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A B S T R A C T

All parameters in linear simultaneous equations models can be identified (up to permutation
and sign) if the underlying structural shocks are independent and at most one of them is
Gaussian. Unfortunately, existing inference methods that exploit such identifying assumptions
suffer from size distortions when the true distributions of the shocks are close to Gaussian. To
address this weak non-Gaussian problem we develop a locally robust semi-parametric inference
method which is simple to implement, improves coverage and retains good power properties.
The finite sample properties of the methodology are illustrated in a large simulation study and
an empirical study for the returns to schooling.

1. Introduction

The linear simultaneous equations model (LSEM) is a benchmark model used to analyze general equilibrium relationships in
economics. It was placed in its modern form by Haavelmo (1943, 1944), building on Frisch (1933) and Tinbergen (1939) among
others. As is well known, without additional restrictions, not all parameters of the LSEM can be uniquely identified from the first
and second moments of the observed data series, see Dhrymes (1994) for an in-depth discussion.

Interestingly, this identification problem vanishes (up to permutation and scale) when the underlying structural shocks are
independent and at most one of them follows a Gaussian distribution (e.g. Comon, 1994). This identification approach has a
long history in the statistics and signal processing literatures where it is often referred to as independent components analysis,
see Hyvärinen et al. (2001) for a textbook treatment. More recently, this approach has been adopted in the econometrics literature,
where interest has centered on developing methodology for conducting inference on the parameters of various LSEMs based on
non-Gaussian identification (e.g. Gouriéroux et al., 2017).

Unfortunately, if in the true data generating process multiple structural shocks follow a Gaussian distribution some structural
parameters may be under- or un-identified and standard inference methods that aim to exploit non-Gaussian distributions may
fail to control size. Moreover, as is typical in models with points of identification failure, such behavior is also observed if the
true distributions of the shocks are sufficiently close to Gaussianity. Intuitively, in such weakly non-Gaussian settings the available
identifying information is limited relative to sampling variation leading to asymptotic coverage distortions when using standard
inference methods, such as maximum likelihood and moment condition based methods.
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Similar (weak) identification problems occur in many other econometric models, e.g. instrumental variable models, nonlinear
egression models and many others, see Staiger and Stock (1997), Stock and Wright (2000) and Andrews and Mikusheva (2015)
or some examples. The key difference between this existing literature and the non-Gaussian LSEM is that, in the latter, the
arameters responsible for the possible identification failure are density functions, i.e. infinite dimensional parameters. Therefore,
hilst conceptually the identification problem is the same, providing robust inferential methods requires a new approach which is

apable of handling identification failure caused by infinite dimensional nuisance parameters.
To this extent, this paper develops a new approach for conducting inference in LSEMs that is inspired by the weak identification

obust methods developed in econometrics (e.g. Stock and Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva, 2015) and
he general semiparametric statistical theory that is discussed in Bickel et al. (1998) and van der Vaart (2002). In brief, we treat
he LSEM as a semiparametric model, where the densities of the independent structural shocks are treated non-parametrically, and
e construct confidence bands for the possibly unidentified structural parameters of interest by inverting semiparametric score

ests. The approach efficiently exploits non-Gaussianity when it is present in the data and yields confidence bands which do not
symptotically under-cover under sequences of densities that are local (in a

√

𝑛 neighborhood) to the true density. Moreover, the
test is easy to implement and the critical values accompanying the test statistic are standard chi-squared.

The effective score test that we propose is the semi-parametric analog of the Neyman–Rao test (e.g. Neyman, 1979; Hall and
Mathiason, 1990). In the conventional Neyman–Rao test the scores for the parameter of interest are orthogonalized with respect to
the scores for the finite dimensional nuisance parameters. In our setting the nuisance parameter includes the densities of the shocks,
.e. an infinite dimensional parameter. While such nuisance functions result in the orthogonal projection being more technically
emanding to derive, the main idea of Neyman (1979) continues to apply.

Formally, we show that the semi-parametric score test is locally robust in the sense that its null rejection probability is no greater
han the nominal level under parameter sequences that can be described by local deviations from the true parameters which satisfy
he null hypothesis. In particular, the null rejection probability of the test is controlled for sequences of densities that converge at a
𝑛 rate to the Gaussian density, a point of identification failure. These sequences are the natural counterpart in our setting to the

‘‘weak identification asymptotics’’ as found in, for example, Staiger and Stock (1997), Stock and Wright (2000), Moreira (2003),
Kleibergen (2005), Andrews and Mikusheva (2015). Moreover, they are those considered in the theory of Kaji (2021) who studies
estimation in weakly identified semi-parametric models.1 In addition, we show that under strong identification, which requires
all errors to be (sufficiently) non-Gaussian, the score test is semi-parametrically efficient in the sense that it attains various local
asymptotic power bounds for testing scalar or vector valued parameters (cf. Choi et al., 1996).

We evaluate the finite sample performance of the semiparametric score test in a large simulation study. We find that the null
rejection probability of our test remains close to the nominal level for all distributions considered, including those which are
‘‘close’’ to the Gaussian distribution and the Gaussian distribution itself. In contrast, tests that are based on the sampling variation
of (pseudo)-maximum likelihood or GMM estimators often substantially over-reject in weakly non-Gaussian settings. Further, for
moderate sample sizes the power of the semiparametric test is comparable to the parametric score test that relies on knowing the
functional form of the density. When the parametric density of the (pseudo)-maximum likelihood score test is misspecified the
semi-parametric test is always found to be preferable.

To showcase the empirical value of our methodology we adopt the score test to construct confidence bands for the effect of
education on wages. To do so, we consider a special case of the LSEM model: the linear instrumental variable (IV) model. We show
that the presence of independent non-Gaussian errors allows to (i) strengthen identification for the case where the instrument is
assumed exogenous and (ii) test and correct for endogenous instrumental variables. We emphasize that our theory allows for, and
is locally robust to, weak instruments.

For the model specification and data considered in Card (1995) we find that inverting the semi-parametric score test gives
the shortest confidence intervals for the returns to education which are, for instance, shorter when compared to confidence
intervals based on the Anderson and Rubin (1949) statistic. Also, when we relax the instrument exogeneity assumption and use
non-Gaussianity to identify the returns to education, we find that (i) the assumption that the proximity to college instrument is
exogenous cannot be rejected and (ii) the confidence interval for the returns to education remains precisely estimated. In contrast,
using alternative but non-efficient methods we find considerably larger confidence sets when relaxing the instrument exogeneity
assumption.

In general, this paper highlights the problem of weak non-Gaussianity and provides a solution in the setting of i.i.d. linear
simultaneous equations models. We point out that similar non-Gaussian identification approaches have been adopted in other
settings and it is likely that weak non-Gaussianity continues to cause inference problems for standard MLE and GMM methods
in these settings. Prominent examples include (i) structural VAR(MA) models (Lanne and Lütkepohl, 2010; Moneta et al., 2013;
Lanne et al., 2017; Maxand, 2018; Gouriéroux et al., 2019; Tank et al., 2019; Herwartz, 2019; Herwartz et al., 2019; Bekaert
et al., 2020, 2021; Lanne and Luoto, 2021; Guay, 2021; Sims, 2021; Moneta and Pallante, 2022; Gabriele and Sentana, 2023;
Velasco, 2023; Davis and Ng, 2022; Drautzburg and Wright, 2023), (ii) measurement error models (e.g. Reiersøl, 1950; Kapteyn and
Wansbeek, 1983; Dagenais and Dagenais, 1997; Erickson and Whited, 2000, 2002; Bonhomme and Robin, 2009), and (iii) triangular
systems (e.g. Lewbel et al., 2023). In future work we aim to extend our semi-parametric inference approach to cover these more
general settings. The supplementary material that accompanies this paper provides a step in this direction by considering a class of
nonlinear simultaneous equations models.

1 See also Andrews and Mikusheva (2022) who study weakly identified GMM models using the same type of local sequences.
2
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Further, as mentioned above, this paper shows that the proposed semi-parametric score test has null rejection probability
symptotically bounded by the nominal level under weak identification asymptotics, i.e. under parameter sequences representing
ocal deviations from the true parameters (which satisfy the null hypothesis).2 In order to prove asymptotic size control of the score

test, one would need to show that the same holds under all nuisance parameter sequences which satisfy the null hypothesis, i.e. also
those that are outside a

√

𝑛 neighborhood of the true parameters. For models where identification strength is determined by the
alue of a finite dimensional parameter, results of this nature are provided by, inter alia, Andrews and Cheng (2012), Andrews and
heng (2013) and Andrews et al. (2020). Whether results of this nature can be extended to cover cases (such as that considered

n the present paper) where identification strength is determined by an infinite dimensional parameter is an important topic for
uture research; it remains an open question whether asymptotic size control can be achieved in a meaningful way in such a setting,
.e. without unreasonably restricting the parameter space and/or equipping it with a very strong metric.

The remainder of this paper is organized as follows. In the next section we provide a simple example that illustrates the identi-
ication problem and intuitively discusses our solution. Section 3 presents the main LSEM model and provides the implementation
etails for the effective score test. Section 4 discusses the main theoretical results including the required assumptions. Sections 5
nd 6 summarize the results from the simulation and empirical studies. Section 7 concludes. Any references to sections, equations,
emmas etc. which start with ‘‘S’’ refer to the supplementary material.

. Illustrative example

In this section we use a simple example to illustrate: (i) the identification problem in LSEMs, (ii) why conventional inference
ethods suffer from size distortions when the structural shocks have densities close to Gaussian and (iii) how our proposed approach

ims to circumvent such distortions.

he identification problem
Consider the simple bi-variate model

𝑌𝑖 = 𝐴−1𝜖𝑖 , 𝑖 = 1,… , 𝑛 , (1)

where 𝑌𝑖 is a vector of observable variables, 𝐴 is a rotation matrix (i.e. 𝐴−1 = 𝐴′ and det(𝐴) = 1) and 𝜖𝑖 is a vector with independent
tructural shocks 𝜖𝑖𝑘, for 𝑘 = 1, 2, that have mean zero, unit variance and common density 𝜂. For concreteness, we will parameterize
he rotation matrix as follows

𝐴 =

[

cos(𝛼) − sin(𝛼)

sin(𝛼) cos(𝛼)

]

, (2)

here 𝛼 ∈ [0, 2𝜋) and we let 𝛼0 denote the true parameter.3
Model (1) has two parameters: the parameter of interest 𝛼 and the infinite dimensional nuisance parameter 𝜂. Suppose for now

hat 𝜂 is known and let the log likelihood function for 𝑌𝑖 be denoted by 𝓁𝛼(⋅). The parameter 𝛼 is locally identified if the expected
core of 𝓁𝛼(𝑌𝑖) with respect to 𝛼 is non-zero for all 𝛼 ≠ 𝛼0 in a neighborhood of 𝛼0.

Whether local identification occurs depends crucially on 𝜂. To illustrate, consider the case where 𝜂 is equal to the Gaussian
ensity. Since 𝜖𝑖 is normalized we have

E𝓁𝛼(𝑌𝑖) ∝ −1
2
E(𝐴𝑌𝑖)′(𝐴𝑌𝑖) = −1 ,

and hence the expected loglikelihood takes the same value irrespective of 𝛼. This is plotted in the top left panel of Fig. 1, where
we show the expected likelihood E𝓁𝛼(𝑌𝑖) as a function of 𝛼 with 𝛼0 = 𝜋 as the true parameter (an arbitrary choice). This illustrates
the standard identification problem in linear simultaneous equations models: without additional identifying restrictions, the impact
effects of the structural shocks are not identifiable when the structural shocks follow a Gaussian distribution.

The other plots in Fig. 1 show that this is no longer the case when we move away from the Gaussian distribution. In each case
the expected gradient becomes non-zero at values 𝛼 ≠ 𝛼0 in a neighborhood of 𝛼0, i.e. local identification occurs. While for the
(standardized) Student’s 𝑡 distribution with five degrees of freedom (i.e. 𝑡(5)) the change in the value of the expected likelihood is
substantial it is easy to see that for more modest deviations from Gaussianity (e.g. 𝑡(15)) the difference is less pronounced. Further,
note that non-Gaussian densities do not ensure 𝛼 is globally identified, instead identification is only up to permutation and sign of
the shocks.

Finite sample size distortions
In population 𝛼 is always locally identified when all but one component of 𝜂 is non-Gaussian (e.g. Comon, 1994, Theorem 11), but

this is not sufficient for good performance of standard testing procedures in finite samples. In particular, if the structural shocks are
too close to Gaussian, the available identifying information may be small relative to the sampling variability. Standard asymptotic
approximations are not reliable in this setting and, as a result, testing procedures based on these approximations may fail to provide
reliable inference.

2 Such sequences have also been used to model weak identification in semi-parametric models in Kaji (2021), Andrews and Mikusheva (2022).
3 Note that in our general framework we will not restrict 𝐴 to be a rotation matrix nor 𝜂 to be common. This example is chosen for exposition purposes

nly and corresponds to the case where the variance of 𝑌 is normalized to unity.
3
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Fig. 1. (Weak) Non-Gaussian identification.
Notes: In the figure we show the expected log likelihood (red line) as a function of 𝛼 ∈ [0, 2𝜋). The true value is 𝛼0 = 𝜋. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

To illustrate how the density 𝜂 affects standard inference methods in finite sample, we draw 5000 samples {𝑌𝑖}𝑛𝑖=1 from model
(1) for different 𝜂’s using different sample sizes 𝑛 = 250, 500, 750. Fig. 2 shows the finite sample distribution of the 𝑡-statistic for the
hypothesis 𝐻0 ∶ 𝛼 = 𝛼0, with 𝛼0 = 𝜋, based on the maximum likelihood estimator under the assumption that 𝜂 is known. The blue
ashed lines show the  (0, 1) density that corresponds to the usual limit of the 𝑡-statistic. As can clearly be seen in this figure, the
uality of the approximation provided by the standard Gaussian depends crucially on the underlying density, 𝜂. For a given sample
ize, the approximation deteriorates substantially the closer 𝜂 is to a standard Gaussian density.

This deterioration results in poor size control of standard tests. Table 1 shows the empirical rejection frequencies for three
tandard tests in the same setting: Wald (W), likelihood ratio (LR) and Lagrange multiplier (LM) (or score) tests, all computed
nder the assumption that 𝜂 is known. The empirical rejection frequencies correspond to the test for 𝐻0 ∶ 𝛼 = 𝛼0 with nominal level
= 0.05, where the critical values are based on the standard 𝜒2

1 asymptotic approximation.
We find that the Wald test is severely size distorted for 𝜂 close to Gaussian; in view of the poor quality of asymptotic

pproximation depicted in Fig. 2 this is not surprising. As 𝜂 gets closer to Gaussianity, the likelihood ratio test starts to under-reject
s when 𝛼 is poorly identified the likelihood values are very similar. Both of these tests are based on estimates of 𝛼 and, in weakly
dentified settings, such estimates will be inaccurate.

In contrast, the score test (LM) shows correct size as it fixes 𝛼 = 𝛼0 under the null and 𝛼 does not need to be (well) identified for
his test to be correctly sized. Intuitively, with 𝛼 fixed and 𝜂 known there are no further unknown elements in the scores and the
emaining uncertainty is due to sampling variation. This observation provides the first building block for the test we will construct:
t will be a score type test which fixes 𝛼 = 𝛼0 under the null.

owards a semi-parametric score test
In practice, 𝜂 will be unknown. To build up to our semi-parametric approach, consider first the case where 𝜂 is known up to a

inite dimensional parameter vector, say 𝜈. For example 𝜈 may include the degrees of freedom of the Student’s 𝑡 distribution.
For such cases Neyman (1979) proposed a convenient extension of the standard score test, that amounts to first orthogonalizing

he scores for 𝛼 with respect to the scores for 𝜈 and then computing a quadratic form of the score statistic. To illustrate let
̇(𝑌𝑖) = (�̇�𝛼(𝑌𝑖), �̇�𝜈 (𝑌𝑖))′, �̇�𝛼(𝑌𝑖) = ∇𝛼𝓁𝛼,𝜈 (𝑌𝑖), �̇�𝜈 (𝑌𝑖) = ∇𝛽𝓁𝛼,𝜈 (𝑌𝑖) and 𝐼 = 1

𝑛
∑𝑛
𝑖=1 �̇�(𝑌𝑖)�̇�(𝑌𝑖)

′, denote the score and information matrix
for 𝛼 and 𝜈. The Neyman–Rao score test statistic is given by

𝑆 =

(

1
√

𝑛
∑

�̂�(𝑌𝑖)

)′

̂−1

(

1
√

𝑛
∑

�̂�(𝑌𝑖)

)

,

4

𝑛 𝑖=1 𝑛 𝑖=1
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Fig. 2. Poor asymptotic approximation close to Gaussianity.
Notes: In the figure we show the finite sample distribution of the 𝑡-statistic based on the maximum likelihood estimator of 𝛼 (the true value is 𝛼0 = 𝜋) for
different sample sizes (𝑛) and different degrees of freedom (𝜈) in the (standardized) t distribution, all based on 5000 replications. Letting �̂� be the ML estimator
and 𝛼0 the null hypothesis value of 𝛼, the 𝑡-statistic used is 𝑡 =

√

𝑛(�̂� − 𝛼0) ×
√

𝐼 , with 𝐼 the usual outer product of gradients (OPG) estimator of the (Fisher)
information: 𝐼 = 1

𝑛

∑𝑛
𝑖=1 �̇��̂� (𝑌𝑖)

2, with �̇�𝛼 = ∇𝛼𝓁𝛼 .

Table 1
Rejection frequencies for ML tests close to Gaussianity.

t(15) t(10) t(5)

𝑛 W LM LR W LM LR W LM LR

250 25.26 4.42 3.74 20.56 4.24 4.04 8.88 4.84 4.08
500 21.76 4.54 4.52 13.10 4.38 3.60 6.38 4.42 4.92
750 17.12 4.96 3.94 9.90 4.88 3.42 6.12 5.28 5.64

Notes: The table shows the empirical rejection frequencies for the three maximum likelihood
tests, under the assumption that 𝜂 is known and based on 5000 Monte Carlo replications for the
baseline model 𝑌𝑖 = 𝑅′𝜖𝑖. The test has nominal level 𝑎 = 0.05.

ith

�̂�(𝑌𝑖) = �̇�𝛼(𝑌𝑖) − 𝐼𝛼𝜈𝐼−1𝜈𝜈 �̇�𝜈 (𝑌𝑖) and ̂ = 𝐼𝛼𝛼 − 𝐼𝛼𝜈𝐼−1𝜈𝜈 𝐼𝜈𝛼 ,

where 𝐼⋅⋅ denote the corresponding blocks of 𝐼 .4 The (estimated) orthogonalized scores �̂�(⋅) are often referred to as the (estimates
of the) effective scores and ̂ is the corresponding (estimate of the) effective information matrix.

This score statistic is usually evaluated as 𝛼 = 𝛼0 and some
√

𝑛 consistent estimate for 𝜈. Whenever such an estimate exists, 𝑆
will converge to a standard 𝜒2 limit under the null provided that ̂ is invertible.5 In such cases, tests based on 𝑆 retain correct

4 This is numerically equivalent to the ‘‘usual’’ score test when the nuisance parameter 𝜈 is estimated by (restricted) maximum likelihood under the null
hypothesis (Kocherlakota and Kocherlakota, 1991).

5 In our results below we allow ̂ to be singular and rely on an eigenvalue truncated generalized inverse, see also Andrews (1987), Lütkepohl and Burda
5

(1997) and Andrews and Guggenberger (2019).
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size regardless of whether or not 𝛼 is well identified making them attractive for settings where identification failure due to finite
imensional nuisance parameters is a concern (e.g. Andrews and Mikusheva, 2015).

Unfortunately, there are two distinct problems that may arise in the solution sketched above. First and most practically relevant,
odeling the deviations from the Gaussian density in a parametric manner may result in biases and/or lower power whenever the

rue density lies outside of the parametric class considered. Second, parametric deviations from the Gaussian density as captured
y 𝜈 generally nest the Gaussian distribution. In many such cases the information matrix associated to 𝜈, i.e. 𝐼𝜈𝜈 , becomes singular
hen the true density is Gaussian. Sometimes this problem can be circumvented by re-parametrizing 𝜈, e.g. parameterize �̃� = 𝜈−1

or the degrees of freedom of the Student’s 𝑡 or for a skewed-normal one can adopt the centered parametrization of Azzalini and
apitanio (2014, Section 3.1.4). However, for other examples, such as mixtures of normals, there are no available transformations
hat prevent the information matrix from becoming singular under Gaussianity. That is, 𝜈 itself becomes unidentified (Rothenberg,
971, Theorem 1) and consistent estimators of 𝜈 do not exist.

We note that these problems interact as solving the identification problem for 𝜈 can be done by adopting a pseudo maximum
likelihood approach that fixes 𝜈 at some reasonable value (e.g. Gouriéroux et al., 2017), but this immediately implies that the true
likelihood may be far away from the fixed pseudo likelihood, resulting in a test with little power.

In the present paper, we do not assume that the parametric form of 𝜂 is known up to a finite dimensional parameter vector
but instead treat 𝜂 non-parametrically. To avoid the creation of additional identification problems we rely on B-spline estimators
to non-parametrically estimate the aspect of 𝜂 which is necessary to implement our procedure: the log density score of 𝜂 (i.e. the
ogarithmic derivative of 𝜂). Unlike the finite dimensional parameters 𝜈 discussed above, the log density score does not suffer from
dentification problems at Gaussianity.

Despite such changes, the underlying logic of our approach is similar to that sketched above. We first orthogonalize the score
or 𝛼 with respect to the scores for 𝜂 and obtain a semi-parametric analog of the conventional Neyman–Rao score test. This requires
echnical adjustments as the scores with respect to 𝜂 need to be defined differently and the projection with respect to 𝜂 scores
equires more care. For this we follow the semi-parametric literature as outlined in Bickel et al. (1998) and van der Vaart (2002).

. Locally robust inference for LSEMs

In this section we propose a semi-parametric score test for testing parameters in a general class of linear simultaneous equations
odels. We first introduce the model class and give some motivating examples. Thereafter, we present a heuristic derivation for the

core test and the exact implementation details. All theoretical properties including the main assumptions are deferred to the next
ection.

.1. General model, objectives and examples

We consider the linear simultaneous equations model for a random sample of 𝐾 endogenous variables 𝑌𝑖, 𝑑 exogenous variables
𝑋𝑖 = (1, �̃�′

𝑖 )
′ and 𝐾 independent structural shocks 𝜖𝑖, which have mean zero and unit variance. Specifically, we have

𝑌𝑖 = 𝐵𝑋𝑖 + 𝐴−1𝜖𝑖 , 𝑖 = 1,… , 𝑛 , (3)

where we observe 𝑊𝑖 = (𝑌𝑖′, 𝑋𝑖
′)′ and the matrices 𝐵 and 𝐴−1 map the explanatory variables and the structural shocks to the

endogenous variables. The density functions of the components of 𝜖𝑖 = (𝜖𝑖1,… , 𝜖𝑖𝐾 )′ are denoted by (𝜂1,… , 𝜂𝐾 ) and the density of
�̃�𝑖 is given by 𝜂0. We set 𝜂 = (𝜂0, 𝜂1,… , 𝜂𝐾 ).

As illustrated in the previous section, depending on the shapes of 𝜂1,… , 𝜂𝐾 we may not be able to identify all parameters in
𝐴. To model this we let 𝐴 = 𝐴(𝛼, 𝜎), where 𝐴(𝛼, 𝜎) is a function of both (i) the parameters 𝛼 which may suffer from identification
failure and (ii) the well-identified parameters in 𝜎. We let 𝛼 ∈  ⊂ R𝐿𝛼 and set 𝛽 = (𝑏, 𝜎) ∈  ⊂ R𝐿𝑏 × R𝐿𝜎 = R𝐿𝛽 , with 𝑏 = vec(𝐵).

In this paper we leave the parametrization of 𝐴 = 𝐴(𝛼, 𝜎) largely unspecified. In Assumption 1 we state the formal requirements
and subsequently provide examples that can be adopted within our general framework. We stress that the dimensions of 𝛼 and 𝜎
are fixed, as is the dimension of 𝑌𝑖. As such our framework does not deal with high dimensional LSEMs. A special case of model
(3) is obtained when setting 𝐵 = 0 for which the model reduces to the baseline model for independent components analysis (e.g.
Hyvärinen et al., 2001). Further, after pre-whitening the residuals we obtain the model (1) from the illustrative example.

The general LSEM (3) depends on the following parameters

𝜃 = (𝛾, 𝜂) , with 𝛾 = (𝛼, 𝛽) and 𝛽 = (𝑏, 𝜎) , (4)

where 𝛾 ∈ 𝛤 = × summarizes all finite dimensional parameters, including the possibly weakly identified 𝛼 and the well identified
𝛽, and 𝜂 includes the infinite dimensional parameters, i.e. the densities of the shocks for which the parameter space will be formalized
below.

We are interested in testing the possibly weakly identified parameters 𝛼. To do so, we consider the hypothesis

𝐻0 ∶ 𝛼 = 𝛼0 against 𝐻1 ∶ 𝛼 ≠ 𝛼0 . (5)

Tests for such 𝐻0 can then be inverted to yield confidence sets for 𝛼. A related set-up is found in Risk et al. (2019) and Jin et al.
(2019) who assume that the structural shocks can be separated into exactly Gaussian and non-Gaussian shocks. We do not impose
such structure, but we note that if indeed shocks can be separated in this way our approach will remain valid, but likely less efficient
6

when compared to Risk et al. (2019).
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Parameterizing the LSEM. In practice, we can adopt different parametrizations for modeling 𝐴 = 𝐴(𝛼, 𝜎) in (3). A general requirement
s that 𝐴 is non-singular and that it is sufficiently smooth with respect to 𝛼 and 𝜎. The following assumption formalizes these
onditions.

ssumption 1. Define the partial derivative matrices 𝐷𝛼,𝑙 = 𝜕𝐴(𝛼, 𝜎)∕𝜕𝛼𝑙, for 𝑙 = 1,… , 𝐿𝛼 , and 𝐷𝜎,𝑚 = 𝜕𝐴(𝛼, 𝜎)∕𝜕𝜎𝑚, for 𝑚 =
,… , 𝐿𝜎 . Further, for each 𝑖, 𝑗 ∈ {1,… , 𝐾}, 𝑙 ∈ {1,… , 𝐿𝛼} and 𝑚 ∈ {1,… , 𝐿𝜎} define 𝜁𝛼𝑙,𝑘,𝑗 ∶= [𝐷𝛼,𝑙]𝑘∙𝐴−1

∙𝑗 and 𝜁𝜎𝑚,𝑘,𝑗 ∶= [𝐷𝜎,𝑚]𝑘∙𝐴−1
∙𝑗 ,

here the notation 𝑀∙𝑗 or 𝑀𝑗∙ denotes the 𝑗th column or row (respectively) of a matrix 𝑀 . We assume that for all (𝛼, 𝛽) ∈  × 

1. 𝐴(𝛼, 𝜎) is non-singular
2. (𝛼, 𝜎) ↦ 𝐴(𝛼, 𝜎) is continuously differentiable
3. (𝛼, 𝜎) ↦ 𝜁𝛼𝑙,𝑘,𝑗 (𝛼, 𝜎) and (𝛼, 𝜎) ↦ 𝜁𝜎𝑚,𝑘,𝑗 (𝛼, 𝜎) are locally Lipschitz continuous for all 𝑗, 𝑘, 𝑙, 𝑚

The following examples illustrate some possible parametrizations that are of practical interest and satisfy the smoothness
ssumptions.

xample 1 (Supply and Demand). Following Working (1927)’s canonical analysis of supply and demand curves let 𝑌 𝑠𝑖1 and 𝑌 𝑑𝑖1 denote
he quantity demanded and supplied of some good with price 𝑌𝑖2. In equilibrium we have 𝑌 𝑑𝑖1 = 𝑌 𝑠𝑖1 and a simple model (omitting
ovariates for convenience) is given by

𝑌𝑖1 = 𝛼1𝑌𝑖2 + 𝜎1𝜖𝑖1 (demand)
𝑌𝑖1 = 𝜎3𝑌𝑖2 + 𝜎2𝜖𝑖2 (supply)

here 𝜖𝑖1 and 𝜖𝑖2 are independent demand and supply shocks. We can accommodate this model in our general framework by letting
= (𝜎1, 𝜎2, 𝜎3) and defining the mapping 𝐴(𝛼, 𝜎) according to

𝐴(𝛼, 𝜎) =

[

𝜎1 0

0 𝜎2

]−1 [
1 −𝛼1
1 −𝜎3

]

.

ote that even with non-Gaussian errors, which we do not assume, the matrix 𝐴(𝛼, 𝜎) is only identifiable up to post multiplication
y 𝐷𝑃 , where 𝑃 is a permutation matrix and 𝐷 a diagonal matrix with elements ±1 on the main diagonal (e.g. Comon, 1994,
heorem 11). In applications we could impose sign restrictions to select the permutation that is of economic interest. For instance,
ere we could impose 𝛼1 ≤ 0 and 𝜎3 ≥ 0 to ensure that the demand curve is downward sloping and the supply curve is upward
loping, as well as 𝜎1, 𝜎2 > 0 to ensure that the scales are positive. As such we would only test values for 𝛼1 in (5) that satisfy the
ign restrictions.

xample 2 (Instruments). In the context of the previous example, a common identification approach is based on using instrumental
ariables. Suppose that 𝑌𝑖3 is an instrument that correlates with the supply shock but is believed to be uncorrelated with demand,
n assumption that we would like to test. After re-defining the errors and parameters we can write the model as

𝑌𝑖1 = 𝛼1𝑌𝑖2 + 𝜎1𝜖𝑖1
𝑌𝑖1 = 𝜎4𝑌𝑖2 + 𝜎5𝑌𝑖,3 + 𝜎2𝜖𝑖2
𝑌𝑖3 = 𝛼2𝜖𝑖,1 + 𝜎3𝜖𝑖3

here 𝛼2 = 0 implies that the instrument is exogenous and 𝜎5 ≠ 0 implies that the instrument is relevant. We have 𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, 𝑌𝑖3)′,
𝑖 = (𝜖𝑖1, 𝜖𝑖2, 𝜖𝑖3)′ and

𝐴(𝛼, 𝜎) =

⎡

⎢

⎢

⎢

⎣

𝜎1 0 0

0 𝜎2 0

𝛼2 0 𝜎3

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎣

1 −𝛼1 0

1 −𝜎4 −𝜎5
0 0 1

⎤

⎥

⎥

⎥

⎦

.

ith this parametrization we have several options. First, assuming that the instruments are exogenous we set 𝛼2 = 0, and use the
on-Gaussian errors to provide additional identifying information for 𝛼1. This could be of use when instruments are weak. Second,
e can relax the instrument exogeneity assumption and jointly test 𝛼 = (𝛼1, 𝛼2). This allows to simultaneously assess the slope of

he demand curve and the exogeneity of the instrument. If the instruments are irrelevant and the errors are Gaussian we will not
e able to reject any value.

xample 3 (Rotation Matrix). As in Gouriéroux et al. (2017) we can set 𝐴(𝛼, 𝜎)−1 = 𝛴1∕2(𝜎)𝑅(𝛼)′, where 𝛴1∕2(𝜎) is lower triangular
ith parameters 𝜎 and 𝑅(𝛼) is a rotation matrix. In this setting we have 𝜎 = vech(𝛴1∕2) and 𝛼 parametrizes 𝑅 using the trigonometric

ransformation, the Cayley transformation or the exponential transformation of a skew-symmetric matrix (e.g. Gouriéroux et al.,
017; Magnus et al., 2021).

These examples highlight different options for parametrizing 𝐴(𝛼, 𝜎). In Examples 1 and 2 the parameter 𝛼1 has a direct economic
nterpretation after an economically interesting permutation has been selected using either sign restrictions or the instrumental
ariable. In Example 2 the parameter 𝛼2 has an econometrically interesting interpretation: if it is non-zero, the instrument is not
xogenous. In Example 3 the parameters 𝛼 do not have a direct structural interpretation, but this specification corresponds to a
ommon choice in the ICA literature (e.g. Hyvärinen et al., 2001; Gouriéroux et al., 2017).
7
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3.2. Effective score test for LSEMs

Next, we provide a step by step implementation guide for the semi-parametric score test that aims to test 𝐻0 = 𝛼 = 𝛼0. We
postpone the theoretical justification of the test to the next section.

Effective score and information matrix. As intuitively explained in the simple example of Section 2, the proposed score test for the
null hypothesis 𝐻0 ∶ 𝛼 = 𝛼0 is of the Neyman–Rao type, which relies on the effective scores for the parameters of interest 𝛼. Loosely
speaking these scores are defined as the projection of the score function for 𝛼 on the orthogonal complement of the space spanned
by the score functions for the nuisance parameters (𝛽, 𝜂) (e.g. Choi et al., 1996; Bickel et al., 1998; Newey, 1990; van der Vaart,
2002).

In the case of interest here, where the nuisance parameter contains both finite (𝛽) and infinite-dimensional (𝜂) components, the
effective score function can be calculated in two steps: (1) compute the projection of the score for 𝛾 = (𝛼, 𝛽) on the orthocomplement
of the space spanned by the score functions for 𝜂, and (2) partition the resulting object into the components corresponding to 𝛼 and

and project the former onto the orthocomplement of the latter.
For step (1) we follow Amari and Cardoso (1997) and Chen and Bickel (2006) who derive this projection for a special case of

he LSEM (3) where 𝐵 is known to be 0, i.e. the ICA model. The log likelihood contribution for observation 𝑊𝑖 from model (3) is
iven by

𝓁𝜃(𝑊𝑖) = log |𝐴| +
𝐾
∑

𝑘=1
log 𝜂𝑘(𝐴𝑘∙𝑉𝑖) + log 𝜂0(�̃�𝑖) ,

where 𝑉𝑖 = 𝑌𝑖 − 𝐵𝑋𝑖.6 The scores (i.e. partial derivatives of 𝓁𝜃) with respect to the components of 𝛼, 𝜎 and 𝑏 are denoted
y �̇�𝜃,𝛼𝑙 = ∇𝛼𝑙𝓁𝜃 , �̇�𝜃,𝜎𝑙 = ∇𝜎𝑙𝓁𝜃 and �̇�𝜃,𝑏𝑙 = ∇𝑏𝑙𝓁𝜃 . The effective scores are obtained by projecting �̇�𝜃,𝛼𝑙 , �̇�𝜃,𝜎𝑙 and �̇�𝜃,𝑏𝑙 on the
rthocomplement of the space spanned by the score functions for 𝜂:7

 =

{

𝑤 ↦ ℎ0(�̃�) +
𝐾
∑

𝑘=1
ℎ𝑘(𝐴𝑘∙(𝑦 − 𝐵𝑥)) ∶ ℎ = (ℎ0, ℎ1,… , ℎ𝐾 ) ∈ 𝐻 =

𝐾
∏

𝑘=0
𝐻𝑘

}

(6)

where 𝑥 = (1, �̃�′)′, 𝑤 = (𝑦′, 𝑥′)′. 𝐻0 is the space of bounded functions ℎ0 ∶ R𝑑−1 → R which satisfy Eℎ0(�̃�𝑖) = 0. For 𝑘 = 1,… , 𝐾, 𝐻𝑘
is the space of functions ℎ𝑘 ∶ R → R which are bounded and continuously differentiable with bounded derivative and satisfy
E[ℎ𝑘(𝜖𝑖,𝑘)] = E[𝜖𝑖,𝑘ℎ𝑘(𝜖𝑖,𝑘)] = E[𝜅(𝜖𝑖,𝑘)ℎ𝑘(𝜖𝑖,𝑘)] = 0, with 𝜅(𝑧) = 1 − 𝑧2. The set  is the collection of scores corresponding to
𝜂 = (𝜂0, 𝜂1,… , 𝜂𝐾 ): the densities of �̃�𝑖 and 𝜖𝑖1,… , 𝜖𝑖𝐾 , see Lemma S1 in the supplementary material for a formal statement.

Intuitively, each ℎ𝑘 ∈ 𝐻𝑘 is restricted such that 𝜂𝑘(1+ 𝑡ℎ𝑘) is a density function and satisfies the conditions imposed by the model
(for all small enough 𝑡). For instance, for 𝑘 = 1,… , 𝐾, the restrictions on ℎ𝑘 ensure that 𝜖𝑖𝑘 = 𝐴𝑘∙𝑉𝑖 remains mean zero and with
variance one under the density 𝜂𝑘(1 + 𝑡ℎ𝑘). The elements of the set  are obtained by taking the derivative of the log likelihood
evaluated at 𝜃𝑡 = (𝛾, 𝜂0(1 + 𝑡ℎ0),… , 𝜂𝐾 (1 + 𝑡ℎ𝐾 )) with respect to 𝑡 and evaluating this at 𝑡 = 0, for a given ℎ = (ℎ0,… , ℎ𝐾 ) ∈ 𝐻 ;
see van der Vaart (1998, Section 25.3) for a general discussion.

The effective scores are then defined as 𝓁𝜃,𝛼𝑙 = �̇�𝜃,𝛼𝑙 −𝛱 �̇�𝜃,𝛼𝑙 , 𝓁𝜃,𝜎𝑙 = �̇�𝜃,𝜎𝑙 −𝛱 �̇�𝜃,𝜎𝑙 and 𝓁𝜃,𝑏𝑙 = �̇�𝜃,𝑏𝑙 −𝛱 �̇�𝜃,𝑏𝑙 , where 𝛱 denotes
the projection on cl  , the closure of  . We compute these projections analytically to obtain

𝓁𝜃,𝛼𝑙 (𝑊𝑖) =
𝐾
∑

𝑘=1

𝐾
∑

𝑗=1,𝑗≠𝑘
𝜁𝛼𝑙,𝑘,𝑗𝜙𝑘(𝐴𝑘∙𝑉𝑖)𝐴𝑗∙𝑉𝑖 +

𝐾
∑

𝑘=1
𝜁𝛼𝑙,𝑘,𝑘

[

𝜏𝑘,1𝐴𝑘∙𝑉𝑖 + 𝜏𝑘,2𝜅(𝐴𝑘∙𝑉𝑖)
]

𝓁𝜃,𝜎𝑙 (𝑊𝑖) =
𝐾
∑

𝑘=1

𝐾
∑

𝑗=1,𝑗≠𝑘
𝜁𝜎𝑙,𝑘,𝑗𝜙𝑘(𝐴𝑘∙𝑉𝑖)𝐴𝑗∙𝑉𝑖 +

𝐾
∑

𝑘=1
𝜁𝜎𝑙,𝑘,𝑘

[

𝜏𝑘,1𝐴𝑘∙𝑉𝑖 + 𝜏𝑘,2𝜅(𝐴𝑘∙𝑉𝑖)
]

𝓁𝜃,𝑏𝑙 (𝑊𝑖) =
𝐾
∑

𝑘=1
[−𝐴𝑘∙𝐷𝑏,𝑙]

[

(𝑋𝑖 − E𝑋𝑖)𝜙𝑘(𝐴𝑘∙𝑉𝑖) − E𝑋𝑖
(

𝜍𝑘,1𝐴𝑘∙𝑉𝑖 + 𝜍𝑘,2𝜅(𝐴𝑘∙𝑉𝑖)
)]

where 𝜁𝛼𝑙,𝑘,𝑗 and 𝜁𝜎𝑙,𝑘,𝑗 are defined in Assumption 1, 𝐷𝑏,𝑙 = 𝜕𝐵∕𝜕𝑏𝑙 and 𝜙𝑘(𝑥) = 𝜕 log 𝜂𝑘(𝑥)∕𝜕𝑥. Further,

𝜏𝑘 =𝑀−1
𝑘

(

0
−2

)

, 𝜍𝑘 =𝑀−1
𝑘

(

1
0

)

, where 𝑀𝑘 =
(

1 E𝜃(𝐴𝑘∙𝑉𝑖)3
E𝜃(𝐴𝑘∙𝑉𝑖)3 E𝜃(𝐴𝑘∙𝑉𝑖)4 − 1

)

.

he derivations that lead to these expressions are given the supplementary material where Lemma S3 provides the formal statement.
he expressions show that the effective scores depend on the log density scores 𝜙𝑘, i.e. the non-parametric part stemming from 𝜂𝑘,
nd the third and fourth moments of the errors 𝐴𝑘∙𝑉𝑖 via the vectors 𝜏𝑘 and 𝜍𝑘, for 𝑘 = 1,… , 𝐾.

For step (2) we will project the effective scores for 𝛼 on the space spanned by the effective scores for 𝛽 = (𝑏, 𝜎). Since the latter
pace is finite dimensional this projection takes a standard form. First, we collect and partition the effective scores as follows

𝓁𝜃(𝑊𝑖) =

[

𝓁𝜃,𝛼(𝑊𝑖)

𝓁𝜃,𝛽 (𝑊𝑖)

]

and 𝓁𝜃,𝛽 (𝑊𝑖) =

[

𝓁𝜃,𝜎 (𝑊𝑖)

𝓁𝜃,𝑏(𝑊𝑖)

]

,

6 Throughout the main text the dependence of e.g. 𝑉𝑖, 𝐴, 𝐷𝑥,𝑙 and 𝜁𝑥𝑙,𝑘,𝑗 , with 𝑥 ∈ {𝛼, 𝜎}, on (parts of) 𝛾 is left implicit.
7 Each score function lies in 𝐿 (𝑃 ), which is the Hilbert space under consideration here.
8
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where 𝓁𝜃,𝛼 = (𝓁𝜃,𝛼1 ,… ,𝓁𝜃,𝛼𝐿𝛼 )
′, 𝓁𝜃,𝜎 = (𝓁𝜃,𝜎1 ,… ,𝓁𝜃,𝜎𝐿𝜎 )

′ and 𝓁𝜃,𝑏 = (𝓁𝜃,𝑏1 ,… ,𝓁𝜃,𝑏𝐿𝑏 )
′ are the 𝐿𝛼 × 1, 𝐿𝜎 × 1 and 𝐿𝑏 × 1 vectors that

collect the effective score functions. With this notation we define the effective information matrix by

𝐼𝜃 = E𝓁𝜃(𝑊𝑖)𝓁′
𝜃(𝑊𝑖) with partitioning 𝐼𝜃 =

(

𝐼𝜃,𝛼𝛼 𝐼𝜃,𝛼𝛽
𝐼𝜃,𝛽𝛼 𝐼𝜃,𝛽𝛽

)

.

he effective score function for 𝛼 with respect to 𝛽 and 𝜂 can now be computed by the second projection (e.g. Bickel et al., 1998,
. 74)

�̃�𝜃(𝑊𝑖) = 𝓁𝜃,𝛼(𝑊𝑖) − 𝐼𝜃,𝛼𝛽𝐼−1𝜃,𝛽𝛽𝓁𝜃,𝛽 (𝑊𝑖) . (7)

he corresponding effective information matrix is given by

̃𝜃 = 𝐼𝜃,𝛼𝛼 − 𝐼𝜃,𝛼𝛽𝐼−1𝜃,𝛽𝛽𝐼𝜃,𝛽𝛼 . (8)

e note that the effective score function �̃�𝜃(𝑊𝑖) and the effective information matrix ̃𝜃 can be evaluated at any parameters
= (𝛼, 𝛽, 𝜂).

ffective score and information matrix estimation. The effective scores and information depend on unknown nuisance parameters,
uch as the log density scores 𝜙𝑘 and the moment vectors 𝜏𝑘 and 𝜁𝑘. To implement the score test we replace these parameters by
ppropriate estimates. As we show in the supplementary material, consistent estimators for 𝓁𝜃(𝑊𝑖) are

𝓁𝛾 (𝑊𝑖) =

[

𝓁𝛾,𝛼(𝑊𝑖)

𝓁𝛾,𝛽 (𝑊𝑖)

]

and 𝓁𝛾,𝛽 (𝑊𝑖) =

[

𝓁𝛾,𝜎 (𝑊𝑖)

𝓁𝜃,𝑏(𝑊𝑖)

]

,

here the components are given by

𝓁𝛾,𝛼𝑙 (𝑊𝑖) =
𝐾
∑

𝑗,𝑘=1,𝑗≠𝑘
𝜁𝛼𝑙,𝑘,𝑗 �̂�𝑘(𝐴𝑘∙𝑉𝑖)𝐴𝑗∙𝑉𝑖 +

𝐾
∑

𝑘=1
𝜁𝛼𝑙,𝑘,𝑘

[

𝜏𝑘,1𝐴𝑘∙𝑉𝑖 + 𝜏𝑘,2𝜅(𝐴𝑘∙𝑉𝑖)
]

𝓁𝛾,𝜎𝑙 (𝑊𝑖) =
𝐾
∑

𝑗,𝑘=1,𝑗≠𝑘
𝜁𝜎𝑙,𝑘,𝑗 �̂�𝑘(𝐴𝑘∙𝑉𝑖)𝐴𝑗∙𝑉𝑖 +

𝐾
∑

𝑘=1
𝜁𝜎𝑙,𝑘,𝑘

[

𝜏𝑘,1𝐴𝑘∙𝑉𝑖 + 𝜏𝑘,2𝜅(𝐴𝑘∙𝑉𝑖)
]

𝓁𝛾,𝑏𝑙 (𝑊𝑖) =
𝐾
∑

𝑘=1
[−𝐴𝑘∙𝐷𝑏,𝑙][(𝑋𝑖 − �̄�)�̂�𝑘(𝐴𝑘∙𝑉𝑖) − �̄�(�̂�𝑘,1𝐴𝑘∙𝑉𝑖 + �̂�𝑘,2𝜅(𝐴𝑘∙𝑉𝑖))]

, (9)

with �̄� = 𝑛−1
∑𝑛
𝑖=1𝑋𝑖. The coefficients 𝜏𝑘 = (𝜏𝑘,1, 𝜏𝑘,2)′ and �̂�𝑘 = (�̂�𝑘,1, �̂�𝑘,2)′ are given, for 𝑘 = 1,… , 𝐾, by

𝜏𝑘 = �̂�−1
𝑘

(

0
−2

)

, �̂�𝑘 = �̂�−1
𝑘

(

1
0

)

, �̂�𝑘 =

(

1 1
𝑛
∑𝑛
𝑖=1(𝐴𝑘∙𝑉𝑖)

3

1
𝑛
∑𝑛
𝑖=1(𝐴𝑘∙𝑉𝑖)

3 1
𝑛
∑𝑛
𝑖=1(𝐴𝑘∙𝑉𝑖)

4 − 1

)

. (10)

he estimates for the effective scores can be evaluated at any 𝛾 = (𝛼, 𝛽), but do not depend on 𝜙𝑘, 𝜏𝑘, 𝜍𝑘 or E𝑋𝑖 as these components
ave been replaced by estimators �̂�𝑘, 𝜏𝑘, �̂�𝑘 and �̄�. These estimators may depend on 𝛾 and the index 𝑛, though this is left implicit
n the notation.

ensity score estimation. The log density score estimates �̂�𝑘(⋅) needed for computing (9) can be obtained in different ways and our
referred approach is based on using B-splines as in Jin (1992) and Chen and Bickel (2006). We can define these estimates by

�̂�𝑘(𝑧) = �̂�𝑘
′𝑏𝑘(𝑧) , with �̂�𝑘 = −

[ 𝑛
∑

𝑖=1
𝑏𝑘(𝐴𝑘∙𝑉𝑖)𝑏𝑘(𝐴𝑘∙𝑉𝑖)′

]−1 𝑛
∑

𝑖=1
𝑐𝑘(𝐴𝑘∙𝑉𝑖) , (11)

where 𝑧 is the argument of the function, e.g. 𝑧 = 𝐴𝑘∙𝑉𝑖 in (9), 𝑏𝑘(𝑧) = (𝑏𝑘,1(𝑧),… , 𝑏𝑘,𝖡𝑘 (𝑧))
′ is a collection of 𝖡𝑘 cubic B-splines

nd 𝑐𝑘(𝑧) = (𝑐𝑘,1(𝑧),… , 𝑐𝑘,𝖡𝑘 (𝑧))
′ are their derivatives: 𝑐𝑘,𝑖(𝑧) =

d𝑏𝑘,𝑖(𝑧)
d𝑧 for each 𝑖 = 1,… ,𝖡𝑘, see de Boor (2001) for more details on

B-splines.8 In practice we rely on equally spaced knots with upper and lower end points taken to be the 95th and 5th percentile of
the samples {𝜖𝑖}𝑛𝑖=1 adjusted by log(log(𝑛)). We use 𝖡𝑘 = 6 splines in our main simulations below and investigate the sensitivity of
this choice.

Given the estimates of the effective scores we estimate the effective information matrix, which is the variance matrix of the
effective score function, as

𝐼𝛾 =
1
𝑛

𝑛
∑

𝑖=1
𝓁𝛾 (𝑊𝑖)𝓁𝛾 (𝑊𝑖)′ with partitioning 𝐼𝛾 =

[

𝐼𝛾,𝛼𝛼 𝐼𝛾,𝛼𝛽
𝐼𝛾,𝛽𝛼 𝐼𝛾,𝛽𝛽

]

. (12)

With these estimates we can compute the estimates for the effective score of 𝛼 with respect to 𝛽 and 𝜂, i.e. �̃�𝜃(𝑊𝑖) as defined in (7),
nd the corresponding information matrix (8).

�̂�𝛾 (𝑊𝑖) = 𝓁𝛾,𝛼(𝑊𝑖) − 𝐼𝛾,𝛼𝛽𝐼−1𝛾,𝛽𝛽𝓁𝛾,𝛽 (𝑊𝑖) and ̂𝛾 = 𝐼𝛾,𝛼𝛼 − 𝐼𝛾,𝛼𝛽𝐼−1𝛾,𝛽𝛽𝐼𝛾,𝛽𝛼 . (13)

8 Further details as required for the construction in this paper are given in Section S6 in the supplementary material. For the asymptotic theory, 𝖡𝑘 will be
9

required to (slowly) diverge with 𝑛. In the main text we omit the dependence of 𝖡𝑘 and 𝑏𝑘 on 𝑛 in the notation.
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Importantly, ̃𝜃 may not be positive definite in our setting. For instance, when the densities 𝜂𝑘 correspond to the Gaussian density,
̃𝜃 is singular, see the discussion preceding Lemma S19 in the supplementary material.

emi-parametric score statistic. With �̂�𝛾 and ̂𝛾 we can define the semi-parametric score test statistic for the LSEM model as a function
f 𝛾 = (𝛼, 𝛽) and the observations 𝑊𝑖 by

�̂�𝛾 =

(

1
√

𝑛

𝑛
∑

𝑖=1
�̂�𝛾 (𝑊𝑖)

)′

̂𝑡,†𝛾

(

1
√

𝑛

𝑛
∑

𝑖=1
�̂�𝛾 (𝑊𝑖)

)

, (14)

where ̂𝑡,†𝛾 denotes the generalized inverse of the eigenvalue truncated effective information matrix ̂𝛾 (cf. Lütkepohl and Burda,
1997). Formally,

̂𝑡𝛾 = �̂� �̂�(𝜈1∕2𝑛 )�̂� ′ , (15)

where �̂�(𝜈1∕2𝑛 ) is a diagonal matrix with the 𝜈1∕2𝑛 -truncated eigenvalues of ̂𝛾 on the main diagonal and �̂� is the matrix of
corresponding orthonormal eigenvectors. To be specific, let {�̂�𝑖}𝐿𝑖=1 denote the non-increasing eigenvalues of ̂𝛾 , then the (𝑖, 𝑖)th
lement of �̂�(𝜈1∕2𝑛 ) is given by �̂�𝑖𝟏(�̂�𝑖 ≥ 𝜈1∕2𝑛 ). We discuss the choice for the truncation parameter in more detail below.

Eqs. (9)–(15) define the semi-parametric score statistic for the LSEM model (3) for a given parameter vector 𝛾 = (𝛼, 𝛽). To test
he null hypothesis (5) we will evaluate this test statistic at 𝛼 = 𝛼0, i.e. fixing the possibly unidentified parameters under the null,
nd at 𝛽, which can be any

√

𝑛 consistent estimate for 𝛽. Let �̂� = (𝛼0, 𝛽). In our simulations, we use ordinary least squares estimates
or 𝜎 and 𝑏 = vec(𝐵), or one-step efficient estimates following van der Vaart (2002, Section 7.2). In our theoretical section below
e show that under suitable assumptions the score statistic will converge to a 𝜒2 limit. Specifically, we prove that under 𝐻0 for
ny 𝑎 ∈ (0, 1) we have

lim
𝑛→∞

𝑃 (�̂��̂� > 𝑐𝑛) ≤ 𝑎 , (16)

here 𝑐𝑛 is the 1−𝑎 quantile of the 𝜒2
𝑟𝑛

distribution with 𝑟𝑛 = rank(̂𝑡�̂� ). Importantly, as we show in Section 4 this result does not rely
n any assumptions regarding the shape of the densities 𝜂, i.e. we do not need to assume that 𝜂 is non-Gaussian. Only conventional
oment assumptions and some regularity conditions on the densities are required. The following algorithm summarizes the complete

mplementation.

Algorithm: Effective score test for LSEM

1 Obtain
√

𝑛-consistent estimates 𝛽 = (�̂�, �̂�), residuals 𝑉𝑖 = 𝑌𝑖 − �̂�𝑋𝑖 and evaluate all quantities in steps 2–5 at
�̂� = (𝛼0, 𝛽);

2 For 𝑘 = 1,… , 𝐾, compute �̂�𝑘(�̂�𝑘∙𝑉𝑖) from (11) with �̂� = 𝐴(𝛼0, �̂�);
3 Compute the effective scores 𝓁�̂� (𝑊𝑖) from (9) and the information matrix 𝐼�̂� from (12);
4 Compute �̂��̂� (𝑊𝑖) and ̂�̂� from (13) and ̂𝑡�̂� from (15) using truncation parameter 𝜈1∕2𝑛 ;

5 Compute the score statistic �̂��̂� from (14) and reject 𝐻0 ∶ 𝛼 = 𝛼0 if �̂��̂� > 𝑐𝑛, where 𝑐𝑛 is the 1 − 𝑎 quantile of the
𝜒2
𝑟𝑛

distribution with 𝑟𝑛 = rank(̂𝑡�̂� ).

The truncation parameter 𝜈1∕2𝑛 in step 4 is a tuning parameter for which the theoretical requirements are formalized in
Assumption 3 below. In practice, we recommend a small tuning parameter (e.g. less than 𝜈1∕2𝑛 = 10−5) as our simulations suggest
that the null rejection probability is well controlled for any such choice.9 In practice the simplest implementation is to use a pseudo
inverse function directly which implicitly truncates at machine precision. Nevertheless we recommend that researchers applying
the proposed approach explore the performance of different choices of 𝜈1∕2𝑛 in simulation experiments designed to replicate the
application at hand.

The algorithm highlights that the computational cost for evaluating the semi-parametric score statistic �̂��̂� is modest; effectively
one only needs to compute 𝐾 B-spline regressions to obtain the log density scores. Importantly, this implies that the algorithm can
often be implemented without relying on numerical optimization routines.10 Confidence sets for 𝛼 can be constructed by inverting
the score statistic over a range of values for 𝛼0.

For some parametrizations of 𝐴(𝛼, 𝜎), the parameter of economic interest could be a function of both 𝛼 and 𝜎, or more generally,
a function of 𝛼 and 𝛽 = (𝑏, 𝜎). In these settings, the algorithm can be used in combination with the Bonferroni approach discussed
in Granziera et al. (2018) to construct confidence intervals for such functions. Intuitively, this approach amounts to constructing
a confidence set for 𝑓 (𝛼0, 𝛽) with confidence level 𝑞2 for each fixed 𝛼0 for which the score test does not reject at level 𝑞1, with
𝑞1 + 𝑞2 = 𝑎. Then, taking the union over the constructed sets for 𝑓 (𝛼0, 𝛽) yields a 1 − 𝑎 confidence set for 𝑓 (𝛼, 𝛽).

9 See Section S8.1 in the supplementary material for simulation results with different truncation values.
10 Numerical optimization may be necessary to compute 𝛽, depending on the chosen parametrisation, but is not necessary beyond this.
10
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4. Asymptotic theory

In this section we present our main theoretical results. We start by carefully spelling out the regularity conditions that are
equired. After this we discuss the properties of the test. We show that (i) under weak identification asymptotics, the null rejection
robability of the test does not exceed its nominal level asymptotically and (ii) under strong identification it attains well known
ower bounds for various classes of tests.

.1. Assumptions

We assume that we observe a random sample {𝑊𝑖}𝑛𝑖=1 = {(𝑌𝑖′, 𝑋𝑖
′)′}𝑛𝑖=1 from model (3) where the underlying components satisfy

he following.

ssumption 2. For 𝜖𝑖 = (𝜖𝑖1,… , 𝜖𝑖𝐾 )′ in model (3), each component 𝜖𝑖𝑘 has a continuously differentiable root density (with respect to
ebesgue measure on R). We write the density as 𝜂𝑘 with log density score 𝜙𝑘(𝑥) = 𝜕 log 𝜂𝑘(𝑥)∕𝜕𝑥. We assume that for all 𝑘 = 1,… , 𝐾
nd some 𝛿 > 0

1. E𝜖𝑖𝑘 = 0, E𝜖2𝑖𝑘 = 1, E𝜖4+𝛿𝑖𝑘 <∞, E(𝜖4𝑖𝑘) − 1 > E(𝜖3𝑖𝑘)
2, and E𝜙4+𝛿

𝑘 (𝜖𝑖𝑘) <∞;
2. E𝜙𝑘(𝜖𝑖𝑘) = 0, E𝜙𝑘(𝜖𝑖𝑘)𝜖𝑖𝑘 = −1, E𝜙𝑘(𝜖𝑖𝑘)𝜖2𝑖𝑘 = 0 and E𝜙𝑘(𝜖𝑖𝑘)𝜖3𝑖𝑘 = −3;
3. 𝜖𝑖𝑘 is independent of 𝜖𝑖𝑙 for all 𝑘 ≠ 𝑙;
4. 𝜂0 ∈ 𝒵 is a density function (with respect to Lebesgue measure on R𝑑−1) such that if �̃�𝑖 ∼ 𝜂0, then E�̃�𝑖�̃�′

𝑖 is positive definite
and E[|�̃�𝑖,𝑙|

4+𝛿] <∞ for all 𝑙 = 1,… , 𝑑 − 1;
5. 𝜖𝑖 and �̃�𝑖 are independent.

The first part normalizes the errors to have mean zero, variance one and finite four+𝛿 moments,11 hence ruling out heavy tailed
errors.12 Additionally, we require the log density scores 𝜙𝑘(𝑥) = 𝜕 log 𝜂𝑘(𝑥)∕𝜕𝑥 evaluated at the errors to have finite four+𝛿 moments.
The second part simplifies the construction of the effective score functions. Whilst this may at first glance appear a strong condition,
Lemma S20 in the supplementary material shows that if the first part holds, then a simple sufficient condition is that the tails of the
densities 𝜂𝑘 converge to zero at a polynomial rate.13 The third part imposes that the components of 𝜖𝑖 are independent. Part four
imposes some structure on �̃�𝑖 that allows us to identify 𝐵; notably positive definite second moments and four+𝛿 finite moments are
required. Part five requires the explanatory variables and errors to be independent. This can be relaxed by requiring the moment
assumptions in 2 to hold conditional on �̃�𝑖. In this setup, our general theory as outlined in this section would continue to be valid
though the resulting effective score function would take a different form.

Most important is what is not in Assumption 2: there is no condition that imposes that a certain number of components of 𝜖𝑖
have a (sufficiently) non-Gaussian distribution.

The third assumption that we impose is only required for the estimation of the log density scores 𝜙𝑘(𝑥) = 𝜕 log 𝜂𝑘(𝑥)∕𝜕𝑥 using
B-spline regressions and can be appropriately replaced when a different density score estimator is used.14 For notation purposes,
let 𝛯𝐿𝑘,𝑛 and 𝛯𝑈𝑘,𝑛 denote the lower and upper endpoints of the cubic B-splines for 𝜙𝑘(𝑥) for 𝑘 = 1,… , 𝐾. In practice, we select these
points as the lower 5th and upper 95th percentiles of the samples {𝐴𝑘∙𝑉𝑖}𝑛𝑖=1 adjusted by log log 𝑛, see the implementation Section 3.

Assumption 3. Let 𝜈𝑛 be such that 𝜈2𝑛,𝑝 = 𝑜(𝜈𝑛) with 𝑝 ∶= min{1+ 𝛿∕4, 2} and 𝜈𝑛,𝑝 = 𝑛(1−𝑝)∕𝑝 if 𝑝 ∈ (1, 2) or 𝜈𝑛,𝑝 = 𝑛−1∕2 log(𝑛)1∕2+𝜌, for
some 𝜌 > 0, if 𝑝 = 2. Let 𝜙𝑘,𝑛 ∶= 𝜙𝑘𝟏[𝛯𝐿𝑘,𝑛 ,𝛯𝑈𝑘,𝑛] and 𝛥𝑘,𝑛 ∶= 𝛯𝑈𝑘,𝑛 − 𝛯

𝐿
𝑘,𝑛 and suppose that for all 𝑘 = 1,… , 𝐾, [𝛯𝐿𝑘,𝑛, 𝛯

𝑈
𝑘,𝑛] ↑ �̃� ⊃ supp(𝜂𝑘)

and 𝛿𝑘,𝑛 ↓ 0

(i) 𝑃 (𝜖𝑖𝑘 ∉ [𝛯𝐿𝑘,𝑛, 𝛯
𝑈
𝑘,𝑛]) = 𝑜(𝜈2𝑛 );

(ii) For some 𝜄 > 0, 𝑛−1𝛥2+2𝜄𝑘,𝑛 𝛿
−(8+2𝜄)
𝑘,𝑛 = 𝑜(𝜈𝑛);

(iii) 𝜂𝑘 is bounded (‖𝜂𝑘‖∞ <∞) and differentiable, with a bounded derivative: ‖𝜂′𝑘‖∞ <∞;
(iv) For each 𝑛, 𝜙𝑘,𝑛 is three-times continuously differentiable on [𝛯𝐿𝑘,𝑛, 𝛯

𝑈
𝑘,𝑛] and ‖𝜙(3)

𝑘,𝑛‖
2
∞𝛿

6
𝑘,𝑛 = 𝑜(𝜈𝑛);15

(v) There are 𝑐 > 0 and 𝑁 ∈ N such that for 𝑛 ≥ 𝑁 we have inf 𝑡∈[𝛯𝐿𝑘,𝑛 ,𝛯𝑈𝑘,𝑛]
|𝜂𝑘(𝑡)| ≥ 𝑐𝛿𝑘,𝑛.

First, the assumption provides conditions on the truncation rate 𝜈1∕2𝑛 that is needed for the truncation of the eigenvalues in (15).
This rate is split into two parts. The ‘‘slow’’ rate 𝑛(1−𝑝)∕𝑝 (for 𝑝 ∈ (1, 2)) is always sufficient given Assumption 2, but if 𝜖𝑖𝑘 has finite
eighth moments the faster rate applies.

11 E(𝜖4𝑖𝑘) − 1 ≥ E(𝜖3𝑖𝑘)
2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012). Assuming that E(𝜖4𝑖𝑘) − 1 > E(𝜖3𝑖𝑘)

2 rules out (only)
cases where 1, 𝜖𝑖𝑘 and 𝜖2𝑖𝑘 are linearly dependent when considered as elements of 𝐿2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

12 Heavy tailed errors in ICA and SVAR models have recently been considered in Davis and Ng (2022) and Davis and Fernandes (2022), but an inferential
theory remains to be developed.

13 See Example S1 in the supplementary material for an explicit example of a density which satisfies the first part of the assumption but not the second.
14 See Assumption S1 for conditions on any alternative density score estimator under which our Theorem 1 continues to hold.
15 The differentiability and continuity requirements at the end-points are one-sided.
11
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Part (i) imposes that the tails of 𝜖𝑖𝑘 decay to zero sufficiently fast.16 Part (ii) ensures that the number of knots does not grow to
ast relative to the sample size (and the truncation rate). Part (iii) requires the density and its derivative to be bounded. Part (iv)
equires the existence of the third derivatives of 𝜙𝑘 and that the rate of increase of the third derivative is not too great. Part (v)
nsures that the density is bounded away from zero on [𝛯𝐿𝑘,𝑛, 𝛯

𝑈
𝑘,𝑛]. Overall, these assumptions are similar to those adopted in Chen

and Bickel (2006), with two key differences.17 Firstly, Chen and Bickel (2006) require the conditions to hold for the functions
𝑣 ↦ 𝜙𝑘(𝐴𝑘∙𝑣) (rather than 𝜙𝑘), uniformly over shrinking balls (at rate 𝑛−1∕2) around 𝐴. In our setting we are only interested in
testing as consistent estimation is ruled out by the possible lack of identification, hence we only require the conditions to hold
for the functions 𝜙𝑘. Secondly, unlike Chen and Bickel (2006), we require convergence at a rate 𝜈𝑛 which satisfies certain decay
conditions. This is due to the fact that we may have a singular effective information matrix and in order to obtain a consistent
estimate of the Moore – Penrose inverse of this matrix, we require knowledge of the rate of convergence of our estimator.

4.2. Main results

In this section we formally state our main results for the semi-parametric score test �̂��̂� . First, instead of evaluating the score
test at the

√

𝑛-consistent estimates �̂� = (𝛼0, 𝛽) we will evaluate the score test at its discretized version �̄� = (𝛼0, 𝛽𝑛). Formally, let
𝑛 = 𝑛−1∕2𝐶Z𝐿𝛽 for some 𝐶 > 0 and define 𝛽𝑛 as a new version of 𝛽 that replaces its value with the closest point in 𝖦𝑛. Note that

his changes each coordinate of 𝛽 by a quantity which is at most 𝑂(𝑛−1∕2), hence the
√

𝑛-consistency is retained by discretization.
Since the constant 𝐶 can be chosen arbitrarily small this change has no practical relevance for the implementation of the test.

The advantage of relying on discretized estimates is that it simplifies the proof of the main result. Specifically, it removes the
eed to show uniform convergence between the effective scores evaluated at 𝛽 and 𝛽. The discretization trick is due to Le Cam

(1960) and is widely used in statistics, see the detailed discussion in Le Cam and Yang (2000, Section 6.3), or van der Vaart (1998,
page 72).18

The following theorem provides the main result.19

Theorem 1. Suppose that Assumptions 1–3 hold and that (𝛼0, 𝛽) is an interior point of  × . Let 𝑟𝑛 = rank(̂𝑡�̄� ) and denote by 𝑐𝑛 the
1 − 𝑎 quantile of the 𝜒2

𝑟𝑛
distribution, for any 𝑎 ∈ (0, 1). Then for any sequence

𝜃𝑛 =
(

𝛼0, 𝛽 + 𝑑𝑛∕
√

𝑛, 𝜂(1 + ℎ𝑛∕
√

𝑛)
)

, 𝑑𝑛 ∈ 𝐷⋆ , ℎ𝑛 ∈ 𝐻⋆ ,

ith 𝐷⋆ a bounded subset of R𝐿𝛽 and 𝐻⋆ a compact subset of 𝐻 , we have

lim sup
𝑛→∞

𝑃 𝑛𝜃𝑛 (�̂��̄� > 𝑐𝑛) ≤ 𝑎,

with inequality only if rank(̃𝜃0 ) = 0 where 𝜃0 = (𝛼0, 𝛽, 𝜂). The notation 𝑃 𝑛𝜃𝑛 indicates the 𝑛-fold product of the measure 𝑃𝜃𝑛 , i.e. the
distribution of the data 𝑊1,… ,𝑊𝑛 under 𝜃𝑛.

A detailed proof for Theorem 1 can be found the supplementary material Section S1. The theorem shows that the test is locally
robust in that its null rejection probability is no greater than the nominal 𝑎 under any local sequence 𝜃𝑛 (consistent with the null).
Under such sequences, the densities of the structural shocks (i.e. 𝜖𝑖𝑘) may converge to the Gaussian density at a

√

𝑛 rate, i.e. these
re local-to-Gaussian sequences. Studying the behavior of tests under these local-to-Gaussian sequences is the natural counterpart (in
he model we study) to studying the performance of tests under so-called ‘‘weak identification asymptotics’’, as has been considered
n many settings (e.g. Staiger and Stock, 1997; Stock and Wright, 2000; Moreira, 2003; Kleibergen, 2005; Andrews and Mikusheva,
015). The key difference in our setting is that the identification failure occurs due to the value of an infinite dimensional nuisance
arameter.

This local robustness follows from the fact that the test statistic �̂��̄� is locally regular, i.e. it attains its limiting distribution (under
the null) in a locally uniform manner. This property, in turn, follows from the orthogonalization with respect to (all of) the nuisance
parameters in the definition of the effective score function.20 This orthogonalization ensures that the test statistic is insensitive to
small deviations in the nuisance parameters and therefore that its limiting distribution does not change when the limit is taken
along sequences of local alternatives consistent with the null hypothesis.

The result of Theorem 1 can be also written as

lim sup
𝑛→∞

sup
𝜃∈𝛩0,𝑛

𝑃 𝑛𝜃 (�̂��̄� > 𝑐𝑛) ≤ 𝑎 ,

where

𝛩0,𝑛 = {(𝛼0, 𝛽 + 𝑑∕
√

𝑛, 𝜂(1 + ℎ∕
√

𝑛)) ∶ 𝑑 ∈ 𝐷⋆, ℎ ∈ 𝐻⋆} .

16 The required speed of decay is linked to the truncation rate.
17 Cf. their conditions C3, C5–C7, p. 2834.
18 It has also been adopted in econometrics, see Cattaneo et al. (2012) for instance.
19 The set 𝐻 which appears in the statement of Theorem 1 is defined in Section 3. See Eq. (6) and the paragraph following it.
20 In conjunction with the ULAN property shown to hold in Lemma S2.
12
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This formulation allows us to highlight a difference between our local uniformity result, which is over local sets 𝛩0,𝑛, and a more
emanding global uniformity result in which the supremum would be taken over 𝛩0 = {(𝛼0, 𝛽, 𝜂) ∶ 𝛽 ∈ , 𝜂 ∈ }. We emphasize
hat Theorem 1 does not establish such a result.21

fficiency under strong identification. Importantly, the local robustness of the score test does not come at the expense of power loss
nder strong identification. In particular, the test 𝜑𝑛 ∶= 𝟏{�̂��̄� > 𝑐𝑛} is semiparametrically efficient when ̃𝜃 is nonsingular.22 Here
e provide a brief heuristic discussion of this point; proofs that these power bounds are attained by 𝜑𝑛 can be found in Section S7
f the supplementary appendix.

For the parameters 𝜃 = (𝛼, 𝛽, 𝜂) we consider local alternatives of the type

𝜃𝑛(𝑞, 𝑑, ℎ) =
(

𝛼 + 𝑞∕
√

𝑛, 𝛽 + 𝑑∕
√

𝑛, 𝜂(1 + ℎ∕
√

𝑛)
)

. (17)

First suppose that 𝛼 is scalar and ̃𝜃 > 0. Then the asymptotic power of the proposed test is against the local alternatives in (17) is

lim
𝑛→∞

𝑃 𝑛𝜃𝑛(𝑞,𝑑,ℎ)𝜑𝑛 = 1 −𝛷
(

𝑧𝑎∕2 − ̃1∕2
𝜃 𝑞

)

+ 1 −𝛷
(

𝑧𝑎∕2 + ̃1∕2
𝜃 𝑞

)

, (18)

here 𝛷 the standard normal CDF and 𝑧𝑎∕2 the 1 − 𝑎∕2 quantile of the  (0, 1). This coincides with the (local asymptotic) power
bound for locally asymptotically unbiased two sided tests of 𝑞 = 0 against 𝑞 ≠ 0 (cf. Theorem 2 in Choi et al. (1996)).23,24

If instead 𝛼 is multidimensional and ̃𝜃 is positive definite, then the asymptotic power of the proposed test is against the local
alternatives in (17) is

lim
𝑛→∞

𝑃 𝑛𝜃𝑛(𝑞,𝑑,ℎ)𝜑𝑛 = 1 − P
(

𝜒2
𝐿𝛼

(𝑞′̃𝜃𝑞) ≤ 𝑐𝑎
)

, (19)

here 𝜒2
𝑟 (𝑢) denotes a random variable with a non-central 𝜒2 distribution with 𝑟 degrees of freedom and non-centrality parameter 𝑢

and 𝑐𝑎 is the 1−𝑎 quantile of the (central) 𝜒2
𝐿𝛼

distribution. This coincides with the (local asymptotic) power bound for asymptotically
rotation invariant tests as developed in Section 5 of Choi et al. (1996) (see their Theorem 3).25,26

These power bounds make 𝜑𝑛 attractive in scenarios where there is no explicit direction in which one want to maximize power.
hen such directions are given alternative test statistics, also based on the effective score function, can be considered (e.g. Bickel

t al., 2006). Maximin optimality results which permit singular ̃𝜃 matrices can be found in Lee (2023) for related tests in general
semi-parametric models.

5. Simulation results

In this section we study the finite sample properties of the semi-parametric score test �̂��̂� . We study the empirical rejection
frequency of the test under different data generating processes and compare its performance to several alternatives that have been
proposed in the literature. We first study the simple model of Section 2 after which we consider the general linear simultaneous
equations model (3). The supplementary material provides additional results.

5.1. Baseline model

We start by drawing independent samples from model (1), which we restate for convenience

𝑌𝑖 = 𝐴−1𝜖𝑖 , 𝑖 = 1,… , 𝑛 .

We take 𝑌𝑖 to be 𝐾 × 1 and consider 𝐾 = 2, 3 and 𝐾 = 5. The sample size is taken as 𝑛 = 200, 500 or 𝑛 = 1000. We fix 𝜖𝑖1 to have a
standard Gaussian density and consider different densities for 𝜖𝑖𝑘, with 𝑘 = 2,… , 𝐾. The non-Gaussian densities are either Student’s
𝑡 or mixtures of normals taken from Marron and Wand (1992). Fig. 3 provides an overview.

21 For models where identification failures are determined by a finite dimensional 𝜂, global uniformity conditions are derived in Andrews and Cheng (2012,
013) and Andrews et al. (2020). For the case where 𝜂 is infinite dimensional much work remains to be done.
22 Nonsingularity may fail to hold when multiple components of 𝜖𝑖 are Gaussian; see Lemma S19.
23 One can alternatively see this by approximating the infinite dimensional model by a sequence of finite-dimensional models for which the corresponding

esult is well known and then taking limits. Cf. the proof of Theorem 25.44 in van der Vaart (1998).
24 That the sequence of tests (𝜑𝑛)𝑛∈N is itself locally asymptotically unbiased is clear from (18).
25 That the sequence of tests (𝜑𝑛)𝑛∈N is itself asymptotically rotation invariant is clear from (19): the limiting power function is that of the test 𝜑(𝑍) ∶= 𝟏{𝑍′𝑍 >

𝑐𝑎} for 𝑍 ∼  (̃1∕2
𝜃 𝑞, 𝐼). This test is rotation invariant since for any rotation matrix 𝑅 and any 𝑧 ∈ R𝐿𝛼 one has 𝜑(𝑅′𝑧) = 𝟏{𝑧′𝑅𝑅′𝑧 > 𝑐𝑎} = 𝟏{𝑧′𝑧 > 𝑐𝑎} = 𝜑(𝑧).

26 Related, the asymptotic maximin power of 𝜑𝑛 against the alternatives in (17) is

lim
𝑛→∞

inf
(𝑞,𝑑,ℎ)∈𝐾⋆

𝑢

𝑃 𝑛
𝜃𝑛 (𝑞,𝑑,ℎ)

𝜙𝑛 = 1 − P
(

𝜒2
𝐿𝛼
(𝑢) ≤ 𝑐𝑎

)

, (20)

where 𝐾⋆
𝑢 is any compact subset of

𝐾𝑢 ∶=
{

(𝑞, 𝑑, ℎ) ∈ R𝐿𝛼 × R𝐿𝛽 ×𝐻 ∶ 𝑞′̃𝜃𝑞 ≥ 𝑢
}

.

which also coincides with the (local asymptotic) maximin power bound (cf. the parametric case in Theorem 13.5.5 of Lehmann and Romano (2005)).
13
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Fig. 3. Structural shock densities.
Notes: The plots show the different densities considered for simulating the structural shocks. Densities 2–4 are 𝑡-distributions normalized to have unit variance.
Densities 5–10 (and their names) are mixtures of normals taken from Marron and Wand (1992); see their table 1 for the definitions. Density 1 is the standard
Gaussian and omitted from the figure.

The matrix of interest 𝐴 is taken as a rotation matrix and parametrized by the Cayley transformation of a skew-symmetric
matrix (e.g. Gouriéroux et al., 2017):

𝐴 = 𝐴(𝛼) = (𝐼 −𝛺(𝛼))(𝐼 +𝛺(𝛼))−1 ,

where 𝛺(𝛼) is a skew-symmetric matrix (i.e. 𝛺(𝛼)′ = −𝛺(𝛼)) parameterized by 𝛼 which we sample at random from 𝛼 ∼ 𝑁(0, 𝐼𝐿𝛼 ).
In this setting there are no additional nuisance parameters which allows us to concentrate on the consequences of weak non-

Gaussianity on the semi-parametric score test and some alternative tests that have been proposed in the literature. In the simulation
designs below we include additional finite dimensional nuisance parameters (i.e. 𝛽 = (𝑏, 𝜎)) and investigate whether their inclusion
alters the empirical rejection frequency of the test.

For each specification we simulate 𝑆 = 5000 datasets and for each we compute the semi-parametric score statistic �̂��̂� as defined
in Eq. (14) following the Algorithm given in Section 3.27 We implement the log density score estimator (11) using 𝐵 = 4, 6 or 8
cubic splines and truncate the effective information matrix at machine precision, i.e. 𝜈1∕2𝑛 = 10−308.

In Table 2 we show the empirical rejection frequencies under the null corresponding to the 𝑆�̂� test with nominal level 0.05.
The columns correspond to the different choices for the densities 𝜖𝑖𝑘 for 𝑘 ≥ 2. The first column corresponds to the case where all
densities are Gaussian and the expected likelihood takes the same value for all 𝛼 ∈ R𝐿𝛼 , i.e. 𝛼 is unidentified. Nonetheless, we find
that the empirical rejection frequency of the score test is always close to the nominal level. This holds regardless of the sample size
𝑛, the dimension of the model 𝐾 and the number of cubic splines 𝐵.

Second, when the densities for 𝑘 ≥ 2 are non-Gaussian the empirical rejection frequency remains approximately at the nominal
level. Specifically, columns 2–4 show the results for the case where 𝜖𝑖𝑘 follows a Student’s 𝑡 distribution with decreasing degrees of
freedom (𝜈 = 15, 10, 5). No matter how close we get to the Gaussian density the empirical rejection frequency remains approximately
at the nominal level. Columns 5–10 show that similar properties hold for a variety of mixture distributions. Even for complicated
skewed bi-modal densities (e.g. columns 8–10) the 𝑆�̂� test has empirical rejection frequency close to nominal regardless of the
sample size.

27 To be specific, since the model does not contain any finite dimensional nuisance parameters step 1 in the algorithm can be skipped and the score statistic
14

s simply evaluated at 𝛼0.
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Table 2
Rejection frequencies �̂��̂� test for Baseline model.

𝑛 𝐾 𝐵 1 2 3 4 5 6 7 8 9 10

200 2 4 0.049 0.049 0.048 0.040 0.047 0.049 0.034 0.049 0.048 0.048
200 2 6 0.048 0.045 0.049 0.044 0.048 0.053 0.047 0.045 0.058 0.051
200 2 8 0.050 0.049 0.047 0.044 0.048 0.048 0.053 0.050 0.051 0.047
200 3 4 0.043 0.039 0.039 0.039 0.044 0.048 0.026 0.049 0.052 0.050
200 3 6 0.045 0.038 0.040 0.044 0.041 0.048 0.044 0.047 0.052 0.043
200 3 8 0.047 0.046 0.040 0.040 0.044 0.048 0.042 0.049 0.044 0.051
200 5 4 0.032 0.034 0.033 0.034 0.035 0.039 0.015 0.041 0.045 0.043
200 5 6 0.037 0.033 0.036 0.032 0.032 0.040 0.043 0.045 0.043 0.044
200 5 8 0.039 0.038 0.038 0.030 0.035 0.043 0.045 0.040 0.041 0.038

500 2 4 0.053 0.046 0.053 0.045 0.047 0.052 0.031 0.049 0.045 0.046
500 2 6 0.048 0.049 0.048 0.048 0.049 0.052 0.057 0.047 0.047 0.049
500 2 8 0.048 0.048 0.045 0.049 0.047 0.045 0.051 0.052 0.048 0.045
500 3 4 0.042 0.039 0.040 0.046 0.048 0.048 0.021 0.042 0.046 0.047
500 3 6 0.043 0.045 0.042 0.042 0.045 0.047 0.047 0.051 0.044 0.045
500 3 8 0.046 0.045 0.040 0.035 0.042 0.047 0.044 0.045 0.050 0.047
500 5 4 0.040 0.036 0.039 0.036 0.041 0.046 0.016 0.048 0.047 0.046
500 5 6 0.041 0.039 0.039 0.039 0.040 0.049 0.046 0.045 0.044 0.044
500 5 8 0.039 0.040 0.036 0.041 0.043 0.050 0.050 0.044 0.046 0.047

1000 2 4 0.042 0.052 0.040 0.055 0.047 0.052 0.046 0.052 0.046 0.048
1000 2 6 0.054 0.052 0.045 0.050 0.045 0.049 0.049 0.054 0.045 0.057
1000 2 8 0.047 0.048 0.048 0.047 0.048 0.052 0.050 0.048 0.055 0.052
1000 3 4 0.049 0.041 0.043 0.045 0.048 0.050 0.054 0.051 0.051 0.047
1000 3 6 0.048 0.044 0.038 0.040 0.050 0.047 0.046 0.049 0.051 0.045
1000 3 8 0.046 0.047 0.047 0.042 0.049 0.045 0.050 0.052 0.043 0.047
1000 5 4 0.038 0.035 0.038 0.047 0.041 0.044 0.050 0.046 0.047 0.048
1000 5 6 0.041 0.043 0.039 0.042 0.043 0.049 0.044 0.048 0.048 0.049
1000 5 8 0.042 0.042 0.038 0.039 0.048 0.050 0.049 0.047 0.045 0.049

Notes: The table shows the empirical rejection frequencies for the 𝑆�̂� test based on 𝑆 = 5000 Monte Carlo replications for the
baseline model 𝑌𝑖 = 𝐴−1𝜖𝑖. The test has nominal level 𝑎 = 0.05. The columns denote the sample size 𝑛, the dimension of the
model 𝐾, the number of B-splines 𝐵 and the choice for densities 𝜖𝑖𝑘, for 𝑘 ≥ 2, where the numbers correspond to the different
densities shown in Fig. 3.

Third, overall the number of cubic splines used has little influence on the results. A close inspection reveals that when the number
of cubic splines is equal to four the test becomes mildly conservative for some densities, therefore we use 𝐵 = 6 cubic splines in the
remaining exercises.

Overall, the asymptotic approximation in Theorem 1 seems to provide a good approximation for the finite sample behavior of
the semiparametric score test, at least for the densities shown in Fig. 3.

5.2. Comparison to alternative approaches

Next, we compare our semiparametric testing approach to different parametric approaches based on (psuedo) maximum
likelihood and the generalized method of moments. We concentrate on evaluating different tests based on their empirical rejection
frequency in the vicinity of Gaussianity.28

Alternative tests. Conceptually, there are two types of alternative tests that we consider: (i) tests that rely on estimates for 𝛼 and
(ii) tests that fix 𝛼 = 𝛼0 under the null. Clearly, from our intuitive discussion in Section 2 it follows that we expect tests that fix 𝛼
under the null to perform relatively well.

In category (i) we consider the standard maximum likelihood Wald (Wmle) and likelihood ratio (LRmle) tests based on the Student’s
𝑡 density for 𝜖𝑘. For densities 2–4 in Fig. 3 these tests correspond to exact maximum likelihood tests, with the caveat that when the
degrees of freedom increases the parameters 𝛼 become weakly identified, or not-identified. For all other densities these tests are
mis-specified.

In addition, we consider the pseudo-maximum likelihood Wald test (Wpmle) from Gouriéroux et al. (2017). This test is
asymptotically valid for a broader range of true distribution functions and amount to fixing the functional form of the densities
𝜂1,… , 𝜂𝐾 . We follow the implementation of Gouriéroux et al. (2017) and choose the Students 𝑡 density with five degrees of freedom
as the pseudo-likelihood and compute the Wald statistic based on this density.

Finally, we consider the recently developed GMM method of Lanne and Luoto (2021), which relies on higher order moments to
identify the parameters 𝛼. We use E𝜖2𝑖𝑘𝜖𝑖𝑗 = 0, E𝜖3𝑖𝑘𝜖𝑖𝑗 = 0 and E𝜖2𝑖𝑘𝜖

2
𝑖𝑗 = 1 as moment conditions for all 𝑗 ≠ 𝑘 and 𝑗, 𝑘 = 1,… , 𝐾. The

28 The recent simulation studies of Herwartz et al. (2019) and Moneta and Pallante (2022) provide further simulation evidence for existing methods, also
15

ocusing on estimation accuracy.
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Table 3
Rejection frequencies alternative tests for Baseline model.

Cat (i) 𝑛 1 2 3 4 5 6 7 8 9 10

Wmle 200 0.179 0.149 0.139 0.127 0.113 0.059 0.097 0.152 0.125 0.171
500 0.180 0.133 0.114 0.115 0.095 0.167 0.073 0.114 0.097 0.150
1000 0.188 0.101 0.079 0.074 0.061 0.405 0.058 0.124 0.103 0.170

LRmle 200 0.028 0.054 0.060 0.046 0.054 0.026 0.048 0.017 0.018 0.024
500 0.043 0.056 0.068 0.054 0.065 0.023 0.053 0.016 0.017 0.024
1000 0.049 0.065 0.063 0.061 0.053 0.031 0.051 0.022 0.018 0.025

Wpmle 200 0.375 0.211 0.198 0.086 0.141 0.058 0.105 0.495 0.998 0.467
500 0.485 0.264 0.204 0.073 0.163 0.030 0.079 0.973 0.999 0.870
1000 0.570 0.230 0.180 0.051 0.131 0.023 0.068 0.428 1.000 0.947

LRgmm 200 0.413 0.411 0.425 0.441 0.290 0.379 0.120 0.216 0.086 0.232
500 0.292 0.246 0.246 0.286 0.141 0.171 0.025 0.109 0.066 0.106
1000 0.232 0.181 0.155 0.176 0.074 0.115 0.014 0.068 0.059 0.049

Cat (ii) 𝑛 1 2 3 4 5 6 7 8 9 10

�̂��̂� 200 0.051 0.047 0.048 0.040 0.049 0.049 0.047 0.048 0.050 0.044
500 0.047 0.047 0.054 0.047 0.044 0.043 0.047 0.048 0.051 0.054
1000 0.047 0.043 0.046 0.049 0.048 0.047 0.050 0.044 0.049 0.043

LMmle 200 0.052 0.058 0.054 0.043 0.040 0.043 0.023 0.018 0.002 0.059
500 0.056 0.052 0.052 0.042 0.046 0.047 0.028 0.017 0.001 0.062
1000 0.062 0.052 0.050 0.049 0.039 0.040 0.029 0.016 0.002 0.052

LMplme 200 0.049 0.045 0.049 0.035 0.038 0.046 0.030 0.041 0.042 0.042
500 0.049 0.047 0.050 0.039 0.047 0.046 0.034 0.046 0.044 0.051
1000 0.046 0.048 0.053 0.044 0.041 0.046 0.034 0.042 0.052 0.047

Sgmm 200 0.188 0.209 0.248 0.326 0.236 0.264 0.195 0.108 0.059 0.130
500 0.094 0.105 0.123 0.223 0.116 0.133 0.103 0.057 0.028 0.064
1000 0.061 0.070 0.081 0.162 0.069 0.078 0.054 0.031 0.019 0.035

Notes: The table shows the empirical rejection frequencies based on 𝑆 = 5000 Monte Carlo replications for the baseline model
𝑌𝑖 = 𝐴−1𝜖𝑖, with 𝑛 = 500 and 𝐾 = 2. All tests have nominal level 𝑎 = 0.05. The first column indicates the test the second the
sample size. The remaining columns denote the choice for densities 𝜖𝑖𝑘, for 𝑘 ≥ 2, where the numbers correspond to the different
densities shown in Fig. 3.

MM likelihood ratio test is then computed as the rescaled difference between the unrestricted and restricted 𝐽 -statistics, based on
he 2-step GMM estimator (LRgmm), see Lanne and Luoto (2021) for details.29

In category (ii) we consider tests which fix 𝛼 = 𝛼0 under the null. Specifically, we include the standard LM test (LMmle) based
n the Student’s 𝑡 density where the degrees of freedom parameter is estimated from the data. Second, we consider the pseudo-
aximum likelihood version of the LM test (LMpmle) based on Gouriéroux et al. (2017), which fixes the degrees of freedom at

ive. Finally, we consider the GMM-based identification robust S-statistic (Sgmm) of Stock and Wright (2000), which was recently
onsidered in Drautzburg and Wright (2023) in the context of structural VAR models with non-Gaussian errors. We use the same
oment conditions as considered in Drautzburg and Wright (2023) for the LMgmm test.

ull rejection frequency comparison. We compare the empirical rejection frequencies of the different tests for the simulation designs
escribed in Section 5.1. These are shown in Table 3 for the case where 𝐾 = 2 and 𝑛 = 200, 500, 1000. Overall we find, perhaps not
urprisingly, that all tests in category (i) do not demonstrate the correct empirical rejection frequency when the true density is close
o Gaussian nor when the corresponding method is based on a mis-specified model. This shows that tests based on estimates for 𝛼
re generally unreliable. Tests in category (ii) overall demonstrate empirical rejection frequencies close to the nominal level.

More specifically, we find that the Wald tests (Wmle and Wpmle) tend to over-reject quite severely whilst the standard likelihood
atio test (LRmle) tends to under-reject for most densities, especially in the vicinity of the Gaussian density, as ought to be expected
iven the earlier evidence in shown in Fig. 1.

Finally, the GMM likelihood ratio test (LRgmm) also over-rejects, which confirms findings in Lanne and Luoto (2021) where the
Rgmm also over-rejects when the densities of the structural shocks are close to Gaussian.

In the second category the semi-parametric score test �̂��̂� (as proposed in this paper) and the pseudo maximum likelihood LM
est (LMpmle), inspired by Gouriéroux et al. (2017), both have near perfect empirical rejection frequencies across all densities. The
tandard LM test (LMmle) also performs reasonably well, but when the functional form of the true densities is very different from
he Student’s 𝑡 density (e.g. separate bi-modal, column 9) the test tends to under-reject.30 Finally, the GMM based 𝑆 test (Sgmm)
ends to over-reject for small samples, but for large samples it generally shows correct size except for densities with moderately
eavy tails such as the 𝑡(5) density (column 4). In these cases the Sgmm over-rejects which can be understood when realizing that
he GMM approach requires eight finite moments for inference when based on fourth-order moment restrictions. The 𝑡(5) density
oes not have eight finite moments.

29 Note that lower order moments are not required as the baseline model, 𝑌𝑖 = 𝐴−1𝜖𝑖 with 𝐴 a rotation matrix, implies that the observations have mean zero
and unit variance.

30 Recall here that this test is based on a misspecified density.
16
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Fig. 4. Power comparison baseline model.
Notes: Empirical power curves for the baseline model with 𝑘 = 2 and 𝑛 = 1000. Each plot corresponds to the choice for densities 𝜖𝑖𝑘, for 𝑘 ≥ 2, where the numbers
correspond to the different densities shown in Fig. 3. The solid red line corresponds to 𝑆�̂� , the dashed blue line to LMmle, the dotted pink line to LMpmle and
the dot-dashed green line to Sgmm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In sum, we recommend avoiding statistics that are based on estimates for 𝛼 as these are overall unreliable when the shock
istributions are close to Gaussian. All tests that fix 𝛼 under the null perform at least reasonably well.

ower comparison. We compare the power of all tests that fix 𝛼 under the null, that is �̂��̂� , LMmle, LMpmle and Sgmm.
We consider the case where 𝐾 = 2 and 𝑛 = 1000.31 In this setting 𝛼 is a scalar parameter and we fixed the true value at 0 (an

rbitrary choice). Fig. 4 shows the empirical rejection frequencies when we vary 𝛼 around 𝛼 = 0. Each point on the curve is based
n 𝑆 = 5000 simulations.

Two main findings stand out. First, for the Student’s 𝑡 densities 𝑡(15), 𝑡(10) and 𝑡(5) (panels 2–4) the standard LM test (LMmle)
hows the highest power. This is not surprising as for these data generating processes the LMmle test is correctly specified and hence
akes advantage of fitting the true densities using only a scalar parameter. That said, the semi-parametric score test (�̂��̂� ) and the
seudo maximum likelihood LM test (LMpmle) come reasonably close in terms of power.

31 Power comparisons for different 𝑛 can be found in the supplementary material.
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Table 4
Rejection frequencies �̂��̂� test for LSEM - OLS 𝛽.

𝑛 𝐾 𝑑 1 2 3 4 5 6 7 8 9 10

200 2 2 0.050 0.054 0.049 0.049 0.038 0.030 0.038 0.043 0.057 0.046
200 2 3 0.049 0.054 0.054 0.048 0.046 0.059 0.042 0.035 0.029 0.052
200 3 2 0.056 0.058 0.050 0.062 0.059 0.031 0.018 0.038 0.047 0.050
200 3 3 0.063 0.054 0.057 0.065 0.060 0.025 0.023 0.051 0.058 0.049
200 5 2 0.098 0.104 0.109 0.142 0.094 0.051 0.064 0.054 0.023 0.057
200 5 3 0.116 0.116 0.131 0.155 0.103 0.039 0.029 0.061 0.026 0.072

500 2 2 0.049 0.050 0.039 0.042 0.041 0.027 0.029 0.036 0.026 0.029
500 2 3 0.048 0.041 0.047 0.047 0.037 0.029 0.024 0.034 0.050 0.051
500 3 2 0.051 0.051 0.048 0.040 0.037 0.028 0.029 0.038 0.022 0.039
500 3 3 0.048 0.050 0.047 0.051 0.053 0.028 0.048 0.041 0.037 0.036
500 5 2 0.071 0.078 0.068 0.081 0.049 0.023 0.060 0.042 0.039 0.038
500 5 3 0.067 0.068 0.080 0.085 0.063 0.022 0.045 0.049 0.027 0.051

1000 2 2 0.040 0.051 0.049 0.029 0.043 0.032 0.033 0.045 0.049 0.041
1000 2 3 0.048 0.044 0.040 0.040 0.040 0.030 0.038 0.046 0.030 0.044
1000 3 2 0.045 0.038 0.043 0.034 0.033 0.032 0.034 0.040 0.039 0.042
1000 3 3 0.044 0.045 0.043 0.036 0.030 0.032 0.035 0.040 0.024 0.034
1000 5 2 0.059 0.051 0.057 0.051 0.039 0.024 0.063 0.030 0.028 0.036
1000 5 3 0.057 0.058 0.056 0.050 0.035 0.018 0.046 0.036 0.029 0.040

Notes: The table shows the empirical rejection frequencies for the 𝑆�̂� test based on 𝑆 = 5000 Monte Carlo replications for the
linear simultaneous equations model. The test has nominal level 𝑎 = 0.05. The columns denote the sample size 𝑛, the dimension
of the model 𝐾, the number of covariates 𝑑 and the choice for densities 𝜖𝑖𝑘, for 𝑘 ≥ 2, where the numbers correspond to the
different densities shown in Fig. 3. The 𝑆�̂� test was implemented using 𝐵 = 6 B-splines.

Second, for all other densities, i.e. different mixtures of normals in panels 5–10, the semi-parametric score test (�̂��̂� ) shows the
highest power. Sometimes the difference with the other tests is not very large, but for instance for bi-modal densities (panels 8–10)
the differences are substantial.

Overall, the good power of the �̂��̂� test corresponds to the theoretical finding that for non-singular information matrices the test
is locally asymptotically uniformly most powerful in the class of (locally asymptotically) unbiased tests.

Besides the �̂��̂� test, we note that the pseudo maximum likelihood LM test and the GMM based 𝑆 test shows quite promising power
for most of the densities considered. Neither of these dominates the other. The caveat for the GMM test is that it is size-distorted
for moderately heavy tails (panel 4).

5.3. Linear simultaneous equations model

Next, we discuss the simulation results for the general linear simultaneous equations model (3). The dimensions of the design
are similar as above with the addition that we consider 𝑑 = 2, 3 for the number of covariates. We now parametrize 𝐴(𝛼, 𝜎)−1 =
𝛴1∕2(𝜎)𝑅(𝛼) as in Example 3, where 𝛴1∕2 is lower triangular and the rotation matrix 𝑅 remains to be specified by the Cayley
transform. The explanatory variables are drawn from the standard normal distribution.

The vector of finite dimensional nuisance parameters 𝛽 now includes 𝜎 = vech(𝛴1∕2) and 𝑏 = vec(𝐵). Our main theoretical result
in Theorem 1 permits any

√

𝑛-consistent estimator of 𝛽. Obviously, ordinary least squares estimates are attractive for their simplicity,
ut given the non-normality of the structural shocks these estimators may be improved. Therefore we also consider estimating 𝛽 by
ne-step-efficient estimates (e.g. van der Vaart, 2002, Section 7.2), which are easy to compute here since the effective score of 𝛽 is
omputed anyway to construct the score test.

Similar to before, the first error 𝜖𝑖,1 follows a Gaussian distribution and the different densities from Fig. 3 are assigned to the
ther error terms. For each specification we simulate 𝑆 = 5000 datasets and for each sample we compute the semi-parametric score
tatistic using the Algorithm in Section 3.

ull rejection frequency results. The empirical rejection frequencies are shown in Tables 4 and 5 for the OLS and one-step efficient
stimates for 𝛽, respectively.

We find that for all densities the rejection frequencies of the �̂��̂� test are generally close to the nominal level. That said, there is
more variation in the empirical rejection frequencies compared to Table 2, indicating that the estimation of the finite dimensional
nuisance parameters does have consequences.

Starting with Table 4 where 𝛽 is estimated by OLS. We find that the empirical rejection frequency of �̂��̂� is (approximately)
the same regardless of how close the densities of 𝜖𝑖𝑘 are to the Gaussian density. Specifically, moving from columns 1–4 (i.e. from
Gaussian to 𝑡(5)) we see virtually no changes in the rejection frequencies. This holds for all specifications considered and highlights
the main point of this paper: the semi-parametric score test yields reliable inference even when 𝛼 is not, or poorly, identified.

Depending on the dimension of 𝛽 we do find distortions in the empirical rejection frequencies for small sample sizes, most notably
hen 𝐾 = 5 and 𝑛 = 200. In this setting 𝛽 is of dimension 20 or 25 depending on 𝑑 = 2, 3, and we see that the test often over-rejects.

This does not hold for all densities considered, but for Gaussian, Student’s 𝑡 and kurtotic unimodal densities the test over-rejects.
hen 𝑛 increases this over-rejection vanishes.
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Table 5
Rejection frequencies �̂��̂� test for LSEM – One-step 𝛽.

𝑛 𝐾 𝑑 1 2 3 4 5 6 7 8 9 10

200 2 2 0.067 0.080 0.068 0.081 0.070 0.031 0.054 0.056 0.061 0.051
200 2 3 0.068 0.074 0.076 0.072 0.066 0.071 0.057 0.047 0.026 0.061
200 3 2 0.095 0.106 0.104 0.120 0.090 0.041 0.026 0.059 0.036 0.061
200 3 3 0.099 0.103 0.105 0.114 0.098 0.037 0.028 0.071 0.035 0.064
200 5 2 0.187 0.226 0.247 0.264 0.178 0.063 0.040 0.072 0.020 0.068
200 5 3 0.212 0.238 0.262 0.289 0.193 0.064 0.049 0.089 0.036 0.088

500 2 2 0.062 0.062 0.068 0.067 0.057 0.034 0.049 0.041 0.021 0.037
500 2 3 0.059 0.064 0.071 0.069 0.056 0.031 0.019 0.046 0.031 0.051
500 3 2 0.078 0.078 0.081 0.079 0.066 0.026 0.024 0.047 0.021 0.045
500 3 3 0.076 0.081 0.091 0.088 0.068 0.025 0.029 0.050 0.042 0.042
500 5 2 0.112 0.149 0.158 0.181 0.097 0.036 0.035 0.060 0.030 0.044
500 5 3 0.129 0.151 0.168 0.180 0.101 0.033 0.023 0.069 0.031 0.058

1000 2 2 0.059 0.059 0.065 0.048 0.049 0.025 0.021 0.055 0.050 0.038
1000 2 3 0.060 0.060 0.060 0.068 0.057 0.038 0.052 0.050 0.027 0.051
1000 3 2 0.061 0.067 0.068 0.065 0.053 0.023 0.048 0.047 0.023 0.045
1000 3 3 0.064 0.066 0.072 0.070 0.054 0.040 0.016 0.047 0.022 0.041
1000 5 2 0.091 0.105 0.108 0.111 0.069 0.032 0.026 0.042 0.029 0.043
1000 5 3 0.085 0.102 0.120 0.103 0.065 0.026 0.020 0.047 0.026 0.050

Notes: The table shows the empirical rejection frequencies for the �̂��̂� test based on 𝑆 = 5000 Monte Carlo replications for the linear
simultaneous equations model (3). The test has nominal level 𝑎 = 0.05. The columns denote the sample size 𝑛, the dimension of
the observations 𝐾, the number of covariates 𝑑 and the choice for densities 𝜖𝑖𝑘, for 𝑘 ≥ 2, where the numbers correspond to the
different densities shown in Fig. 3. The 𝑆�̂� test was implemented using 𝐵 = 6 B-splines and using OLS estimates for 𝛽.

For the one-step efficient estimator for 𝛽 the results are shown in Table 5. We find that on average the empirical rejection
frequencies are larger when compared to the OLS estimator. Notably, when 𝑛 is small over-rejection becomes more severe. Again,
we find that this holds uniformly across all considered densities, i.e. the distortions do not depend on being close to Gaussianity,
and the empirical rejection frequencies improve when 𝑛 increases.

Power results. Next, we investigate the power of the �̂��̂� test for the LSEM model. We again consider the case where 𝐾 = 2, 𝑑 = 2
nd 𝑛 = 1000, which allows us to compare the results with those for the baseline model. The power curves are shown in Fig. 5 for
oth OLS and one-step estimates for 𝛽.

First, when comparing Fig. 5 to the case without nuisance parameters (i.e. Fig. 4) we find that the power of the test is reduced
hen we include nuisance parameters. Second, the power of the test using the one-step efficient estimates (dotted blue line) is
igher when compared to the same test evaluated at OLS estimates. This holds for all densities considered.

Based on these results we recommend using OLS estimates for 𝛽 when the sample size is small (e.g. 𝑛 = 200, 500), but for larger
ample sizes the one-step efficient estimates are preferable.

. Returns to schooling

In this section, we adopt the semi-parametric score test to construct confidence bands for the effect of education on wages. To
o so, we consider a special case of the LSEM model (3): the linear instrumental variable (IV) model, which has been the workhorse
odel in the returns to schooling literature (e.g. Card, 2001). We show that the presence of non-Gaussian errors allows us to use the

core test to (i) obtain tighter confidence bands for the returns to schooling under the assumption that the instrument is exogenous
nd (ii) test and correct for possibly endogenous instruments.

We start by showing how the standard linear IV model with control variables can be written as a special case of the general
odel (3). Let 𝑦𝑖 be the dependent variable of interest, 𝑤𝑖 the scalar endogenous regressor, 𝑧𝑖 the 𝑑𝑧 × 1 vectors of instruments and
𝑖 the 𝑑 × 1 vector of control variables. The linear IV model is given by

𝑦𝑖 = 𝛼1𝑤𝑖 + 𝑏′𝑦𝑋𝑖 + 𝑢𝑖
𝑤𝑖 = 𝜋′𝑧𝑖 + 𝑏′𝑤𝑋𝑖 + 𝑣𝑖
𝑧𝑖 = 𝐵𝑧𝑋𝑖 + 𝑒𝑖

, (21)

here 𝑢𝑖, 𝑣𝑖 and 𝑒𝑖 are the error terms which are mean zero with variances 𝜎2𝑢 , 𝜎2𝑣 and 𝛴𝑒. Further, 𝑢𝑖 and 𝑣𝑖 are correlated with
orrelation parameter 𝜌 which captures the endogeneity in the model and prevents us from using basic least squares to estimate
1. The standard identifying assumption is that 𝑒𝑖 is uncorrelated with 𝑢𝑖 and 𝑣𝑖 such that the instruments given the controls are
ncorrelated with the errors.

To write the model in our general notation we first define
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Fig. 5. Power LSEM.
Notes: Empirical power curves for the LSEM model with 𝑘 = 2, 𝑑 = 2 and 𝑛 = 1000. Each plot corresponds to the choice for densities 𝜖𝑖𝑘, for 𝑘 ≥ 2, where the
numbers correspond to the different densities shown in Fig. 3. The solid red line corresponds to the empirical rejection frequency of the �̂��̂� test where �̂� = (𝛼0 , 𝛽),
with 𝛽 the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the �̂��̂� test where �̂� = (𝛼0 , 𝛽), with 𝛽 the one-step efficient
MLE estimator. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where 𝛴𝑒 = 𝐿𝑒𝐿′
𝑒 with 𝐿𝑒 lower triangular. To accommodate our general framework we impose that the components of 𝜖𝑖 =

(𝜖𝑢𝑖 , 𝜖
𝑣
𝑖 , 𝜖

𝑒
𝑖 )

′ are mutually independent, with mean zero and unit variance. On this we note that the assumption that the instruments
are independent of the error terms 𝑢𝑖 and 𝑣𝑖 is more commonly imposed (e.g. Hansen et al., 2010; Cattaneo et al., 2012), and below
we adopt specification tests to assess whether this assumption is reasonable.

Letting 𝑌𝑖 = (𝑦𝑖, 𝑤𝑖, 𝑧′𝑖)
′ we have

𝑌𝑖 = 𝐵𝑋𝑖 + 𝐴−1𝜖𝑖 , where 𝐴−1 =

⎡

⎢

⎢

⎢

⎣

𝜎𝑢 + 𝛼1𝜎𝑣𝜌 𝛼1
√

1 − 𝜌2𝜎𝑣 𝛼1𝜋′𝐿𝑒
𝜌𝜎𝑣

√

1 − 𝜌2𝜎𝑣 𝜋′𝐿𝑒
0 0 𝐿𝑒

⎤

⎥

⎥

⎥

⎦

, (22)

and we set 𝑏 = vec(𝐵) and 𝜎 = (𝜋, 𝜎𝑢, 𝜎𝑣, 𝜌, vech(𝐿𝑒)′)′ to summarize the well identified parameters in our general notation. Model
(22) is a special case of the LSEM model (3).
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Table 6
Confidence intervals: returns to schooling.
Method Estimate Conf interval Length

�̂��̂� – [0.068 , 0.105] 0.037
AR – [0.041 , 0.127] 0.086
OLS 0.076 [0.068 , 0.084] 0.016
2SLS 0.084 [0.040 , 0.127] 0.087

Notes: We report the 95% confidence bands for the effect of education on log wages using
the proximity to college interacted with parental education as instrument. The sample size is
𝑛 = 2320 and the model includes control variables for experience, race, smsa and region. The
OLS and 2SLS confidence intervals are based on inverting the 𝑡-statistic under a normal limiting
distribution. The confidence bands corresponding to the semi-parametric score test are based on
the �̂�𝛾 implemented using 𝐵 = 6 B-splines and OLS estimates for 𝛽. The AR confidence band is
based on inverting the Anderson-Rubin statistic.

The parameter 𝛼1 in the linear IV model may not be identified. The standard requirement is that 𝜋 ≠ 0. However, the current
formulation of the linear IV model shows that with non-Gaussian errors we may be able to locally identify 𝛼 even when the
nstruments are irrelevant (e.g. Comon, 1994, Theorem 11). More generally, when the instruments are weak but there is a large
egree of non-Gaussianity (relative to sampling variation) we may be able to precisely identify 𝛼 as the instruments are effectively
nly used to pin down the desired permutation in 𝐴.

We emphasize that Theorem 1 ensures that under weak instrument asymptotics, i.e. 𝜋 = 𝑐∕
√

𝑛 as in Staiger and Stock (1997),
the null rejection probability of the semi-parametric score test for testing 𝐻0 ∶ 𝛼 = 𝛼0 does not exceed the nominal level. At the
same time we now have two possible identifying sources: the instruments and the non-Gaussian errors. In this sense the model is
over-identified and we use this feature below to test the instrument exogeneity condition.

Data. Given this set-up we revisit the returns to schooling problem considered by Card (1995), which uses 1976 wage and schooling
data from the 1966 cohort from the NLS to estimate the effect of education on wages. Specifically, for model (22) we set 𝑦𝑖 to be
the log wage for individual 𝑖, 𝑤𝑖 is years of eduction, 𝑧𝑖 is an indicator for growing up near a 4 year college interacted with parental
education and 𝑋𝑖 including measures for race, experience, SMSA and region. We refer to Card (2001) for a more general discussion
of the literature.

Confidence intervals for the returns to schooling. We start by constructing confidence intervals for 𝛼1 in the model (22) by inverting
the semi-parametric score test �̂��̂� for the null hypothesis 𝐻0 ∶ 𝛼1 = 𝛼1,0. We compare this approach to inverting the standard the
-statistic for OLS and 2SLS, as well as inverting the weak instrument robust Anderson-Rubin (AR) statistic. The latter does not
xploit non-Gaussian errors but has correct null rejection probability under weak instrument asymptotics (e.g. Staiger and Stock,
997).

Table 6 shows the different confidence intervals together with the point estimates for OLS and 2SLS. We find that the OLS
stimate is smaller when compared to the IV estimate and also has a very small confidence interval resonating with the general
indings from Card (2001) that OLS is downward biased and having causal estimates presents a cost in terms of accuracy. The 2SLS
nd AR confidence bands are very similar as the instrument in this application is strong (the effective 𝐹 -statistic of Olea and Pflueger
2013) is equal to 𝐹 = 80.25 far exceeding the generalized critical value of 23).

The semi-parametric score test �̂��̂� shows the smallest (non – OLS) confidence band for the effect of education on wages
0.068, 0.105], which is considerably smaller when compared to the AR confidence intervals. This reduction in length comes from
xploiting non-Gaussian errors in addition to the instrumental variable. Fig. 6 shows kernel density estimates for the residuals from
he model, i.e. 𝜖𝑖 = �̂�𝑉𝑖, where �̂� = 𝐴(�̃�1, �̂�) with �̃�1 being the value that minimizes the score statistic. We see that there are modest
eviations from the Gaussian distribution which are picked up by the score test and explain the shorter length of the confidence
nterval.

nstrument validity. A large part of the discussion in Card (1995) and the subsequent literature is devoted to evaluating the validity
f the instruments. Several arguments are presented that question the exogeneity of the proximity to schooling instrument. For
nstance, the presence of a college may be associated with higher school quality in nearby primary and secondary schools, or with
eographical variation in wages. Both are not included in the model specification and hence such associations would invalidate the
nstrument.

To investigate whether the instruments are indeed invalid we extend the model specification for 𝑧𝑖 in (21) to allow for correlation
ith the error term 𝑢𝑖.

𝑧𝑖 = 𝐵𝑧𝑋𝑖 + (𝛼2∕𝜎𝑢)𝑢𝑖 + 𝑒𝑖 ,

here 𝛼2 captures the correlation of the error term with the instrument. The scaling by 𝜎𝑢 is not necessary but makes the LSEM
orm below slightly more attractive. When 𝛼2 = 0 the instrument is exogenous.

With this extension the LSEM parametrization of the IV model becomes

𝑌𝑖 = 𝐵𝑋𝑖 + 𝐴−1𝜖𝑖 , 𝐴−1 =

⎡

⎢

⎢

⎢

𝜎𝑢 + 𝛼1𝜎𝑣𝜌 + 𝛼1𝜋′𝛼2 𝛼1
√

1 − 𝜌2𝜎𝑣 𝛼1𝜋′𝐿𝑒
𝜌𝜎𝑣 + 𝜋′𝛼2

√

1 − 𝜌2𝜎𝑣 𝜋′𝐿𝑒

⎤

⎥

⎥

⎥

, (23)
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Fig. 6. Densities: returns to schooling.
Notes: We show the kernel density estimates for 𝜖𝑖,1, 𝜖𝑖,2 and 𝜖𝑖,3 (blue line) together with the pdf of the standard normal distribution (red line). The error
estimates are obtained as 𝜖𝑖 = �̂�𝑉𝑖, where �̂� = 𝐴(�̃�1 , �̂�) with �̃�1 being the value that minimizes the score statistic. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

and we test 𝐻0 ∶ 𝛼1 = 𝛼1,0, 𝛼2 = 𝛼2,0 for different values of 𝛼0 = (𝛼1,0, 𝛼2,0). It is worth pointing out that the inclusion of the additional
parameters 𝛼2 prevents the use of standard IV methods, i.e. non-Gaussian errors are needed to distinguish between difference values
for 𝛼. To do this we use the semi-parametric score test and compare our results to some alternative methods that were discussed in
the simulation section.

Fig. 7(a) shows the joint confidence set for 𝛼1 and 𝛼2 that was obtained by inverting �̂��̂� . We find that the hypothesis that the
instrument is exogenous (i.e. 𝛼2 = 0) cannot be rejected, and the 95% confidence set for 𝛼2 is reasonably tight between approximately
−0.2 and 0.25. Most importantly, despite relaxing the instrument validity assumption the implied returns to education are very
similar: the confidence set indicates with 95% confidence that the effect of education is between 0.06 and 0.12, only a mild increase
when compared to the model that assumes instrument exogeneity.

To showcase the advantage of the semi-parametric score test we also computed a confidence set for 𝛼 by inverting the pseudo
maximum likelihood LM test LMpmle that was discussed in the simulation study, see Fig. 7(b). We find that the confidence set is
considerably larger in volume.

Specification tests. We re-emphasize that the semi-parametric score test was build on the underlying assumption that the components
of the errors 𝜖𝑖 are independent. For the returns to schooling application this implied the errors 𝜖𝑢𝑖 , 𝜖

𝑣
𝑖 and 𝜖𝑧𝑖 that determine

the structural errors and the instruments are independent. To investigate whether this is a plausible assumption we apply the
permutation test for mutual independence as proposed by Matteson and Tsay (2017). The 𝑝-value for the test is 0.120 and we
may conclude that the independence assumption is not rejected for this application, though the evidence is not overwhelming.

In the supplementary material we consider a more general LSEM model which allows for conditional heteroskedasticity. There
we repeated the analyses presented here with the difference that the scalings 𝜎𝑢, 𝜎𝑣 and 𝐿𝑒 are allowed to depend on 𝑋𝑖. We find
that resulting confidence set for 𝛼 = (𝛼1, 𝛼2) is quite similar when compared to its homoskedastic counterpart.

7. Conclusion

In this paper we highlighted a weak identification problem that can arise when non-Gaussianity is used to identify parameters
in LSEMs. The consequence of this problem is that several existing inference methods suffer from size distortions when the true
distributions are close to Gaussian.

To reduce this problem we proposed a semi-parametric score statistic for testing hypotheses in LSEMs. Under mild regularity
conditions we demonstrated that the semi-parametric score test is locally robust in the sense that its null rejection probability is
22
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Fig. 7. Confidence sets: returns to schooling.
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he correlation between the instrument (proximity to schooling interacted with parental education) and the error of the log wage equation. The red line indicates
he confidence interval under the restriction of instrument exogeneity, i.e. 𝛼2 = 0. Figure (a) shows the result after inverting the weak non-Gaussianity robust
est �̂��̂� . Figure (b) shows the result after inverting the pseudo MLE LM test based on the Student’s 𝑡 density. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

o greater than the nominal level under parameter sequences that can be described by local deviations from the true parameters
hich satisfy the null hypothesis (i.e. under weak identification asymptotics). A simulation study shows that our asymptotic theory
rovides an accurate approximation to the finite sample performance of our test.

While we have restricted our treatment to models where the observations were independently distributed across entities, we note
hat a similar approach may be considered for dynamic models, but this will require extending our results to allow for non-i.i.d.
ata. Further, whilst our work shows that the semi-parametric score test is robust under weak identification asymptotics, no global
niformity results are derived. These extensions are left for future work.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2023.105647.
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