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Abstract

The unconstrained product indicator (PI) approach is a simple and popular approach for

modeling nonlinear e�ects among latent variables. This approach leaves the practitioner to

choose the PIs to be included in the model, introducing arbitrariness into the modeling. In

contrast to previous Monte Carlo studies, we evaluated the PI approach by three post-hoc

analyses applied to a real-world case adopted from a research e�ort in social psychology.

The measurement design applied three and four indicators for the two latent first-order

variables, leaving the researcher with a choice among more than 4000 possible PI

configurations. Sixty so-called matched-pair configurations that have been recommended in

previous literature are of special interest. In the first post-hoc analysis we estimated the

interaction e�ect for all PI configurations, keeping the real-world sample fixed. The

estimated interaction e�ect was substantially a�ected by the choice of PIs, also across

matched-pair configurations. Subsequently, a post-hoc Monte Carlo study was conducted,

with varying sample sizes and data distributions. Convergence, bias, type I error and

power of the interaction test were investigated for each matched-pair configuration and the

all-pairs configuration. Variation in estimates across matched-pair configurations for a

typical sample was substantial. The choice of specific configuration significantly a�ected

convergence and the interaction test’s outcome. The all-pairs configuration performed

overall better than the matched-pair configurations. A further advantage of the all-pairs

over the matched-pairs approach is its unambiguity. The final study evaluates the all-pairs

configuration for small sample sizes, and compares it to the non-PI approach of LMS.

Keywords: latent interaction, product indicators, unconstrained approach, post hoc

analysis, matched-pair strategy
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The Choice of Product Indicators in Latent Variable Interaction Models:

Post Hoc Analyses

Introduction

Models with nonlinear relationships among latent variables are often encountered in

social and behavioral sciences. In this paper we investigate an instance of the classical

Kenny and Judd (1984) model where two latent predictor variables ›1 and ›2 interact to

have a nonlinear e�ect on a latent criterion variable ÷:

÷ = “1›1 + “2›2 + “3›1›2 + ’. (1)

In the product indicator (PI) approach to estimating (1), the latent product term

›1›2 is represented by some set or configuration of PIs xixj, where xi and xj are indicator

variables of ›1 and ›2, respectively. It is up to the researcher to decide which PIs to

include. Prior research and practice have applied from one (the 1-pair approach) to all

possible PIs (the all-pairs approach). No clear consensus yet exists concerning the type and

number of product indicators to be included in the model to operationally define the latent

product term. This choice is largely left to the applied researcher, introducing arbitrariness

into the modeling process. However, in an influential study Marsh, Wen, and Hau (2004)

recommended a matched-pairs strategy that greatly reduces the number of possible PI

configurations. This strategy is based on two general suggestions: a) use all information,

that is, all of the first-order indicators should be used in the formation of PIs, and b) do

not reuse any of the information; that is, each of the first-order indicators should be used

in only one PI. In Marsh et al. (2004), ›1 and ›2 each had three indicators, and the

suggested 3-match strategy implied three PIs in favor of all the nine PIs in their study.

The majority of possible PI configurations violate either the use-all-information or the

do-not-reuse-information principles. For instance, the 1-pair strategy violates the first

principle, whereas the all-pair strategy violates the second principle. The matched-pairs

strategy implies that an intermediate position has to be taken where the researcher is left
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with a choice somewhere between one or all possible PIs. However, the problem of

arbitrariness remains to some degree, as there are di�erent PI configurations that all

adhere to the matched-pair strategy. For instance, if each of ›1 and ›2 has three first-order

indicators, there are six matched-pair configurations, one of which must be chosen for

interaction modeling.

The present study is concerned with whether variation across possible PI

configurations might have an impact on inference regarding the interaction e�ect. It is

obvious from statistical theory that two di�erent PI configurations will lead to di�erences in

parameter estimation and model evaluation. However, in a typical real-world sample, what

is the extent of this di�erence? Is the estimated interaction e�ect substantially a�ected by

the choice of PIs? If so, is the variation reduced when limiting ourselves to matched-pair

configurations? If substantial variation is found across configurations, also within the

matched-pair strategy, which approach to forming PIs is preferable in terms of convergence

rates, bias, type I error and power to detect an interaction e�ect? Any recommended

approach should reduce ambiguity by giving clear-cut advice to applied researchers.

To investigate these questions, three post hoc studies based on a real-world sample

were conducted. Basing the investigation on a real-world sample contrasts with the Monte

Carlo methodology underlying most of our current knowledge about the performance of

various latent interaction modeling strategies (e.g. Wall & Amemiya, 2001; Marsh et al.,

2004; Little, Bovaird, & Widaman, 2006; Klein & Muthén, 2007). In these studies, the

researcher has complete knowledge of the underlying population structure and is free to

manipulate design variables like sample size, deviation from non-normality, and level of

misspecification. If the simulated conditions di�er from those found in real-world data, the

conclusions do not carry over to the researcher’s real-world situation. By instead focusing

on a real-world sample we study a situation which more likely reflects the complexity of

real-world data. The generalizability of our results will however be limited to situations

that are similar to our empirical example.
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In study 1 the real-world sample is held fixed, and we focus on di�erent ways to

operationally define the latent interaction variable in terms of number and organization of

the PIs given the number of available choices in the actual measurement design. This

results in a variation across more than 4000 PI configurations. Study 1 examines the

variation in estimated interaction e�ect “3 across the large number of PI configurations.

Study 2 is a post hoc Monte Carlo study based on the same real-world data. In this

study we examined the variation across simulated samples and across 61 selected PI

configurations: In line with prior research we investigated all 60 di�erent versions of the

matched-pairs strategy plus the all-possible pairs strategy. The variation across

matched-pair configurations for a typical sample was investigated. We also provide

information for each matched configuration and the all-pairs configuration in terms of

convergence, bias, coverage, and type 1 error and power for testing the interaction e�ect.

Based on study 2 we recommend the all-pairs configuration when using PIs to model

latent interaction. The currently most popular alternative to PIs is the latent moderated

structural equations (LMS) approach (Klein & Moosbrugger, 2000). In study 3 we perform

a post hoc Monte Carlo comparison of all-pairs and LMS under realistic conditions, i.e.

with small sample sizes and non-normal data.

While the post hoc Monte Carlo simulations in studies 2 and 3 deviate from typical a

priori Monte Carlo studies, our post hoc simulation across models in study 1 is rarely done

and we are not familiar with any such study for the purpose of the present study. The

present combination of the three post hoc studies are not either typical in this research

area. This combination allows assessing to what extent findings are generalizable across the

post hoc studies.

This article is organized as follows. We first present the PI approach to interaction

modeling. Next we present our real-word case from social psychology. This is followed by

the three studies. Each study is reported by the three sections; method, results and

discussion. The article is ended by a general discussion and a conclusion.
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The PI Approach

The PI approach as presented in the seminal paper of Kenny and Judd (1984)

originally included a set of parameter constraints that were complicated to incorporate in

the model. Specifying such nonlinear constraints on the model parameters has proved to be

challenging for applied researchers, and has not resulted in much applied work. Another

limitation is that the parameter constraints are deduced under the assumption of

multivariate normal data, a condition that is often violated. A partially constrained

approach, where ›1 and ›2 are not assumed to be jointly normal, was proposed by Wall and

Amemiya (2001) and was found to outperform the constrained approach in situations

where the factors were non-normally distributed.

The complexity of the nonlinear constraints and their dependency on the normality

assumption led Marsh et al. (2004) to abandon these constraints. Although the

unconstrained approach is easier to implement than are constrained approaches, the

researcher still must choose which PIs to use as indicators for ›1›2. In published

evaluations of the PI approach, the number of PIs have varied from all possible pairs

(Kenny & Judd, 1984; Wall & Amemiya, 2001; Marsh et al., 2004; Yang-Wallentin,

Schmidt, Davidov, & Bamberg, 2004; Little et al., 2006; Steinmetz, Davidov, & Schmidt,

2011) to a reduced number of indicators (Jöreskog & Yang, 1996; Yang-Wallentin, 1998;

Wall & Amemiya, 2001; Marsh et al., 2004; Saris, Batista-Foguet, & Coenders, 2007). In

the all-possible-pairs strategy, all combinations xixj , where xi is an indicator of ›1 and xj

is an indicator of ›2, are used to represent the latent product term.

Monte Carlo results by Wall and Amemiya (2001) indicate that the all-pairs strategy

seems preferable to the one-pair strategy. This was reiterated by Marsh et al. (2004), which

finds that the sampling fluctuations of the estimated interaction e�ect “3 was larger for the

one-pair strategy. The all-pairs strategy was also employed by Little et al. (2006). Marsh

et al. (2004) remarked that with one pair, only a small part of the available data is used,

while with the all-possible-product strategy one repeatedly reuses the same information in
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terms of single indicators for the main-e�ect factors. They argue for a matched-pair

strategy where all information is used, but not repeatedly. By this they mean that each

indicator of ›1 and ›2 should appear as a constituent component of a PI only once. They

contend that using an indicator more than once to form PIs may introduce

non-parsimonious reuse of the information contained in the indicator.

With the exception of a few studies (Marsh et al., 2004; Wall & Amemiya, 2001) the

e�ect of varying the number of PIs for the same latent interaction variable does not seem

to have been examined. Marsh et al. (2004) compare latent interaction models with one,

three, and nine PIs, respectively. Based on their Monte Carlo studies, they suggest a

reduced number of indicators in terms of their 3-match configuration in favor of the

9-product configuration (i.e., all-pairs configuration). Their preference for a more

parsimonious model was based upon the observation that the more complicated 9-pair

configuration does not display substantial improvement compared to the 3-match

configuration. Nevertheless, Marsh et al. (2004) and Marsh, Wen, and Hau (2007)

recommend further study to find an optimal strategy to construct PI configurations. For

instance, when using an unequal number of indicators, the principle of “do not reuse

information” may not easily be applied.

To develop a well-specified interaction model requires some assumptions in the

measurement model. The central assumption of normally distributed data that underlies

the constrained PI approach is unnecessary in the unconstrained approach. However,

model formulation will be based on the following assumptions:

1. If two indicator residuals (e.g., ”1 and ”2) are uncorrelated, they are also

independent.

2. ”i and ›j are independent for all pairs i, j.

3. All residuals and the main factors ›1 and ›2 have expectation zero.

These assumptions are needed to establish whether correlated uniquenesses are called for

when introducing PIs into the model. As can be shown by covariance algebra, they imply
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that the residuals of a first-order indicator and a PI are uncorrelated. That is, if ”ij and ”i

are the residuals of xij and xi, respectively, then ”ij and ”i are uncorrelated. However, we

need to model the covariance between the residuals of two PIs whenever they share a

constituent indicator variable. For instance if both x1x4 and x2x4 are included their

uniquenesses will be correlated because of the common indicator x4.

An additional complication that, to the best of our knowledge, has not appeared in

previous PI literature is the modeling of covariance between the residuals for the same

main-e�ect indicator. It is sometimes necessary for conceptual reasons to include residual

covariance between to first-order indicators for the same latent construct. Suppose for

instance that x1 and x2 are indicators for ›1 while x3 and x4 are indicators for ›2. If there

is a conceptually based residual covariance between x1 and x2, then the residual covariance

between x1x3 and x2x4 must be modeled.

Finally, we note that there are alternative approaches to estimating the interaction

model (1) that do not rely on PIs, e.g., the LMS approach and the method of moments

approach (Mooijaart & Bentler, 2010). These recent methods are based on more elegant

underlying theory than the PI approach. However, more research is needed to evaluate

their performance under realistic conditions, i.e. with non-normal data and finite sample

sizes. In study 3 with compare the LMS approach with the all-pairs configuration under

such conditions.

Assessing an Interaction Hypothesis in Social Psychology

Our point of departure was the study by Hukkelberg, Hagtvet, and Kovac (2013)

where an interaction hypothesis was investigated involving three constructs: attitude (ATT;

positive or negative evaluations of a behavior), perceived behavioral control (PBC; the

perception of whether performing the behavior is achievable) and the dependent variable

goal commitment (GC; the intention to perform a given behavior). It was hypothesized

that for individuals who are positive about quitting smoking, the relationship between
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PBC and GC (the intention to quit smoking) would be strong, while the same relationship

would be weak or non-existing for individuals who are negative about quitting smoking.

PBC was measured with three indicators p1, p2, and p3. ATT was measured by four

indicators a1, a2, a3, and a4. GC was measured by three indicators g1, g2, and g3. Further

details and definitions of the indicator variables are described in the Appendix. To

exemplify, consider the interaction model based on the following configuration of PIs:

p1a1, p1a2, p2a3, p3a4. This model is in line with the matched-pair strategy dictated by the

“use-all-information” principle. The path diagram of the interaction model based on this

set of PIs is given in Figure 1. Two correlated uniquenesses for the PIs were necessary.

The sample

The data in this study derive from a longitudinal study conducted in November 2006

and March 2007 on smoking. Smokers, aged 15 to 74, were invited to respond to the

questionnaire through an invitation displayed in 15 internet newspapers over a 10-day

period. Altogether, we had access to 939 daily smokers who responded to the initial

invitation and to the follow-up questionnaire. Data were analyzed using complete case

analysis, resulting in a sample size of n = 926 participants.

The correlation matrix and descriptive statistics for the 10 indicator variables are

given in Table 1. The marginal distributions are all highly non-normal, as is also confirmed

by the Jarque-Bera test of normality.

The Measurement Model

We first fit the measurement model for the three latent variables, omitting the latent

product term. This approach allowed us to check whether the fit was adequate before we

proceeded to the interaction model. Moreover, testing the measurement model allows

testing for any residual covariances among the main-e�ect indicators. In our sample, we

had substantive reasons to expect correlation between residuals for indicators of the latent

attitude variable. As described in the Appendix, the indicators a1 and a2 are cognitively
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oriented, while indicators a3 and a4 are a�ect indicators of the same latent attitude

variable. However, due to the distinction between the two types of indicators, correlations

between indicators within each type may be expected because they may share a unique

factor over and beyond the common attitude factor. The fitting process of the

measurement model required a correlation between the residuals for the indicators a3 and

a4. The measurement model with standardized estimates is given in Figure 2.

Normal theory based maximum likelihood (ML) estimation was used to estimate the

model. Because our data are non-normal the model fit chi-square is that of Satorra and

Bentler (1994) and reported fit indices like the root mean squared error of approximation

(RMSEA) and comparative fit index (CFI) are based on the Satorra-Bentler chi-square.

Due to non-normality, distribution-robust standard error estimation was employed (Satorra

& Bentler, 1994, equation 16.10). Overall, we deem the measurement model to have

reasonable fit: ‰2(31) = 192.3, RMSEA=.075, CFI=.96, SRMR=.068.

Study 1: Post Hoc Analysis for the Real-World Sample

Method

A central goal in this study was to investigate how the estimated interaction e�ect

depends on the choice of PIs. For each PI configuration the estimated e�ect will be

di�erent, and therefore the question is how much the e�ect varies between configurations.

We excluded configurations with only one PI because these do not yield an identified model

under the unconstrained approach. The total number of possible configurations is then

212 ≠ 12 ≠ 1 = 4083. Figure 1 depicts one of these 4083 configurations. In study 1 we

investigate the variation among configurations in terms of proper solutions and the

estimated value and significance of the interaction parameter.

To compare the estimated interaction “3 e�ect across models, we use its standardized

value. As pointed out by Friedrich (1982), in multiple regression the standardized estimate

“̇3 of “3 is incorrect. This carries over to the standardized estimate reported in SEM
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software packages, with the correct formula given by Wen, Marsh, and Hau (2010):

“̃3 = “̇3

ı̂ııÙ
\var(›1) \var(›2)

\var(›1›2)
. (2)

A main concern in interaction models is to establish whether the interaction is

significant, that is, whether the parameter “3 is significant. Significance testing of “3 might

use the z-value of “3, z = ‚“3/s.e.(‚“3), or alternatively employ a scaled ‰2 di�erence test. In

this paper, we employ the z-value test based on robust standard errors.

The current study especially investigates variation within the matched-pair strategy.

Due to the unequal number of indicators for PBC and ATT there is a conflict between the

two principles of Marsh et al. (2004) to a) use all information, and b) do not reuse any of

the information. If principle a) is given precedence then we would need four PIs to match

up all the four indicators of ATT, while if principle b) is deemed more important we should

only use three PIs, one for each indicator of PBC. For the latter case, we define the class

3MATCH as containing all matched-pair configurations with three product indicators. In

this class each of p1, p2 and p3 appears in exactly one PI, while no aj appears in two PIs.

For instance the configuration p1a1, p2a2, p3a4 belongs to 3MATCH. The total number of PI

configurations in 3MATCH is 24. For the former case, we define the class 4MATCH as

containing all PI configurations in which each of the aj is used in exactly one PI, while

each of the pi is used once or twice. The configuration in Figure 1 belongs to 4MATCH.

There is a total of 36 configurations in 4MATCH. The all-pairs configuration consisting of

all twelve PIs is denoted by ALL.

All models contained correlated uniquenesses between pairs of PIs with a common

constituent indicator, and between pia3 and pja4 whenever these were included, as

exemplified in Figure 1. The product term ›1›2 was scaled by fixing the loading of the first

PI, say xixj, in the configuration to 1.0, where the ordering of the PIs was

p1a1, p1a2, . . . , p3a3, p3a4. The latent variables ›1 and ›2 were then scaled by fixing the

loadings of indicators xi and xj to 1.0. Our sample was double-mean-centered, that is, we
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first centered each of the observed variables, and then formed the PIs and recentered them.

As shown by Lin, Wen, Marsh, and Lin (2010), such double-mean-centering of the data

allows dropping a mean structure in the model. Each of the 4083 models was estimated

with ML using the R package lavaan (Rosseel, 2012). Robust standard errors were used,

because of the non-normality of the data. The variables are ordinal, violating the

continuity assumption underlying ML estimation. However, as variables are measured on a

7-point scale, the ML method is acceptable (Rhemtulla, Brosseau-Liard, & Savalei, 2012).

Results

Improper Solutions. A configuration obtained a fully proper solution if the

estimation converged to an admissible estimate. Improper solutions (i.e. non-convergence

and Heywood cases) were excluded in the investigation of “3 and its z-value. We obtained

fully proper solutions for 85% of the 4083 models. The likelihood of obtaining a proper

solution increases with an increasing number of indicators, as shown in Table 2. So from a

convergence viewpoint, the more PIs the better. Among the matched-pair configurations

we obtained fully proper solutions in 22 of the 24 configurations in 3MATCH, and in 35 of

the 36 configurations in 4MATCH.

Variation of Estimated “̃3 across Models. The distributions of “̃3 is given in

the kernel density plot in Figure 3. The main observation drawn from Figure 3 is that

there is a large variation of the estimated interaction e�ect across all PI configurations.

The mean and standard deviation of “̃3 were .134 and .107, respectively. Hence, varying

the PI configuration significantly a�ects the estimated interaction e�ect.

Also within 3MATCH and 4MATCH we found considerable variation in “̃3, as shown

in Figure 4. We observe that for the 22 configurations in 3MATCH there is considerable

variation, from p1a1, p2a3, p3a2 resulting in the minimal value “̃3 = .05, to the maximum

value of “̃3 = .29 obtained with p1a3, p2a2, p3a4. Although the variation in “̃3 within

4MATCH was less than within 3MATCH, the 35 configurations in 4MATCH still resulted
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in notable variation, from the minimal “̃3 = .04 obtained with p1a1, p2a3, p3a2, p3a4, to the

maximal “̃3 = .21 obtained with p1a3, p2a1, p2a3, p3a4. The ALL configuration resulted in

“̃3 = .12, and is depicted for reference in Figure 4.

Variation of the Significance of “3 across Models. The significance of “3 was

evaluated at the – = .05 level, so the decision rule is to reject H0 : “3 = 0 if |z| exceeds

1.96. The null was rejected in 3360 of the 3487 models, i.e. 96 % of the PI configurations

resulted in a significant interaction e�ect. The z-value varied markedly across PI

configurations, with mean and standard deviation 4.06 and 1.00, respectively. The

distribution of z is depicted in the kernel density plot in Figure 5.

The variation of z within the matched-pair configurations in 3MATCH and 4MATCH

is represented in the boxplots in Figure 6. In line with the findings for “̃3 the variation is

notable. In 3MATCH there is one configuration, namely p1a1, p2a3, p3a2, that leads to a

non-significant interaction e�ect. For 4MATCH there are two configurations that results in

a non-significant z, namely p1a1, p2a3, p3a2, p3a4 and p1a1, p1a4, p2a3, p3a2. There is larger

variation among the 3MATCH configuration compared to 4MATCH. The ALL

configuration yielded a z-value of 4.23, and is included in Figure 6.

Discussion

It was expected that the statistical significance of the interaction parameter would

depend on the product indicators used in the model. However, the extent of this variation

is not easy to establish a priori. To our knowledge, no exhaustive analysis of the variation

across models has been conducted previously in the empirical and theoretical literature. In

the present investigation we found considerable variation in terms of proper solutions,

parameter estimates and significance. Hence the modeling outcome for an applied

researcher choosing a specific configuration is heavily dependent upon this choice. Existing

literature suggests using only a subset of the PIs according the the principle of including

every first-order indicator only once in a PI. This approach is reasonable and fortunately
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limits the choice of possible PI configurations substantially. However, there is still ample

room for a researcher to choose within this limited class. We found that the variation

within the MATCH classes was substantial. For instance, under some matched-pair

configurations the interaction was non-significant while it was highly significant for most

other configurations. So the ambiguity inherent in the PI approach is still a problem of

practical importance even under the matched-pair strategy.

Study 2: Monte Carlo Extension Based on the Real-World Sample

Method

Study 1 investigated variation in estimated interaction e�ect across 4083 PI

configurations, keeping the single real-world sample fixed. In Study 2 we complement this

analysis by Monte Carlo simulation of artificially generated samples. We retain 61

configurations of special interest to our research questions, namely all 24 members of

3MATCH, all 36 members of 4MATCH, in addition to the all-pairs configuration. We

investigate how convergence, standard error bias, type I error and power to detect

interaction vary among three design conditions: the presence/absence of interaction e�ect

in the data, sample size and distribution of the data. These are typical design parameters

in conventional Monte Carlo studies. In such studies it is typically the case that only a

handful of models are evaluated, representing di�erent model complexities. In study 2,

however, variation across models is a major issue, with 61 PI configurations being

evaluated. The performance of each configuration under varying design conditions is

obtained by aggregating over all replications in each condition. However, this information

does not fully answer the question of how large the variability across matched-pair

configurations is in a typical sample. This is of essential concern for a researcher wishing to

model interaction based on a single sample. If the matched-pair strategy is to be used,

what might the consequences be of choosing one matched-pair configuration over another?

Does the choice matter? To obtain information about the variability across candidate
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configurations, we calculated in each sample the range of “̃3 and z. The variation in these

statistics across matched configurations in a typical sample is estimated by taking the

mean over all replications in each of the eight design cells.

In accordance with the post hoc principle adopted in this paper, we randomly draw

artificial samples from a model similar to the estimated interaction model obtained from

the real-world sample described in study 1. That is, we fix the free parameters in the

interaction model to values close to those estimated with the real-world sample.

Consequently, the simulated samples have characteristics that resemble the real-world

sample. Further in line with the post hoc approach the Monte Carlo design includes

conditions that are close to those found in our real-world sample. For each design

parameter we define one condition to match the real-world sample, and one contrasting

condition. The design parameters are sample size, distribution and interaction e�ect:

• Real-world interaction e�ect versus no interaction e�ect in data.

• Real-world non-normal distribution versus multivariate normal distribution.

• Real-world sample size n = 926 versus small sample size n = 200.

The full factorial design yields 2 · 2 · 2 = 8 conditions, with 1000 sample replications

in each condition. Sixty one models were estimated for each sample in each condition,

totaling 488000 model estimations. Detailed description of all 61 configurations included in

study 2 is available in online supplementary materials (Table 3). The 24 configurations in

3MATCH were named 3M1, 3M2, ..., 3M24. Similarly the 36 4MATCH configurations are

denoted by 4M1, 4M2, ..., 4M36. The all-pairs configuration is denoted by ALL. We next

describe the details of the data generation.

Each random sample was generated by first generating values for the latent variables

PBC and ATT with variances and covariance equal to the values obtained when

estimating the measurement model in Figure 2. Then values of pi and aj were generated by

applying loading coe�cient and error term variances/covariances also obtained from the



CHOICE OF PRODUCT INDICATORS 16

measurement model. Then values for the latent construct GC were generated by

GC = 0.4 · PBC + 0.4 · ATT + “3PBC · ATT + ’

where the regression coe�cients and the variance of ’ are approximately equal to the

values obtained from estimating the interaction model using the real-world sample with the

all-pairs configuration. In the condition where an interaction e�ect was present, we set

“3 = 0.15 , which is close to the value obtained with the all-pair configuration in the

real-world sample. Under the assumption of multivariate normality, the interaction e�ect

size accounted for 2.95% of var(GC), and the squared multiple correlation was R2 = .246.

Data without interaction e�ect were obtained by fixing “3 = 0. Finally, the observed

values gj were obtained by applying loading coe�cient and error term variances from the

estimated measurement model.

Distributional characteristics similar to those observed in the real-world sample were

obtained by setting the skewness of PBC and ATT to ≠0.5 and ≠1, and excess kurtosis to

2 and 10, respectively. All other random constituents, i.e. residual error terms and ’, were

normally distributed. Table 4 contains large-sample estimates of indicator skewness and

kurtosis in the non-normal Monte Carlo condition. The values, although not identical, are

reasonably comparable to the corresponding values observed in the real-world sample in

Table 1.

Data generation and estimation were done in R and in the lavaan package.

Non-normal data were generated from the Johnson distribution as implemented in the R

SuppDists package. The generated samples were double-mean centered and the z-value and

confidence interval were obtained from the ML estimator with distribution-robust standard

errors.

Results

Variation across matched-pair configurations in a typical sample. In a

practical situation a researcher has only one sample at hand. It is of interest to find out
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how much variation there is across 3MATCH and 4MATCH in a typical sample. To

illustrate how a statistic derived from di�erent configurations might vary on a given single

sample, we calculated the range of “̃3 and of z across the 3MATCH- and across the

4MATCH configurations for each replicated sample. That is, in each replicated sample, the

max and min value of of “̃3 and z across matched-pair configurations was calculated. The

mean of these values for “̃3 and z across all (close to 1000) replications in each of the eight

design cells are tabulated in Tables 5 and 6, respectively.

In all design conditions, there is considerable variation in both “̃3 and z across

configurations. Despite the fact that 4MATCH contains 12 more configurations than does

3MATCH, the mean range is smaller across 4MATCH configurations than it is across

3MATCH configurations, in all eight conditions, for both “̃3 and z. For both “̃3 and z, the

range is larger when interaction is present. Also, with non-normal data the overall range is

slightly larger than for normal data. With larger sample size the range of “̃3 decreases. The

same e�ect is found for z, provided there is no interaction in the data. For data with

interaction, the range of z is larger for the large sample size.

Next we evaluate the performance of each of the 61 models separately, by aggregating

the performance of each model over replications.

Convergence. Nonconvergence occurs when the model-implied covariance matrix

at some point is no longer positive-definite. In most cases, nonconvergence is caused by

Heywood cases, where some variance is estimated to be negative. The percentages of

converged solutions for each model and in each of the eight design cells can be found in

online supplementary materials (Table 7).

The overall convergence rate across all configurations and design conditions was 94%.

A design factor with strong impact on convergence concerned whether an interaction e�ect

was present in the data. Aggregating over all configurations, sample sizes, and data

distributions, the convergence rate for data with interaction (“3 = .15) was 97%, while for

data without interaction (“3 = 0) the rate was 91%. Hence, the presence of an interaction
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e�ect raised the likelihood of obtaining a converged solution. In the absence of an

interaction e�ect in the data, the interaction model is still correctly specified, but the

regression of ÷ on ›1›2 is superfluous. This over-fitting might explain the decrease in

convergence for data with no interaction e�ect.

Aggregating over all configurations, sample sizes, and presence/absence of

interaction, the convergence rates were overall slightly higher for the non-normal

distribution, namely 94.5% under non-normality and 93.5% with normal data.

As expected, sample size a�ected convergence rate. Over all configurations, data

distributions and presence/abscence of interaction, convergence rate increased from 92% to

96% for sample sizes n = 200 and n = 926, respectively.

Next we consider variation within the PI configurations, aggregating over the eight

design conditions. Convergence rates were lower in 3MATCH than in 4MATCH, with

respective overall convergence rates being 90.1% and 96.5%. The all-pairs configuration

ALL has an overall convergence rate of 99.9%, higher than the convergence rate of all the

60 matched-pair configurations. Hence, we found no support for the concern raised by

Marsh et al. (2004) that increasing the number of PIs might lead to nonconvergence.

Convergence rates varied markedly between the matched-pair configurations. Within

3MATCH convergence rates across all eight conditions varied from 76.8% (3M18) to 99.7%

(3M11), while for 4MATCH convergence rates varied from 81.9% to 99.8%.

The discussion in the following sections is based on converged solutions.

Parameter bias, e�ciency and coverage. To compare the precision and

e�ciency in estimating “3 across models we consider several performance criteria. For

conditions with no interaction e�ect (“3 = 0), all models produce unbiased estimates, i.e.

the estimated interaction e�ect showed no substantial deviation from zero. Therefore these

means are not reported here. Relative parameter bias for conditions with interaction e�ect

are available as online supplementary material (Table 8).There is variation across models in

parameter bias, especially for the smallest sample size. According to the criterion used by
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Hoogland and Boomsma (1998) (relative bias less than 0.05 in absolute value) acceptable

bias occurs in 67 of the 122 conditions with sample n = 200, and in 121 of the 122

conditions with n = 926. Non-normality of the data does not influence relative bias.

We also report the performance of standard error estimation for the 61 models as

online supplementary material (Table 8). The mean estimated standard error is denoted by

SE, while SD is the standard deviation of the estimated parameter “̂3. Both SE and SD are

calculated over all replications in each design cell. There is a tendency that SE is slightly

underestimated, i.e. that the estimated standard error is less than the true value.

Hoogland and Boomsma (1998) deemed standard error estimation to be acceptable if the

relative bias in standard errors is below 0.1 in absolute value. According to this criterion,

standard error estimation is acceptable in 89 of the 122 conditions with small sample size,

and in all 122 conditions with n = 926. Similar to parameter bias, standard error

estimation is not influenced by non-normality.

Note also that there is variation in e�ciency among the models. That is, with some

models the estimation of “̂3 is obtained with more precision in terms of lower SD.

Aggregating over sample sizes and normality conditions, the ALL configuration has the

highest e�ciency.

Coverage probabilities for 95% confidence intervals are presented in as online

supplementary material (Table 9). These probabilities vary among configurations,

particularly at the smallest sample size. Corresponding to the underestimation of standard

errors, the coverage probabilities are generally too low compared to the nominal 95% level.

We deem a coverage rate to be inadequate if it drops below 90% (see, e.g. Collins, Schafer,

& Kam, 2001) . This occurs in only 33 of the 244 conditions. Note however, that at

n = 200 the ALL configuration performs less well than most matched-pair configurations in

terms of coverage.

We conclude that the PI approach generally performs well in terms of bias, e�ciency

and coverage. However, there is considerable variation among the various PI configurations.



CHOICE OF PRODUCT INDICATORS 20

Type I error. A central issue in interaction modeling is to determine whether an

interaction e�ect exists. The hypotheses are H0 : “3 = 0 against the alternative H1 : “3 ”= 0.

Rejection occurs when the z-value exceeds the critical value 1.96, that is, we set the

significance level to – = .05. Under the absence of an interaction e�ect, rejection of the null

is a type I error, and should occur in 5% of the replications. Monte Carlo results concering

type I errors and power are tabulated in online supplementary materials (Table 10). Across

all conditions and configurations, the type I error rate was 4.58%, i.e. the PI approach in

general tended to be conservative, rejecting a true null less often than the nominal rate.

Distribution had an e�ect on type I error. For normal and non-normal data the type I

error rates were 4.74% and 4.42%, respectively, aggregating over sample size and models.

Aggregating over all models, sample size did not a�ect type I error under non-normal data.

The impact of sample size in normal data was unexpected, with type I error rates

aggregated over models of 4.97% and 4.52% for n = 200 and n = 926, respectively.

Next we discuss overall type I error rates for each model, i.e. aggregated over sample

size and distribution. There was variation across models, especially in 3MATCH, with

overall type I error rates ranging from 1.7% to 5.4%. Also within 4MATCH there was

variation among configurations, with overall type I error rates ranging from 3.7% to 5.5%.

The 3MATCH and 4MATCH configurations had aggregated type I error rates of 4.3% and

4.7%, respectively. The all-pairs configuration tended to have inflated type I error rates in

small samples. The 3M18 configuration, on the other hand, is an instance of a

matched-pair configuration with unacceptably low type I error rates.

Power. In the case where data was simulated with an interaction e�ect, the null

H0 : “3 = 0 is false. Provided type I error is acceptable, the higher power to detect

interaction, the better. Distribution type had only a modest e�ect on power, overall power

for non-normal and normal data was 70.5% and 71.9%, respectively. As expected, power

increased markedly with sample size.

Next we consider overall power, aggregated over distribution and sample size, for



CHOICE OF PRODUCT INDICATORS 21

each configuration. The variation between configurations is significant, especially within

3MATCH. Variation decreased with increasing sample size. Overall power within

3MATCH and 4MATCH was 67.7% and 73.2%, respectively. The configuration with the

highest overall power was the all-pair configuration.

Discussion

In study 2 we have seen considerable variation across PI configurations regarding

convergence, bias, coverage, type I error and power. A general observation is that

increasing the number of PIs leads to less variation among candidate configurations, as well

as to superior performance in terms of convergence, type I error and power to detect

interaction. Based on these observations we would recommend 4MATCH configuration

over 3MATCH configurations. However, there is still a great deal of variation across

4MATCH configurations. For instance, in a typical sample the range of z-values obtained

across 4MATCH configurations is quite large. The implication is that inference concerning

the interaction e�ect could well be directly a�ected by the specific choice of a 4MATCH

configuration.

A remedy for this variability is o�ered by the all-pairs configuration. The use of this

configuration in interaction modeling has the great advantage of unambiguity. There is

only one all-pairs configuration. A researcher choosing to use some other configuration

must defend the specific choice of configuration over all other comparable configurations.

A further argument in favor of the all-pairs configuration is that it consistently

performs well relative to the matched-pair configurations. It has the best convergence

rates, and performs better than 50 of the 60 matched-pair configurations in terms of

standard error bias. In terms of type I error and power it has acceptable performance, with

one notable exception: Type I errors under the all-pairs configuration seems to be inflated

under small sample size. The relatively poor performance at the small sample size might be

explained by the fact that the all-pair configuration is more complex than matched-pair
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configurations. Previous research has shown that when sample size is small relative to

model complexity, standard errors may become attenuated (Chou, Bentler, & Satorra,

1991). The number of free parameters with the all-pairs configuration is q = 87. For

3MATCH and 4MATCH configurations the interaction model typically has q = 33, and

q = 37, respectively. As more parameters are estimated under all-pairs, the required sample

size is larger for this configuration. With n = 200 the number of observations per free

parameter in all-pairs is critically low at n : q = 2.3. The corresponding ratio for 3MATCH

configurations is n : q = 6.1.

Study 3: Monte Carlo Evaluation of All-pairs for Small Sample Sizes

Method

The previous studies imply that the PI configuration containing all pairs should be

preferred under the PI approach. However, all-pairs starts to perform worse when sample

size decreases. Whereas study 2 was limited to only two sample sizes, in study 3 we further

study the performance of all-pairs under small sample sizes. In addition we compare

all-pairs with the currently most popular non-PI method for modelling latent interactions,

namely the LMS approach. Adhering to the post-hoc principle we include the following

conditions.

• Interaction e�ect: none (“3 = 0) or real-world (“3 = 0.15).

• Distribution of data: normal (D1), real-world (D2), and severely non-normal (D3).

• Sample size: n = 100, 200, 400, and real-world n = 926.

The design yields 24 conditions, with 500 sample replications in each condition. Each

random sample was generated as described in study 2. In addition to normal data (D1)

and the distribution similar to the real-world case (D2), we added a more extreme

condition of non-normality (D3), by setting the skewness and kurtosis of both PBC and

ATT to 3 and 25, respectively. All other random constituents were kept normal. LMS

estimation was done in MPLUS (Muthén & Muthén, 2010) through the use of the
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MplusAutomation package (Hallquist & Wiley, 2013).

Results

Table 11 gives parameter bias (absolute for “3 = 0 and relative for “3 = 0.15), relative

standard error bias, coverage and finally rejection rates for testing the significance of “3.

All-pairs provides unbiased estimates of “3 in all conditions. However, at n = 100 the

bias in standard error estimation is unacceptable. With increasing sample size standard

error bias is reduced, being acceptable in most conditions at n = 200. Standard error

estimation is sensitive to degree of non-normality. Coverage rates for all-pairs is generally

too low, especially for data with an interaction e�ect. Type I error rates (RR) are

acceptable at sample sizes n = 400, 926, but are inflated at lower sample sizes. With

increasing non-normality of data (D1 to D3) all-pairs performs worse, but overall we deem

all-pairs to be quite robust to non-normality.

The LMS estimator has unbiased estimates of “3 in almost all conditions. A

noticeable exception is when data have interaction and are highly non-normal (D3). In

these conditions sample size does not seem to reduce the bias. LMS provides acceptable

estimation of standard errors even at small sample sizes. Coverage is somewhat low in all

conditions. Type I errors are generally inflated, even at large sample sizes.

Discussion

Study 3 was intended to map out a major weakness of the all-pairs configuration,

namely the poor performance under small sample sizes. Although unbiased, all-pairs

provides unacceptable bias in standard errors at n = 100, resulting in inflated Type I error

rates and low coverage. These observations apply partially to n = 200, while for n = 400

all-pairs performed generally satisfactory. For n = 400 the n : q ratio is 4.6, suggesting that

n : q ratios near 5 might be su�cient for all-pairs to perform satisfactory.

A second motivation for study 3 was to compare all-pairs with a non-PI approach. In

terms of standard error estimation LMS outperformed all-pairs. However, in the most



CHOICE OF PRODUCT INDICATORS 24

non-normal situation (D3) parameter bias was unacceptable. LMS being a ML estimator

based on the normality assumption, it is in fact inconsistent under non-normality.

Generally, LMS had better coverage than all-pairs. However, at all but the smallest sample

size all-pairs had slightly better Type I error control than LMS. Overall we may conclude

that LMS performs as well or better than all-pairs in many conditions, but that all-pairs is

preferable under the non-normal data condition D3. Note also that for the present

real-world case, with n = 926, D2 and “3 = 0.15, all-pairs is preferable to LMS.

General Discussion

The application of post hoc modeling has gained interest in recent years (Bandalos,

2006; Hancock, 2006; MacCallum, 2003). The present study applied post hoc analysis in

two ways to study how the choice of product indicators to operationalize the latent

interaction variable a�ects estimation and interaction inference.

In the first study, variation both in convergence and in obtained interaction e�ect

across models are contingent upon a single real-world dataset. All possible configurations

were assessed with respect to variation of the interaction parameter value and its

significance. To complement the findings of the first post hoc study, a post hoc Monte

Carlo evaluation based on the same real-world sample was conducted. In the second study

variation across all sixty matched-pair configurations in a typical sample was assessed by

calculating the mean range over all replications in each of the eight design cells. Study 2 in

addition provided for each of the 60 matched-pair configurations, and for the all-pairs

configuration, information about convergence rates, standard error bias, Type 1 error, and

power to detect the interaction under di�erent design conditions. Common for both

approaches in study 2 is the focus on how the 61 configurations vary with respect to

assessing the interaction parameter “3. It may be noted that the Monte Carlo study is

restricted in scope due to its post hoc nature, while on the other hand it provides a

sampling perspective that allows calculation of standard error bias, Type 1 error and power
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in addition to convergence rates.

Given the present three and four indicators for the two first-order factors,

respectively, there are 4083 di�erent configurations or operational definitions of the latent

interaction variable if we exclude configurations with only one PI. Configurations di�er

with respect to the number of PIs they contain and to which extent they balance the

information contained in the first-order indicators. That is, a configuration is unbalanced

in the sense that it reuses the same information several times at the expense of excluding

some information. For example the configuration p1a1, p1a2, p1a3, p1a4 puts a

disproportionate weight on p1 at the expense of p2 and p3. It is unlikely that an applied

researcher would favor unbalanced configurations over balanced configurations. In balanced

configurations the available indicators of the two first-order factors are more evenly

distributed throughout the available PIs. From a content validity perspective (Ping, 1998;

Kane, 2001, 2006) a balanced configurations would be preferred in favor of an unbalanced

configuration. Prior analyses, carried out by the present authors, suggested that balanced

configurations in general outperformed unbalanced configurations with respect to

convergence and type I error control. The present study focused on balanced configurations

of the matched-pair type, which are well-known and recommended in the literature (Marsh

et al., 2004; Marsh, Wen, Nagengast, & Hau, 2012).

The results from the first post hoc analysis suggested that the likelihood of obtaining

a proper solution increased as the number of PIs increased. Substantial amount of

variation among configurations with respect to the estimated interaction parameter, as well

as to its z-value, were demonstrated. Even though the 4MATCH configurations displayed

less variation than the 3MATCH configurations, considerable variation was detected across

the 4MATCH configurations. Similar findings were obtained in the Monte Carlo study.

When aggregating over the eight design conditions, convergence rates were lower for

3MATCH than for 4MATCH. The all-pairs configuration displayed an overall convergence

rate that was higher than all of the 3- and 4-MATCH configurations. These results do not
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support the concern raised by Marsh et al. (2004) that nonconvergence problems may

occur by increasing the number of PIs. Thus a consistent finding obtained in the present

study is that generally the PI approach performed better as the number of PIs increased.

Considerable variation across the present PI configurations were generally displayed

regarding convergence, parameter estimates, standard error bias, type 1 error and power.

Even though variation across the PI configuration decreased as number of PIs increased,

i.e. with less variation across 4MATCH than across 3MATCH, we deem even the former

variation to be substantial. An applied researcher choosing among 4MATCH configurations

would face unacceptable levels of ambiguity. Because the present results cannot o�er

su�cient credibility to recommending even the 4MATCH configurations, our choice of

recommendation would therefore be to use the all-pairs configuration. With this type of

configuration there is no ambiguity, since the all-pairs configuration is unique. Any other

choice of configuration will eventually involve the researcher choosing, more or less

arbitrarily, a set of PIs. Our recommendation is strengthened by the fact that the all-pairs

configuration demonstrated the best convergence rate and provided better standard error

bias than 50 of the 60 mathed-pairs configurations. It also performed well in terms of type

I error control and power.

However, the recommendation of all-pairs cannot be given without reservations. It is

helpful to frame the following discussion in terms of the observations-to-parameters ratio

n : q, where n and q denote sample size and the number of parameters in the model,

respectively. Low values of n : q, say below 5, indicate that the sample may be small

relative to the model complexity (see, e.g., Nevitt & Hancock, 2004). The unhealthy

combination of small samples and complex models with relatively large number of

parameters was observed in studies 2 and 3, where the all-pairs had unacceptable

performance in terms of standard error bias and type I error at n = 100, 200, but

performed well at n = 400. With 87 free parameters the n : q ratios for n = 100, 200 are

1.15 and 2.3, respectively. It follows that use of all-pairs in the present real-world setting,
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with 87 free parameters, is not recommended at the smallest sample sizes n = 100, 200.

However, we expect that all-pairs will provide acceptable type I error control with a higher

observations-to-parameters ratio of, say, n : q = 5 or higher. In fact, in study 3 we found

that performance was acceptable at n = 400, which has n : q = 4.6.

Even with a large sample n : q may be low, if the model has many free parameters.

For the PI approach this may occur if the latent constructs each have many indicators. To

illustrate the growing complexity of the all-pairs configuration as the number of first-order

indicators increases, remark that with eight indicators for each first-order factor, there are

448 correlated uniquenesses. In the present study the first-order factors had three or four

indicators, resulting in a rather uncomplicated all-pairs configuration demanding 30

correlated uniquenesses due to the sharing of common first-order indicators. It may be

argued that for many psychological constructs three or four indicators represent a rather

narrow selection of indicators to adequately represent the construct in question. Small sets

of indicators may satisfy internal consistency reliability, but if they are considered too

narrow for the construct in mind, validity will su�er (Cronbach, Gleser, Nanda, &

Rajaratnam, 1972; Nunnally & Bernstein, 1994). However, if the sets of first-order

indicators su�er from weak content validity, it follows that the operational definition of the

latent interaction will also su�er (Ping, 1998). A remedy for the increasing complexity of

PI configurations with increasing number of first-order indicators may be sought through

application of parcels to reduce the number of indicators. However, making parcels

introduces the same kind of arbitrariness that occur in the PI approach. In general,

parceling continues to be a controversial issue (Bandalos, 2002; Kim & Hagtvet, 2003;

Sterba & MacCallum, 2010; Sterba, 2011; Marsh, Lüdtke, Nagengast, Morin, &

Von Davier, 2013; Little, Rhemtulla, Gibson, & Schoemann, 2013). The challenge of

creating parcels for estimating latent variable interaction that satisfy validity concerns as

well as render possible estimation has been rarely addressed (one exception is Jackman,

Leite, and Cochrane (2011)). This issue should be addressed in future research.
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Conclusion

Currently no clear consensus exists concerning the number and type of PIs to apply

in the PI approach to latent variable interaction modeling. In this study we examined the

e�ect the choice of PIs has on the estimated interaction e�ect in a real-world substantive

research e�ort with a single dataset. The present findings are limited to our real-world

empirical case. However, this case may be as representative of a practical research situation

as the scenario defined in pure Monte Carlo studies with artificially generated samples.

Overall, we conclude that within the PI approach the all-pairs configuration has the

best statistical properties. A viable option that does not rely on PIs is the LMS approach,

which was found to perform as well or better than the all-pairs configuration in optimal

conditions. However, for severely non-normal data all-pairs is preferable.

A main advantage of the all-pairs configuration is its unambiguity. That is, there is

only one all-pairs configuration in any modeling context. This leaves no choice for

researchers to search among di�erent plausible configurations for a model that supports

their conjecture. To claim valid interpretation of estimated latent interactions requires

both sound statistical methodology as well as reasonable conceptual considerations. Within

the PI approach the present study suggests that the all-pairs configuration will best serve

this purpose.



CHOICE OF PRODUCT INDICATORS 29

References

Bandalos, D. L. (2002). The e�ects of item parceling on goodness-of-fit and parameter

estimate bias in structural equation modeling. Structural Equation Modeling, 9 (1),

78–102.

Bandalos, D. L. (2006). The use of monte carlo studies in structural equation modeling

research. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A

second course (pp. 385–426). Greenwich, CT: Information Age. Greenwich, CT.

Chou, C.-P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust

standard errors for non-normal data in covariance structure analysis: a monte carlo

study. British Journal of Mathematical and Statistical Psychology, 44 (2), 347–357.

Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and

restrictive strategies in modern missing data procedures. Psychological methods, 6 (4),

330.

Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of

behavioral measurements. New York: Wiley.

Friedrich, R. J. (1982). In defense of multiplicative terms in multiple regression equations.

American Journal of Political Science, 797–833.

Hallquist, M., & Wiley, J. (2013). Mplusautomation: Automating mplus model estimation

and interpretation [Computer software manual].

Hancock, G. R. (2006). Power analysis in covariance structure modeling. In G. R. Hancock

& R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 69–115).

Greenwich, CT: Information Age Publishing.

Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure

modeling an overview and a meta-analysis. Sociological Methods & Research, 26 (3),

329–367.

Hukkelberg, S. S., Hagtvet, K. A., & Kovac, V. B. (2013). Latent interaction e�ects in the

theory of planned behaviour applied to quitting smoking. British journal of health



CHOICE OF PRODUCT INDICATORS 30

psychology.

Jackman, M. G.-A., Leite, W. L., & Cochrane, D. J. (2011). Estimating Latent Variable

Interactions with the Unconstrained Approach: A Comparison of Methods to Form

Product Indicators for Large, Unequal Numbers of Items. Structural Equation

Modeling: A Multidisciplinary Journal, 18 (2), 274–288.

Jöreskog, K., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd

model with interaction e�ects. In G. Marcoulides & R. Schumacher (Eds.), Advanced

structural equation modeling: Issues and techniques (p. 57-88). Mahwah, NJ:

Lawrence Erlbaum Associates.

Kane, M. T. (2001). Current concerns in validity theory. Journal of educational

Measurement, 38 (4), 319–342.

Kane, M. T. (2006). Validation. In R. L. Brennan (Ed.), Educational measurement (4th

ed., pp. 17–64). Westport, CT: American Council on Education/Praeger.

Kenny, D., & Judd, C. (1984). Estimating the nonlinear and interactive e�ects of latent

variables. Psychological Bulletin, 96 (1), 201–210.

Kim, S., & Hagtvet, K. A. (2003). The impact of misspecified item parceling on

representing latent variables in covariance structure modeling: A simulation study.

Structural Equation Modeling, 10 (1), 101–127.

Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction

e�ects with the lms method. Psychometrika, 65 (4), 457–474.

Klein, A., & Muthén, B. (2007). Quasi-Maximum Likelihood Estimation of Structural

Equation Models With Multiple Interaction and Quadratic E�ects. Multivariate

Behavioral Research, 42 (4), 647–673.

Lin, G.-C., Wen, Z., Marsh, H., & Lin, H.-S. (2010, July). Structural Equation Models of

Latent Interactions: Clarification of Orthogonalizing and Double-Mean-Centering

Strategies. Structural Equation Modeling: A Multidisciplinary Journal, 17 (3),

374–391.



CHOICE OF PRODUCT INDICATORS 31

Little, T., Bovaird, J., & Widaman, K. (2006). On the Merits of Orthogonalizing Powered

and Product Terms: Implications for Modeling Interactions Among Latent Variables.

Structural Equation Modeling: A Multidisciplinary Journal, 13 (4), 497–519.

Little, T., Rhemtulla, M., Gibson, K., & Schoemann, A. (2013). Why the items versus

parcels controversy needn’t be one. Psychological Methods, 18 (3).

Luszczynska, A., & Schwarzer, R. (2003). Planning and self-e�cacy in the adoption and

maintenance of breast self-examination: A longitudinal study on self-regulatory

cognitions. Psychology and Health, 18 , 93–108.

MacCallum, R. (2003). 2001 presidential address: Working with imperfect models.

Multivariate Behavioral Research, 38 (1), 113–139.

Marsh, H. W., Lüdtke, O., Nagengast, B., Morin, A. J., & Von Davier, M. (2013). Why

item parcels are (almost) never appropriate: Two wrongs do not make a

right—camouflaging misspecification with item parcels in cfa models. Psychological

methods, 18 (3), 257.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural Equation Models of Latent

Interactions: Evaluation of Alternative Estimation Strategies and Indicator

Construction. Psychological Methods, 9 (3), 275–300.

Marsh, H. W., Wen, Z., & Hau, K. T. (2007). Unconstrained Structural Equation Models

of Latent Interactions: Contrasting Residual- and Mean-Centered Approaches.

Structural Equation Modeling: A Multidisciplinary Journal, 1–12.

Marsh, H. W., Wen, Z., Nagengast, B., & Hau, K. T. (2012). Structural Equation Models

of Latent Interaction. In R. H. Hoyle (Ed.), Handbook of structural equation modeling

(pp. 436–458). Springer.

Mooijaart, A., & Bentler, P. (2010, July). An Alternative Approach for Nonlinear Latent

Variable Models. Structural Equation Modeling: A Multidisciplinary Journal, 17 (3),

357–373.

Muthén, L., & Muthén, B. (2010). Mplus software (version 6.1). Los Angeles, CA: Muthén



CHOICE OF PRODUCT INDICATORS 32

Muthén.

Nevitt, J., & Hancock, G. (2004). Evaluating small sample approaches for model test

statistics in structural equation modeling. Multivariate Behavioral Research, 39 (3),

439–478.

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY:

McGraw-Hill.

Ping, R. (1998). Eqs and lisrel examples using survey data. In R. E. Schumacker &

G. A. Marcoulides (Eds.), Interaction and nonlinear e�ects in structural equation

modeling (pp. 63–100). Mahwah, NJ: Lawrence Erlbaum.

Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical

variables be treated as continuous? A comparison of robust continuous and

categorical SEM estimation methods under suboptimal conditions. Psychological

Methods, 17 (3), 354–373.

Rosseel, Y. (2012). lavaan: Latent variable analysis [Computer software manual]. Retrieved

from http://CRAN.R-project.org/package=lavaan (R package version 0.4-12)

Saris, W. E., Batista-Foguet, J. M., & Coenders, G. (2007, February). Selection of

Indicators for the Interaction Term in Structural Equation Models with Interaction.

Quality & Quantity, 41 (1), 55–72.

Satorra, A., & Bentler, P. (1994). Corrections to test statistics and standard errors in

covariance structure analysis. In A. V. Eye & C. Clogg (Eds.), Latent variable

analysis: applications for developmental research (p. 399-419). Newbury Park, CA:

Sage.

Steinmetz, H., Davidov, E., & Schmidt, P. (2011). Three approaches to estimate latent

interaction e�ects: Intention and perceived behavioral control in the theory of

planned behavior. Methodological Innovations Online, 6 (1), 95–110.

Sterba, S. K. (2011). Implications of parcel-allocation variability for comparing fit of

item-solutions and parcel-solutions. Structural Equation Modeling: A



CHOICE OF PRODUCT INDICATORS 33

Multidisciplinary Journal, 18 (4), 554–577.

Sterba, S. K., & MacCallum, R. C. (2010). Variability in parameter estimates and model

fit across repeated allocations of items to parcels. Multivariate Behavioral Research,

45 (2), 322–358.

Wall, M. M., & Amemiya, Y. (2001). Generalized appended product indicator procedure

for nonlinear structural equation analysis. Journal of Educational and Behavioral

Statistics, 26 , 1–29.

Wen, Z., Marsh, H. W., & Hau, K.-T. (2010, January). Structural Equation Models of

Latent Interactions: An Appropriate Standardized Solution and Its Scale-Free

Properties. Structural Equation Modeling: A Multidisciplinary Journal, 17 (1), 1–22.

Yang-Wallentin, F. (1998). Modeling interaction and nonlinear e�ects: A step-by-step lisrel

example. In R. E. Schumacker & G. A. Marcoulides (Eds.), Interaction and nonlinear

e�ects in structural equation modeling (pp. 1–26). Mahwah, NJ: Lawrence Erlbaum.

Yang-Wallentin, F., Schmidt, P., Davidov, E., & Bamberg, S. (2004). Is there any

interaction e�ect between intention and perceived behavioral control. Methods of

Psychological Research Online, 8 (2), 127–157.



CHOICE OF PRODUCT INDICATORS 34

Table 1

Correlation Matrix, Mean, Standard Deviation, Skewness and Kurtosis of

Indicator Variables

p1 p2 p3 a1 a2 a3 a4 g1 g2 g3

p1 1.00

p2 .83 1.00

p3 .69 .66 1.00

a1 .12 .14 -.09 1.00

a2 .05 .09 -.12 .61 1.00

a3 .29 .30 .16 .39 .25 1.00

a4 .17 .18 -.04 .60 .43 .56 1.00

g1 .34 .33 .15 .31 .21 .26 .31 1.00

g2 .33 .33 .17 .32 .22 .23 .30 .77 1.00

g3 .31 .28 .19 .26 .17 .23 .28 .62 .71 1.00

Mean .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

SD 1.8 1.8 1.7 1.5 1.1 2.2 2.0 2.0 2.0 1.7

Skewness -.1 -.1 .9 -1.7 -2.9 -.1 -.8 .8 .8 1.0

Kurtosis -.9 -1.0 -.2 2.1 8.9 -1.4 -.8 -.7 -.6 .2

Note. xi, xj and gk are indicators for Perceived Behavioral Control, Attitude

and Goal Commitment, respectively.
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Table 2

Proper and Improper Solutions for Di�erent Number of PIs

Number of PI’s 2 3 4 5 6 7 8 9 10 11 12

Proper 23 126 345 633 823 753 486 219 66 12 1

Improper 43 94 150 159 101 39 9 1 0 0 0

Percentage proper 35 57 70 80 89 95 98 99.5 100 100 100
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Table 3

Incidence matrix for configurations included in study 2.

Model P11 P12 P13 P14 P21 P22 P23 P24 P31 P32 P33 P34
3M1 ı ı ı
3M2 ı ı ı
3M3 ı ı ı
3M4 ı ı ı
3M5 ı ı ı
3M6 ı ı ı
3M7 ı ı ı
3M8 ı ı ı
3M9 ı ı ı
3M10 ı ı ı
3M11 ı ı ı
3M12 ı ı ı
3M13 ı ı ı
3M14 ı ı ı
3M15 ı ı ı
3M16 ı ı ı
3M17 ı ı ı
3M18 ı ı ı
3M19 ı ı ı
3M20 ı ı ı
3M21 ı ı ı
3M22 ı ı ı
3M23 ı ı ı
3M24 ı ı ı
4M1 ı ı ı ı
4M2 ı ı ı ı
4M3 ı ı ı ı
4M4 ı ı ı ı
4M5 ı ı ı ı
4M6 ı ı ı ı
4M7 ı ı ı ı
4M8 ı ı ı ı
4M9 ı ı ı ı
4M10 ı ı ı ı
4M11 ı ı ı ı
4M12 ı ı ı ı
4M13 ı ı ı ı
4M14 ı ı ı ı
4M15 ı ı ı ı
4M16 ı ı ı ı
4M17 ı ı ı ı
4M18 ı ı ı ı
4M19 ı ı ı ı
4M20 ı ı ı ı
4M21 ı ı ı ı
4M22 ı ı ı ı
4M23 ı ı ı ı
4M24 ı ı ı ı
4M25 ı ı ı ı
4M26 ı ı ı ı
4M27 ı ı ı ı
4M28 ı ı ı ı
4M29 ı ı ı ı
4M30 ı ı ı ı
4M31 ı ı ı ı
4M32 ı ı ı ı
4M33 ı ı ı ı
4M34 ı ı ı ı
4M35 ı ı ı ı
4M36 ı ı ı ı
ALL ı ı ı ı ı ı ı ı ı ı ı ı
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Table 4

Non-normality condition. Skewness and kurtosis in indicators, calculated from a simulated

sample with n = 106.

p1 p2 p3 a1 a2 a3 a4 g1 g2 g3

Skewness -.4 -.4 -.2 -.7 -1.4 -.1 -.3 .0 .0 .0

Kurtosis -.8 -.6 -.3 4.8 4.0 .2 1.2 .1 .1 .0
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Table 5

Range, Max and Min of “̃3 across Configurations in a Typical Sample

“3 = 0 “3 = .15

Non-normal Normal Non-normal Normal

Config n 200 926 200 926 200 926 200 926

3M
AT

C
H Range .36 .09 .27 .08 .53 .14 .43 .13

Max . 17 .04 .14 .04 .52 .25 .44 .24

Min -.20 -.04 -.13 -.04 -.01 .11 .01 .11

4M
AT

C
H Range .18 .06 .17 .06 .28 .09 .27 .09

Max .09 .03 .09 .03 .34 .22 .32 .22

Min -.09 -.03 -.08 -.03 .06 .13 .05 .12

Note. The max and min of “̃3, together with range=max-min, was

calculated across configurations in each replicated sample. Tabulated

values are means over all replicated samples in the cell.
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Table 6

Range, Max and Min of z across Configurations in a Typical Sample

“3 = 0 “3 = .15

Non-normal Normal Non-normal Normal

Config n 200 926 200 926 200 926 200 926

3M
AT

C
H Range 1.61 1.58 1.57 1.51 2.07 3.00 2.08 2.87

Max .82 .78 .80 .76 2.54 4.78 2.60 4.83

Min -.80 -.80 -.76 -.76 .47 1.77 .52 1.96

4M
AT

C
H Range 1.54 1.31 1.50 1.29 1.80 2.23 1.84 2.26

Max .78 .66 .76 .66 2.59 4.81 2.64 4.86

Min -.76 -.65 -.74 -.64 .79 2.58 .80 2.61

Note. The max and min of z, together with range=max-min, was calculated

across configurations in each replicated sample. Tabulated values are means

over all replicated samples in the cell.
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Table 7

Percentage of Converged Solutions. “3= interaction e�ect.

“3 = 0 “3 = 0.15
Non-normal Normal Non-normal Normal

n 200 926 200 926 200 926 200 926 Overall
3M1 95.5 99.9 95.7 100.0 96.5 100.0 97.8 100 98.2
3M2 98.4 100 99.4 100 99.2 100 99.7 100 99.6
3M3 95 100 96.6 100 97 100 98.1 100 98.3
3M4 71.9 83 66.7 69.5 85.5 98.9 84.6 99.7 82.5
3M5 98.6 100 99.5 100 99.1 100 99.7 100 99.6
3M6 75 86.2 71.2 72.5 88.8 99.9 88 99.8 85.2
3M7 95 100 95.6 100 95.5 100 96.8 100 97.9
3M8 99 100 99.5 100 98.9 100 99.7 100 99.6
3M9 96.6 100 97.6 100 97.5 100 98.5 100 98.8
3M10 70.6 78 64 64.1 81 98.6 80 99 79.4
3M11 98.8 100 99.8 100 99.1 100 99.9 100 99.7
3M12 69.7 80.1 65.3 66.9 81.5 99.3 81 98.7 80.3
3M13 95.3 100 97.2 100 96.3 100 97.7 100 98.3
3M14 72.1 80 69.4 68.8 86.8 99.3 85.2 99.4 82.6
3M15 97.3 100 98 100 98 100 98.2 100 98.9
3M16 66.3 75.1 64.6 63.9 81.2 98.4 80.4 98.8 78.6
3M17 69.3 79.5 68.1 68.6 84.9 98.4 84.7 99.7 81.7
3M18 65 75.2 62.1 63.5 76.3 96.6 77.8 97.6 76.8
3M19 98.8 100 99.7 100 99 100 99.8 100 99.7
3M20 77.2 85.9 71 70.6 89.6 99.9 88.6 99.8 85.3
3M21 99 100 99.7 100 98.9 100 99.8 100 99.7
3M22 70.3 79.5 66 66.7 82.7 99.3 82.5 99.1 80.8
3M23 71.1 81.4 69.2 69.2 85.8 98.7 86.2 99.6 82.7
3M24 66 76 63.5 63 75.6 97.3 78 98 77.2
4M1 72.7 83.8 67.1 72.1 87 98.9 85.4 99.7 83.3
4M2 75.4 86.3 70.7 73.1 88.8 99.8 89.3 99.8 85.4
4M3 98.5 100 99.4 100 99.2 100 99.8 100 99.6
4M4 98.6 100 99.6 100 98.9 100 99.7 100 99.6
4M5 95.1 99.9 95.4 100 96.3 100 97.7 100 98.0
4M6 93.3 100 95.8 100 95.7 100 97.8 100 97.8
4M7 98.4 100 99.2 100 99.2 100 99.6 100 99.5
4M8 95.1 99.9 95.6 100 96.9 100 97.8 100 98.2
4M9 98.3 100 98.9 100 98.7 100 99.2 100 99.4
4M10 98.4 100 99.2 100 98.8 100 99.6 100 99.5
4M11 94.1 100 96.4 100 95.7 100 97.7 100 98.0
4M12 98.4 100 99.4 100 99.2 100 99.8 100 99.6
4M13 99 100 99.3 100 98.9 100 99.8 100 99.6
4M14 98.9 100 99.8 100 99.4 100 99.9 100 99.8
4M15 95.9 100 96.7 99.9 98 100 98.7 100 98.7
4M16 95.4 100 97.3 100 97 100 98.8 100 98.7
4M17 98.5 100 99.5 100 98.8 100 99.7 100 99.6
4M18 94.7 100 95.8 100 96.7 100 97.7 100 98.1
4M19 98.6 100 99.2 100 98.5 100 99.5 100 99.5
4M20 98.6 100 99.7 100 99.2 100 100 100 99.7
4M21 95.6 100 96.9 100 97 100 98.4 100 98.5
4M22 98.8 100 99.8 100 99 100 99.9 100 99.7
4M23 98.7 100 99.5 100 99.1 100 99.5 100 99.6
4M24 98.7 100 99.4 100 98.9 100 99.6 100 99.6
4M25 72.8 80.4 68.5 68.2 87.3 99.3 86.3 99.6 82.8
4M26 94.9 99.9 96.2 100 96.7 100 97.3 100 98.1
4M27 94.6 100 96.7 100 97.1 100 97.9 100 98.3
4M28 97.2 100 97.5 100 98.2 100 98.5 100 98.9
4M29 96.7 100 97.1 100 97.9 100 98.2 100 98.7
4M30 70.5 79.5 68.1 67.3 85.2 98.3 86.3 99.6 81.8
4M31 78 85.8 71.8 70.7 90.1 99.9 88.9 99.8 85.6
4M32 98.5 100 99.7 100 98.6 100 99.7 100 99.6
4M33 98.5 100 99.8 100 99 100 100 100 99.7
4M34 99.3 100 99.7 100 99.1 100 100 100 99.8
4M35 98.9 100 99.7 100 99.1 100 99.8 100 99.7
4M36 71.9 81.5 69 68.8 86.3 99.1 86.7 99.6 99.4
ALL 99.4 100 99.9 100 99.9 100 100 100.0 99.9
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Table 8

Estimation of “3 when “3 ”= 0: relative bias and estimated and empirical standard errors.

RB=relative bias. SE= estimated standard error. SD= empirical standard error.

Non-normal Normal
n 3c200 926 200 926

RB SE SD RB SE SD RB SE SD RB SE SD
3M1 0 .087 .093 -.01 .039 .038 0 .078 .088 0 .036 .035
3M2 -.02 .077 .081 0 .035 .034 0 .072 .077 0 .033 .032
3M3 .01 .093 .096 -.01 .04 .039 0 .083 .091 0 .038 .036
3M4 .1 .108 .109 -.01 .051 .051 .14 .107 .106 0 .051 .052
3M5 -.02 .076 .08 -.01 .035 .033 0 .073 .078 0 .033 .032
3M6 .07 .096 .1 -.03 .046 .046 .08 .097 .102 -.01 .046 .046
3M7 .02 .136 .15 .01 .062 .059 .02 .129 .14 .01 .06 .057
3M8 .04 .138 .146 .01 .061 .058 .04 .131 .138 .01 .059 .056
3M9 .04 .161 .175 .02 .07 .069 .03 .148 .158 .02 .067 .066
3M10 .14 .253 .308 .02 .097 .104 .15 .222 .253 .02 .095 .103
3M11 .06 .155 .166 .02 .066 .065 .06 .145 .15 .02 .063 .062
3M12 .08 .211 .29 0 .087 .09 .15 .195 .238 .01 .086 .09
3M13 .07 .129 .14 .01 .053 .051 .09 .136 .155 .01 .055 .052
3M14 .09 .133 .142 .01 .055 .054 .12 .148 .181 .01 .057 .055
3M15 .11 .152 .182 .03 .06 .059 .09 .151 .158 .02 .06 .058
3M16 .41 .383 .496 .02 .088 .089 .18 .261 .239 .01 .079 .08
3M17 .15 .184 .199 .03 .066 .067 .09 .173 .178 .01 .067 .068
3M18 .8 .802 1.299 .05 .107 .107 .42 .446 .669 .03 .093 .093
3M19 .02 .075 .079 .01 .034 .032 .03 .075 .078 .01 .034 .031
3M20 .03 .077 .083 .01 .035 .034 .02 .075 .084 0 .035 .034
3M21 .03 .084 .087 .01 .037 .036 .05 .081 .083 .01 .036 .035
3M22 -.97 .139 3.377 0 .055 .055 .09 .112 .124 0 .048 .049
3M23 .05 .092 .097 .02 .043 .044 .04 .09 .1 0 .042 .044
3M24 .29 .234 .258 .02 .066 .066 .22 .155 .204 .01 .057 .057
4M1 .07 .108 .11 -.01 .051 .051 .12 .107 .108 0 .051 .053
4M2 .07 .097 .099 -.02 .046 .046 .07 .097 .103 -.01 .046 .046
4M3 -.03 .076 .081 0 .035 .034 -.01 .072 .078 0 .033 .032
4M4 -.03 .075 .081 -.01 .035 .033 -.02 .072 .078 -.01 .033 .032
4M5 0 .086 .092 -.01 .039 .038 0 .078 .087 -.01 .036 .035
4M6 0 .09 .094 -.01 .04 .039 0 .082 .089 0 .038 .036
4M7 -.03 .075 .08 0 .035 .034 -.01 .071 .077 0 .033 .032
4M8 -.03 .078 .085 -.01 .036 .035 0 .074 .083 -.01 .035 .033
4M9 -.01 .076 .081 0 .035 .034 0 .072 .077 0 .033 .032
4M10 -.02 .076 .079 -.01 .035 .033 -.01 .072 .078 0 .033 .032
4M11 0 .086 .091 -.01 .039 .038 .01 .08 .086 0 .037 .036
4M12 -.01 .076 .081 -.01 .035 .033 0 .072 .078 0 .033 .032
4M13 .04 .136 .146 .01 .061 .058 .04 .13 .138 .01 .059 .056
4M14 .05 .154 .166 .02 .066 .065 .06 .143 .151 .02 .063 .063
4M15 .01 .132 .147 .01 .061 .058 .01 .128 .14 .01 .059 .057
4M16 .02 .154 .165 .02 .068 .068 .02 .144 .155 .01 .065 .065
4M17 .03 .135 .147 .01 .06 .058 .03 .129 .137 .01 .059 .056
4M18 .02 .133 .147 .01 .061 .058 .01 .127 .14 .01 .059 .057
4M19 .04 .137 .145 .01 .061 .058 .04 .13 .137 .01 .059 .056
4M20 .04 .153 .162 .02 .066 .065 .05 .143 .146 .02 .063 .062
4M21 .05 .159 .178 .02 .069 .069 .03 .146 .157 .01 .066 .066
4M22 .05 .152 .17 .01 .066 .065 .05 .142 .149 .02 .063 .062
4M23 .08 .133 .136 .01 .053 .05 .11 .142 .155 .02 .054 .052
4M24 .12 .153 .168 .02 .058 .057 .12 .153 .153 .02 .058 .057
4M25 .08 .13 .144 .01 .054 .053 .08 .138 .164 .01 .056 .055
4M26 .09 .135 .168 .01 .053 .051 .1 .133 .166 .01 .055 .052
4M27 .1 .136 .164 .01 .053 .051 .1 .14 .154 .01 .055 .052
4M28 .07 .145 .169 .02 .058 .058 .11 .147 .171 .02 .059 .057
4M29 .12 .149 .178 .03 .059 .059 .1 .147 .16 .02 .06 .058
4M30 .2 .218 .255 .02 .065 .066 .12 .172 .209 .01 .066 .067
4M31 .02 .075 .083 0 .035 .034 0 .073 .084 0 .035 .034
4M32 .01 .074 .08 .01 .034 .032 .02 .074 .078 .01 .034 .031
4M33 .03 .075 .08 .01 .034 .032 .04 .074 .078 .01 .034 .031
4M34 .04 .084 .088 .01 .037 .036 .05 .081 .083 .01 .036 .035
4M35 .03 .083 .088 .01 .037 .036 .04 .081 .084 .01 .036 .035
4M36 .04 .092 .097 .01 .042 .044 .02 .087 .099 0 .041 .043
ALL -.03 .07 .079 -.01 .033 .032 -.01 .068 .076 0 .032 .031
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Table 9

Coverage rates of confidence intervals for “3. Confidence level 95 %.

“3 = 0 “3 = .15
Non-normal Normal Non-normal Normal

n 200 926 200 926 200 926 200 926
3M1 .956 .964 .955 .962 .892 .932 .885 .942
3M2 .957 .954 .947 .952 .905 .941 .904 .944
3M3 .966 .962 .96 .96 .897 .932 .885 .933
3M4 .965 .967 .946 .938 .939 .936 .936 .934
3M5 .958 .951 .94 .949 .895 .953 .893 .95
3M6 .951 .976 .941 .948 .919 .941 .919 .94
3M7 .948 .956 .937 .956 .91 .957 .906 .952
3M8 .945 .958 .94 .956 .928 .96 .933 .958
3M9 .944 .946 .942 .951 .921 .937 .926 .939
3M10 .928 .955 .941 .938 .9 .928 .922 .925
3M11 .949 .95 .939 .95 .936 .946 .941 .948
3M12 .93 .949 .93 .952 .901 .941 .898 .929
3M13 .949 .955 .949 .962 .937 .946 .925 .956
3M14 .969 .955 .963 .953 .918 .951 .913 .947
3M15 .95 .946 .957 .954 .927 .948 .93 .951
3M16 .97 .983 .969 .964 .904 .946 .891 .935
3M17 .962 .95 .963 .946 .928 .947 .897 .94
3M18 .963 .98 .974 .975 .917 .947 .905 .944
3M19 .947 .956 .94 .956 .93 .952 .94 .954
3M20 .957 .946 .949 .949 .917 .949 .904 .943
3M21 .942 .949 .955 .954 .933 .949 .94 .956
3M22 .969 .967 .968 .957 .906 .945 .904 .932
3M23 .941 .946 .964 .945 .924 .934 .905 .934
3M24 .967 .966 .962 .957 .927 .937 .927 .935
4M1 .957 .967 .937 .928 .93 .937 .932 .932
4M2 .96 .964 .934 .936 .92 .945 .917 .941
4M3 .956 .953 .947 .949 .899 .938 .9 .944
4M4 .955 .948 .933 .946 .893 .948 .879 .95
4M5 .955 .962 .954 .96 .892 .931 .887 .946
4M6 .967 .962 .959 .957 .904 .928 .883 .933
4M7 .957 .954 .948 .952 .904 .94 .902 .948
4M8 .958 .96 .942 .96 .885 .941 .888 .944
4M9 .956 .954 .946 .951 .9 .941 .896 .945
4M10 .955 .952 .942 .948 .903 .953 .887 .948
4M11 .956 .964 .952 .957 .91 .931 .889 .938
4M12 .958 .952 .941 .948 .896 .952 .891 .949
4M13 .947 .951 .94 .952 .928 .957 .927 .959
4M14 .946 .95 .944 .948 .932 .939 .94 .946
4M15 .949 .954 .937 .953 .899 .949 .903 .952
4M16 .956 .95 .947 .949 .909 .94 .913 .936
4M17 .944 .959 .933 .957 .921 .957 .929 .957
4M18 .948 .955 .933 .953 .918 .955 .911 .948
4M19 .943 .959 .943 .958 .931 .956 .933 .956
4M20 .948 .951 .943 .949 .928 .944 .938 .948
4M21 .948 .946 .943 .95 .924 .937 .925 .94
4M22 .941 .952 .935 .948 .932 .946 .936 .945
4M23 .961 .959 .957 .966 .929 .954 .938 .957
4M24 .968 .956 .968 .958 .933 .948 .947 .958
4M25 .948 .955 .949 .953 .914 .943 .892 .945
4M26 .945 .955 .949 .961 .931 .949 .926 .954
4M27 .958 .952 .948 .962 .94 .949 .932 .955
4M28 .948 .947 .951 .961 .924 .944 .923 .956
4M29 .947 .946 .96 .954 .925 .947 .929 .952
4M30 .952 .942 .959 .944 .923 .946 .888 .931
4M31 .947 .949 .946 .943 .911 .95 .895 .94
4M32 .944 .959 .94 .958 .927 .951 .936 .953
4M33 .944 .955 .94 .958 .93 .952 .941 .952
4M34 .942 .952 .949 .953 .932 .947 .936 .953
4M35 .935 .951 .951 .956 .925 .945 .94 .95
4M36 .935 .945 .952 .948 .918 .932 .893 .936
ALL .937 .947 .927 .949 .901 .943 .890 .943
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Table 10

Type I error rates and Power to detect interaction e�ect.

Type I error (“3 = 0) Power (“3 = 0.15)
Non-normal Normal Non-normal Normal

n 200 926 200 926 Overall 200 926 200 926 Overall
3M1 4.4 3.6 4.4 3.8 4.1 40.2 99.3 48.7 99.8 72.5
3M2 4.3 4.6 5.3 4.8 4.8 48.0 99.6 54.2 99.9 75.5
3M3 3.3 3.8 4.1 4.0 3.8 38.6 98.5 42.9 99.6 70.4
3M4 3.3 3.0 4.8 5.4 4.1 32.3 82.7 33.4 83.9 60.1
3M5 4.2 4.9 6.0 5.1 5.1 50.1 99.7 53.0 99.9 75.7
3M6 3.6 2.4 4.6 5.0 3.8 36.5 89.3 38.4 89.1 65
3M7 4.9 4.4 6.2 4.4 5 54.9 99.5 55.3 99.9 77.9
3M8 5.4 4.2 6.0 4.4 5 55.0 99.5 56.7 99.9 77.9
3M9 5.4 5.4 5.8 4.9 5.4 42.5 98.3 44.3 99.1 71.5
3M10 2.9 4.5 3.4 4.9 3.9 23.8 81.0 25.3 81.8 56.2
3M11 4.8 5.0 6.1 5.0 5.2 46.8 99.0 49.3 99.6 73.8
3M12 2.6 4.6 4.2 4.6 4 29.1 87.7 31.1 88.4 62.3
3M13 4.4 4.5 4.5 3.8 4.3 46.6 99.4 45.0 99.7 73.3
3M14 2.9 4.0 2.9 4.2 3.5 44.7 98.4 40.0 98.8 72.6
3M15 4.2 5.4 3.3 4.6 4.4 37.4 97.9 36.3 98.9 68.1
3M16 1.9 1.6 1.9 2.8 2 13.5 75.2 15.6 86.3 51.1
3M17 3.3 4.8 2.8 4.6 3.9 28.9 93.9 26.6 93.6 63.3
3M18 1.4 2.0 1.0 2.4 1.7 10.9 60.4 11.0 72.9 42.3
3M19 5.3 4.4 6.0 4.4 5 56.4 99.4 56.1 99.7 78
3M20 4.0 5.2 4.7 4.1 4.5 54.7 99.1 52.5 99.1 77.7
3M21 5.5 5.1 4.5 4.6 4.9 47.3 99.0 50.6 99.7 74.2
3M22 2.2 3.1 3.1 3.5 3 22.1 80.6 29.1 89.7 58.3
3M23 5.8 5.3 3.5 4.9 4.9 37.9 94.1 39.7 93.7 68.3
3M24 2.2 3.2 3.1 3.7 3 16.3 67.4 21.8 79.1 49.6
4M1 3.5 2.5 4.7 5.5 4 30.6 82.7 32.4 83.0 59
4M2 3.6 2.8 5.3 4.6 4 37.3 89.2 37.1 88.9 64.6
4M3 4.3 4.7 5.3 5.1 4.9 48.0 99.7 53.1 100.0 75.3
4M4 4.2 5.2 6.5 5.4 5.3 49.3 99.7 52.7 100.0 75.5
4M5 4.3 3.8 4.6 4.0 4.2 40.0 99.3 48.0 99.8 72.2
4M6 3.0 3.8 4.0 4.3 3.8 38.4 98.6 42.8 99.6 70.4
4M7 4.3 4.6 5.2 4.8 4.7 48.8 99.7 55.5 99.9 76.1
4M8 4.1 4.0 5.7 4.0 4.4 47.5 99.5 52.4 99.9 75.2
4M9 4.4 4.6 5.4 4.9 4.8 49.5 99.7 55.3 100.0 76.3
4M10 4.3 4.8 5.8 5.2 5 49.7 99.7 54.5 100.0 76.1
4M11 4.4 3.6 4.6 4.3 4.2 40.6 98.5 45.8 99.6 71.6
4M12 4.2 4.8 5.9 5.2 5 50.2 99.7 54.3 100.0 76.1
4M13 5.2 4.9 6.0 4.8 5.2 55.4 99.5 57.2 99.9 78.1
4M14 5.1 5.0 5.6 5.2 5.2 47.0 98.9 50.2 99.5 74
4M15 5.0 4.6 6.3 4.7 5.1 54.4 99.6 55.2 99.9 77.5
4M16 4.2 5.0 5.1 5.1 4.9 42.8 98.6 45.1 99.2 71.7
4M17 5.5 4.1 6.7 4.3 5.2 55.0 99.5 55.9 100.0 77.7
4M18 5.0 4.5 6.7 4.7 5.2 55.6 99.6 56.9 99.9 78.3
4M19 5.6 4.1 5.7 4.2 4.9 55.0 99.5 57.1 99.9 78
4M20 4.9 4.9 5.7 5.1 5.2 46.9 98.9 49.2 99.6 73.7
4M21 4.9 5.4 5.6 5.0 5.2 44.6 98.3 45.3 99.2 72.2
4M22 5.4 4.8 6.5 5.2 5.5 46.1 99.0 49.6 99.6 73.7
4M23 3.8 4.1 4.2 3.4 3.9 44.4 99.5 42.6 99.7 71.7
4M24 3.1 4.4 3.1 4.2 3.7 36.3 98.6 34.8 99.4 67.4
4M25 4.8 4.2 4.1 4.3 4.4 45.2 98.7 42.5 98.8 73.2
4M26 4.5 4.5 4.5 3.9 4.3 46.3 99.4 44.9 99.7 73
4M27 3.8 4.8 4.6 3.8 4.3 45.9 99.4 44.5 99.8 72.8
4M28 4.3 5.3 4.0 3.9 4.4 37.6 98.7 35.8 99.3 68.2
4M29 4.8 5.4 3.1 4.6 4.5 38.1 97.9 36.0 98.8 68.1
4M30 4.1 5.2 3.0 5.2 4.4 30.7 94.3 29.6 94.7 64.7
4M31 4.5 4.8 5.2 4.6 4.8 56.1 99.2 53.7 99.1 78.3
4M32 5.2 4.1 6.0 4.2 4.9 56.8 99.4 56.1 99.7 78.1
4M33 5.6 4.5 6.0 4.2 5.1 56.2 99.4 56.1 99.7 77.9
4M34 5.7 4.8 5.1 4.7 5.1 46.4 98.9 49.6 99.6 73.7
4M35 6.4 4.9 4.9 4.4 5.1 47.3 98.9 50.3 99.6 74.1
4M36 6.2 5.3 4.5 5.0 5.2 39.3 94.0 40.3 94.3 68.9
ALL 6.1 5.3 7.2 5.1 5.9 55.7 99.7 58.8 100.0 78.6
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Table 11

Study 3: Estimating “3 with all-pairs and LMS. PARB= parameter bias (absolute for

“3 = 0, relative for “3 = 0.15). SEB=Relative standard error bias. COV= coverage rate.

RR=rejection rate. D1, D2, D3=distribution conditions.

ALLPAIRS LMS
n PARB SEB COV RR PARB SEB COV RR

“
3

=
0

D
1

100 0.00 -0.12 92.00 8.00 0.00 -0.01 93.00 7.00
200 0.01 -0.02 93.00 7.00 0.01 0.05 93.00 7.00
400 0.00 0.03 94.00 6.00 0.00 0.05 93.00 7.00
926 0.00 0.05 94.00 6.00 0.00 0.07 94.00 6.00

D
2

100 0.00 -0.14 92.00 8.00 0.00 -0.03 92.00 8.00
200 0.00 0.02 95.00 5.00 0.00 0.07 95.00 6.00
400 0.00 0.04 94.00 6.00 0.00 0.04 94.00 6.00
926 0.00 0.07 94.00 6.00 0.00 0.08 94.00 6.00

D
3

100 -0.01 -0.37 90.00 10.00 0.01 -0.06 90.00 10.00
200 0.00 -0.15 91.00 9.00 0.01 -0.06 91.00 9.00
400 0.00 -0.03 95.00 5.00 0.01 -0.03 92.00 7.00
926 0.00 -0.01 94.00 6.00 0.01 -0.02 91.00 9.00

“
3

=
0.

15

D
1

100 -0.02 -0.14 88.00 35.00 -0.01 -0.01 92.00 37.00
200 0.01 -0.07 89.00 60.00 0.04 0.03 94.00 64.00
400 0.00 0.03 93.00 88.00 0.00 0.06 94.00 90.00
926 -0.01 0.06 94.00 100.00 0.00 0.06 95.00 100.00

D
2

100 -0.03 -0.17 87.00 37.00 -0.02 -0.03 92.00 38.00
200 0.00 -0.04 91.00 58.00 0.02 0.06 95.00 62.00
400 0.00 0.02 92.00 89.00 -0.01 0.03 94.00 88.00
926 -0.01 0.06 95.00 100.00 -0.02 0.08 94.00 100.00

D
3

100 -0.05 -0.32 83.00 33.00 0.00 -0.06 91.00 36.00
200 0.02 -0.18 85.00 52.00 0.06 -0.09 89.00 61.00
400 -0.01 -0.10 89.00 74.00 0.05 0.00 92.00 86.00
926 -0.01 -0.08 91.00 98.00 0.06 -0.05 91.00 100.00



CHOICE OF PRODUCT INDICATORS 45

p1

p2

p3

p1a1

p1a2

p2a3

p3a4

a1

a2

a3

a4

”

”

”

”

”

”

”

”

”

”

”

PBC · ATT

PBC

ATT

GC ’
“3

Figure 1 . Interaction model for a matched-pair choice of PIs. Measurement model for GC

not shown. PBC= Perceived Behavioral Control ; ATT= Attitude; GC= Goal

Commitment; Indices for measurement residuals ” not shown; ’ is a regression residual; xi

and xj are indicators for Perceived Behavioral Control and Attitude, respectively.
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Figure 2 . Measurement model with standardized estimates. PBC= Perceived Behavioral

Control ; ATT= Attitude; GC= Goal Commitment; Indices for measurement residuals ”

are not shown.
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Figure 3 . Kernel density plot of the standardized “̃3 across all converged models.
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Figure 4 . Boxplots of the standardized “̃3 across 3MATCH, 4MATCH and ALL.
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Figure 5 . Kernel density plot of the z-value of “3 across all models. Dotted vertical line at

z = 1.96
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Figure 6 . Boxplots of z across 3MATCH, 4MATCH and ALL.
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Appendix

Measures

Attitudes (ATT) toward quitting smoking were assessed using four items, denoted by a1 to

a4. The statement “For me quitting smoking would be. . . ” was completed using the

semantic di�erentials a) wrong–right, b) foolish–wise, c) unpleasant–pleasant, d)

unsatisfying–satisfying. The items were scored on a 7-point scale.

PBC was assessed using three items: a) “How much control do you have over quitting

smoking?” , b) “How confident are you that you will quit smoking?” , and c) “How certain

are you that you are able to quit smoking?” . These items, named p1, p2 and p3 were rated

on a 7-point scale ranging from 1 (no control) to 7 (much control).

The measure of goal commitment (GC) was used as a proxy for intention and

measured by three items, denoted by g1, g2 and g3. These are: During the next four

months: “I have made plans when to quit smoking” , “I have made plans how I am going

to quit smoking” , and “I have made plans regarding what I am going to do when

temptation situations arise” . The items were rated from 1 (completely wrong) to 7

(completely correct). For further information the reader is referred to Luszczynska and

Schwarzer (2003); Hukkelberg et al. (2013).


