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Abstract

China’s growth is characterized by massive capital accumulation, made possible by high and

increasing domestic savings. In this paper we develop a model with the aim of explaining why

savings rates have been high and increasing, and we investigate the general equilibrium effects

on capital accumulation and growth. We show that increased savings and capital accumulation

stimulates further savings and capital accumulation, through an intergenerational distribution

effect and an old-age requirement effect. We introduce what we term the savings multiplier,

and we discuss why and how the one-child policy, and the dismantling of the cradle-to-grave

social benefits provided through the state owned enterprises, have stimulated savings and capital

accumulation.
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1 Introduction

Since 1978 real per capita GDP in China has increased tenfold. The high and sustained growth is

characterized by massive capital accumulation. So why China, and why now? Obvious answers

relate to reforms that took place in the Chinese society over the same period. These are clearly

of first order importance, but nevertheless do not fully answer why, compared to other reforming

countries, capital accumulation in China has been so strong and so persistent. Thus, what we

need to understand is what makes China and Chinese reforms so special. In this paper we argue

that a main effect of the policy changes in China, in particular the introduction of the one-child

policy and the dismantling of the cradle-to-grave social benefits, was to set the economy off on

a path where savings and capital accumulation increased, in turn increasing savings and capital

accumulation further. We argue that capital accumulation in China is fueled by what we term

a savings multiplier.

Graph (a) in Figure 1 shows savings and investment as a share of GDP in China. In tandem

with policy changes in the late 1970’s, savings and investment as a share of GDP increased

sharply. From then on, interestingly, savings and investment shares continued to grow. More

than 40% of GDP has been invested over the last years. The high investments have been made

possible by high and increasing savings, and in recent years more than 50% of GDP has been

saved. Unlike in most other fast growing Asian economies, domestic savings have exceeded

domestic investments.

The high savings rate is the sum of high corporate savings and high household savings. High

corporate savings can be explained by capital market imperfections, where profitable firms have

financed their investments by retained profits (Song, Storesletten and Zilibotti 2011). A number

of papers, that we discuss below, have investigated the maybe most puzzling fact, namely that

households have increased their savings rate, despite being quite poor, having fast income growth,

and receiving low returns on their savings. At present, household savings is the single largest

component of total savings, and according to Yang (2012), the increase in the rate of household

savings from 2000 to 2008 is also the most important contribution to the overall increase in the

Chinese savings rate in the same period.

Our model, and its mechanisms, is motivated by two major policy reforms key to China’s

transformation; the one-child policy and the dismantling of state owned enterprises. The process

of dismantling state owned enterprises has implied massive layoffs, where for instance each year

between 1996 and 2001, 5 to 6 million employees were laid off nationwide (Xu 2011). The share

of workers in these firms was halved from 1995 to 2005, and as a result the enterprise based

cradle-to-grave social safety net shrank rapidly (Ma and Yi, 2010). According to Meng (2012),

the state/collective share in industrial output value fell from 90 percent in 1990 to 30 percent in

2008. A particular implication of this is that for the majority of workers, state owned enterprises

can no longer be relied on to provide old-age support.1 As pointed out by Oksanen (2010), less

1The pre reform system where state owned enterprises provided old-age support is discussed by e.g. James
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Figure 1: Graph (a): saving and investment shares of GDP in China 1970-2010 (source: World

Bank). Graph (b): paid employment in Health and Social Work relative to paid employment

in Manufacturing in China 1993-2008 (source: authors calculations on LABORSTA Table 2E,

International Labor Organization).

than 30% of all employees are covered by pension schemes. Even for those covered, however,

there are systemic deficiencies (p. 3) “due to problems in implementation (including fraud) the

accounts are virtually empty as contributions were used to pay the pensions of current pensioners

(or maybe even other expenditures)”. Chinese workers need to find alternative ways to provide

for their old-age care. As in most developing countries, the natural alternative was for such care

to be provided within the family.

However, while the need for family based old-age care in China increased, the decision in

1978 to implement the one-child policy meant that the scope for such care dwindled. The one-

child policy has had the obvious implication that there are fewer children to provide old-age

care. China has entered the second generation of parents affected by this policy, with more

and more families consisting of four grandparents, two parents and one child. According to

Litao and Sixin (2009), the fertility rate decreased from 4.9 in 1975 to 1.7 in 2007, while life

expectancy increased from 63 years to 73 years in the same period. Oksanen (2010, p. 4) finds

that “Population aging seems to be the fastest in the world: the ratio of 65 year old to those

aged 15-64 years is currently 11% and will increase to 38% by 2050”.

As observed by Li et al. (2012), the number of people in the labor force may have peaked

already in 2011, and since 1998 wage growth has exceeded GDP growth. This implies a shift in

the income distribution towards workers (and as emphasized by Song and Yang (2010), towards

(2002), who note that (p. 56) “During the cultural revolution, the provision of old-age security (and other forms

of social service) became a responsibility of each state enterprise, financed out of current revenues. Workers in

the formal sector stayed at the same enterprise throughout their working lives. The enterprise provided housing,

medical care and old-age security to its workers. The same services where provided to its pensioners”.
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the young). Zhong (2011) argues that a main reason for increased income inequality in recent

years is the higher income differences between those working and those retired, and finds that

(p. 103) “While the contributions of "ratio of household members in working age" to income

inequality are relatively small in 1997 and 2000, it has increased dramatically in the first half

of this decade”. He argues that this is due to the one-child policy and population aging, which

has induced labor shortages.

Despite massive investments in the manufacturing sector, the share of manufacturing em-

ployment out of total paid employment is decreasing, while that of service sectors is increasing.

Graph (b) in Figure 1, based on numbers in the ILO database, which contains data from 1993

onwards, shows the labor share in health and social work relative to the labor share in manufac-

turing. Over 15 years it has doubled. From 1993 to 2008 the share of workers in manufacturing

decreased from 37% to 29%, whereas the employment share of health and social work increased

from 2.8% to 4.7%.

The Chinese reforms also has main implications for household expenditures. The share of

health spending that households pay themselves increased from 16% in 1980 to 61% in 2001

(Blanchard and Giavazzi, 2006). Chamon and Prasad (2010) find that, among the households in

their sample, expenditures on health and education grew from 2% of consumption expenditures

in 1995 to 14% in 2005. Chou and Wang (2009, p. 137) conclude that the main challenges

to China’s health system are “the heavy reliance on private financing, dramatic drop in health

insurance coverage, and rising health care costs”. And according to Eggleston (2012, p. 4) “the

growth in China’s health spending has been one of the most rapid in world history”.

In this paper, we develop an OLG-model, extended to take into account that agents need

to purchase old-age care. We show how our framework produces a savings multiplier via two

channels. The first is what we term the intergenerational distribution effect. Higher savings

implies a higher capital stock, and increased potential for producing manufacturing goods. When

substitution between manufacturing goods and old-age care is limited, a higher capital stock

means more labor in the old-age care sector, and less labor in the manufacturing sector. Unlike

in one-good OLG models, the income distribution then shifts in favor of the wage earners.

Since the income distribution shifts away from the old and towards the young, savings increase,

increasing the capital stock further. Thus savings and capital accumulation stimulate further

savings and capital accumulation. The second reason for a savings multiplier is what we term

the old-age requirement effect. Increased savings and capital accumulation pushes the future

wage up, making old-age care more expensive. To compensate for the increased future costs of

old-age care, agents increase their savings, contributing to further capital accumulation. Thus,

this gives an additional channel whereby savings and capital accumulation stimulates further

savings and capital accumulation.

In the case where substitution between old-age care and consumption of manufacturing goods

is limited, the transitional dynamics in our model implies a growth process with increased savings

and investment rates, wage growth exceeding GDP growth, a smaller fraction of the labor force
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kids pool 1 girl 1 boy 2 girl 1 boy 1 girl 2 boys

rely on own savings 40.2 36.5 37.4 32.2 31.3

rely on children 44.9 50.0 54.7 61.8 63.7

"Yes I worry" 40.1 31.3 43.6 30.8 32.9

Table 1: As elderly, what will you rely on? Do you worry ?

in the manufacturing sector, income distribution shifting in favor of the young and in disfavor of

the old, and an increasing share of private expenditures allocated to the purchase of old-age care

services. Although highly simplified, we would argue that the mechanisms in the model, and

their relation to the one-child policy and the dismantling of the cradle-to-grave social benefits

provided by state owned enterprises, embraces important characteristics of savings and capital

accumulation in China after 1978.

Our paper is related to, and motivated by, a large number of empirical papers that discuss

the high and increasing household savings in China. Kraay (2000, p. 546) points out that

households “once covered by generous cradle-to-grave benefits through employment in state

enterprises, are finding their futures increasingly uncertain”, and most studies see the lack of a

public welfare system as key to explain household savings patterns. As argued by Modigliani

and Cao (2004), a main effect of the one-child policy decided in 1978 was to strengthen the

needs to save for retirement. Blanchard and Giavazzi (2006, p. 7) similarly argue that “The

high savings rate reflects a high level of individual risk, related to health costs, retirement and

the financing of education”. Chamon and Prasad (2010) find that the increased savings rates are

(p. 93) “best explained by the rising private burden of expenditures on housing, education and

health care”. Barnett and Brooks (2010) conclude that government expenditures on health has a

strong impact on urban household savings, where (p. 8) “1 yuan of government health spending

results in a 2 yuan decrease in saving”. Song and Yang (2010) argue that a main reason for the

increasing household savings rate is a change in the composition of income, where the income

profile has flattened, so that the young workers earn a higher fraction of income than before,

and, since the young have a high propensity to save, this increases aggregate savings. Wei and

Zhang (2011) point to the rising number of boys relative to girls born (due to selective abortion),

and find that parents of a boy save in order to increase the attractiveness of their son in the

marriage market so as to increase the probability he finds a wife. This savings motive, in turn,

spills over to other households, increasing savings further. Although these papers put different

weight on different mechanisms, there seems to be some consensus in the literature that the

high and increasing household savings results from the dismantling of state owned enterprises,

the missing welfare system, the one-child policy, the aging of the population, and the increased

need to provide for own retirement and old-age care.

Similar views can also be confirmed by household surveys. We have utilized the household

survey that among others Wei and Zhang (2011) used. The data covers more that 9000 house-
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age ≤ 44 45-54 ≥ 55 all

children related 89.5 77.8 55.9 78.2

build house 21.6 18.4 11.2 18.2

retire 33.8 50.0 68.8 47.0

medical 11.4 18.4 35.0 18.9

Table 2: Self reported reason for savings

holds in 122 rural counties for the year 2002.2 Table 1 presents the results when parents with

one or two children are asked what funding they will rely on as old. They are also asked whether

they worry about becoming old. We see that parents with one boy worries less than parents

with one girl, probably due to the tradition of girls becoming part of the family of the husband.

For those having more than one child, those with two girls worry the most. We also see that

irrespective of the number of children, those with more boys rely more on their children and

less on own savings. Table 2 shows frequencies when parents are asked to mention the two

most important reasons for savings. The noteworthy pattern is that children related savings

declines with age of head of household, while medical and retirement reasons increases with age

of household head.

In addition to relating to the literature on savings and growth in China, our paper also relates

to the debate on “communist capital accumulation”. According to Acemoglu and Robinson

(2012), growth in China has important similarities with growth in the former Soviet Union,

based on high savings and massive capital accumulation, but being unsustainable if institutions

are not reformed to be more inclusive. In fact, investments rates in China and the former Soviet

Union are at similar levels, both exceeding 40% of GDP. In the Soviet Union the suppression

and collectivization of agriculture was important in mobilizing the high required savings. In

China, on the other hand, agriculture has been decollectivized after 1978. Our paper points out

how the one-child policy, and the dismantling of state enterprises without replacing them with a

welfare system, may be an alternative way to mobilize the savings required to fuel “communist

capital accumulation”.

The rest of the paper is organized as follows. In Section 2 we set up the model. We show

the static equilibrium of the model in Section 3. In Section 4 we study transitional capital

accumulation and growth, and introduce what we term the savings multiplier. We discuss how

and why the steady-state capital stock in our model differs from standard OLG-models, and show

how, again compared to standard OLG-models, the effects of savings and capital accumulation

are magnified. We then discuss why the one-child policy has had such a massive impact on

savings and capital accumulation. Section 5 presents extensions of the model. Subsection 5.1

investigates the introduction of a welfare state. A welfare state removes some of the incentives

that has produced the high and increasing savings rates, and thus reduces capital accumulation

and growth. Subsection 5.2 then discusses dynamic inefficiency, and Subsection 5.3 studies

2We are very grateful to Wei and Zhang for making their Stata do-files available and to ICPSR for giving

access to data on http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/21741.
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endogenous growth. Section 6 concludes. In the Appendix for online publication we provide the

details of derivations that are left out from the main text.

2 The Model

In this section, we develop our model of savings and growth based on an overlapping-generations

(OLG) structure that takes into account that when old, agents are in different needs from when

young. In particular, due to the policy reforms discussed above, Chinese parents can rely less on

their children to provide old-age care and less on state firms to act as a substitute for a welfare

state. Thus, differently from the standard OLG framework pioneered by Diamond (1965) —

henceforth termed the canonical one-good model — we separate between the production of goods

and the production of care. One set of firms produces a generic good, used for investment and

consumption of both young and old agents. The second set of firms provides old-age care.

2.1 Households

We consider an overlapping-generations environment where each agent lives two periods ( +

1). Total population, denoted , consists of 

 young and 

 old agents, and grows at the

exogenous net rate   −1;

 = 

 +

  

 = 

 (1 + )  +1 =  (1 + )  (1)

Households purchase two types of goods over their life-cycle: a generic consumption good and

old-age care services. The generic good is consumed in both periods of life. Old-age care services,

instead, are exclusively purchased by old agents. The utility of an agent born at the beginning

of period  takes the additive form

 ≡  () + 
¡
+1 +1 − ̄

¢
 (2)

where  and +1 represent consumption levels of the generic good in the first and second period

of life, respectively, +1 is the amount of old-age care consumed when old, ̄ > 0 is the minimum
requirement — i.e., the minimum amount of old-age care required by old agents — and  ∈ (0 1)
is the private discount factor between young and old age. A constraint of the consumer problem

is that the minimum requirement is at least weakly satisfied,

+1 − ̄ > 0 (3)

As is standard, we first study existence and uniqueness of interior equilibria where old-age care

obeys (3). We then verify ex-post the conditions under which +1  ̄ holds.3 The case where

3 In fact, in our main model which is the neoclassical case with constant returns to scale in generic-good

production, there always exists a stable long-run equilibrium in which the allocation of labor between generic-

good and health-care production exhibits stable shares consistent with the interior solution +1  ̄. We discuss

cases where this may not be the case in Section 5.3, where we extend the model to allow for linear returns to capital

at the aggregate level. Then, under certain conditions, the accumulation process may drive the economy towards

long-run equilibria where labor is pushed away from the health-care sector so that the constraint +1 − ̄ > 0

becomes binding.
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̄ = 0, so that there is no minimum old-age care requirement, is of special interest. As we will

see, this case transparently isolates what we term the intergenerational distribution effect in our

model. For this reason, when we study the dynamics of the model in Section 4, we first put

emphasis on this case, before we turn to the more general case of ̄ > 0, in which what we term
the old-age requirement effect is also present.

We assume that only young agents work, supplying inelastically one unit of homogeneous

labor. The only source of income in the second period of life is interest on previous savings.

Personal lifetime income is entirely consumed at the end of the second period. Taking the

consumption good as the numeraire in each period, the budget constraints read

 =  −  (4)

+1 = +1 + +1+1 (5)

where  is the wage rate,  is savings, +1 is the (gross) rate of return to saving, and +1

is the price of old-age care. Savings consist of physical capital, which as in the one-good OLG

model is homogeneous with the generic consumption good. Assuming full depreciation within

one period, market clearing requires that aggregate capital at the beginning of period +1 equals

aggregate savings of the young agents in the previous period, +1 = 

 .

In order to make our new mechanisms as transparent as possible, we consider a specific, yet

flexible form of preferences:

 () ≡ log  (6)


¡
+1 +1 − ̄

¢ ≡ log
h
 (+1)

−1
 + (1− )

¡
+1 − ̄

¢−1


i 
−1

 (7)

where  ∈ [0 1] is a weighting parameter and   0 is the elasticity of substitution between

consumption goods and care services in the second period of life: +1 and +1 are strict

complements if   1, strict substitutes if   1. In the limiting case  → 1, the term in

square brackets reduces to the Cobb-Douglas form (+1)
 (+1)

1− . When ̄  0, the income

elasticity of old-age care falls short of unity, resembling the case in Acemoglu, Finkelstein and

Notowidigdo (2013), who estimate the income elasticity of health spending to 0.7.

Assumptions (6)-(7) imply two fundamental properties. First, we can treat the canonical

one-good model as a special case: letting  = 1 (and ̄ = 0), old-age care services disappear from

private utility and, hence, are not produced in equilibrium. Second, the utility functions (6)-

(7) exhibit a unit elasticity of intertemporal substitution. This property allows us to describe

the effects of old-age care on saving rates in the clearest way. Setting  = 1, we obtain the

logarithmic version of the canonical model, in which the saving rate is constant over time because

consumption propensities are independent of the interest rate.4 Hence, in the general case

0    1, any departure from constant saving rates in the model is exclusively due to the

inclusion of old-age care services.

4More precisely, the savings rate of the young is constant with logarithmic preferences. When production is

Cobb-Douglas, the income share of the young is constant, and thus also the aggregate savings rate is constant.
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2.2 Production Sectors

Old-age care is labor intensive. In our framework this implies that the factor price of interest

to old agents is not only the interest rate, but also the wage rate. This contrasts with standard

one-good OLG models. There, old agents are on the supply side of the capital market, and the

only relevant factor price when old is the (real) interest rate. In the present model, old agents

are still on the supply side of the capital market, but since when old they need care, they are

in addition on the demand side of the labor market. This implies that the wage rate is also

important for old agents. To clarify this, and to capture in a simple way that care is more labor

intensive than the production of the generic consumption and investment good, we assume that

care services are produced with labor as the only factor of production.5

We denote by  the fraction of workers employed in the generic sector, and by 1 −  the

fraction employed in the care sector. Perfect labor mobility and perfectly competitive conditions

in the labor market ensure wage equalization in equilibrium. In the old-age care sector, there is

a simple constant returns to scale production technology:

 ≡  (1− )

  (8)

where  is the aggregate output of care services, and   0 is a constant labor productivity

parameter.

In the generic good sector, we consider a specification displaying constant returns to scale

at the firm level. A continuum of firms, indexed by  ∈ [0  ], exploits the same Cobb-Douglas
technology



 ≡ ( )(

 )
1− for each  ∈ [0  ]  (9)

where 

 is the output of the generic good produced by the -th firm, 


 and 





 are the

amounts of physical capital and labor employed at the firm level,  ∈ (0 1) is an elasticity
parameter, and  is labor productivity in the generic-good sector.

2.3 Labor Productivity

Specification (9) assumes that the generic good technology displays constant returns to scale at

the firm level, so that income shares are determined according to standard zero-profit conditions.

In the main model of our paper we also make the standard neoclassical assumption of constant

returns to scale at the aggregate level. We then impose that  equals an exogenous constant


1

1− in each period: the generic production sector exhibits strictly diminishing marginal returns

to capital also at the aggregate level, and aggregate sectoral output  ≡ 

 is given by

 =  ()
 (


 )
1−

(10)

where  ≡ 

 is aggregate capital and  ≡ 


 is aggregate labor employed in the generic

sector. This is the setup of the canonical model since the seminal work of Diamond (1965).

5For a two-sector OLG model with capital in both sectors, as well as the existence and stability properties of

such models, see Galor (1992).
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In Subsection 5.3 we extend the model to allow for endogenous growth in its simplest fashion.

Following Romer (1989), we include learning-by-doing whereby the productivity of workers em-

ployed in the generic sector increases with the amount of capital that each of these workers uses.

In this case the labor productivity is governed by the spillover function  = 
1

1− (

 ),

where  is an exogenous constant. Since  is taken as given at the firm level, income shares are

still determined by the usual zero-profit conditions, but aggregate sectoral output is proportional

to aggregate capital:

 =  (11)

We next describe the equilibrium conditions that hold independently of the assumed technology

for the generic good, then put our main emphasis on the neoclassical case, before returning to

the extension of the model to endogenous growth in Subsection 5.3.

3 Static Equilibrium

This section discusses the static equilibrium conditions holding in each period for a given stock

of capital per worker. We first study the profit-maximizing conditions for firms, the utility-

maximizing conditions for households, the labor market equilibrium, and the goods market

equilibrium. We then study the joint (static) equilibrium of all the markets, the implications

for the aggregate savings rate, and finally the implied mapping to capital accumulation.6

3.1 Firms

In the service sector for old-age care, the technology (8) implies a wage that equals the market

price of services times the labor productivity,

 =  (12)

Market clearing requires that total output of old-age care services matches aggregate demand

by old agents,  = 
 . The existence of a minimum requirement,  > ̄, requires that total

production  exceeds 

 ̄, which implies a constraint on sectoral employment shares: using

the production function (8), we obtain

 6
 (1 + )− ̄

 (1 + )
≡ max (13)

where max is the maximum level of employment in the generic sector that is compatible with

a level of old-age care output equal to the minimum requirement.7 In the remainder of the

analysis, we will work under the parameter restriction

̄ 6  (1 + )  (14)

6Unless otherwise specified, all equations in this section are valid in the neoclassical case as well as in the

AK-case. Thus, to avoid repetitions when we extend the model to endogenous growth in Subsection 5.3, in the

present section we continue to use  for the labor productivity, without specifying if growth is neoclassical or

endogenous (when not necessary).
7Formally, the level of health-care output equal to the minimum requirement is min

 ≡  (1− max)

 = 

 ̄.
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which implies max > 0. By construction, when the minimum requirement is ̄ = 0, we have

max = 1.

In the generic good sector each firm maximizes own profits 

 − 


 − 





 subject

to technology (9). Denoting capital per young agent by  ≡ 

 and , respectively, the

zero-profit conditions in the sector can be aggregated across firms and written as

 = 1− (1− ) ()
 = (1− ) ()  (15)

 = 1−  ()
1− =  ()  (16)

where  ≡ 

 is sectoral output per young agent. Aggregating the incomes of both sectors,

we thus have






=  + = 

µ
1− 


+ 

¶
 (17)

where  is aggregate income, which coincides with the total value of goods and services produced

in the economy.8

3.2 Consumers

Each agent maximizes (2) subject to the budget constraints (4)-(5). Denoting the derivative of

the -function with respect to  by  , and so on, the solution to this problem yields two familiar

first order conditions; the Keynes-Ramsey rule,  = +1+1 , and an efficiency condition

establishing the equality between the price of care services and the marginal rate of substitution

with second-period generic goods consumption, +1+1 = +1. Under preferences (6)-(7),

we show in the Appendix that these conditions result in the following relationships.

Consumption and savings of young agents are given by

 =
1

1 + 

µ
 − +1

+1
̄

¶
and  =

1

1 + 

µ
 +

+1

+1
̄

¶
 (18)

Note that when ̄ = 0, these expressions are equivalent to those in the simplest version of

the canonical OLG model, where young agents save a constant fraction of their wage income,

which is then used to provide old age consumption.9 When ̄  0, individual decisions on 

and  are no longer fixed proportions of young age income. Young age consumption is lower,

and savings higher, the larger is ̄. More interesting, the strength of the effect is related to

the future relative factor price, since +1+1 = +1+1. A high future wage +1, and

low returns on savings +1, imply that much must be saved today in order to purchase the

minimum amount of care tomorrow. We term this the old-age requirement effect. The old-age

8Defining the value of total output as  ≡  + , zero profits in both sectors implies  = 

 +

and therefore expression (17).
9As we will return to, however, this does not imply that the dynamics are equivalent to the canonical OLG

model. As we will see, these are quite different also in the case where ̄ = 0, because in our model the aggregate

savings rate is not constant due to our intergenerational income distribution effect.
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requirement effect implies that future relative factor prices affect present savings.10

Turning next to generic consumption in the second period of life, each old agent purchases

 = (1 + ) [ − (1− )] 1− ()
  (19)

which is the residual (per-old) output of the generic sector after consumption and savings of

young agents have been subtracted. Result (19) implies that second-period consumption is

positive only if   1−, which, as we will see, always turns out to be the case in equilibrium.

Finally, the relative demand for old-age care links the old agents’ expenditure shares over

the two goods to their relative price:

 ·
¡
 − ̄

¢


=

µ
1− 



¶

1−  (20)

Expression (20) shows that the expenditure share of old agents on net health care,  − ̄,

increases (decreases) with the price when the two goods are complements (substitutes). The

reason is that a ceteris paribus increase in  always reduces the ‘physical consumption ratio’

between net care and generic consumption,
¡
 − ̄

¢
, but in the usual fashion the final effect

on the ‘expenditure ratio’ 
¡
 − ̄

¢
 depends on the elasticity of the relative demand for

net care. Under complementarity, the demand is relatively rigid: if  increases, the price

effect dominates the quantity effect and the expenditure share of net care increases. Under

substitutability, instead, net old-age care demand is relatively elastic and the quantity effect

dominates: an increase in  decreases the expenditure share of care. These substitution effects

will imply that variations in the price of care have an impact on the labor allocation between

the two production sectors.11

3.3 Labor Market

The labor demand schedules of both production sectors determine a unique equilibrium in the

labor market. Combining (12) with (15), we obtain

 = (1) (1− ) 1− ()
 ≡ Φ ( ; )  (21)

Condition (21) establishes that, in equilibrium, the wage rate must be equalized between the

two production sectors. In particular, (21) defines  as the level of the price of care ensuring

10 In particular, the feature that the future wage is relevant for individual consumption and savings decisions is

in contrast to one-good versions of the OLG model, where the only future factor price relevant is the return to

savings. Moreover, note that in general this feature is the result of old-age care in the model, and does not require

̄  0. For instance, with an intertemporal elasticity of substitution that falls short of one, a higher future wage

would imply higher young age savings also in the case where ̄ = 0.

Also, to preview some intuition, note that since the future wage affects young age savings, it is already clear at

this stage that the general equilibrium dynamics will be quite different from one-good OLG models. For instance,

higher future wages implies higher savings and thus higher future capital stock, in turn increasing future wages

even more.
11As usual substitution effects only disappear with Cobb-Douglas preferences: when  = 1, the expenditure

shares of generic goods and old-age care are independent of the relative price, and are exclusively determined by

the relevant preference parameter .

11



equal wages between the two sectors for given levels of sectoral employment, capital per worker,

and productivity.

The labor market equilibrium differs between the neoclassical case in our main model, and

the extension to the AK case in Subsection 5.3. By substituting for the relevant value of labor

productivity  = 
1

1− the expression for the labor market equilibrium in the neoclassical case

is given by

Φ ( ) = () (1− ) ()
  (22)

while in the AK case this expression has to be replaced by

Φ ( ) = () (1− ) ()  (23)

In both cases the function  = Φ ( ) is strictly decreasing in ; for a given capital per

young , higher employment in the generic sector decreases the marginal productivity of labor,

implying a lower wage, and thus a lower price of care.

3.4 Goods Markets

In the Appendix we show that solving the demand relationship (20) for the price of care, and sub-

stituting  with the market-clearing and zero-profit conditions holding for the producing

firms, we obtain

 =

µ
1− 



¶ 
−1

∙
(1− ) (max − )

 − (1− )

¸ 1
1−
≡ Ψ ()  (24)

This expression defines  as the price of care that ensures equilibrium in the goods market.12

The most important insight of (24) is that the function  = Ψ () is strictly decreasing when

  1, and strictly increasing when   1. When   1 the price of care is positively related

to the employment share in the care sector 1− . The reason is that a ceteris paribus increase

in  increases the expenditure share old consumers devote to care services relative to generic

consumption and, consequently, attracts labor in the care sector. When   1, in contrast, a

higher price of care means a lower expenditure share of care, and thus less labor in the care

sector and more labor in the generic sector.13

3.5 Employment and Capital Co-Movements

Consider now the joint equilibrium of the markets for labor and for goods. The two relevant

conditions, (22) and (24) in the neoclassical case, imply that the price of health care and the

employment shares of the two sectors in each period  depend on the level of capital per worker

12Note that the term in square brackets only contains  because, with Cobb-Douglas technologies, the sector

allocation of labor alone determines the output ratio . If we deviate from Cobb-Douglas technologies,

the term in square brackets would also contain capital employed in generic production: see the derivation of (24)

in the Appendix.
13 It should be noted that, in the special case of unit elasticity of substitution,  = 1, expression (24) does

not hold because price and quantity effects on the demand side balance each other. As a result, the equilibrium

between demand and supply in the goods market is characterized by constant employment shares, with  =
(1−)(max+1−)

(1−)+1− at each .
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. Formally, the employment share of the generic sector for a given level of , denoted by

 =  (), is the fixed point

 () ≡ arg solve{∈(1−max)} [Φ ( ) = Ψ ()]  (25)

Our assumptions guarantee the existence and uniqueness of this fixed point — a result that is

shown in the Appendix and that can be verified in graphical terms in Figure 2. On the one

hand, the function Φ ( ) is strictly decreasing in  and exhibits positive vertical intercepts

at the boundaries of the relevant interval  ∈ (1−  max). On the other hand, the function

Ψ () is decreasing (increasing) under complementarity (substitutability) with limits

lim→1−Ψ () =
© ∞ if   1; 0 if   1

ª


lim→max Ψ () =
©
0 if   1; ∞ if   1

ª


These properties14 ensure the existence and uniqueness of the fixed point Ψ () = Φ ( ), and

that it is contained in the relevant interval  ∈ (1−  max). The fixed point (25) simultaneously

determines employment shares and the price of care, which is measured along the vertical axis

of Figure 2. Substituting  () in Ψ () or in Φ ( ) we obtain the equilibrium price of care

for given capital per worker,

 () ≡ Ψ ( ()) = Φ ( ()  )  (26)

Even though we have not yet specified whether and how capital grows, result (26) clarifies how

capital accumulation affects the price of care and employment shares:

Proposition 1 An equilibrium trajectory with positive accumulation implies a rising price of

care. Under complementarity the employment share in the generic sector is decreasing. Under

substitutability the employment share in the generic sector is increasing;

+1   ⇐⇒ +1  

and

+1   ⇒
½

+1   if   1

+1   if   1

¾
Proof. The proposition is proved in graphical terms by means of a comparative-statics

exercise.15 Because Φ ( ) is positively related to , a higher stock of capital per young implies

an up-rightward shift in the Φ ( ) curves in Figure 2. The new equilibrium price  () is higher

in all cases, but sectoral employment shares react differently depending on the value of . The

employment share of the generic sector  () increases under complementarity, decreases under

substitutability:

0 ≡
d ()

d
 0 if   1;  0 if   1 
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Figure 2: Static equilibrium: determination of  and  for given . Qualitatively, the graphs

do not change between the neoclassical and the AK model. The case of strong substitution

(  2) implies local concavity of Ψ () for low  without altering existence, uniqueness, and

comparative-statics properties.

The intuition is that an increase in capital per young expands the production frontier of the

generic good, and thereby increases the price of care. Under complementarity, old agents react

to the price increase by raising the share of expenditure on net old-age care, which decreases the

employment share in the generic sector  (). Under substitutability, instead, old agents reduce

the expenditure share on net care, and employment in the generic sector therefore grows. It is

easily verified that the direction of these capital and employment co-movements is fully reversed

when we consider an equilibrium trajectory with decumulation of capital per young — that is,

when   −1.16

3.6 Static Equilibrium Comparative Statics

For a given capital stock, the static equilibrium labor allocation depends on the parameters

in the model. In particular, for later use we investigate how it depends on productivity ,

on population growth , and on the level of the minimum requirement ̄. The properties of

 () = 
¡
; ̄

¢
are summarized in the following Proposition:17

Proposition 2 In the static equilibrium with given ,

d
¡
; ̄

¢
d

≡ 0  0 if   1;  0 if   1  (27)

14Along with the further concavity properties of both curves described in the Appendix.
15Proposition 1 is equivalently proved by differentiating the equilibrium condition Ψ ( ()) = Φ ( ()  ).

The exact relationship between  and  is reported in expression (36) below, and indeed implies that

0 ≡d () d is strictly negative (positive) under complementarity (substitutability).
16Note that all the properties in this subsection, and therefore the identical results established in Proposition

1 as well as the proof, also hold in the AK case in our model: the co-movements of employment shares, price of

health care and capital per worker are the same in both variants of the model.
17Again, this proposition is also valid if the productivity term  from the neoclassical version of the model is

replaced by the productivity term  in the AK version of the model.
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d
¡
; ̄

¢
d̄

≡ 0̄

 0 (28)

and
d
¡
; ̄

¢
d

≡ 0  0 if ̄  0 ( = 0 if ̄ = 0) (29)

Proof. Also this proposition can be proved in graphical terms. An increase in  implies

an upward shift in Φ ( ) in Figure 2. The employment share, , increases when   1 while

it decreases when   1. Changes in population growth, , and minimum care requirement, ̄,

operate through max that appears in the expression for Ψ () in equation (24). An increase in

max shifts Ψ () to the right, increasing . As max ≡ 1− ̄
(1+)

, max increases with a lower ̄

or with a higher  (provided that ̄  0).

A higher productivity  expands production possibilities of generic goods. When   1,

labor is pushed out of the generic sector, as consumers want to utilize the increased production

possibilities to consume more services from the care sector. When   1 in contrast, labor is

drawn into the generic sector, since in this case old agents prefer less care but more generic

goods.

The intuition for the effects working via max are intuitive. When a larger fraction of workers

are needed in order to satisfy the minimum service requirement, the care sector will employ more

workers.

3.7 Saving Rates and Accumulation

Before studying in detail the dynamics, it is instructive to describe the general relationships

between saving rates, capital accumulation and sectoral employment shares. Considering the

economy’s aggregate income (17) and the wage rate (15), the total labor share accruing to young

agents is given by






=

(1− ) 




³
1−

+ 

´ = 1− 

1−  (1− )
 (30)

Equation (30) shows that, in static equilibrium, an increase in the generic sector employment

share  reduces the total income share of young agents. The intuition is that if labor moves

from the care sector to generic production, the return to capital increases relative to the wage

rate. There is, thus, a shift in the income distribution away from the young towards the old.

We term this effect the intergenerational distribution effect.

Since it is the young who save, the intergenerational distribution effect directly influences

the economy’s saving rate (and will, as we shall see, have important implications for capital

accumulation). The savings rate, termed  and defined as aggregate savings relative to the

total value of production, is found by using the saving function in (18) and expression (30), and

then inserting for max from (13):

 ≡ 

 


=

 (1− )

1 + | {z }
Canonical model

· 1

1−  · (1− )| {z }
Intergenerational Distribution

· Γ

µ
̄

+1

¶
| {z }

Old-age Requirement

(31)
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where

Γ

µ
̄

+1

¶
≡
∙
1− (1− )

 (1 + ) (1 + )

̄

+1

¸−1
 Γ0  0 Γ (0) = 1 (32)

Expression (31) is a semi-reduced form showing that the savings rate is negatively related to

both  and +1. The function Γ captures the savings induced if there is a the minimum health

requirement. When ̄ = 0, Γ reduces to unity. The derivative is positive, and thus when ̄  0,

then Γ  1.

To explain the intuition is it instructive to compare the result in (31) to the savings rate in

the canonical OLG model with logarithmic preferences and Cobb-Douglas technology. There,

the young save a fraction (1+) of their income, and the income share of the young is 1−.

The savings rate is therefore, in this case, given by the first of the three terms on the right hand

side of (31), and it is time independent.

The present model implies that the savings rate is, in general, not constant over time.

Moreover, it is always higher than in the canonical model for two reasons; the intergenerational

distribution effect and the old-age requirement effect. First, as seen by the second term on

the right hand side of (31), the presence of employment in the care sector implies higher labor

demand, shifting the income distribution in favor of the young, and thus increasing savings.

Second, as seen by the third term on the right hand side of (31), with ̄  0, as we have

seen from (18), the young have an additional savings motive in that they need some minimum

amount of old-age care, increasing the savings rate further.18 The old-age requirement effect

on savings is stronger the lower is +1, because lower future employment in the generic sector

implies higher future wages, increasing the cost of purchasing the minimum requirement of care.

The expected increase in the cost of health care in period  + 1 prompts young agents to save

more in period  and, therefore, to accumulate more capital.

The natural question concerns the general-equilibrium impact of both these mechanisms on

economic growth. In this respect, the market-clearing condition equating investment to savings

implies that capital per worker obeys the dynamic law

+1 =


1 + 
 (33)

Next periods capital per young is determined by this periods savings adjusted for population

growth.

The next section discusses capital accumulation in the neoclassical variant of the model,

while Subsection 5.3 extends the dynamics to the AK case.

4 Neoclassical Growth

In the neoclassical case labor productivity in the generic sector equals  = 
1

1− in each period.

In this framework, when the economy reaches a long-run equilibrium where capital per worker

18 In the Appendix we show that restriction (14) and +1  1− implies that (1− ) ̄   (1 + ) (1+)+1.
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is constant, generic production grows at the exogenous rate of population growth. Subsections

4.1-4.3 derive the stability properties of the long-run steady state and show that, given an

initial stock below the steady-state level, capital per worker grows monotonously. We also show

that under complementarity, these transitional dynamics are characterized by increasing savings

rates. Under substitutability, on the other hand, savings rates decrease during the transition to

steady-state. The intergenerational distribution effect and the old-age requirement effect both

contribute to these results.

Compared to the canonical OLG model the dynamics are more involved: since increased

capital increases savings rates and thereby capital further, this opens for the possibility of (local)

instability and multiple steady states. We show, however, that a departure from uniqueness and

stability of the steady state can only occur under unreasonable high values of the elasticity of

capital in generic production .19

The case of complementarity is of particular interest when discussing growth in China, as it

is already clear that capital accumulation in such a case involves increasing savings rates and

increasing (share of) employment in the care sector. Subsection 4.4 clarifies further how, in

this case, the intergenerational distribution effect and the old-age requirement effect give rise

to a savings multiplier, where savings and capital accumulation stimulates further savings and

capital accumulation.20 Subsection 4.5 performs comparative-statics exercises suggesting that

one-child policies may boost capital accumulation via two channels — the negative impact on

population growth and the increased need to purchase care services in the market rather than

relying on own children to provide them. The final positive effects on long-run capital per worker

are magnified by the savings multiplier.

4.1 Accumulation Law

The equilibrium path of capital is determined by the saving decisions of young agents. Inserting

from (31) and (17) in (33), we obtain a semi-reduced form of the accumulation law of capital

per worker, which links +1 to the previous stock  and to the sectoral employment levels in

the two periods:

+1 =
 (1− )

(1 + ) (1 + )
| {z }

Canonical model

· −|{z}
Intergen. Distr.

· Γ

µ
̄

+1

¶
| {z } 

Old-age requirement effect

(34)

This expression decomposes the accumulation law of capital in three parts. The first term on

the right hand side of (34) is the dynamic law in the canonical one-good model: if we eliminate

the care sector by setting  = 1 and ̄ = 0, capital per worker evolves according to this stable

monotonic relationship, and the saving-output ratio is constant by virtue of constant income

share of the young and logarithmic intertemporal preferences.

19Nevertheless, for completeness we also solve the dynamics for this case in the Appendix.
20Naturally, the convergence of this multiplier process is guaranteed exactly when the steady state is unique

and stable.
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The second and third terms on the right hand side of (34) again directly follow from the

intergenerational distribution effect and the old-age requirement effect. An increase in  reduces

+1 because a lower current wage reduces young agents’ income, and thereby, current savings.

An increase in +1 reduces +1 because a lower future wage reduces the expected future cost

of health care, and thereby, current savings.

Recalling result (25), equilibrium employment shares are a function of the capital stock per

worker in each period. Substituting  =  () and +1 =  (+1) into (34), we obtain the

accumulation law

+1 =
 (1− )

(1 + ) (1 + )
 [ ()]

− Γ
µ

̄

 (+1)

¶
 (35)

Expression (37) implies that capital dynamics crucially depend on how sectoral employment

shares react to variations in capital per worker. In this respect, the relevant elasticity is21

0 ()
 ()

=
1

1− 1
1−

1

1

½
 0 if   1

 0 if   1

¾
 (36)

where 1 ≡ 
−(1−) ·

max−(1−)
max−  1. The slope of the accumulation law can be found by taking

the elasticity of (35) with respect to  and +1, which yields
22

d+1

d



+1
=

− 
0()
()

1 + Γ0
Γ

̄
(+1)

0(+1)+1
(+1)

 (37)

Starting with the numerator, we see that the direct effect on +1 of an increase in  is larger

under complementarity, i.e. when 0 ()  0. When ̄  0, there is also an indirect effect via

the increase in  (+1), captured in the denominator.

To present the intuition in the most transparent way we first, in the next subsection, in-

vestigate the special case where ̄ = 0, and thus Γ = 1. This isolates the intergenerational

distribution effect, and shows how this increases the steady state capital stock. In Subsection

4.3 we then expand the model to the case where ̄  0. This shows how the old-age requirement

effect further increases the steady state capital stock.

4.2 Dynamics without Minimum Requirement

When there is no minimum health-care requirement for old agents, capital accumulation obeys

a fairly simple dynamic law. In the main text, we assume that the elasticity of capital in generic

production is not too high, that is:23

Assumption 1:   3
4
.

This assumption is sufficient (but not necessary) for the steady state to be unique.24 The next

21Expression (36) is obtained by differentiating the equilibrium condition Ψ ( ()) = Φ ( ()  ) and is fully

derived in the Appendix. The fact that 1  1 directly follows from the requirement 1 −     max and it

implies the signs reported in (36). Note that (36) yields an alternative proof of Proposition 1.

22Totally differentiating (35) yields
d+1
+1

=  d

− 

()



1
()

d − Γ0
Γ

̄
+1

(+1)
+1

1

(+1)
d+1 which can

be rearranged to obtain (37).
23 In the Appendix part B, we solve the general model for the case in which Assumption 1 is not satisfied. For

more on stability properties in OLG models with one capital stock, see e.g. Galor and Ryder (1989).
24Under substitutability the steady state is always unique and stable.
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Proposition then establishes that the steady state is globally stable: under both complementarity

and substitutability, the economy converges towards a long-run equilibrium in which capital per

worker, the price of health care and employment shares are constant.

Proposition 3 In the neoclassical case with ̄ = 0, capital per worker obeys

+1 =


(1 + ) (1 + )
 ()  (38)

where  () is the price of health care determined by (26). Under Assumption 1 the steady state

 =


(1+)(1+)
 () is unique and globally stable, implying

lim
→∞

 =  lim
→∞

 =  ()  lim
→∞

 =  () 

During the transition, given a positive initial stock 0  , both capital per worker and the

price of health care increase, whereas employment in the generic sector declines (increases) and

the saving rate increases (declines) under complementarity (substitutability):

+1   +1  

½
+1   and +1   if   1

+1   and +1   if   1

¾
 (39)

Proof. Expression (38) follows from setting ̄ = 0 in (35) and substituting (22) and (26).

Result (39) follows from Proposition 1 combined with (31) that shows that, with ̄ = 0,  is

decreasing in . For  to be stable and unique, the elasticity (37) evaluated in  must be

less than unity. Inserting  = +1 =  and Γ = 1 and Γ
0 = 0 in (37), the elasticity reduces

to
d+1

d
= − 

0 ()
 ()



where the right hand side is less than unity if and only if

1 () ≡ −
0
 ()

 ()



1− 
 1 (40)

In the Appendix we show that Assumption 1 is a sufficient condition for (40) to be satisfied. In

the Appendix we also prove existence.

Proposition 3 suggests three remarks. First, the dynamic law for capital (38) shows that,

when there is no minimum requirement, investment per-young is proportional to the price of

care. This is because savings only depend on current wages ( is proportional to  in each

period). Second, given that capital per worker grows monotonically, both the wage and the

price of care increase over time. Employment shares, however, move in opposite directions

depending on the value of , which determines whether old agents increase or decrease their

expenditure share on old-age care in response to increasing prices. The third remark is that,

under complementarity, the savings rate  increases during the transition because rising care

prices attract labor in the care sector and the income share of young agents then grows — i.e.,

the intergenerational distribution effect.
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The steady-state implications of the intergenerational distribution effect is immediate by

comparing the steady-state level of the capital stock, , with that in the canonical version of

the model, which we term canonical . Starting from (34), and imposing ̄ = 0 and +1 =  = ,

we obtain

 =
1

 ()


1−

∙
 (1− )

(1 + ) (1 + )

¸ 1
1−

=
1

 ()


1−
canonical  (41)

where the steady-state level of capital per worker in the canonical model (which is obtained by

setting  = 1 in each period) is

canonical =

∙
 (1− )

(1 + ) (1 + )

¸ 1
1−

 (42)

It immediately follows that   canonical always holds ( as  ()  1 ), i.e., capital per worker

in our model is higher than in the canonical model independently of whether generic goods and

care are complements or substitutes. The need for care increases the demand for labor, pushing

income distribution in favor of the young, and therefore increases savings. (The size of the gap

between  and canonical depends, obviously, on the elasticity of substitution as well as the

other parameters of the model through the term  (), which we return to below).

4.3 Dynamics with Minimum Care Requirement

When the minimum old-age care requirement is strictly positive, ̄  0, the accumulation law

(34) includes the dependency of current savings on future employment shares, i.e. the old-age

requirement effect. This dynamic law determines the steady state(s) of the system and the

associated stability properties. Under substitutability there is always a unique steady state.

Under complementarity, i.e.   1, we again in the main text assume that the elasticity of

capital in generic production is not too high, now that is:25

Assumption 2:   1−
1− .

This assumption is sufficient (but not necessary) for the steady state to be unique. We then

have:

Proposition 4 Under Assumption 2 equation (35) exhibits a unique steady state ̄ that is

globally stable. The transitional dynamics of  () and  () comply with Proposition 1.

Proof. For ̄ to be stable and unique, the elasticity (37) evaluated in ̄ must be less

than unity. Inserting  = +1 = ̄ in (37), the elasticity reduces to

d+1

d
=

− 
0(̄)̄
(̄)

1 + Γ0
Γ

̄
(̄)

0(̄)̄
(̄)



where the right hand side is less than unity if and only if

1 (̄) +2 (̄)  1 (43)

25Note that even in the limiting case where  → 0 this assumption is satisfied with the empirically plausible

restriction   1
2
. In the Appendix part B, we solve the model for the case in which Assumption 2 is not satisfied.
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with

2 (̄) ≡ −
0
 (̄) ̄

 (̄)

Γ0

Γ

̄

 (̄)

1

1− 

½
 1 if   1

 0 if   1
 (44)

In the the Appendix we show that Assumption 2 is a sufficient condition for (43) to be satisfied.

Proposition 4 establishes that, also with a minimum old-age care requirement, under com-

plementarity the savings rate increases during a transition path where capital grows. Now, this

is the combined result of the future-requirement and intergenerational distribution effects.

Imposing +1 =  = ̄ in (34), the steady-state level of capital per worker must satisfy

̄ = Γ

µ
̄

 (̄)

¶ 1
1− 1

 (̄)


1−
canonical  (45)

Comparing (45) to (41), since Γstrictly exceeds one when ̄  0, we thus conclude that ̄ 

  canonical ; the long-run level of capital per worker is higher when there is a positive

minimum requirement of old-age care, which drives capital further above the level attained in

the canonical model. The reason is the minimum-requirement effect, which prompts households

to save more during the transition in response to the continuous increase of the price of old-age

care.

4.4 The Savings Multiplier

Steady state capital is affected by the intergenerational distribution and the minimum require-

ment effects. We now investigate how the same effects come into play when exogenous shocks

affect the economy. This sheds further light on transitional dynamics in the model, and also

allows us to introduce the savings multiplier. For this purpose, in this subsection we consider

variations in the productivity level , and we focus on the case of complementarity,   1,

which seems the most interesting scenario for discussing Chinese household’s saving behavior in

the model.26 The effects of exogenous shocks on income per capita may, as we will see in this

subsection and the next, differ substantially from those predicted by the canonical model. For

expositional clarity, we start out without the minimum requirement effect, before we extend the

analysis to include this.

Zero Requirement. In the canonical model, an exogenous increase in productivity increases

the long-run level of (log) capital per worker in (42) by

d logcanonical

d
=

1

 (1− )
 (46)

26However, all of the equations to follow are identical also in the case of   1, the only difference being in the

qualitative strength of the effects. As will be easily understood below, all savings multipliers which exceed one

when   1, falls short of one when   1. Thus shocks that are magnified with complementarity, are instead

dampened with substitutability.
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Now consider our model without minimum requirement. With ̄ = 0, the steady-state capital

per worker is  defined in (41), and the impact of the productivity shock is determined by

d log

d
=

1

1−1 ()| {z }
Savings Multiplier

µ
d logcanonical

d
+1 ()

0 ()
0 ()

¶
 (47)

The crucial element in (47) is the savings multiplier, where1 is already defined in (40). Focusing

on the case of complementarity, 1 is strictly positive, and is less than unity in view of the

stability of the steady state.27 Since 0  1  1, the savings multiplier in (47) is strictly higher

than unity. Combining this result with 0  0 and 0  0,28 we conclude that the impact

of a productivity shock on steady-state capital per worker is stronger than that predicted by

the canonical model. There are two reasons for this, both related to the intergenerational

distribution effect. The first reason, which is the result of the intergenerational distribution

effect in the static part of the model, is represented by the term 1
0
0

 0. The productivity

increase pushes labor into care and out of generic production, increasing the wage further as

compared to the canonical model, shifting income distribution in favor of the young. This means

that the initial increase in the savings rate as a result of better productivity is higher than in

the canonical model. The second reason, which is the result of the intergenerational distribution

effect in the dynamic part of the model, is represented by the savings multiplier; the term

1
1−1

 1. In our model, as the capital stock starts to grow, this further pushes labor out of

generic production and into care, increasing the wage even further, thus magnifying the initial

increase in savings. The implication is that a higher productivity increases the capital stock

and wages by more than in the canonical model. As we will see below, the savings multiplier is

also part of the explanation why low population growth and one-child policies may have such a

massive impact on savings and capital accumulation.

Positive Requirement. To see how the old-age requirement ̄  0 modifies the savings multi-

plier, we again investigate the response of the steady-state capital stock to increased productivity,

which from (45) is now given by

d log ̄

d
=

1

1− [1 (̄) +2 (̄)]| {z }
Savings multiplier

∙
d logcanonical

d
+
(1 (̄) +2 (̄)) 

0
 (̄)

0 (̄) ̄

¸
 (48)

where 2 is defined in (44). Focusing again on the case of complementarity, the term 1 +2

is strictly positive, and is less than unity in view of the stability of the steady state.29 Since

0  1 +2  1, the savings multiplier in (48) is strictly higher than unity.

27Under complementarity, 1 is positive because 
0
  0 — see expression (36) — and is strictly less than unity

in view of the stability condition proven in Proposition 3. Under substitutability, instead, expression (36) implies

0  0 and therefore 1  0.
28Under complementarity, 0  0 follows from (36) whereas 0  0 is established in Proposition 2.
29Under complementarity, both 1 and 2 are positive because 

0
  0 — see expression (36) — and 1 +2

is strictly less than unity in view of the stability condition (43) proven in Proposition 4. Under substitutability,

instead, expression (36) implies 0  0 and therefore 1 +2  0, which yields a savings multiplier below unity.
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Compared to the case with ̄ = 0 in (47), the effect of increased productivity on steady-state

capital now involves two additional effects strengthening the impact of productivity on steady

state capital. These are identified by the two appearances of the term 2 in (48). First, in the

static equilibrium of the model, the higher wage now also means higher cost of old-age minimum

requirement of care, implying an additional increase in savings compared to in the case above.

Second, the savings multiplier increases, strengthening the feedback of capital on capital growth:

the increase in the capital stock makes the wage rise over time, increasing the cost of the future

minimum requirement, in turn increasing savings and the capital stock even more as compared

to the case with ̄ = 0. Thus, both the static and dynamic effects generated by the old-age

requirement effect reinforce the steady-state response of capital to increased productivity.

Clearly an important channel of growth in China has been (transfer of labor from low pro-

ductivity to) high productivity in the manufacturing sector. The analysis, so far, indicates that

the effect of higher productivity may have been magnified by the savings multiplier. Many

would argue that in addition to this, a defining characteristic of Chinese policy compared to

other countries has been the one-child policy. Thus, we now investigate the effects on savings,

capital accumulation and growth of such policies.

4.5 Population Growth and One-Child Policies

The one-child policy has main effects on the Chinese economy not only by lowering population

growth, but also by transforming society to one where agents need to purchase more care in

the market. In particular, parents with one girl are strongly affected, since when married, girls

traditionally becomes part of the family of the husband. But parents of boys are also affected,

because the one-child policy has implied rising sex ratios, increasing the probability that their

boy may end up as unmarried. (In addition, of course, general modernization may also weaken

the tradition of children to support their parents with old-age care.) In this subsection, thus, we

study how the one-child policy may affect the economy through lower population growth, and

increased need to rely on the market to provide old-age care.

As is well known from the canonical model, a lower growth rate of population increases the

steady-state level of capital per worker: from (42), we find

d logcanonical

−d =
1

(1 + ) (1− )
 0 (49)

In contrast, from (45), and taking into account (29), we find that the effect in our extended

model with minimum requirement, ̄  0, is given by

d log ̄

−d =
1

1− [1 +2]

∙
d log canonical

−d +
0

(−0)̄
(1 +2) +



(1 + ) (−0)̄
2

¸


(50)

where we suppress the argument ̄ to simplify the notation.
30 Assuming again complemen-

30 In (50), the terms 12  
0
 

0
 are all evaluated in the steady state ̄. Also, in deriving (50), we exploit

the fact that Γ

= −Γ0 ̄

(1+)
from expression (32). See the Appendix for a full derivation.
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tarity,   1, the multiplier 1
1−1−2

is positive and higher than unity. There are, thus, five

reasons the relative increase in capital with a lower growth of population is higher as compared

to in the canonical model. The first two effects arise because of the intergenerational distri-

bution effect and the old-age requirement effect, which through the savings multiplier ensures

that capital growth has a stronger positive feedback on itself. These two effects are represented

by 1 and 2 in the savings multiplier. The third and fourth effects are represented by the

presence of 1 and 2 in the term
0

(−0)̄ (1+2) in (50). They represent the effects on the

labor share in the static model. With lower population growth there are fewer young relative

to old agents at each point in time. This pull workers out of generic production and into care,

increasing the wage. The increased wage increases the aggregate savings rate through both the

intergenerational distribution effect and the old-age requirement effect. The fifth effect is repre-

sented by the term 
(1+)(−0)̄2 in (50). At each point in time, there is a higher fraction of

old-age to young-age agents. Even for a fixed labor allocation this increases the wage. Through

the old-age requirement effect, this increases the savings rate of the young in the static model

even more, stimulating capital accumulation further. In total, this means that the effect of

population growth in the present model may be substantially magnified compared to standard

OLG models.

As we discussed above, another potential effect of one-child policies may be that, by lowering

the number of young relative to the old, less care will be provided inside the family, and more care

has to be purchased in the market. In the model, this can be represented by an increased amount

of care that each agent must purchase as old, i.e. a higher ̄. Obviously, this draws resources out

of generic sector production and into the production of care. The effect on steady-state capital

is found by (45) to be

d log ̄

d̄
=

0̄


0̄
(1 +2)− 

̄0̄
2

1− (1 +2)
 (51)

A higher minimum requirement of care has a direct positive effect on savings, represented by

the term − 
̄0̄

2. In addition, the demand for labor increases, pushing the wage up. This

shifts income distribution in favor of the young, and also makes care more expensive. For both

reasons, savings increase, represented by the term
0̄


0̄
(1+2). Thus, through three channels,

a higher minimum requirement increases savings in the static model. Stimulated by the savings

multiplier, steady-state capital increases by more than the immediate effect on savings and

capital accumulation. As a consequence, the increased need for market based care may have a

strong positive impact on capital accumulation.

5 Extensions

In this section we first extend the model to study social security in the form of a pay as you

go system where the government provides old-age care. We then consider the possibility of

dynamic inefficiency. We lastly extend the model to study endogenous growth dynamics. To
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put the main focus on the new effects our extensions introduce, throughout this section we for

simplicity focus on the case where ̄ = 0.

5.1 Introducing the Welfare State

The savings motive in the economy comes partly from the need to pay for future old-age care,

since the one-child policy and the missing welfare system implies that there are few other options.

As argued by e.g. Oksanen (2010, p. 14), even in areas where the one-child policy has been

less strictly enforced it has main implications: “Although this policy has been more relaxed in

rural areas, the migration of descendants to cities has meant that many elderly people in rural

areas are left without sufficient family support. ... .as the state induced the decline in fertility

by regulation, the state must take responsibility, both financially and otherwise, for support

for the elderly who are left with only narrow or no family based security”. By extending our

model, we can study some potential effects of the introduction of such a welfare state. In this

subsection we consider the consequences of adopting a pay as you go scheme where the young

pay a proportional tax   on their income so as to finance free care  to the old living in the

same period.31 A balanced budget then requires that   (1 + ) = , which from (12) is

equivalent to

  (1 + ) =  (52)

While (22) is unaffected by the tax, we show in the Appendix that (24) is now modified to

 =

µ
1− 



¶ 
−1

∙
(1− ) (1− )

 − (1− ) (1−  )

¸ 1
1−

(53)

In the static part of the model, it can thus easily be verified that a higher tax rate reduces

employment in the generic sector (and increases employment in the production of care services).

A further implication of this, in the static model, is that the decreased generic sector employment

increases the wage.

In the Appendix we show that capital accumulation is now given by

+1 = (1−  )
 (1− )

(1 + ) (1 + )
 

−


∙
1 +

(1− )  +1

 (1 + ) +1

¸−1
(54)

The accumulation is affected through decreased savings as current wage income is now taxed.

This is captured by the term 1−  , and is the same as in the canonical model. In addition, in

the present model the tax also affects capital accumulation through the terms  =  (  ) and

+1 =  (+1  +1), that now depend on the tax rates.

The total effect of taxes on the steady-state level of capital is found by imposing +1 =  =

,  +1 =   =  , and taking into account that generic sector employment is decreasing in the

31Whether the tax income is used to provide care, or is transferred lump-sum from the young to the old, has

no bearing our results (as long as the publicly provided care falls short of what old agents would purchase by

themselves in absence of publicly provided care).
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tax rate through the term 0 ≡d ( ) d (for a given capital stock). We then find from (54)

and (53) that  decreases when a tax financed transfer to the old is introduced.

d

d
 0

The proof of the sign is given in the Appendix. A higher tax rate and publicly provided old-

age care redistributes income from the young to the old, and decreases the incentives to save.

The higher labor demand in the care sector, which increases the wage for the young, cannot

be sufficiently strong to turn this around. Thus, introducing the welfare state in China may

remove parts in the engine that has fueled massive capital accumulation, and may have a strong

negative impact on Chinese growth.

As is well known, however, a lower capital stock in an OLG framework need not reduce

welfare. Thus, we next discuss dynamic inefficiency.

5.2 Dynamic Inefficiency and Golden Rule

Dynamic inefficiency is characterized by a situation where the steady state capital stock is so

high that it is possible to consume part of it with no generation becoming worse off. As is well

known, this is the case if the capital stock is above the what is often termed the “golden rule”

capital stock. The golden rule capital stock, ∗, is found by letting a social planer optimize with

respect to     and , finding (∗ ∗ ∗ ∗ ∗) such that the consumer in each generation

gets equal and maximum utility. We can, as all generations are considered equal from the social

planer’s point of view, suppress time subscripts. This implies maximizing

 ≡  () +  ( ) 

under the constraints

 = 1− = +


1 + 
+  (1 + ) 

1 = +


 (1 + )


The first constraint states that production in one period should pay for consumption of the

young, , and of the old, . In addition, the capital labor ratio in each period should be

preserved for the next period. The second constraint limits the labor use to the available labor

force.

The solution for  can be found immediately. Optimality requires that, given the optimal

choice of all other variables, there should be no gain from changing the value of a subset of

variables. In particular, given (∗ ∗ ∗), there should be no scope for increasing  by altering

. Hence in optimum




= (1 + )⇒ ∗ = ∗

µ


1 + 

¶ 1
1−


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where ∗  1 is the optimal generic sector employment fraction. The implications for the golden

rule capital ratio of introducing the old-age care sector is then immediate by comparing ∗ with

that in the canonical version of the model, which we term ∗canonical . In the canonical model

∗ = 1, hence

∗ = ∗
µ



1 + 

¶ 1
1−

= ∗∗canonical  ∗canonical

Therefore, as compared to the canonical model, our model with the service sector for old-age

care increases the potential relevance of dynamic inefficiency for two reasons. First, from (41)

we know that the care sector generates an income distribution effect that leads to a steady state

capital stock higher in our model than in the canonical model. Second, as the service sector

reduces the labor available for the generic sector, this lowers the golden rule capital stock. Thus

the actual capital stock in our model is higher than in the canonical model, while the golden rule

capital stock is lower. For parameter spaces where the canonical model is efficient, our model

could very well be inefficient, and moreover for parameter spaces where the canonical model is

inefficient, our model is even further away from efficiency.

5.3 Endogenous Growth

In this subsection, we study the model with learning by doing. We show that, under com-

plementarity, accumulation is self-reinforcing because capital growth induces positive feedback

effects on saving rates, and thereby subsequent accumulation. In contrast, under substitutabil-

ity accumulation is self-balancing, as capital growth induces negative feedback effects on saving

rates.

Substituting the learning-by-doing specification (11) in (17) and (33), the linear AK model

yields the accumulation law
+1


=

 (1− )

(1 + ) (1 + )

1

 ()
 (55)

Whether capital accumulation accelerates or converges to a stable pace depends on the co-

movements of capital and employment shares. Recalling Proposition 1, we have 0  0 under

complementarity, and 0  0 under substitutability. We now discuss the consequences of these

processes for endogenous long-run growth.

Complementarity: Self-Reinforcing Accumulation and Traps

Considering first the case of complementarity, we may observe (aside from the very special case

of permanent steady state discussed below) two types of growth paths:

(i) Self-Reinforcing Accumulation. Capital per worker and the price of health care grow for-

ever. During the transition, the employment share of the generic-good sector declines

and the saving rate grows. In the long run, the economy converges asymptotically to the

equilibrium featuring

lim
→∞

+1


=



(1 + ) (1 + )
 1 and lim

→∞
 () = 1−  (56)
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(ii) Self-Reinforcing Decumulation. Capital per worker, the price of health care and the saving

rate decline over time while the employment share of the generic-good sector grows. In

the long run, the economy converges asymptotically to the equilibrium featuring

lim
→∞

 = 0 and lim
→∞

 () = 1 (57)

Self-reinforcing accumulation results from the fact that, under complementarity, capital ac-

cumulation induces positive feedback effects on the savings rate. An initial increase in capital

per worker drives up the health-care price and reduces the employment share of the generic

sector: the intergenerational distribution effect then implies a higher saving rate, and thereby

further capital accumulation. Symmetrically, an initial decline in capital per worker results

in self-reinforcing decumulation via lower saving rates. Depending on initial endowments, the

economy may undertake a permanent accumulation path, or remain trapped in a permanent

decumulation path. The next Proposition defines the critical level of capital per worker at time

zero, which acts as a threshold between the accumulation and decumulation outcomes.

Proposition 5 (AK model under complementarity) If 1 −  
(1+)(1+)


 1, there exists a

finite critical level ̃  0 satisfying

 (̃) =
 (1− )

(1 + ) (1 + )


and acting as a separating threshold: if 0  ̃ (0  ̃), the economy follows the self-reinforcing

accumulation (decumulation) path forever. If
(1+)(1+)


 1 −   1, the economy follows the

self-reinforcing accumulation path for any 0  0. If 1 −   1 
(1+)(1+)


, the economy

follows the self-reinforcing decumulation path for any 0  0.

Proof. See Appendix.

The intuition behind Proposition 5 can be seen as follows. When   1, the equilibrium

employment share  () is negatively related to . Therefore, if the initial stock is sufficiently

high to satisfy 0  ̃, we have

 (0) 
 (1− )

(1 + ) (1 + )


the economy exhibits positive capital growth in the first period, 1  0, the generic-sector

employment share declines,  (1)   (0), and the growth rate of capital in the subsequent

period is even higher, 21  10. This mechanism arises in all subsequent periods and

drives the economy towards the asymptotic equilibrium described in expression (56) above.32

Symmetrically, if the initial stock is relatively low, 0  ̃, the same self-reinforcing mechanism

works in the opposite direction: generic-sector employment is initially so high that savings are

32Expressions (56) represent an asymptotic equilibrium that is never reached in finite time. The proof follows

from our previous analysis in Figure 2: as  grows forever, the curve Φ ( ) permanently shifts upward and the

resulting equilibrium share  () approaches 1−  only asymptotically because lim→1−+ Ψ () = +∞.
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discouraged and capital per worker declines, implying further increase in  () and therefore

permanent decumulation. In the very special case 0 = ̃, there is a permanent steady-state

equilibrium: capital per worker and employment shares are constant forever. In this situation,

however, any small perturbation affecting capital per-worker would drive the economy towards

self-reinforcing accumulation or decumulation: see Figure 3, diagram (a), for a graphical de-

scription of this result.

Proposition 5 also shows that, if preference and technology parameters do not satisfy 1− 
(1+)(1+)


 1, only one of the two paths survives: there is either self-reinforcing accumulation

or self-reinforcing decumulation because the critical threshold on capital per worker ̃ cannot

be positive and finite.33

Substitutability: Self-Balancing Accumulation and Stagnation

Considering next the case of substitutability, the analysis of equation (55) is modified by the fact

that 0  0. When   1 , the generic-sector employment share increases with capital because

old agents respond to higher health-care prices by spending a higher fraction of income on generic

goods. This implies that, contrary to the case of complementarity, an initial increase in capital

generates negative feedback effects on savings through the intergenerational distribution effect:

higher generic-sector employment reduces the total income share of young agents and, hence, the

economy’s saving rate. The consequences for economic growth are summarized in the following

proposition:

Proposition 6 (AK model under substitutability) If 1− 
(1+)(1+)


 1, there exists a finite

critical level ̂  0 satisfying

 (̂) =
 (1− )

(1 + ) (1 + )


and representing a global attractor: if 0  ̂ (0  ̂), the economy follows a self-balancing

accumulation (decumulation) path during the transition, and converges from below (above) to

the stationary long-run equilibrium featuring lim→∞  = ̂ and lim→∞  () =  (̂). If
(1+)(1+)


 1−  1, the economy exhibits positive growth of  forever and lim→∞  () = 1.

If 1−  1 
(1+)(1+)


, the economy exhibits negative growth of  forever and lim→∞  () =

1− .

Proof. See Appendix.

The first result established in Proposition 6 may be restated as follows: when generic con-

sumption and old-specific goods are strict substitutes, then if there exists a steady-state level

of capital per worker that is compatible with positive production in both sectors, the linear AK

model behaves similarly to a neoclassical model. Starting from relatively low capital, capital

per worker grows over time but at decreasing rates, until the economy reaches a stable steady

33See the proof of Proposition 5 for details.
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Figure 3: Dynamics of the AK model (̄ = 0). The steady state of capital per worker is a

separating threshold under complementarity, a global attractor under substitutability.

state representing the long-run equilibrium. However, this result is not due to decreasing re-

turns to capital in production: differently from the neoclassical model, the convergence towards

̂ is determined by the reaction of sectoral employment shares to capital accumulation. Since

capital growth increases employment in the generic sector, accumulation under substitutability

is self-balancing. This conclusion is opposite to that obtained under complementarity, where

accumulation is self-reinforcing. Figure 3, diagram (b), describes this result in graphical terms.

Proposition 6 also establishes the conditions under which substitutability admits permanent

positive accumulation: when
(1+)(1+)


 1 −   1, there is no finite steady state ̂ and the

economy grows forever. However, the transitional dynamics of employment shares, saving rates

and growth rates are qualitatively opposite to the case of complementarity: workers flow to the

generic sector, the saving rate declines and growth decelerates.

Propositions 5 and 6 show that the elasticity of substitution between generic goods and health

care bears fundamental implications for economic growth. On the one hand, the separating

threshold level ̃ that arises under complementarity recalls several conclusions of the literature

on poverty traps in endogenous growth models — such as those going back to Azariadis and

Drazen (1990) — but in our model this hinges on the degree of substitutability between generic

consumption goods and old-specific consumption goods. Under substitutability, on the other

hand, the linear AK model of endogenous growth, by generating a stable long-run equilibrium

with stationary capital per worker ̂, shares fundamental properties with the neoclassical model.

This is, to the best of our knowledge, a novel result. The fact that the steady-state levels of

capital per worker, ̃ and ̂, have opposite characteristics is conceptually linked to the results

of Peretto and Valente (2011), who study the existence of pseudo-Malthusian equilibria in a
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growth model with endogenous technological progress.34

6 Concluding Remarks

Motivated by the dismantling of the social benefits related to state owned enterprises, and

the adoption of the one-child policy, this paper has explored some possible general equilibrium

implications for savings and capital accumulation. We have argued that savings and capital

accumulation has stimulated further savings and capital accumulation, and we have introduced

what we term a savings multiplier. In the case of limited substitutability between manufacturing

goods and old-age care, we have seen that our approach, although highly simplified, implies a

structural transformation with many of the characteristics observed in China since 1978. In

particular, growth with increasing savings and investment rates, wage growth (in recent years)

exceeding GDP growth, declining share of employment in manufacturing sectors, a widening of

the income gap between those retired and those working, and an increasing share of consumption

expenditures allocated to purchasing care services. Thus, maybe paradoxically, a regime that

has dismantled the cradle-to-grave social benefits provided through the state owned enterprises,

and at the same time not allowed citizens to produce children to provide their increased need

for old-age care, has put the economy on a path where savings and capital accumulation has

skyrocketed.

Growth in China may not only be unsustainable due to the political economy considerations

elaborated by Acemoglu and Robinson (2012), but, as we have seen by extending our model, also

because the introduction of a welfare system currently discussed in China, may remove parts of

the engine that has produced the high required savings for a growth strategy based on capital

accumulation.
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FOR ONLINE PUBLICATION

A Appendix

Consumption levels: derivation of (18)-(19). The household maximizes (2) subject to

(4)-(5). The Lagrangean at time  reads

L ≡  () + 
¡
+1 +1 − ̄

¢
+ 1 ( −  − ) + 2

³
+1 − +1 − +1+1

´
where 1 and 2 are the multipliers. The first-order conditions with respect to ( +1 +1 )

are

 () = 1 (A.1)

+1
¡
+1 +1 − ̄

¢
= 2 (A.2)

+1
¡
+1 +1 − ̄

¢
= 2+1 (A.3)

1 = 2+1 (A.4)

Combining (A.1) with (A.2) and (A.2) with (A.3), we respectively obtain

 () = +1+1
¡
+1 +1 − ̄

¢
 (A.5)

+1
¡
+1 +1 − ̄

¢
= +1+1

¡
+1 +1 − ̄

¢
 (A.6)

where (A.5) is the Keynes-Ramsey rule for the generic good, and (A.6) equates the relative price

of health care services to the marginal rate of substitution with second-period consumption.

Exploiting the assumed utility functions (6)-(7), conditions (A.5)-(A.6) respectively read

+1 = +1 −
¡
+1 − ̄

¢ 1− 



µ
+1

+1 − ̄

¶ 1


 (A.7)

+1 =
1− 



µ
+1

+1 − ̄

¶ 1


 (A.8)

Substituting (A.8) in (A.7) gives

+1 + +1
¡
+1 − ̄

¢
= +1 (A.9)

Substituting (A.9) in the second-period budget constraint (5) and then using the first-period

budget constraint (4) to eliminate savings, we obtain expression (18) in the text. Next, substitute

the market clearing condition +1 = 

  into (5) to obtain

+1+1 = 

 (+1 + +1+1)  (A.10)

Given the market clearing condition 
  = , the zero-profit condition for the health care

sector reads



  =  (1− )


  (A.11)
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Substituting (A.11) for period + 1 into (A.10), we obtain


+1+1 = +1+1 −+1 (1− +1)


+1 (A.12)

From the profit maximizing conditions (16) and (15), respectively, we have

 = 
h



 ()

 ()
1−

i
 (A.13)

 (1− )

 =  (1− )

1− 



h



 ()

 ()
1−

i
 (A.14)

Setting (A.12) at period  and substituting (A.13) and (A.14), we obtain equation (19) in the

text. Note that result (19) implies a restriction: second-period generic consumption is positive

if and only if   1− .

Consumer problem: derivation of (20). Setting expression (A.8) at time , raising both

sides to the power of , and dividing both sides by , we obtain expression (20) in the text.

Goods Market: derivation of (24). Starting from (20), multiply both  and
¡
 − ̄

¢
by old population 

 , and substitute the old agents’ constraint 

  = 

 −1 − , to

obtain

−1 =

µ
1− 



¶

 −1 − 

 − 

 ̄

 (A.15)

Substituting capital income with the profit-maximizing condition 
 −1 = , we get

−1 =

µ
1− 



¶
 − 

 − 

 ̄

 (A.16)

Recalling that constant returns to scale in both production sectors imply the zero profit condi-

tions
 = 


 ( +) 

 = 

  (1− ) 

and 


= 
1−

expression (A.16) reduces to

−1 =

µ
1− 



¶
1

1− 



 



 − (1− )

 −
 ̄

 (A.17)

From (8) and the definition of max, we have  −
 ̄ =  (max − )


 . Plugging this result

into (A.17), and substituting 

= 1 from (12), we obtain expression (24) in the text.

Existence and uniqueness of the fixed point (25). The functions Φ ( ) defined in

(21) exhibit the following properties:

lim→1−Φ ( ) =
½
() (1− )1− () (Neoclassical)

() (Linear AK)

¾

lim→max Φ ( ) =

½
() (1− ) (

max) (Neoclassical)

() (1− ) (
max) (Linear AK)

¾


(A.18)
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with derivatives

Φ ≡ Φ()


=

(
−Φ()


 0 (Neoclassical)

−Φ()


 0 (Linear AK)

)
and Φ ≡ 2Φ()

2
 0 (A.19)

The elasticity of Φ ( ) in the two cases is

Φ

Φ
=

½ − (Neoclassical)

−1 (Linear AK)

¾
(A.20)

The function defined in (24), instead, exhibits

lim→1−Ψ () =
© ∞ if   1; 0 if   1

ª


lim→max Ψ () =
©
0 if   1; ∞ if   1

ª


(A.21)

with

Ψ0 () ≡ Ψ ()


=
Ψ ()

 − 1
max − (1− )

(max − ) [ − (1− )]

½
 0 if   1

 0 if   1

¾
 (A.22)

The elasticity is therefore

Ψ0 () 
Ψ ()

= − 1

1− 

max − (1− )

max − | {z }
1



 − (1− )| {z }
1

 (A.23)

Under substitutability, existence and uniqueness of the fixed point (25) are guaranteed by the

derivatives (A.19)-(A.22) along with the limits (A.18) and (A.21). Under complementarity,

expression (A.20) implies ΦΦ  −1 whereas expression (A.23) implies Ψ0 () Ψ ()  −1.
These values of elasticities imply existence and uniqueness of the fixed point (25) even with   1

despite the fact that both Φ ( ) and Ψ () are strictly decreasing. For future reference, note

that the limiting properties of Φ ( ) and Ψ () described in (A.18) and (A.21) imply

lim
→0

 () =

½
max if   1

1−  if   1

¾
and lim

→∞  () =

½
1−  if   1

max if   1

¾
 (A.24)

Neoclassical growth: elasticity of  (), derivation of (36). Totally differentiating the

fixed-point condition Ψ ( ()) = Φ ( ()  ), we obtain

0 () =
Φ ( ()  )

Ψ0 ( ())−Φ ( ()  )
 (A.25)

In the Neoclassical case, function Φ ( ()  ) exhibits the partial derivatives

Φ ( ) = Φ ( )  and Φ ( ) = −Φ ( )  (A.26)

Substituting (A.26) and the equilibrium condition Ψ ( ()) = Φ ( ()  ) in (A.25), we obtain

0 ()
 ()

=


+
Ψ0(())()
Ψ(())

 (A.27)
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Result (A.27) establishes a clear link between the elasticity of the generic-sector employment

share  () to the capital stock  and the elasticity of the price of health care Ψ ( ()) to the

generic-sector employment share  (). In particular, substituting (A.23) in (A.27), we have

0 ()
 ()

=
1

1− 1
1−

1


n
max−(1−)
max−()

()

()−(1−)
o  (A.28)

where the term in curly brackets equals 1 ≡ 
−(1−)

max−(1−)
max− in expression (36). The fact

that 1  1 directly follows from the equilibrium requirement 1−     max, and it implies

that
1
1−

1

1  1 if 0    1

1
1−

1

1  0 if   1

(A.29)

Results (A.29) imply the signs reported in expression (36) in the text.

Proposition 3: Existence, Uniqueness and Stability. To prove existence, consider

equation (38) and substitute  () = Ψ ( ()) from (26), obtaining

+1 =


(1 + ) (1 + )
Ψ ( ())  (A.30)

The right-hand side of (A.30) is strictly increasing in : differentiation with respect to  yields

d+1

d
=



(1 + ) (1 + )
Ψ0 ( ()) 0 ()  0 (A.31)

where the positive sign derives from the fact that both Ψ0 () and 0 () are negative (positive)

under complementarity (substitutability). From (A.22), (A.21) and (A.24), we have

lim
→0
Ψ0 ( ()) =∞ and lim

→∞Ψ
0 ( ()) = 0 (A.32)

under both complementarity and substitutability. Results (A.31) and (A.32) imply existence of

at least one steady state  =


(1+)(1+)
Ψ ( ()). Moreover, if the elasticity condition (40) is

valid for any , i.e.

−
0
 ()

 ()



1− 
 1 (A.33)

then the steady state  =  is unique and globally stable. Under substitutability, inequality

(A.33) is necessarily satisfied: when   1, expression (36) implies 0 ()  0 and therefore a

strictly negative left hand side in (A.33). To study the case of complementarity, substitute the

elasticity
0()
()

by means of expression (A.28), and rearrange terms, to rewrite condition (A.33)

as

1− (1− ) (1−  ()) ( ()− (1− ))

 ()
  (A.34)

Condition (A.34) implies a more restrictive requirement on parameters the lower is the left hand

side. In this respect, the left hand side of (A.34) is strictly increasing in  so that, all else equal,

it reaches its smallest value when  = 0. Letting  = 0, the stability condition becomesµ
 ()− 1

2

¶2
 − 3

4
 (A.35)
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which is surely satisfied when   34. Therefore, a generously sufficient, not necessary con-

dition for stability and uniqueness under complementarity is   34. Given uniqueness and

stability, as  converges to  in the long run, both the price of health care  =  () and the

employment share  =  () converge to constant levels. Results (A.31) and (A.32) guarantee

that the transitional dynamics of  are monotonic. The transitional dynamics of  () and

 =  () then follow directly from Proposition 1. ¥
Proposition 4: Uniqueness and Stability. The existence of the steady state ̄ is proved

in Appendix B along with the discussion of possible multiple steady states. Given existence, the

steady state  = ̄ is unique and globally stable if the elasticity condition (43) is valid for any

, i.e.

1 () +2 ()  1 (A.36)

where

1 () ≡ −
0
 ()

 ()



1− 
 (A.37)

2 () ≡ −
0
 ()

 ()

Γ0

Γ

̄

 ()

1

1− 
 (A.38)

Expression (A.37) follows from generalizing the definition of 1 given in (40) whereas (A.38)

follows from generalizing the definition of 2 given in (44). The inequalities appearing in (44)

are part of the following proof. First, consider substitutability. When   1, both 1 ()

and 2 () are strictly negative because expression (36) implies 
0
 ()  0 and expression (32)

implies Γ0  0. Therefore, condition (A.36) is necessarily satisfied when   1. To study the

case of complementarity, note that (32) implies

Γ0

Γ

̄

 ()
=

(1−)
(1+)(1+)

̄
()

1− (1−)
(1+)(1+)

̄
()

=

(1−)(1−max)
(1+)

 ()− (1−)(1−max)
(1+)

 (A.39)

where the last term follows from substituting ̄ =  (1 + ) (1− max) by definition (13). Defining

the convenient parameter

1 ≡ (1− ) (1− max)

 (1 + )
 0 (A.40)

we can substitute (A.39) in (A.38) and rewrite the stability condition (A.36) as

−
0 ()
 ()



1− 
− 0 ()

 ()

1

 ()− 1

1

1− 
 1 (A.41)

Fro future reference, note that parameter 1 is always strictly less than 1 − .35 This implies

that  ()  1 holds in any interior equilibrium:

1  1−    ()  (A.42)

35Because any interior equilibrium satisfies (1− )   ()  max, it is necessarily true that max  1−−.

Consequently, the factor
(1−max)
(1+)

is strictly less than unity and this, in turn, implies that 1 ≡ (1− )
(1−max)
(1+)

is strictly less than (1− ).
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Going back to (A.41), substituting
0()
()

by means of (A.28), the stability condition reduces to

1− 

 (1− )

∙
 ()− 1

 ()− (1− )

max − (1− )

max −  ()

¸
 1 (A.43)

From result (A.42), the term in square brackets in (A.43) is strictly greater than unity.36 There-

fore, a sufficient but not necessary condition for satisfying (A.43) is that 1−
(1−)  1, which is

equivalent to Assumption 2 in the text. The conclusion is that, when   1, satisfying Assump-

tion 2 is sufficient to guarantee stability and uniqueness of the steady state. Also note that

the stability condition under complementarity guarantees 2 ()  1, as reported in expression

(44).37

Derivation of (46)-(47) . Expression (46) directly follows from log-differentiating (42)

with respect to . In (41), instead, log-differentiation with respect to  yields

d log

d
= − 

1− 

∙
0 ()
 ()

d log 

d
+

0 ()
 ()

¸
+
d logcanonical

d
 (A.44)

where the term in square brackets is the chain derivative
d log ()

d
, with 0 () representing the

static derivative
d(;)
d

defined in Proposition 2, evaluated in the steady state . Substituting

the definition of 1 ≡ − 
1−

0·

from (40) into (A.44), and rearranging terms, we obtain (47).

Derivation of (48). From definition (32), we have

d

d
logΓ

µ
̄

 (̄)

¶
= −Γ

0

Γ

̄

 (̄)

d log  (̄)

d


where both Γ and Γ0 in the right hand side are evaluated in
¡
̄ (̄)

¢
. Therefore, log-

differentiating (45) with respect to  yields

d log ̄

d
= − 1

1− 

Γ0

Γ

̄

 (̄)

d log  (̄)

d
− 

1− 

d log  (̄)

d
+
d log canonical

d


where we can substitute
d log ()
d

=
0

d log 
d

+
0

to obtain

d log ̄
d

= − 
1−

h
0(̄)̄
(̄)

d log ̄
d

+
0()
(̄)

i
+

− 1
1−

Γ0
Γ

̄
(̄)

h
0(̄)̄
(̄)

d log ̄
d

+
0()
(̄)

i
+

d log canonical

d


(A.45)

where 0 (̄) is the static derivative
d(;)
d

defined in Proposition 2, evaluated in the steady

state ̄. Recalling (40) and (40), the definitions 1 ≡ − 
1−

0

and 2 ≡ − 0


Γ0
Γ
̄


1
1− imply

that (A.45) reduces to equation (48) in the text.

Derivation of (50). From definition (32), we have

d

d
logΓ

µ
̄

 (̄)

¶
= −Γ

0

Γ

̄

 (̄)

d log [(1 + ) (̄)]

d


36The fact that 1  1 −  implies
()−1

()−(1−)  1. Also, the equilibrium restriction  ()  (1− ) implies
max−(1−)
max−()  1.
37Since condition (A.43) is equivalent to (A.36), satisfying (A.43) implies 2 ()  1−1 (), where 1 ()  0

under complementarity. Therefore, 2 ()  1.
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where both Γ and Γ0 in the right hand side are evaluated in
¡
̄ (̄)

¢
. Therefore, log-

differentiating (45) with respect to  yields

d log ̄

d
= − 1

1− 

Γ0

Γ

̄

 (̄)

d log [(1 + ) (̄)]

d
− 

1− 

d log  (̄)

d
+
d log canonical

d


Substituting in the above expression the chain derivatives

d log[(1+)(̄)]
d

= 1
1+

+
d log (̄)

d


d log (̄)
d

=
0(̄)
(̄)

+
0(̄)̄
(̄)

d log ̄
d



we obtain
d log ̄
d

= − 1
1−

Γ0
Γ

̄
(̄)

h
0(̄)
(̄)

i
− 

1−
h
0(̄)
(̄)

i
+

− 1
1−

Γ0
Γ

̄
(̄)

h
0(̄)̄
(̄)

d log ̄
d

i
− 
1−

h
0(̄)̄
(̄)

d log ̄
d

i
+

− 1
1−

Γ0
Γ

̄
(̄)

h
1
1+

i
+

d log canonical

d


(A.46)

Recalling (40) and (40), the definitions1 ≡ − 
1−

0

and2 ≡ − 0


Γ0
Γ
̄


1
1− imply that (A.46)

reduces to

d log ̄

d
=

1

1− (1 +2)

∙
(1 +2)

0
0

+
2

1 + 



0
+
d log canonical

d

¸


where we can invert the sign of the variation d to −d, and rearrange terms, to obtain equation
(50) in the text.

Derivation of (51). From definition (32), we have

d

d̄
logΓ

µ
̄

 (̄)

¶
=
Γ0

Γ

̄

 (̄)

d log
£
̄ (̄)

¤
d̄



where both Γ and Γ0 in the right hand side are evaluated in
¡
̄ (̄)

¢
. Therefore, log-

differentiating (45) with respect to ̄ (recalling that dcanonical d̄ = 0) yields

d log ̄

d̄
=

1

1− 

Γ0

Γ

̄

 (̄)

d log
£
̄ (̄)

¤
d̄

− 

1− 

d log  (̄)

d̄


Substituting in the above expression the chain derivatives

d log (̄)

d̄
=

0̄

(̄)

(̄)
+

0(̄)̄
(̄)

d log ̄
d̄



d log[̄(̄)]
d̄

= 1
̄
− d log (̄)

d̄


we obtain

d log ̄
d̄

= 1
1−

Γ0
Γ

̄
(̄)

1
̄
− 1

1−
Γ0
Γ

̄
(̄)

h
0̄

(̄)

(̄)
+

0(̄)̄
(̄)

d log ̄
d̄

i
+

− 
1−

h
0̄

(̄)

(̄)
+

0(̄)̄
(̄)

d log ̄
d

i


(A.47)

Recalling (40) and (40), the definitions1 ≡ − 
1−

0

and2 ≡ − 0


Γ0
Γ
̄


1
1− imply that (A.47)

reduces to (51).

Introducing the welfare state: derivation of (53). We assume that the government

taxes young agents’ income at rate  , and uses these revenues to pay for an amount  of care
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(at the regular price ) under balanced budget, as established in condition (52). The private

budget constraints thus read

 =  (1−  )−  (A.48)

+1 = +1 + +1 (+1 − +1)  (A.49)

Since labor is supplied inelastically, the equilibrium in the labor market is not directly affected

by the tax: from (12), (15) and (16), we obtain

 = () (1− ) ()
 ≡ Φ ( )  (A.50)

which is the same relationship derived in the model without taxes — see expressions (21)-(22).

From the modified household problem with constraints (A.48)-(A.49), utility maximization re-

quires

 =
1
1+

h
 (1−  )− +1

+1

¡
̄− +1

¢i
and  =

1
1+

h
 (1−  ) +

+1
+1

¡
̄− +1

¢i
(A.51)

and second-period consumption equals

 = (1 + ) [ − (1− ) (1−  )] 
1−
 ()

  (A.52)

Result (19) implies that second-period consumption is positive only if   (1− ) (1−  ),

which will always turn out to be the case in equilibrium. Utility maximization also determines

the relative demand for health care services:





¡
 − ̄

¢
=

µ
1− 



¶

1−  (A.53)

By inserting for  from (A.52) and  from (21) in the left hand side of (A.53), as well as

 =  (1 + ) (1− ) and ̄ =  (1 + ) (1− max), we get

 =

µ
1− 



¶ 
−1

∙
(max − ) (1− )

 − (1− ) (1−  )

¸ 1
1−
≡ Ψ(;  ) (A.54)

which is expression (53) in the text.

Introducing the welfare state: static equilibrium. Combining (A.54) and (21), the

equilibrium employment share in the generic sector is the fixed point

 = (;  ) ≡ arg solve{} [Φ ( ) = Ψ(;  )] (A.55)

Note that (A.54) implies that Ψ(;  ) is decreasing (increasing) in   when   1 (  1).

Therefore, recalling the graphical analysis of Figure 2, with the curve Ψ () replaced by Ψ(;  ),

an increase in  implies a leftward shift in the Ψ(;  ) under both complementarity and substi-

tutability. Consequently, the static effect of an increase in  for given  on sectoral labor shares

is

0 ≡
d(; )

d
 0 (A.56)
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Introducing the welfare state: derivation of (54). Following the same steps as in

equation (30), the workers’ share of output



 (1−  )


=
(1−  ) (1− ) 









³
1−

+ 

´





=
(1− ) (1−  )

1−  (1− )
 (A.57)

Combining (A.57) with the saving function in (A.51), and substituting +1 and +1 by means

of (15) and (16), we obtain



 (1−  )
=



1 + 

Ã
1 +

1



1− 



+1

+1

¡
̄− +1

¢
 (1−  )

!
 (A.58)

Substituting  = (1 + )+1 and inserting ̄ =  (1 + ) (1 − max) from (13), as well as

substituting +1 and  by means of (52) and (15), repsectively, we get

+1 = (1−  )
 (1− )

(1 + ) (1 + )
 

−


∙
1− (1− ) (1− max −  +1)

 (1 + ) +1

¸−1
 (A.59)

Setting ̄ = 0 implies max = 1, so that equation (A.59) reduces to expression (54) in the text.

Introducing the welfare state: long-run equilibrium

Under the assumption (̄ = 0 max = 1), setting a constant tax rate   =  in each , and

substituting the equilibrium condition (A.55) into (54), we have

+1

∙
1 +

(1− )

 (1 + )



(+1; )

¸
= ̃ (; )

−(1− ) (A.60)

where we have defined ̃ ≡ (1−)
(1+)(1+)

. The dynamic stability of (A.60) requires that
d+1
d


+1

evaluated in the steady state  is less than unity, i.e.
38

− 1

1− 

Ã
− ̃(; )

1 + ̃(; )

!
0
(; )

≡  ()  1 (A.61)

where we have defined ̃(; ) ≡ (1−)
(1+)


(;)

. Note that setting  = 0, the term ̃(; )

reduces to zero and the term  () reduces to 1 () defined in (40). Therefore, condition

(A.61) is the stability condition (40) generalized to the model with welfare state. The steady

state of equation (A.60) is represented by

 = ̃
1

1− (1− )
1

1−
h
1 + ̃(; )

i− 1
1−

(; )
− 
1−  (A.62)

Log-differentiating (A.62) with respect to  we have

d log 

d
= − 1

1− 

⎡⎣ 1

1− 
+
d log

h
1 + ̃(; )

i
d

+ 
d log (; )

d

⎤⎦  (A.63)

38Log-differentiating the left hand side of (A.60) yields 1
+1

−
(1−)
(1+)


(+1;)

1+
(1−)
(1+)


(+1;)

0+1
(+1;)

whereas log-

differentiating the right hand side gives  1

− 

0
(;)

. Taking the ratio and imposing the steady state

+1 =  = , the stability condition
d+1
d


+1

 1 reduces to expression (A.61).
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From the definition of ̃(; ), we can substitute
d log[1+̃(;)]

d
=

̃(;)

1+̃(;)

³
1− d log (;)

d

´
in the above expression to obtain

d log

d
= − 1

1− 

"
1

1− 
+

̃(; )

1 + ̃(; )
+

Ã
− ̃(; )

1 + ̃(; )

!
d log (; )

d

#


Further substituting the chain derivative
d log (;)

d
=

0


d log 
d

+
0

, we have

d log 
d

= − 1
1−

1
1− ()

nh
1
1− +

³
− ̃(;)

1+̃(;)

´
0 (;)
(;)

i
+

̃(;)

1+̃(;)

o
 (A.64)

where 0 ≡ d(;)
d

is the derivative for given  defined in (A.56) above, evaluated in .

We next need to prove that a higher tax implies a lower steady state capital stock:

Proof. In order to prove that d log 
d

 0 we start by deriving 0 (; ) By implicit

differentiation the definition of (; ) from (A.55) we get

0 (; ) =
− (1− ) (1− )

( + − ) −  (1− ) (− (1− ) (1− )) (1− )
 0

where the sign follows from the fact that, as   (1− ) (1− ), the denominator is increasing

in , and that when  = 0 it can be written

 ≡ 2 + (1− ) + (1− )(1− )(1− )  0

If we can show that the curly bracket, {   } in (A.64), cannot become negative we have proven
that d log 

d
 0 First we note that

 
̃(; )

1 + ̃(; )

is a necessary condition for the curly bracket in (A.64) to be negative. Then as

̃(; )
³
1 + ̃(; )

´
is ewerywhere decreasing in  and as the absolute value of 0 is

everywhere decreasing in , the curly bracket in (A.64) cannot become negative for any  and

 unless it can become negative when  takes its largest allowed value of unity and  takes its

smallest allowed value of zero. We further note that a necessary condition for the curly bracket

in (A.64) to be negative is that the bracket [   ] in (A.64) is negative. Inserting for  = 1 and

 = 0 we get

[   ] =
223 + 3 (1− )2 +  (1− )2 (1 + 2−  − )

 (1− ) (2+ (1− ) )
 0

Both the numerator and the denominator are positive.39 Hence we have proven that [   ] is

positive for all    and . Therefore {   } the curly bracket in (A.64), is also always positive
and thus d log 

d
is always negative.

39 (1 + 2−  − ) is a hyperbolic paraboloid and can be written as (2 ( − 12) (− 12) + 12) which cannot
become negative for any  and  between zero and one.
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Proof of Proposition 5. From (55), we have

+1


R 1 ⇐⇒  (1− )

(1 + ) (1 + )
R  ()  (A.65)

which determines whether accumulation is positive, and

d
+1


d ()
 0 and

d
+1


d
=
d
+1


d ()
0  (A.66)

which determines whether accumulation accelerates or decelerates. The sign of 0 depends on

the elasticity of substitution. From Proposition 1, we have 0  0 when   1. Therefore, (A.66)

implies that
+1


increases over time if +1  1, and decreases over time if +1  1.

Depending on parameter values, we can distinguish among three cases.

(i) Suppose that there exists a finite critical level ̃  0 satisfying  (̃) =
(1−)
(1+)(1+)

in an

interior equilibrium. Existence requires that parameters satisfy 1−   (̃)  1, and this

condition implies

1−  
(1 + ) (1 + )


and

(1 + ) (1 + )


 1 (A.67)

In this case, it is possible that a finite positive initial endowment 0 is above or below ̃.

From (A.65), and the fact that 0  0, this yields three scenarios at time zero:

(i.a) If 0 = ̃ then  (0) =
(1−)
(1+)(1+)

and 1 = 0

(i.b) If 0  ̃ then  (0) 
(1−)
(1+)(1+)

and 1  0

(i.c) If 0  ̃ then  (0) 
(1−)
(1+)(1+)

and 1  0

(A.68)

Since 0  0, scenario (i.a) implies constant  = ̃ forever; scenario (i.b) implies +1  

forever, with  (+1)   () forever and the limiting results (56); scenario (i.c) implies

+1   forever, with  (+1)   () forever and the limiting results (57).

(ii) Suppose that parameters satisfy
(1+)(1+)


 1−   1. In this case, we have

1 
 (1− )

(1 + ) (1 + )




(1 + ) (1 + )
(A.69)

and a hypothetical critical level ̃ implying  (̃) =
(1−)
(1+)(1+)

cannot be an interior equi-

librium because the first inequality in (A.69) would imply  (̃)  1, which is not feasible.

This is equivalent to say that  (̃) is unfeasibly high — that is, ̃ is unfeasibly low: given

0  0, any finite endowment 0  0 must be associated with an interior equilibrium

 (0) 
 (1− )

(1 + ) (1 + )

which implies self-reinforcing accumulation as in scenario (i.b) in expression (A.68).
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(iii) Suppose that parameters satisfy 1−   1 
(1+)(1+)


. In this case, we have

 (1− )

(1 + ) (1 + )




(1 + ) (1 + )
 1 (A.70)

and a hypothetical critical level ̃ implying  (̃) =
(1−)
(1+)(1+)

cannot be an interior equi-

librium because the last inequality in (A.70) would imply  (̃)  1−. This is equivalent

to say that  (̃) is unfeasibly low — that is, ̃ is unfeasibly high: given 0  0, any finite

endowment 0  0 must be associated with an interior equilibrium

 (0) 
 (1− )

(1 + ) (1 + )

which implies self-reinforcing decumulation as in scenario (i.c) in expression (A.68). ¥

AK model: Proof of Proposition 6. From Proposition 1, we have 0  0 when   1.

Therefore, (A.66) implies that
+1


declines over time if +1  1, and increases over time if

+1  1. Depending on parameter values, we can distinguish among three cases.

(I) Suppose that there exists a finite critical level ̂  0 satisfying  (̂) =
(1−)
(1+)(1+)

in an

interior equilibrium. Existence requires that parameters satisfy 1−   (̂)  1, and this

condition implies

1−  
(1 + ) (1 + )


and

(1 + ) (1 + )


 1 (A.71)

In this case, it is possible that a finite positive initial endowment 0 is above or below ̂.

From (A.65), and the fact that 0  0, this yields three scenarios at time zero:

(I.a) If 0 = ̂ then  (0) =
(1−)
(1+)(1+)

and 1 = 0

(I.b) If 0  ̂ then  (0) 
(1−)
(1+)(1+)

and 1  0

(I.c) If 0  ̂ then  (0) 
(1−)
(1+)(1+)

and 1  0

(A.72)

Since 0  0, scenario (I.a) implies constant  = ̂ forever; scenario (I.b) implies +1  

and  (+1)   () during the transition, and the asymptotic steady state lim→∞  = ̂

and lim→∞  () =  (̂); scenario (I.c) implies +1   and  (+1)   () during the

transition, and the asymptotic steady state lim→∞  = ̂ and lim→∞  () =  (̂).

(II) Suppose that parameters satisfy
(1+)(1+)


 1−   1. In this case, we have

1 
 (1− )

(1 + ) (1 + )




(1 + ) (1 + )
(A.73)

and a hypothetical critical level ̂ implying  (̂) =
(1−)
(1+)(1+)

cannot be an interior equi-

librium because the first inequality in (A.73) would imply  (̂)  1, which is not feasible.

This is equivalent to say that  (̂) is unfeasibly high — that is, ̂ is unfeasibly high: given

0  0, any finite endowment 0  0 must be associated with an interior equilibrium

 (0) 
 (1− )

(1 + ) (1 + )
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which implies permanent (but decelerating) positive accumulation as in scenario (I.b) in

expression (A.72).

(III) Suppose that parameters satisfy 1−   1 
(1+)(1+)


. In this case, we have

 (1− )

(1 + ) (1 + )




(1 + ) (1 + )
 1 (A.74)

and a hypothetical critical level ̂ implying  (̂) =
(1−)
(1+)(1+)

cannot be an interior equi-

librium because the last inequality in (A.74) would imply  (̂)  1−. This is equivalent

to say that  (̂) is unfeasibly low — that is, ̃ is unfeasibly low: given 0  0, any finite

endowment 0  0 must be associated with an interior equilibrium

 (0) 
 (1− )

(1 + ) (1 + )

which implies permanent (but decelerating) decumulation as in scenario (I.c) in expression

(A.72).

B Further Details

Proposition 4: Further Details on Existence and Uniqueness of the steady state. To

prove existence, we transform equation (35) into an equivalent dynamic law that maps  ()

into  (+1). Starting from expression (35), substitute  = Φ ( ) = () (1− ) ()


from (22) to write

+1

 (+1)

∙
 (+1)− (1− ) (1− max)

 (1 + )

¸
=



(1 + ) (1 + )
 (B.1)

Imposing the equilibrium condition  =  () ≡ Ψ ( ()) from (26), we have

+1

 (+1)

∙
 (+1)− (1− ) (1− max)

 (1 + )

¸
=



(1 + ) (1 + )
Ψ ( ())  (B.2)

Also notice that, setting (22) at time  + 1 and solving for the input ratio, we have
+1
+1

=h
+1

()(1−)
i 1

. Plugging this result in (B.2), and imposing the static equilibrium condition

+1 =  (+1) ≡ Ψ ( (+1)) from (26), we obtain the dynamic law

Ψ ( (+1)) ( (+1)− 1)
 = 2Ψ ( ())

  (B.3)

where we again have used that the definition of 1 and also have defined the convenient variable

2:

1 ≡ (1−)(1−max)
(1+)

 0 and 2 ≡ 

(1− )

h


(1+)(1+)

i
 0 (B.4)

Expression (B.3) fully characterizes the dynamics of capital per worker. Dynamics are well

defined only if both sides are strictly positive, which requires  (+1)  1 in each period + 1:
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this inequality is always satisfied as shown in (A.42). In (B.3), the steady state condition

+1 =  = ̄ is satisfied when

Ψ ( (̄)) =
£
2 ( (̄)− 1)

−¤ 1
1−| {z }

Ω((̄))

 (B.5)

For future reference, we define the elasticities of Ψ () and Ω () with respect to ̄ as

1 ≡ dΨ ( (̄))

d̄

̄

Ψ ( (̄))
=
Ψ0 ( (̄))
Ψ ( (̄))

0 (̄) ̄ (B.6)

2 ≡ dΩ ( (̄))

d̄

̄

Ω ( (̄))
= −


1−

 (̄)− 1
0 (̄) ̄ (B.7)

The remainder of the proof studies separately the two cases of substitutability and complemen-

tarity.

Substitutability. When   1, results (A.22) imply that

dΨ ( (̄))

d̄
= Ψ0 ( (̄))| {z }

positive

0 (̄)| {z }
positive

 0 and 0 (̄)  0 (B.8)

Result (B.8) implies that, given the definitions in (B.5), function Ψ ( (̄)) is strictly increasing

in ̄ whereas Ω ( (̄)) is strictly decreasing in ̄. Using the limiting properties (A.21) and

(A.24), we also have

lim̄→0Ψ ( (̄)) = 0 lim̄→0Ω ( (̄)) = [2 (1− − 1)
]

1
1−  0

lim̄→∞Ψ ( (̄)) =∞ lim̄→∞Ω ( (̄)) = [2 (max − 1)
]

1
1−  0

(B.9)

These results imply that, under substitutability, there exists a unique steady state ̄ satisfying

condition (B.5).

Complementarity. When   1, results (A.22) imply that

dΨ ( (̄))

d̄
= Ψ0 ( (̄))| {z }

negative

0 (̄)| {z }
negative

 0 and 0 (̄)  0 (B.10)

Result (B.10) implies that, given the definitions in (B.5), both Ψ ( (̄)) and Ω ( (̄)) in (B.5)

are strictly increasing in ̄. Using the limiting properties (A.21) and (A.24), we also have

lim̄→0Ψ ( (̄)) = 0 lim̄→0Ω ( (̄)) = [2 (max − 1)
]

1
1−  0

lim̄→∞Ψ ( (̄)) =∞ lim̄→∞Ω ( (̄)) = [2 (1− − 1)
]

1
1−  0

(B.11)

The limits in (B.11) imply that there always exists at least one steady state ̄(1) satisfying

condition (B.5) in which Ψ ( (̄)) cuts Ω ( (̄)) from below : this steady state therefore

satisfies
dΨ
¡

¡
̄(1)

¢¢
d̄(1)


dΩ
¡

¡
̄(1)

¢¢
d̄(1)

 (B.12)

Considering stability, equation (B.3) implies that any steady state ̄() is stable if

Ψ0
¡

¡
̄()

¢¢
Ψ
¡

¡
̄()

¢¢  − 

1− 

1


¡
̄()

¢− 1
 (B.13)
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It is easily shown that (B.12) implies that the steady state ̄(1) satisfies the stability condition

(B.13). Hence, under complementarity, there always exist a stable steady state ̄(1). In order

to assess the uniqueness of the steady state, re-write the steady-state condition (B.5) in explicit

form by substituting Ψ (·) with (24), obtaining

 (̄)− 1 =

µ
1− 



¶(1−)
(1−)


1


2

∙
 (̄)− (1− )

(1− ) (max −  (̄))

¸ 1−
(1−)

 (B.14)

Hence, defining 3 ≡
³
1−


´(1−)
(1−)


1

2 , the steady-state condition reads

 (̄) = z ( (̄)) where z ( (̄)) ≡ 1 + 3

∙
 (̄)− (1− )

(1− ) (max −  (̄))

¸ 1−
(1−)

 (B.15)

In general, the function z () is strictly increasing and exhibits the following properties

lim
→1−

z () = 1   and lim
→max

z () =∞ (B.16)

z0 () =
3

 (1− )

∙
− (1− )

(1− ) (max − )

¸ 1−
(1−)−1 max − (1− )

(max − )2
 0 (B.17)

Evaluating z0 () in a steady state  (̄) = z ( (̄)), we have

z0 ( (̄)) =
1− 

 (1− )

 (̄)− 1

 (̄)− (1− )| {z }
1

max − (1− )

max −  (̄)| {z }
1

 (B.18)

Comparing (B.18) with (A.43), it is evident that the stability condition (A.43) is equivalent to

z0 ( (̄))  1. In graphical terms, this means that a stable steady state is a an intersection

 = z () in which the function z () cuts the 45-degree line  =  from below — e.g., like the

steady state shown in Figure 4, graph (a). Properties (B.16)-(B.17) thus confirm the existence of

at least one stable steady state. Concerning the uniqueness of the steady state, we must consider

two sub-cases, depending on whther the parameter values imply 1−
(1−)  1 or

1−
(1−)  1.

Subcase I. When 1−
(1−)  1, expression (B.17) implies z

00 ()  0 for all  ∈ (1−  max),

so that z () is strictly increasing and strictly convex for all  ∈ (1−  max). This means that

there is a unique steady state  (̄) = z ( (̄)), as shown in Figure 4, graph (a). Moreover,

 (̄) is stable, as is immediately evident from (B.18): when 1−
(1−)  1, all the three terms

at the right hand side are strictly greater than unity, implying z0 ( (̄))  1. Recalling that

0 ()  0 under complementarity, an initial condition  (0)  ̄ implies positive accumulation

and declining employment in generic production: the economy starts from an initial level 0 =

 ( (0)) and then declines towards  =  (̄) as shown in Figure 4, graph (a).

Subcase II. When 1−
(1−)  1, we have lim→1−z0 () = ∞ and lim→max z0 () = ∞.

Expression (B.17) implies that z () is initially concave and then convex: from

z00 ()
z0 ()

=
1

max − 

½
2−

µ
1− 1− 

 (1− )

¶
max − (1− )

− (1− )

¾
 (B.19)
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there exists a point of inflection

̃ ≡ (1− ) +
1

2

µ
1− 1− 

 (1− )

¶
[max − (1− )]

such that z00
³
̃
´
= 0, with z00 () is negative for   ̃ and positive ̃   . This implies that,

in the subcase 1−
(1−)  1, we may have in principle two possible outcomes: a unique stable

steady state or three steady states, as shown in Figure 4, graphs (b) and (c). When there are

three steady states, ̄(1)  ̄(2)  ̄(3), the middle steady state ̄(2) is unstable because

z0
¡

¡
̄(2)

¢¢
 1, whereas ̄(1) and ̄(3) are both stable. This scenario is thus characterized

by

z (3)  z (2)  z (1)  (B.20)

z0 (3)  1 z0 (2)  1 z (1)  1 (B.21)

where  ≡ 
¡
̄()

¢
. Recalling that 0 ()  0 under complementarity, an initial condition

 (0)  ̄(1) implies positive accumulation and declining employment in generic production:

the economy starts from an initial level 0 =  ( (0)) and then declines towards 1 = 
¡
̄(1)

¢
as shown in Figure 4, graph (d).

Figure 4: Existence and uniqueness of steady states under complementarity. Graph (a): the

subcase 1−
(1−)  1 features a unique stable steady state. Graph (b): the subcase 1−

(1−)  1

when the steady state is unique. Graphs (c)-(d): the subcase 1−
(1−)  1 when the steady states

are three — the middle one being unstable.
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