include weak positive to very strong positive dependence. Figure 1 shows

how close the computed CIC-differences and unmotivated AIC-differences are to the correct AIC-

differences calculated on the basis of a fully parametric model. The CIC-formula is better than

the unmotivated AIC-formula, except for the copula models with weak dependence. When the

dependence grows stronger, the unmotivated AIC formula drifts away from the correct value. Note

that we used the AIC-like CIC formula, and similarly used the unmotivated AIC formula and not

a unmotivated TIC formula (which we have not seen mentioned in the literature).

3. The use of other divergences

The exploding bias correction terms of the CIC are caused by the rapid growth of many copula

densities near the edge of the unit cube. One way of reducing the effects of this is to down-weight

the sensitivity of the pseudo likelihood near the edge of the unit cube. The standard Kullback-

Leibler divergence between c◦(u) and c(u, θ) can be written as

KL(c◦(·), c(·, θ)) =

∫
[0,1]d

c◦(u) log(c◦(u)/c(u, θ)) du

=

∫
[0,1]d

c◦(u) log
c◦(u)

c(u, θ)
− [c◦(u)− c(u, θ)] du
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Figure 1. Simulated differences between fully parametric AIC and either the

CIC or the unmotivated AIC.

as the integral of a density is unity. A natural, weighted generalization of the Kullback–Leibler

divergence is

KLw(c◦(·), c(·, θ)) =

∫
[0,1]d

w(u)×
{
c◦(u) log

c◦(u)

c(u, θ)
− [c◦(u)− c(u, θ)]

}
du,

where w is some non-negative weighting function. Notice that if w ≡ 1, one regains the usual

Kullback–Leibler divergence.

This weighted Kullback–Leibler divergence is discussed in Claeskens & Hjort (2008, Section

2.10.2), and can be used to construct minimum divergence estimators and minimum divergence

model selection methodologies in the same manner as the MPLE. Generalizing the ideas leading

to the MPLE, a natural estimator for the weighted KL-least false parameter

θw := argmin
θ∈Θ

KLw(c◦(·), c(·, θ)) = argmax
θ∈Θ

[∫
[0,1]d

w(u) log c(u, θ) dC◦(u)−
∫

[0,1]d
w(u)c(u, θ) du

]
is

θ̂w := argmax
θ∈Θ

[∫
[0,1]d

w(u) log c(u, θ) dCn(u)−
∫

[0,1]d
w(u)c(u, θ) du

]
.

One can then work out an AIC-like formula for the least attained weighted Kullback–Leibler

divergence between the true copula c◦(·) and the candidate copula model. The weighting function

will then enter the integrals defining the correction terms in a weighted version of the CIC formula,

constructed through following the steps leading to Theorem 2. By defining the weighting function

as zero, or near zero, near the edge ∂[0, 1]d, the weighted CIC formula always exists. It is clear

that such a weighted estimation methodology can also be applicable for estimating misspecified

copula models, by up-weighting regions of special importance.



18 STEFFEN GRØNNEBERG AND NILS LID HJORT

In the abstract framework of Section 2, note that the existence problem for the CIC originates

from the use of the pseudo likelihood Φ[Cn], and not merely from estimating θ◦ = T (C◦) by

the MPL estimator θ̂n = T (Cn) . For the above sketched program to work, the model selection

strategy must use the weighted model relevant KL-divergence, say, Φw and derive bias corrections

for Φw[Cn](log cθ̂w). The existence problems of the CIC lies fundamentally in the use of the pseudo

likelihood Φ[Cn], as can be seen from the definition of the problematic term ∆m,n.

The need for such a down-weighting scheme indicates that the MPLE is, from the AIC-perspective,

unsuited for estimating copula models with log-densities that grow fast near the edge of the unit

cube.

4. The Cross-Validation Copula Information Criterion

It is well known that the TIC formula is first order equivalent to a certain version of cross-

validation. Indeed, for the ML estimator we have

n−1
n∑
i=1

log f(Xi, θ̂(i)) = TIC + oP (1), (41)

where θ̂(i) is the ML estimate

θ̂(i) = argmax
θ

∑
j 6=i

log f(Xj , θ)

based on an iid sample without the i’th observation.

This section proves that such an equivalence is not present for the MPLE. The CIC formula,

when it exists, is not first order equivalent to

x̂vn = n−1
n∑
i=1

log c(Fn,⊥,(i)(Xi), θ̂(i)). (42)

Here, Fn,⊥,(i) is the (rescaled) marginal empirical distribution function and θ̂(i) is the MPLE, where

both sizes are calculated using the observations X1, . . . , Xn, excluding Xi.

This non-equivalence is but a curiosity when seen by itself. However, it opens up for the

construction of a generally applicable model selection formula. The cross-validation formula x̂vn

is well motivated despite not being equivalent to the CIC formula. This leads to what we call the

xv-CIC formula, which finds an analytic approximation to x̂vn directly. The xv-CIC is simple to

calculate and is of general applicability.

Remark 1. We note a problem with the above definition of x̂vn. Recall that the MPLE

works with the rescaled empirical distribution function to avoid evaluating u 7→ log c(u, θ) when

max1≤k≤d uk = 1. The above x̂vn-formula faces an analogous nuisance for the observations Xm,k =

min1≤i≤nXi,k. For these elements, we have that

Fn,k,(m)(Xm,k) =
1

n

∑
i 6=m

I{Xi,k ≤ Xm,k} = 0.

Most copula log-densities are infinite or undefined at the edge of the unit cube so that each

observation with an index in the set

I :=

{
1 ≤ i ≤ n : Xm,k = min

1≤i≤n
Xi,k for all 1 ≤ k ≤ d

}
makes x̂vn infinite. A simple redefinition is

x̂vn = n−1
n∑
i=1

log c(F̃n,⊥,(i)(Xi), θ̂(i))
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where F̃n,⊥,(i) is the vector consisting of the functions

F̃n,k,(i)(xk) =

{
1/n, if xk ≤ mini≤j≤nXj,k.

Fn,k,(i)(xk), otherwise

Other definitions are possible as well, paralleling the rôle of Jn and Kn in Ruymgaart et al.

(1972), using their notation. Our proceeding discussion will be of an asymptotic nature, and the

contribution of the at most d elements of I will be insignificant as n→∞.

The xv-CIC formula is based on the following Theorem, stated in terms of the following condi-

tion. The Theorem is proved in Appendix A.4 in the supplementary notes.

Condition 4. The parametrization of the copula model is such that the statistical functional

Q(F ) = argmax
θ∈Θ

∫
[0,1]d

φ(u, θ) + z(u, θ) dF (u)

has an influence function, where φ(u, θ) = (∂/∂θ) log c(u, θ) and

z(x, θ) :=

d∑
i=1

∫
∂φ(u, θ)

∂ui
(I{F ◦⊥(xi) ≤ ui}⊥ − ui) dC◦(u).

Also, we have the pointwise convergence

ẑ(x, θ) :=

d∑
k=1

∫
∂φ(u, θ)

∂uk
(I{xk ≤ uk} − uk) dCn(u)

P−−−−→
n→∞

z(x, θ)

for each x and each θ in an open set around θ◦.

Theorem 3. Given Conditions 2 and 4, suppose that the score function Un of eq. (18) has the

expansion

Un =

∫
[0,1]d

φ(u, θ◦) + z(u, θ◦) d[Fn − C◦](u) + oP (n−1/2). (43)

If θ 7→ ẑ(x, θ) is continuous around θ◦, we have

x̂vn = n−1

[
`n(θ̂n)− n−1

n∑
i=1

ζ ′(Fn,⊥(Xi))
t (1d − Fn,⊥(Xi))

+ φ(Fn,⊥(Xi), θ̂n)tJ−1φ(Fn,⊥(Xi), θ̂n) + φ(Fn,⊥(Xi), θ̂n)tJ−1ẑ(Fn,⊥(Xi), θ̂n)

]
+ oP (1).

Note that assumption A1 of Tsukahara (2005) secures the validity of eq. (43). Also, assuming

pointwise convergence of ẑ is very non-restrictive, as this convergence must take place to estimate

Σ in Lemma 1.

This result motivates the definition of the cross-validation Copula Information Criterion formula

xv-CIC = 2`n,max − 2
(
δ̂c + δ̂m

)
(44)

where

δ̂c = n−1
n∑
i=1

φ(Fn,⊥(Xi), θ̂n)tJ−1
n

(
φ(Fn,⊥(Xi), θ̂n) + ẑ(Fn,⊥(Xi), θ̂n)

)
(45)

δ̂m = n−1
n∑
i=1

ζ ′(Fn,⊥(Xi), θ̂n)t (1d − Fn,⊥(Xi)) =

∫
ζ ′(u, θ̂n)t(1d − u) dCn. (46)

More compactly, we may also write

δ̂c = Tr
{
J−1
n

(
Î + K̂

)}
, K̂ =

∫
[0,1]d

φ(u, θ̂n)tz(u, θ̂n) dCn.
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Note that it is xv-CIC/2 that is first order equivalent with the cross-validation sum of eq. (42).

The factor two is included to maintain similarity with the classical AIC formula.

Analogous to the AIC-like CIC formula, simplifications can be made if the model is assumed

correct. Indeed, if the model is correct, Proposition 1 implies that δ̂m = oP (1) and

δ̂c
P−−−−→

n→∞
length(θ) + J−1K, K =

∫
[0,1]d

φ(u, θ◦)tz(u, θ◦) dC◦.

This motivates the definition of the AIC-like cross-validation Copula Information Criterion formula

xv-CICAIC = 2`n,max − 2
(

length(θ) + J−1
n K̂

)
. (47)

Note that for ξ ∼ C◦, we have Eφ(ξ, θ◦) = 0 and Ez(ξ, θ◦) = 0, so the matrix K is the covariance

matrix between φ(ξ, θ◦) and Z = z(ξ, θ◦). When the model is correct and these random vectors

are uncorrelated, the original AIC formula is well-motivated.

Note that if J−1K is small or zero, including the term J−1
n K̂ may for small samples only

introduce noise into the estimation of the model-relevant KL-divergence. A simulation study could

identify the cases where the original AIC-formula is preferred.

Also note that the xv-CIC formulas are motivated by asymptotic approximations of the cross-

validation formula eq. (42), and is only valid for large n. Just how large n must be for the formula

to become a very good approximation depends on both the data-generating mechanism and the

parametric model under consideration. However, for small to medium sized n, one can simply

calculate the precise cross-validation expression. As n grows, this becomes intractable. Also, if

length(θ) is large, exact cross validation would require solving a very many possibly challenging

numerical optimizations. If some of these optimizations do not identify the correct maximum

pseudo likelihood solution, this may skew the cross-validation computation. The xv-CIC formula

in contrast only requires a single numerical optimization.

5. An empirical example with the xv-CIC formula

We will briefly illustrate the xv-CIC formula on an insurance dataset of losses and allocated loss

adjustment expenses (ALAE). The dataset was collected by the US insurance service office, and

has been analyzed in several papers. We mention only Frees & Valdez (1998) and Genest et al.

(2006), which considered the Clayton, Frank and Gumbel copulae as potential models for the data.

All three models have length(θ) = 1. We will follow these authors in ignoring censoring and will

further only consider the same copula models as they did.

Gumbel Frank Clayton

`n,max 191.4180 161.1961 89.9494

xv 190.4832 160.1406 87.1065

xv-CIC 190.3810 160.1401 86.3736

Difference 0.1023 0.0005 0.7328

Table 1. Calculated cross-validation and xv-CIC scores for the Loss-ALAE data.

All three models have length(θ) = 1.

The number of uncensored observations is n = 1466. Precise cross-validation is computationally

intensive, but still possible to perform. In comparison, the xv-CIC formula is very fast to compute

and yields good approximations to the full cross-validation procedure. Table 1 shows the maximized

pseudo likelihoods, exact cross-validation scores and xv-CIC scores for the three models. While

the match between the full cross-validation score and the xv-CIC is very good for the Frank and
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Gumbel copula models, it is slightly less good for the Clayton copula. The final model-ranking

agrees with the discussions in the previously cited papers. An R-script included in Section A.4 in

the supplementary notes can be used to calculate xv-CIC in settings similar to the one above.

6. Conclusion

6.1. Concluding remarks. Our paper has studied the model selection problem for a semipara-

metric estimation procedure, and shown that it is significantly different compared to its fully

parametric counterpart. In the MPLE case, the non-existence of a generally applicable AIC-like

criterion is the price to pay for modeling the marginals non-parametrically.

It is well-known that the MPLE is not semiparametrically efficient in the sense of Bickel et al.

(1993). However, Grønneberg (2010) argues that while the MPLE’s lack of semiparametric effi-

ciency in this sense is not a serious deficiency, its lack of a generally applicable AIC-like criterion is.

When the model selection problem is relevant, semiparametric efficiency – which is defined under

the assumption of a correct model – does not seem as important as the invariance properties that

the MPLE fulfills, as discussed near eq. (11). The lack of a generally applicable AIC formula for

the MPLE is not discoverable by the mere root-n normality as derived in e.g. Genest et al. (1995),

but is a deeper property of the asymptotic behavior of the MPLE exposed in the present paper. It

would be interesting to see if the lack of an AIC-like model selection procedure illustrates a typical

feature of estimators based on maximizing a pseudo likelihood.

Of independent interest is the fact that the correction terms of the CIC can be both positive

and negative. This means that the “likelihood minus penalty for complexity” interpretation of the

AIC formula – often seen as a formalization of Occam’s razor – is not a general principle but a

consequence of linearity and smoothness properties of the two functionals Φ and T defining the

maximum likelihood estimator. This is in contrast to several philosophically oriented discussions

that mention the connection between simplicity and statistical model selection, as for example in

Section 5 of Baker (2010).

6.2. Recommendations for practitioners. Due to the typical non-existence of an AIC-like

model selection formula for the MPLE and the non-equivalence between the CIC and the xv-CIC,

formally justified model selection procedures for the MPLE is complicated. However, a simple

cross validation procedure usually makes sense from a practical point of view. In these cases, exact

cross validation should be performed when n is small and the xv-CIC formula should be used when

n is large. In most copula investigations, the candidate models are non-nested. In these cases, the

TIC-like xv-CIC formula of eq. (44) is usually more appropriate than the AIC-like xv-CIC formula

of eq (47).

In the supplementary note accompanying this paper, we have included a script for R (R Devel-

opment Core Team, 2010) that implements the xv-CIC formula for a modest selection of copula

models with length(θ) = 1. When length(θ) > 1, the expressions given in eq. (45) and eq. (46)

must be found in order to calculate the xv-CIC formula of eq. (44).

Just how large n aught to be before the xv-CIC formula serves as a very good approximation

to exact cross validation is still an open question, and is of particular importance for cases when

length(θ) is large. In thise cases, exact cross validation is practically impossible, while the xv-CIC

formula can be computed based on only a single numerical optimization.
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Appendix A. Supplementary notes for “The Copula Information Criteria”

This appendix gathers technical proofs needed for the results of the main document. We also

include a short R-script to calculate the xv-CIC formula when length(θ) = 1. Our notation will

follow the main document, but we will also work with the empirical processes

Gn,k(xk) =
√
n [Fn,k(xk)− F ◦k (xk)] , Gn,⊥(x) =

√
n [Fn,⊥(x)− F ◦⊥(x)] ,

Gn(x) =
√
n [Fn(x)− F ◦(x)] , Cn(u) =

√
n [Cn(u)− C◦(u)] .

A.1. Proofs for Expectation Structure.

Proof of Lemma 2 in the main document. Define

Gn,⊥,−i =

√
n

n+ 1

∑
1≤k≤n,k 6=i

[I{Xk ≤ x} − F ◦⊥(x)]

so that Gn,⊥(x) = Gn,⊥,−i(x)−
√
n/(n+ 1) [I{Xi ≤ x}⊥ − F⊥(x)]. This shows

δm,1,n/n =
1√
n

∫
ζ ′(F ◦⊥(x), θ0)tGn,⊥(x) dFn(x) =

1

n
√
n

n∑
i=1

ζ ′(F ◦⊥(Xi), θ0)tGn,⊥,−i(Xi)

+
1

n2

n

n+ 1

n∑
i=1

ζ ′(F ◦⊥(Xi), θ0)t [I{Xi ≤ Xi}⊥ − F⊥(Xi)] .

The second term is δ̃m,1,n/n. By independence, we have

Eζ ′(F ◦⊥(Xi), θ0)tGn,⊥,−i,+1(Xi) = EE
[
ζ ′(F ◦⊥(Xi), θ0)tGn,⊥,−i,+1(Xi)

∣∣Xi

]
= 0.

�
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Proof of Lemma 3 in the main document. Notice that

δm,2,n/n =
1

2n2

n∑
i=1

Gn,⊥(Xi)
tζ ′′(F ◦⊥(Xi), θ0)Gn,⊥(Xi)

=
1

2n2

n∑
i=1

Gn,⊥,−i(Xi)
tζ ′′(F ◦⊥(Xi), θ0)Gn,⊥,−i(Xi)

+
1

2n2

√
n

n+ 1

n∑
i=1

Gn,⊥,−i(Xi)
tζ ′′(F ◦⊥(Xi), θ0) [I{Xi ≤ Xi}⊥ − F⊥(Xi)]

+
1

2n2

√
n

n+ 1

n∑
i=1

[I{Xi ≤ Xi}⊥ − F⊥(Xi)]
t
ζ ′′(F ◦⊥(Xi), θ0)Gn,⊥,−i(Xi)

+
1

2n2

( √
n

n+ 1

)2 n∑
i=1

[I{Xi ≤ Xi}⊥ − F⊥(Xi)]
t
ζ ′′(F ◦⊥(Xi), θ0) [I{Xi ≤ Xi}⊥ − F⊥(Xi)] .

After multiplying with n, only the first term will have an effect on the expectation as n→∞. By

independence, its expectation is given by

1

2n
E
∫
Rd

Gn−1,⊥(x)tζ ′′(F ◦⊥(x), θ0)Gn−1,⊥(x) dF ◦(x)

=
1

n

∫
Rd

E
[
Gn−1,⊥(x)tζ ′′(F ◦⊥(x), θ0)Gn−1,⊥(x)

]
dF ◦(x)

=
1

n

∑
1≤a,b≤d

∫
Rd
ζ ′′a,b(F

◦
⊥(x), θ0)E

[
G(k)
n−1,a(xa)Gn−1,b(xb)

]
dF ◦(x).

Let ρn = n2/(n+ 1)2. We have

EGn,a(xa)Gn,b(xb) = ρn
1

n
E

[
n∑
i=1

I{Xi,k ≤ xk} − F ◦k (xk)

] n∑
j=1

I{Xj,l ≤ xl} − F ◦l (xl)


= ρn

1

n

n∑
i=1

E [I{Xi,l ≤ xl} − F ◦l (xl)] [I{Xi,k ≤ xk} − F ◦k (xk)]

+ ρn
1

n
E

∑
1≤i,j≤n,i 6=j

[I{Xi,k ≤ xk} − F ◦k (xk)] [I{Xj,l ≤ xl} − F ◦l (xl)] .

The second term vanishes by independence, yielding

EGn,a(xa)Gn,b(xb) = ρn
1

n

n∑
i=1

{
E [I{Xi,l ≤ xl} − F ◦l (xl)] I{Xi,k ≤ xk}

+ E [I{Xi,l ≤ xl} − F ◦l (xl)]F
◦
k (xk)

}
= ρn

1

n

n∑
i=1

E [I{Xi,l ≤ xl}I{Xi,k ≤ xk} − F ◦k (xk)F ◦l (xl)] ,

which is equal to xa(1−xa) if a = b and P{X1,l ≤ xl, X1,k ≤ xk}−F ◦k (xk)F ◦l (xl) otherwise. Thus,

1

2n
E
∫
Rd

Gn−1,⊥(x)tζ ′′(F ◦⊥(x), θ0)Gn−1,⊥(x) dF ◦(x)

=ρn
1

2n

∑
1≤a,b≤d,a6=b

∫
Rd
ζ ′′a,b(F

◦
⊥(x), θ0) [P{X1,a ≤ xa, X1, ≤ xb} − F ◦a (xa)F ◦b (xb)] dF ◦(x)

+ ρn
1

2n

∑
1≤a≤d

∫
Rd
ζ ′′a,a(F ◦⊥(x), θ0)xa(1− xa) dF ◦(x).
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A change of variables shows that this is equal to

ρn
1

2n

∑
1≤a,b≤d,a6=b

∫
[0,1]d

ζ ′′a,b(u, θ0) [Ca,b(ua, ub)− uaub] dC◦(u)

+ ρn
1

2n

∑
1≤a≤d

∫
[0,1]d

ζ ′′a,a(u, θ0)ua(1− ua) dC◦(u),

which approaches Υ once multiplied by n. �

Proof of Proposition 1 in the main document. The assumption c◦(u) = c(u, θ0) validates the in-

formation matrix equality J = I, which gives the reduced formula for δc. As for δm,1, let us first

notice that the fundamental theorem of calculus shows that

c(u, θ0)

∣∣∣∣
uk=x

=
d

dx

∫ x

0

c(u, θ0) duk =
d

dx

∫ 1

0

c(u, θ0)I{0 ≤ uk ≤ x}duk.

As c(u, θ0)I{0 ≤ uk ≤ x} is dominated by c(u, θ0) which is integrable, dominated convergence

allows us to move the differential sign in and out of integrals. As c(u, θ0) has uniform marginals,

this shows

(1)

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

c(u, θ0)

∣∣∣∣
vk=x

∏
i6=k

dui =
d

dx

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫ x

0

c(u, θ0) duk
∏
i 6=k

dui =
d

dx
x = 1.

We have

δm,1 =

∫
[0,1]d

ζ ′(u, θ0)t
(
1− u

)
dC(u, θ0)

=

d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

c(u, θ0)
∂ log c(u, θ0)

∂uk
(1− uk) duk

∏
i 6=k

dui

=

d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∂c(u, θ0)

∂uk
(1− uk) duk

∏
i 6=k

dui.

Let ε > 0, and write∫ 1

0

∂c(u, θ0)

∂uk
(1− uk) duk =

∫ 1−ε

ε

∂c(u, θ0)

∂uk
(1− uk) duk +

∫
[0,1]\(ε,1−ε)

∂c(u, θ0)

∂uk
(1− uk) duk.

The first term can be written as

c(u, θ0)(1− uk)

∣∣∣∣1−ε
uk=ε

+

∫ 1−ε

ε

c(u, θ0) duk = c(u, θ0)

∣∣∣∣
uk=1−ε

ε− c(u, θ0)

∣∣∣∣
uk=ε

(1− ε)

+

∫ 1−ε

ε

c(u, θ0) duk

= c(u, θ0)

∣∣∣∣
uk=1−ε

ε+ c(u, θ0)

∣∣∣∣
uk=ε

ε− c(u, θ0)

∣∣∣∣
uk=ε

+

∫ 1−ε

ε

c(u, θ0) duk,

through partial integration. By eq. (1), we get

δm,1 =

d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫
[0,1]\(ε,1−ε)

∂c(u, θ0)

∂uk
(1− uk) duk

∏
i 6=k

dui

+ 2εd− d+

d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫ 1−ε

ε

c(u, θ0) duk
∏
i6=k

dui,

which can be made arbitrarily close to zero by choosing ε sufficiently small. Thus δm,1 = 0. �
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A.2. Sufficient conditions for rn = oP (n−1). To prove that rn = oP (n−1), we need to impose

some bounds on the edge-behavior of u 7→ ζ ′′(u, θ0). We will follow the papers of Genest et al.

(1995) and Tsukahara (2005) by using the theory from Ruymgaart et al. (1972) and Ruymgaart

(1974).

Definition 1. (1) Let Q be the set of continuous functions q on [0, 1], which are positive

on (0, 1), symmetric about 1/2, decreasing on [0, 1/2] and satisfy
∫ 1

0
{q(t)}2 dt <∞.

(2) A function r : (0, 1) 7→ (0,∞) is called u-shaped if it is symmetric about 1/2 and decreasing

on (0, 1/2].

(3) For 0 < β < 1 and a u-shaped function r, we define

rβ(t) =

{
r(βt), if 0 < t ≤ 1/2;

r (1− β[1− t]) , if 1/2 < t ≤ 1
.

If for every β > 0 in a neighborhood of 0, there exists a constant Mβ , such that rβ ≤Mβr

on (0, 1), then r is called a reproducing u-shaped function. We denote by R the set of

reproducing u-shaped functions.

The importance of Q and R comes from the following two lemmas, proved in Pyke & Shorack

(1968) and Ruymgaart (1974) respectively.

Lemma 1. Suppose qk ∈ Q, then ‖Gn,k/qk‖ = OP (1) where Gn,k is the k’th univariate

empirical process.

Lemma 2. Suppose Hn,k satisfies

min

(
F ◦k (xk),

1

n+ 1

n∑
i=1

I{Xi,k ≤ xk}

)
≤ Hn,k(xk) ≤ max

(
F ◦k (xk),

1

n+ 1

n∑
i=1

I{Xi,k ≤ xk}

)
for all xk and let Λn,k = [min1≤i≤nXi,k,max1≤i≤nXi,k] ⊂ R. Let r ∈ R. Then

sup
xk∈Λn,k

r(Hn,k(xk))

r(F ◦k (xk))
= OP (1)

uniformly in n.

Condition 1. Suppose ζ ′′(u, θ0) is continuous, and for each 1 ≤ k ≤ d and 1 ≤ a, b ≤ d there

exists functions rk, r̃k,l,1, r̃k,l,2 ∈ R, and qk ∈ Q such that

(2) |f(u)| ≤ r̃a,b,1(ua)r̃a,b,2(ub)
∏

1≤k≤d,k 6=a,b

rk(uk)

where

(3)

∫
[0,1]d

qa(ua)qb(ub)r̃a,b,1(ua)r̃a,b,2(ub)
∏

1≤k≤d,k 6=a,b

rk(uk) dC◦(u) <∞.

To slightly reduce the complexity of our notation, we here assume that X1, X2, . . . ∼ C◦ so that

F ◦⊥(x) = x. By Lemma 1 of Fermanian et al. (2004) this does not entail any loss of generality.

Proposition 1. If u 7→ ζ ′′(u, θ0) conforms to Condition 1, then rn = oP (n−1).

Proof. Note that

rn =
1

2n2

n∑
i=1

Gn,⊥(Xi)
t [ζ ′′(Gn(Xi), θ0)− ζ ′′(F ◦⊥(x), θ0)]Gn,⊥(Xi).
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For each 0 < γ < 1, let Sγ = [γ, 1− γ]d and Scγ = [0, 1]d \ Sγ . Write

2nrn =

∫
Sγ

Gn,⊥(x)t [ζ ′′(Gn(x), θ0)− ζ ′′(F ◦⊥(x), θ0)]Gn,⊥(x) dFn(x)

+

∫
Scγ

Gn,⊥(x)t [ζ ′′(Gn(x), θ0)− ζ ′′(F ◦⊥(x), θ0)]Gn,⊥(x) dFn(x),

and denote these integrals by Dn,1,γ and Dn,2,γ . The absolute value of Dn,1,γ is bounded by

d sup
1≤k,l≤d

[
‖Gn,k‖[γ,1−γ]

]
× ‖Gn,l‖[γ,1−γ] × ‖ζ ′′(Gn(x), θ0)− ζ ′′(F ◦⊥(x), θ0)‖Sγ ,

where ‖ · ‖E is the appropriate sup-norm constrained to the set E. As

‖Gn − F ◦⊥‖ = ‖τn[Fn,⊥ − F ◦⊥]‖ ≤ max
1≤k≤d

‖τn,k‖‖Fn,⊥ − F ◦⊥‖ ≤ ‖Fn,⊥ − F ◦⊥‖ = oP (1)

by the Glivenko-Cantelli theorem, the assumed continuity of ζ ′′ on (0, 1)d implies that ζ ′′ is uni-

formly continuous on Sγ . Hence, ‖ζ ′′(Gn(x), θ0) − ζ ′′(F ◦⊥(x), θ0)‖ = oP (1). As ‖Gn,k‖ = OP (1),

this shows Dn,1,γ = oP (1). As for Dn,2,γ , its absolute value is bounded by∥∥∥∥Gn,aqa

∥∥∥∥∥∥∥∥Gn,bqb

∥∥∥∥ [∫
Scγ

∣∣qa(xa)ζ ′′a,b(Gn(x), θ0)qb(xb)
∣∣ dFn(x)

+

∫
Scγ

∣∣qa(xa)ζ ′′a,b(F
◦
⊥(x), θ0)qb(xb)

∣∣ dFn(x)

]
,

which by eq. (2) is bounded by∥∥∥∥Gn,aqa

∥∥∥∥∥∥∥∥Gn,bqb

∥∥∥∥ [∫
Scγ

qa(xa)qb(xb)r̃a,b,1(x̃a)r̃a,b,2(x̃b)
∏

1≤k≤d,k 6=a,b

rk(x̃k) dFn(x)

−
∫
Scγ

qa(xa)qb(xb)r̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk) dFn(x)

]
,

where x̃k = Fn,⊥(1, . . . , 1, xk, 1, . . . , 1). By Lemma 1, we have ‖Gn,a/qa‖‖Gn,b/qb‖ = OP (1). It

thus suffices to bound

Dn,2,γ(a, b, k, l) :=

∫
Scγ

qa(xa)qb(xb)r̃a,b,1(x̃a)r̃a,b,2(x̃b)
∏

1≤k≤d,k 6=a,b

rk(x̃k) dFn(x),

D̃n,2,γ(a, b, k, l) :=

∫
Scγ

qa(xa)qb(xb)r̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk) dFn(x).

By Lemma 2, there exists a constant Mε > 0 such that

Ω̃ε =

{
r̃a,b,1(x̃a)r̃a,b,2(x̃b)

∏
1≤k≤d,k 6=a,b

rk(x̃k) ≤Mεr̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk)

}
,

with P (Ω̃ε) > 1 − ε for all n. On Ω̃ε, we have Dn,2,γ(a, b, k, l) ≤ MεD̃n,2,γ(a, b, k, l). As ε is

arbitrary, it suffices to bound D̃n,2,γ(a, b, k, l). We have

E
[
|D̃n,2,γ |

]
≤
∫
Scγ

qa(xa)qb(xb)r̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk) dF ◦(x).

By the integrability assumption in eq. (3), this expectation converges to zero by the Dominated

Convergence Theorem. �
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A.3. Proof of Theorem 3. The proof of Theorem 3 requires a partial integration result for

multivariate Lebesgue-Stieltjes-integrals. Such results does not seem to be well-known in the

statistics literature, and therefore we include the following brief description of its main components.

Thanks to the Riesz-representation Theorem and the theory of stochastic integration, functions

of finite variation are of fundamental importance in mathematics. Their multivariate counterparts

are, however, lesser known. In the multivariate case, several possible definitions of variation is

possible. Good references on multivariate variation is Niederreiter (1992) and Owen (2005). We

will need the variational concept of Hardy and Krause, which is defined in terms of the Vitali

variation.

These variational concepts will be defined in terms of the set P of all sequences x0
j , x

1
j , . . . , x

m(j)
j

where 1 ≤ j ≤ d and m(j) ∈ N, such that

0 = x0
j < x1

j < x2
j < . . . < x

m(j)
j = 1.

In terms of an element of P, define the difference operators

∆jf(x1, x2, . . . , xj−1, x
k
j , xj+1, . . . , xd)

= f(x1, x2, . . . , xj−1, x
k+1
j , xj+1, . . . , xd)− f(x1, x2, . . . , xj−1, x

k
j , xj+1, . . . , xd)

and

∆∗jf(x1, x2, . . . , xd) = f(x1, x2, . . . , xj−1, 1, xj+1, . . . , xd)− f(x1, x2, . . . , xj−1, 0, xj+1, . . . , xd).

Note that this difference operator is clearly unrelated to the difference between the estimated and

attained model-relevant KL-divergence of central importance in the main document.

These operators commute, which enables the definition of the composite difference operators

∆j(1),j(2),...,j(k) = ∆j(1)∆j(2) . . .∆j(k)

∆∗j(1),j(2),...,j(k) = ∆∗j(1)∆
∗
j(2) . . .∆

∗
j(k).

Definition 2. The Vitali-variation of a function f : [0, 1]d 7→ R is defined as

V (f) := sup
x∈P

m(1)−1∑
j(1)=0

· · ·
m(d)−1∑
j(d)=0

|∆1,...,df(x
j(1)
1 , x

j(2)
2 , . . . , x

j(d)
d )|.

If V (f) <∞, the function f is said to be of finite Vitali variation.

Theorem 52.2 of McShane (1947) shows that there is an one to one correspondence between

regular Borel measures µ on [0, 1]d, and functions of bounded Vitali-variation on [0, 1]d. This

indicates that Vitali-variation is the right variational concept for multivariate integration. However,

for a general multivariate Lebesgue–Stieltjes integration by parts formula to be applicable, the

following stronger variational concept is required.

Definition 3. The Hardy–Krause-variation of a function f : [0, 1]d 7→ R is defined as the

sum of Vitali variation when f is restricted to the various faces of [0, 1]d. More precisely, Hardy–

Krause-variation of f is given by

V(f) :=
∑

(i,j)∈S

V (πi,jf),

in which the index set S is defined y

S =

{
(i, j) : i ∈ {0, 1}d, j ∈ {0, 1}d,

d∑
k=1

ik − jk = 0

}
,
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and where V (πi,kf) is the Vitali-variation of πi,jf in the appropriate dimension. Here πi,j is the

evaluation operator such that f(x1, x2, . . . , xd) is mapped to

f(x1, x2, . . . , xd)

∣∣∣∣
xi(1)=1,...,xs(i)=1,xj(1)=0,...,xs(j)=0

,

in which i(k) j(k) is the elements which are one, and s(i), s(j) are the number of elements in i and

j which are one.

Following Zaremba (1968), we now state the integration by parts formula. This formula makes

it apparent why bounded Hardy–Krause-variation is required for its validity. For its formulation,

suppose φ(r, . . . , r+ k− 1; r+ k, . . . , s) is an expression which depend only on the partition of the

variables j(r), . . . , j(s) into the sets {j(r), . . . , j(r + k − 1)} and {j(r + k), . . . , j(s)}. We will let

∗∑
1,...,d;k

φ(r, . . . , r + k − 1; r + k, . . . , s)

be the sum over all the expressions derived from φ(r, . . . , r + k − 1; r + k, . . . , s) by replacing the

given partition of {j(r), . . . , j(r + k − 1)} successively by all the other partitions of this set into a

set of k and a set of s− r− k− 1, each partition being taken exactly once. This is only meaningful

if 0 < k < s−r+1. If either k = 1 or k = s−r+1, there is strictly speaking no partition. We then

define this sum as being reduced to the single valid term. Finally, let dj(1),...,j(k)V indicate that

integration applies only to the variables with subscripts j(1), . . . , j(k), the other variables being

kept constant in the process of integration. Thus, for instance,

∆∗3

∫
[0,1]2

g(x1, x2, x3) d1,2(x1, x2, x3)

=

∫
[0,1]2

g(x1, x2, 1) d(x1, x2, 1)−
∫

[0,1]2
g(x1, x2, 0) d(x1, x2, 0).

Lemma 3. If over [0, 1]d, one of the functions f(x) and g(x) is of bounded Hardy–Krause-

variation and the other is Lebesgue–Stieltjes integrable with respect to the other, then∫
[0,1]d

f(x) dg(x) =

d∑
k=0

(−1)k
∗∑

1,2,...,d;k

∆∗k+1,...,d

∫
[0,1]k

g(x) d1,...,kf(x).

Proof. This was first proved in Zaremba (1968) for the Riemann–Stieltjes integral, which gave a

straight-forward constructive proof based on iterative use of the univariate summation by parts

formula. Lee (2008) gave a nice constructive proof using the Henstock-Kurzweil integral, which

implies the formula for the Lebesgue–Stieltjes integral. �

Using the above theory, we can prove Theorem 3.

Proof of Theorem 3. By Lemma 1 of Fermanian et al. (2004), we assume Xi ∼ C◦, so that F ◦⊥(x) =

x. Proposition 4.2 of Segers (2012) reaches

Cn(u) =
1√
n

n∑
i=1

[I{Xi ≤ u} − C◦(u)]

−
d∑
k=1

C◦(u)

∂uk

1√
n

n∑
i=1

[I{F ◦k (Xi,k) ≤ uk} − uk] + Sn(u).(4)
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where supu |Sn(u)| = O(n−1/4(log n)1/2(log log n)1/4) almost surely, After dividing with
√
n on

both sides of eq (4), the linearity of Stieltjes-integrals shows that

An(θ0)−A(θ0) =

∫
[0,1]d

log c(u, θ0) d[Fn − F ◦](u)

+
1√
n

d∑
k=1

∫
[0,1]d

log c(u, θ0) d

[
C◦(u)

∂uk
{Fn,k(uk)− uk}

]
+

1√
n

∫
[0,1]d

log c(u, θ0) dSn(u).

Let the middle integral in the display above be denoted by Z̆n. Note that although the last integral

is with respect to Sn, we do not need to assume that Sn itself has finite variation: As Sn is almost

surely uniformly bounded for sufficiently large n, it suffices that the variation of u 7→ log c(u, θ0),

that is V (log c(u, θ0)), is finite. This follows from the change of variables formula. We get

1√
n

sup
u∈[0,1]d

|Sn(u)|V (log c(u, θ0)) = O
(
n−3/4(log n)1/2(log log n)1/4

)
.

The change of variable formula shows

EZ̆n =E
1√
n

d∑
k=1

∫
[0,1]d

log c(u, θ0) d

[
C◦(u)

∂uk
{Fn,k(uk)− uk)}

]

=E
1√
n

d∑
k=1

d∑
l=0

(−1)l
∗∑

1,...,d;l

∆∗l+1,...,d

∫
[0,1]k

C◦(u)

∂uk
{Fn,k(uk)− uk} d1,...,k log c(u, θ0),

which is equal to

1√
n

d∑
k=1

d∑
l=0

(−1)l
∗∑

1,...,d;l

∆∗l+1,...,d

∫
[0,1]k

C◦(u)

∂uk
E {Fn,k(uk)− uk} d1,...,k log c(u, θ0)

by Fubini. As Fn,k(1) − 1 = Fn,k(0) − 0 = 0, and as EFn,k(uk) − uk = 0, the above integral is

zero. �

A.4. Proof of the validity of the xv-CIC. We now prove Theorem 3 in the main document.

The following Lemma is used to derive the influence function of the MPLE.

Lemma 4. Given the conditions of Theorem 3, the MPLE has an influence function equal to

J−1s(y, θ◦) where s(x, θ) = φ (x, θ) + z(x, θ).

Proof. Again we apply Lemma 1 of Fermanian et al. (2004) to assume that F ◦ = C◦, so that

F ◦⊥(x) = x. We have

(5)
√
n(θ̂n − θ◦) =

√
nJ−1

n

(∫
[0,1]d

φ(u, θ◦) + z(u, θ◦) d[Fn − C◦](u)

)
+ oP (1).

Consider the fundamentally unobservable M-estimator

θ̃n = argmax
θ∈Θ

∫
[0,1]d

φ(u, θ) + z(u, θ) dFn(u).

Fubini shows that∫
[0,1]d

z(u, θ) dF ◦(u) =

∫
[0,1]d

∫
[0,1]d

∂φ(v, θ)

∂vi
(I{ui ≤ vi}⊥ − vi) dC◦(v) dF ◦(u)

=

∫
[0,1]d

∂φ(v, θ)

∂vi

∫
[0,1]d

(I{ui ≤ vi}⊥ − vi) dF ◦(u) dC◦(v) = 0



SUPPLEMENTARY NOTES FOR “THE COPULA INFORMATION CRITERIA” 9

for any θ. Thus

θ̃n
P−−−−→

n→∞
argmax
θ∈Θ

∫
[0,1]d

φ(F ◦⊥(u), θ)+z(F ◦⊥(u), θ) dF ◦(u) = argmax
θ∈Θ

∫
[0,1]d

φ(F ◦⊥(u), θ) dF ◦(u) = θ◦,

the same least false parameter as the MPLE. Both estimators are statistical functionals of the

empirical distribution function Fn, say θ̂n = Q(Fn) and θ̃n = R(Fn), with influence functions

inflT (F ◦, y) := lim
ε→0

T ((1− ε)F ◦ + δ(y))− T (F ◦)

ε

for T equal to Q or R. We have
√
n(θ̂n− θ◦) = n−1/2

∑n
i=1 infl(Q,Xi) + oP (1) and

√
n(θ̃n− θ◦) =

n−1/2
∑n
i=1 infl(R,Xi) + oP (1). The assumed expansion of the score function Un given in the

statement of the Theorem and equation (5) imply that

√
n(θ̂n − θ◦) =

√
n(θ̃n − θ◦) + oP (1),

which implies that θ̂n and θ̃n have the same influence functions. As θ̃n is an ordinary M -estimator,

we know that its influence function is S−1s(y, θ◦), where S = −E(∂/∂θt)s(X, θ) for X ∼ F ◦. As

S = J − E(∂/∂θt)z(X, θ◦) = J − (∂/∂θt)Ez(X, θ◦) = J , we get the desired result. �

Proof of Theorem 3 in the main document . We will approximate the cross-validation expression

x̂vn = n−1
n∑
i=1

log c(Fn,⊥,(i)(Xi), θ̂(i)).

by a Taylor-expansion in both parameters. Let us denote the vector (∂/∂x1, . . . , ∂/∂xd, ∂/∂θ1, . . . , ∂∂θp)

by ∂/∂y and let ∆yn(i) = (Fn,⊥,(i)(Xi), θ̂(i))
t − (Fn,⊥(Xi)θ̂n)t. We have

θ̂(i) = θ̂n − n−1infl(Fn,(i), Xi) + oP (n−1) = θ̂n − n−1infl(Fn, Xi) + oP (n−1),

where Fn,(i) is the full empirical distribution function based on X1, . . . , Xn except Xi, and is

therefore scaled with 1/(n− 1) and not 1/n. We have

Fn,⊥,(i)(Xi) =
1

n− 1

∑
k 6=i

I{Xk ≤ Xi}⊥ =
n

n− 1
Fn,⊥(Xi)−

1

n− 1
(1, 1, . . . , 1).

which shows that

∆yn(i) = −n−1

(
1d − Fn,⊥(Xi)

infl(Fn,(i), Xi)

)
+ oP (n−1) = −n−1

(
1d − Fn,⊥(Xi)

infl(Fn, Xi)

)
+ oP (n−1).

A Taylor-expansion then shows that

x̂vn = n−1
n∑
i=1

log c(Fn,⊥,(i)(Xi), θ̂(i))

= n−1
n∑
i=1

log c(Fn,⊥(Xi), θ̂n) +
∂

∂y
log c(Fn,⊥(Xi), θ̂n)t∆yn(i) + oP (1).

Factorizing out n−1 and applying eq. (6) shows

x̂vn = n−1

[
`n(θ̂n)− n−1

n∑
i=1

∂

∂y
log c(Fn,⊥(Xi), θ̂n)t

(
1d − Fn,⊥(Xi)

infl(Fn, Xi)

)]
+oP (1).

We have
∂

∂y
log c(Fn,⊥(Xi), θ̂n) = (ζ ′(Fn,⊥(Xi), θ̂n), φ(Fn,⊥(Xi), θ̂n))t,
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which shows that

∂

∂y
log c(Fn,⊥(Xi), θ̂n)t

(
1d − Fn,⊥(Xi)

infl(Fn, Xi)

)
= ζ ′(Fn,⊥(Xi), θ̂n)t (1d − Fn,⊥(Xi)) + φ(Fn,⊥(Xi), θ̂n)tinfl(Fn, Xi).

The influence function of θ̃ is defined in terms of z(x, θ), which is unobservable. However, we now

show that the assumed pointwise convergence of ẑ implies its uniform convergence, so that we can

use it as a plug-in estimator. Indeed, we have

|ẑ(x, θ)− z(x, θ)| ≤
d∑
k=1

∑
∗∈{−,+}

∣∣∣∣∫ [∂φ(u, θ)

∂uk

]∗
I{xk ≤ uk} d[Cn − C◦](u)

∣∣∣∣
+

∣∣∣∣∫ [∂φ(u, θ)

∂uk

]∗
uk d[Cn − C◦](u)

∣∣∣∣
where we write [x]∗ for [x]+ = max(0, x) when ∗ is + and [x]− = min(0, x) when ∗ is −. The

second term does not depend on x and is thus oP (1). We are left with showing that for a f ≥ 0

for which

In(v) :=

∫
[0,1]d

I{0 ≤ ui ≤ 1 for i 6= k, v ≤ uk ≤ 1} f(u) d[Cn − C◦](u).

converges to zero pointwise, we also have sup0≤u≤1 |In(u)| = oP (1). This follows by the proof

of the classical Glivenko-Cantelli Theorem: the known pointwise convergence of In(v) implies its

uniform consistency as it is a monotone function, see e.g. Chapter 11.4 of Dudley (2003).

This uniform consistency implies that

∂

∂y
c(Fn,⊥(Xi), θ̂n)t

(
1d − Fn,⊥(Xi)

infl(Fn, Xi)

)
= ζ ′(Fn,⊥(Xi), θ̂)

t (1d − Fn,⊥(Xi))

+ φ(Fn,⊥(Xi), θ̂n)tĴ−1φ(Fn,⊥(Xi), θ̂n) + φ(Fn,⊥(Xi), θ̂n)tĴ−1ẑ(Fn,⊥(Xi), θ
◦) + oP (1)

which results in the formula stated in the theorem. �

A.5. Implementation in R for calculating the xv-CIC. We used the R system as described

in R Development Core Team (2010), together with its Copula package, see Yan (2006). The

following R-code calculates the xv-CIC through symbolic methods for the case length(θ) = 1. It

assumes that R can calculate symbolically with the density of the copula under consideration. This

is not the case for e.g. the Gaussian copula. In such cases, one may use numerical differentiation

or use other programs capable of more advanced symbolic manipulation than currently R is, such

as Mathematica.

The function takes a data-matrix and a copula-object as input, and gives the xv-CIC, the

maximized pseudo likelihood and the xv-CIC penalty terms as output.�
1 require ( copula )

2

3 edf <− function (v , ad jus t = FALSE) { ## This f u n c t i o n i s from the QRMlib package .

4 o r i g i n a l <− v

5 v <− sort ( v )

6 vv <− cumsum( ! duplicated ( v ) )

7 r epea t s <− tapply (v , v , length )

8 add <− rep (cumsum( r epea t s − 1) , r epea t s )

9 df <− ( vv + add)/ ( length ( vv ) + as .numeric ( ad jus t ) )

10 as .numeric (df [ rank ( o r i g i n a l ) ] )

11 }
12

13 find . xv . c i c <− function (X, copula ) {
14 n <− dim(X) [ 1 ]

15 d <− dim(X) [ 2 ]
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16 copula . d <− copula@exprdist$pdf

17 log . copula . d <− parse ( text=paste (c ( ” log ( ” ,deparse ( copula . d) , ” ) ” ) , sep=”” , c o l l a p s e=”” ) )

18 for ( i in ( 1 : d) ) { a s s i gn (paste ( ” zeta . d . u” , i , sep=”” ) , D( log . copula . d , paste ( ”u” , i , sep=”” ) ) )

}
19 phi <− D( log . copula . d , ” alpha ” )

20 phi . d . alpha <− D( phi , ” alpha” )

21 for ( i in ( 1 : d) ) { a s s i gn (paste ( ” phi . d . u” , i , sep=”” ) , D( phi , paste ( ”u” , i , sep=”” ) ) ) }
22 pseudo . obs <− apply (X, 2 , edf , ad jus t=1)

23 for ( i in ( 1 : d) ) { a s s i gn (paste ( ”u” , i , sep=”” ) , pseudo . obs [ , i ] ) }
24 alpha <− f i tCopu la ( copula , pseudo . obs , method=”ml” ) @estimate

25 hat . J <− −sum( eval ( phi . d . alpha ) )/n

26 hat . J . inv <− 1/hat . J

27 r . n <− 0

28 for ( i in ( 1 : d) ) { r . n <− r . n + mean( eval ( get (paste ( ” zeta . d . u” , i , sep=”” ) ) )∗( rep (1 , n) − get (

paste ( ”u” , i , sep=”” ) ) ) ) }
29 for ( i in ( 1 : d) ) { a s s i gn (paste ( ” eva l . phi . d . u” , i , sep=”” ) , eval ( get (paste ( ” phi . d . u” , i , sep=””

) ) ) ) }
30 q . hat <− function ( x ) {
31 r e s <− 0

32 for ( i in ( 1 : d) ) { r e s <− r e s + mean( get (paste ( ” eva l . phi . d . u” , i , sep=”” ) )∗( ( x [ i ] < get (

paste ( ”u” , i , sep=”” ) ) )∗1 − get (paste ( ”u” , i , sep=”” ) ) ) ) }
33 r e s

34 }
35 q . hat . eval <− NULL

36 for ( i in ( 1 : n) ) { q . hat . eval [ i ] <− q . hat ( pseudo . obs [ i , ] ) }
37 q . n <− mean( eval ( phi )∗hat . J . inv∗q . hat . eval )

38 p . n <− mean( eval ( phi ) ˆ2∗hat . J . inv )

39 return (c ( f i tCopu la ( copula , pseudo . obs , method=”ml” ) @log l i k − (p . n + q . n + r . n) , f i tCopu la (

copula , pseudo . obs , method=”ml” ) @log l ik , p . n + q . n + r . n) )

40 } 
� �
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