

This file was downloaded from BI Open, the institutional repository (open access) at
BI Norwegian Business School https://biopen.bi.no.

It contains the accepted and peer reviewed manuscript to the article cited below. It
may contain minor differences from the journal's pdf version.

Alexandre Lima, Valeria Borodin, Stéphane Dauzère-Pérès & Philippe

Vialletelle (2020) A sampling-based approach for managing lot release in time

constraint tunnels in semiconductor manufacturing, International Journal of

Production Research, DOI: 10.1080/00207543.2020.1711984

Copyright policy of Taylor & Francis, the publisher of this journal:

'Green' Open Access = deposit of the Accepted Manuscript (after peer review but prior
to publisher formatting) in a repository, with non-commercial reuse rights, with an
Embargo period from date of publication of the final article. The embargo period for
journals within the Social Sciences and the Humanities (SSH) is usually 18 months

http://authorservices.taylorandfrancis.com/journal-list/

https://doi.org/10.1080/00207543.2020.1711984
http://authorservices.taylorandfrancis.com/journal-list/

A Sampling-Based Approach for Managing Lot Release in Time
Constraint Tunnels in Semiconductor Manufacturing

Alexandre Limaa,b, Valeria Borodina, Stéphane Dauzère-Pérèsa,c and Philippe Vialletelleb

aMines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS,
CMP, Department of Manufacturing Sciences and Logistics, F-13541 Gardanne, France
E-mail: {borodin, dauzere-peres}@emse.fr
b Advanced Engineering Methods Department, ST Microelectronics, F-38926 Crolles, France
Email: {alexandre.lima, philippe.vialletelle}@st.com
c Department of Accounting, Auditing and Business Analytics, BI Norwegian Business School,
0484 Oslo, Norway

ABSTRACT
For the sake of product yield and quality considerations, Time Constraints (TCs) are imposed
between process operations in various multi-product manufacturing systems. Often spanning
a number of operations, time constraints tend to follow each other in close succession and
overlap, forming thus Time Constraint Tunnels (TCTs). The regulation problem of releasing
lots in these time constraint tunnels is particularly challenging in semiconductor manufactur-
ing systems, because of re-entrant flows, machine heterogeneity and High Mix Low Volume
(HM-LV) production configurations, which are typical in many wafer fabrication facilities. In
such an evolving and time-varying context, this paper proposes a sequential sampling-based
approach to estimate the probability that, prior to its release, a lot leaves a given time con-
straint tunnel on time. The proposed approach proves to be competitive in various respects by:
(i) taking into account industry specific features, (ii) being industrially tractable, and (iii) be-
ing sensitive and responsive to the current manufacturing system. Based on real-life instances,
numerical experiments highlight the computational effectiveness and the industrial soundness
of the proposed problem modeling together with the solution approach.

KEYWORDS
Time constraints; Probability estimation; Sequential sampling-based approach;
Semiconductor manufacturing.

1. Introduction

Semiconductor manufacturing is characterized by long product cycle times (2-3 months) and
a very fast product turnover with new highly differentiated products being released every 4-6
months. This makes the fabrication environment, already constrained by numerous manufac-
turing requirements, difficult for the management of capacity and production planning. In
particular, small semiconductor plants (called fabs for short) operate in High Mix and Low
Volume (HM-LV) production modes, often using heterogeneous sets of machines, purchased
over time to complete numerous manufacturing process operations. These factors combined
with a high level of automation and the complexity of product routes, often including sev-
eral hundred operations and re-entrant flows, make semiconductor manufacturing the most
complex industrial fabrication process.

Wafers have become extremely sensitive to external conditions, even in controlled envi-
ronments, with topological dimensions being only a few atom layers thick. By letting a lot
out in the open in the clean room for a certain period of time between process operations,

natural phenomena can occur and affect the wafer chemical properties or degrade its topol-
ogy. Such phenomena include, but are not limited to, oxidation, crystal formation and ion
migration. The activation of these physical processes might be prohibitive for the subsequent
wafer processing. If that is the case, wafer are scrapped or reprocessed, if possible. In order
to prevent the chemical and physical degrading reactions, time limits are imposed between
key operations. Hence, let us define a Time Constraint (TC) by a start operation and an end
operation, jointly with a time limit.

step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8 step 9

secure
area

secure
area

Time Constraint 1

Time Constraint 2

Time Constraint Tunnel 1

Time Constraint 3

Time Constraint 4

Time Constraint Tunnel 2

Figure 1.: An illustrative example of two successive TCTs (Lima et al. 2019)

Due to the size shrinkage of transistors, the increased sensitivity leads to a growing number
of time constraints, especially for the smallest geometries. This multitude of time constraints
overlap and follow each other in close succession, as depicted in Figure 1. A succession
of Time Constraints has been named Time Constraint Tunnel (TCT) in the related literature
(Sadeghi et al. 2015; Lima et al. 2017, 2019).

TCTs are characterized by three elements: (i) a start operation, (ii) an end operation, and
(iii) a set of time constraints. The entrance of each tunnel is called a secure area, since it is the
only place where a lot (i.e. a set of wafers) can wait without risking product degradation. The
analogy with tunnels is notable, as once a lot enters a TCT, no turning back is possible like
in a real-life tunnel. No significant slowing down or stopping, it can only push forward until
the exit. By the same token, TCTs are managed on the shop floor following this analogy. Like
at a toll at the entrance of a tunnel, lots are held before a TCT in a secure area, until the way
is clear, i.e. the current capacity utilization of the tunnel makes it safe and able to suitable
perform all of their operations so that it comes out on time.

The management of TCTs at the operational level consists in regulating the release of
lot in TCTs. This task is usually performed manually, through human supervision with a
central manager having the discretion of determining what the way is clear means. Note
that the management setup is limited as tunnel regulators, by relying on acquired knowledge
and empirical evidence to identify tunnels and to know when and how many lots to release.
This task is extremely stressful and time consuming for managers, given the large number of
tunnels to be handled (6,000 tunnels divided in 270 classes in the fab of STMicroelectronics
Crolles).

This paper addresses the problem of TCT management in an industrial HM-LV context
and aims at supporting the dispatching regulation of a lot in a given TCT. Carried out in the
continuity of the research stream initiated in (Sadeghi et al. 2015; Lima et al. 2017, 2019), the
contribution of this paper is multiple. First, it improves the accuracy of the problem modeling
proposed in (Lima et al. 2017), by explicitly integrating a priority-based dispatching policy
widely adopted in semiconductor fabs. Second, an accelerated version of the sampling-based
approach presented in (Lima et al. 2017) is developed. This new version is empirically shown
to be able to handle the curse of problem dimensionality in highly time-varying industrial
settings. Extensive numerical experiments conducted on industrial data show the applicability
of the proposed approach.

The content of this paper is structured as follows. Section 2 gives a review of the state of the
art related to time constraint management. Section 3 contextualizes and states the problem un-

2

der study. The underlying graph-based modeling and its evaluation are described in Section 4.
Section 5 provides an accelerated version of the sampling-based approach proposed in (Lima
et al. 2019). Extensive numerical experiments are conducted on real industrial instances in
Section 6, and the obtained results are reported and analyzed. The practical relevance of the
proposed sampling-based approach is discussed in Section 7. Some concluding remarks are
presented in Section 8, including an outline of topics for future research.

2. Literature review

The related literature on time constraint management heavily leans towards semiconductor
manufacturing oriented topics. However, this finding does not circumscribe the scope of
TC applications. Several other production systems are also subject to these scheduling con-
straints, such as the automotive (Lee et al. 2018), the steel and metal industries (Feng, Chu,
and Che 2018; Wu et al. 2016), and the health-care industry (Barz and Rajaram 2015).

The notion of time constraint strictly speaking is not conventional and can be found in
the literature under different denominations, namely queue time or process queue time (Wu,
Lin, and Chien 2012; Kobayashi, Kuno, and Arima 2013; Wu et al. 2016; Lee, Chen, and
Wu 2005; Wu, Lin, and Chien 2010; Wu et al. 2012; Yurtsever, Kutanoglu, and Johns 2009),
time window (Feng, Chu, and Che 2018; Wang et al. 2018; Cho et al. 2014; Jung et al. 2014),
time lag or time link (Wang, Huang, and Li 2018; Maleck and Eckert 2017; Knopp, Dauzère-
Pérès, and Yugma 2017). To the best of our knowledge, the term Time Constraint Tunnel has
itself been introduced for the first time by Sadeghi et al. (2015) and extended in our previous
work (Lima et al. 2017, 2019). Note that simpler representations of successions of TCs have
been the subject of several publications, which either deal with only two consecutive time
constraints (Wang, Huang, and Li 2018; Feng, Chu, and Che 2018; Wu, Lin, and Chien 2012;
Maleck et al. 2017; Maleck and Eckert 2017; Pappert et al. 2016; Kitamura, Mori, and Ono
2006; Robinson 1998; Lee, Chen, and Wu 2005; Wu, Lin, and Chien 2010; Wu et al. 2012;
Yurtsever, Kutanoglu, and Johns 2009; Jung et al. 2014), or focus on a single critical TC under
multiple process queue time constraints (Wu et al. 2016).

The problem of TCT management is mainly handled in the framework of the following
well-known classes of problems:

• Classical scheduling problem, where the goal is to assign tasks to resources while opti-
mizing a set of criteria, such as the makespan (Kim and Lee 2017), maximum tardiness
(Yugma et al. 2012), or the overall TC violation (Knopp, Dauzère-Pérès, and Yugma
2017),
• Capacity planning problem, where the goal is to determine the maximum capacity to

be allowed in a tunnel without any TC violation (Pappert et al. 2016; Kitamura, Mori,
and Ono 2006; Johnzén, Dauzère-Pérès, and Vialletelle 2011; Robinson 1998),
• Production control problem, which deals with the production rate, while satisfying TCs

(Wu, Lin, and Chien 2012; Maleck and Eckert 2017; Wu et al. 2016; Lee, Chen, and
Wu 2005; Wu, Lin, and Chien 2010; Wu et al. 2012; Cho et al. 2014).

Within the framework of current industrial contexts, the previously mentioned capacity
planning approaches seem to be phasing out for managing TCTs. This is due in part to the
static nature of the problem statement, that mostly seeks to minimize the violation of TCTs on
average, and are more suitable for the tactical decision level rather than to support operational
decisions. Capacity planning approaches can be completely helpless in a very time-varying
context. It is worth noting that, the high variability of the product flow and the high rate of
both planned and unplanned machine downtimes can entirely change the capacity landscape

3

of the fabrication plant in a relatively short time.
As far as the solution methods are concerned, exact resolution methods quickly prove to

be computationally prohibitive, due to the curse of dimensionality and the large size of in-
dustrial instances (Wu, Lin, and Chien 2012; Wu et al. 2016). As such, exact Mixed Integer
Linear Programming (MILP) based methods (Maleck et al. 2017; Jung et al. 2014; Cho et al.
2014) and branch-and-bound schemes (Kim and Lee 2017) do not provide convenient re-
sults without a drastic trade-off in terms of execution time and solution quality (Cho et al.
2014), being viable only for unrealistically small instances (Kim and Lee 2017). However,
hybridized MILP approaches combined with the Lagrangian relaxation (Kaihara, Kurose, and
Fujii 2012) or constructive heuristics (Wang, Huang, and Li 2018; Johnzén, Dauzère-Pérès,
and Vialletelle 2011; Maleck and Eckert 2017) can improve the decision support potential of
exact solution methods. Dynamic programming and queuing-based paradigms also received
much attention, despite the limitations they posed relative to their reduced scalability and ba-
sic problem assumptions, e.g. arrival rates are assumed to be known or predictable (Barz and
Rajaram 2015; Krämer, Hafsi, and Bai 1997; Feng, Chu, and Che 2018; Wu, Lin, and Chien
2012, 2010; Wu et al. 2012, 2016; Kitamura, Mori, and Ono 2006).

To better deal with the intractability of TC management and react in a time-varying TC
environment, constructive heuristics (Wang, Huang, and Li 2018; Kaihara, Kurose, and Fujii
2012; Wang et al. 2018; Klemmt and Mönch 2012; Knopp, Dauzère-Pérès, and Yugma 2017;
Lee, Chen, and Wu 2005; Yurtsever, Kutanoglu, and Johns 2009; Yugma et al. 2012) and dis-
patching policies (Maleck and Eckert 2017; Kobayashi, Kuno, and Arima 2013) show strong
growth in popularity. In order to facilitate a deeper exploration of the solution space, greedy
constructive heuristics have been combined with local search or lightweight metaheuristics
(Yugma et al. 2012; Knopp, Dauzère-Pérès, and Yugma 2017). Let us emphasize the indus-
trial soundness of list scheduling approaches, which appear to be a suitable alternative to
cope with large instances specific to complex manufacturing systems in acceptable execu-
tion times (Klemmt and Mönch 2012; Wang et al. 2018; Kaihara, Kurose, and Fujii 2012;
Yurtsever, Kutanoglu, and Johns 2009).

As previously noted in (Pappert et al. 2016), the problem of managing TCs has evolved
and become central, in line with the pursuit of higher yield and quality specifications and thus
much smaller critical dimensions, and has nowadays the following requirements.

• Be industrially responsive, scalable and tractable: Over the last few years, a wealth
of research efforts have been focused on addressing real-life industrial applications
(Kobayashi, Kuno, and Arima 2013; Kitamura, Mori, and Ono 2006; Klemmt and
Mönch 2012; Knopp, Dauzère-Pérès, and Yugma 2017; Lee, Chen, and Wu 2005;
Yugma et al. 2012; Yurtsever, Kutanoglu, and Johns 2009; Jung et al. 2014; Li et al.
2016).
• Provide decision support or automate TC management: In this respect, note that han-

dling TC management via a production control problem is not appropriate as a result of
its objective function, which aims at smoothly managing the production flow and con-
trol the throughput rate via a sequence of operations, while minimizing TC violations.
• Take into account industry specific features, e.g. re-entrant flows (Wang, Huang, and Li

2018; Feng, Chu, and Che 2018; Klemmt and Mönch 2012; Knopp, Dauzère-Pérès, and
Yugma 2017; Yurtsever, Kutanoglu, and Johns 2009), HM-LV volume product settings
(Feng, Chu, and Che 2018; Wang et al. 2018).

The constant evolution in technologies and the increased competitiveness in the semicon-
ductor industry push manufacturers towards more stringent quality requirements and yield
control. Hence, the problem of TC management has come into acute focus in the last few
years. This fact is reflected by an upward trend observed in the rate of studies carried out on

4

this topic.
Following the research stream initiated in (Sadeghi et al. 2015) and improved in (Lima et al.

2017, 2019), this paper provides a sampling-based probability estimation approach dedicated
to managing TCTs in an industrial context. The proposed decision support tool is drawn on an
efficient state-of-the-art constructive heuristic, able to face the complexity and intractability
of very large instances in complex time-varying environments. Being conceived and tailored
for a generic case study arisen in semiconductor manufacturing, we believe that the proposed
approach can be applied in other similarly complex manufacturing systems.

3. Problem statement

In industrial practice, time constraint tunnels are managed by making gate-keeping decisions
at the point of their entrance (Sadeghi et al. 2015; Lima et al. 2017, 2019; Wang et al. 2018).
Mirroring the industrial reality, consider the problem from a similar perspective by adopting
the point of view of a single lot.

step 1 step 2 step 3 step 4 step 5 step 6

secure
area

secure
area

M0

f

M1

M2

M3

M4

M5

M6

M2

M3

M7

M8

M9

M10

M11

M12

Time Constraint 1

Time Constraint 2

Time Constraint 3

Time Constraint Tunnel

In-Work

Down

Lot

Figure 2.: A lot f about to enter a TCT including 3 TCs

The complexity associated with the regulation of time constraint tunnels is illustrated in
Figure 2. Let us describe a TCT through the prism of a single lot f having to be processed
through a sequence of operations: (i) the lot can share the same machines with other lots in
the Work-In-Process (WIP), i.e. with lots already queued up for processing on the set of TCT
machines or which may arrive for processing while the lot of interest f traverses the TCT
(see stacked lots in front of machines). (ii) the sequence of process operations highlighted
by the shaded path M0-M3-M4-M3-M7-M12 is not unique. (iii) re-entrant flows, such as
the repetition of machines M2 and M3, are common. (iv) some machines can be down, see
e.g. machine M6, and (v) machines are often heterogeneous, with different throughput rates,
allowing or not the lot batching, etc.

At any point in time, the state of all machines is known for the whole fab and the current
position of lots in the WIP can be recovered. To support the decision making in real time
related to the release of a single lot in a TCT, we take advantage of this available evolving
data to develop a context-sensitive and responsive sampling-based approach. The goal is to
estimate the probability that a lot ready to be released in a TCT at a given point in time, will
satisfy all of its TCs.

5

Before proceeding to the problem modeling, let us clarify the scope of the studied problem
and the assumptions made in this paper:

• Time constraints are not considered as problem constraints and belong to problem data.
Time constraints are only interpreted as a time limit to be verified a posteriori, and have
no direct impact on how the problem is modeled.
• Only a single lot about to enter a given tunnel is considered and, respectively, the sat-

isfaction of only its TCs is evaluated. It does not mean that other lots are not subject to
time constraints. In accordance with the industrial perspective of fully automated fab
control including the release of lots at the entrance of a tunnel, the TCT satisfaction is
evaluated individually for each lot.
• Given that the current state of all machines is known and fixed, the problem data are

deterministic. Breakdowns, that may occur while the lot of interest goes through the
tunnel, are not considered. Since most TCTs have an average cycle time smaller than
48 hours, this assumption is reasonable for short periods of times.
• Batching processes are not explicitly modeled. A throughput average per lot is calcu-

lated based on the average batch size and throughput per batch.
• Setup times are not explicitly taken into account. Machines are assumed to be running

at a near full capacity and setup times are included in processing times. This assumption
is consistent with the fact that handling and transportation are entirely automated and
done by robots in masked time in our industrial context. Machines are therefore mostly
fully saturated within tunnels.
• The machine selection to assign lots is done in an arbitrary manner. As the problem at

hand is a flexible job-shop scheduling problem, several machines with different prop-
erties are often available to process a job. When this is the case, machines are selected
accordingly to a first found, first served policy.
• The Work-In-Process lots are collected via a specific algorithm (see Algorithm 1).

For the reader’s convenience, the notations used in this paper are summarized in Table A1.

4. Problem modeling

Consider a lot f about to enter a sequence of operations defined by its associated process
route and having to respect an uninterrupted set of time constraints, i.e a time constraint
tunnel denoted by TCT. Let T be the set of time constraints in TCT. Each time constraint
tse ∈ T begins with operation j f

s and ends after operation j f
e , where j f

s , j f
e ∈J and s < e.

The time constraints in TCT follow each other and can overlap, i.e. there are at least two time
constraints ts1e1 , ts2e2 ∈ T such that s1 < e2 and s2 < e1.

The notion of tunnel can be closely interrelated with both: (i) the operations, that have to be
processed in order, and (ii) the different, non necessarily disjoint, sets of machines required
to process each operation.

Let L be the set of current WIP lots in TCT, retrieved via Algorithm 1. Each lot ` ∈
L ∪{ f} has a precedence-constrained sequence (route) of n` operations (jobs) to perform,
denoted by J ` = (j`1, j`2, . . . , j`n`). Let J =

⋃
`∈L∪{ f}J

` be the set of all operations.
A lot can be processed on several different machines, which may in turn have different

throughput rates for each operation. As illustrated in Figure 2, nothing prevents a machine
from belonging to the processing groups of various operations. A subset of machines M `

k ⊂
M is qualified to perform an operation j`k of lot ` ∈L . The related processing times p`km are
machine-dependent, ∀m ∈M `

k .

6

4.1. Work-In-Process retrieval

Owing to the intricacy of the production routes and because of the re-entrant flows in the
flexible job-shop configuration of the fabrication facility, many lots may impact lot f , directly
or not, namely:

• Lots having a first degree impact, i.e. those that directly compete for the machines in
the production route of lot f (see stacked lots in front of machines in Figure 2),
• Lots that do not intersect lot f in their processing, but may share the same machines as

lots having a first degree impact.

Algorithm 1 : WIP retrieval algorithm (J f)

1: Set λ ≥ 1, a smoothing parameter to refine the machine-dependent processing times
2: Set ω ≥ 1, a calibration coefficient to refine the depth of lot retrieval
3: cycleTimeEstimate= 0
4: L = /0
5: for each operation j f

k ∈J f do
6: for each machine m ∈M f

k do
7: cycleTimeEstimate= cycleTimeEstimate+ p f

km ·λ
8: Let S be the set of operations sharing machine m
9: for each operation s ∈S do

10: cycleTime[s] = 0
11: while cycleTime[s]≤ cycleTimeEstimate do
12: Retrieve Ls, i.e. the set of lots located at operation s
13: L = L ∪Ls
14: Retrieve spred, the predecessor of operation s in the routing of lots in Ls

15: cycleTime[s] = cycleTime[s]+ω · max
h∈Mcurrent,`∈Lset

{p`s,h}, where Mcurrent is the set

of qualified machines for processing operation s
16: s = spred
17: end while
18: end for
19: end for
20: end for
21: return L

Note that considering all the lots running in the fab leads to significant unjustified data
processing and computing time increases. Hence, let us only take into account the lots that
might have a significant impact on the traversal of lot f and give us a good approximation of
the local context surrounding lot f , i.e.:

• Only consider the lots having a first degree impact on lot f , i.e. only those that might
directly cross paths with lot f . Due to the repetitive nature of process operations in a
production route and the presence of re-entrant flows, this filter is sufficiently revealing
and not necessarily as restrictive as it seems.
• To give a projection into the future, we take into account the lots that might affect lot f ,

while it is going through the tunnel. The identification of the respective lots requires an
estimation of the cycle times of lot f at each process operation beforehand. In this sense,
for an accurate cycle time estimation, the machine-dependent processing times related
to lot f are refined by a smoothing parameter λ ≥ 1. Specifically, to coincide with
the assumption of fully saturated machines, λ is equal to 1. Meanwhile, the maximum
process time of all the qualified machines is kept as an upper approximation for the
operations of lots to consider in the WIP.

7

Lot f has a sequence of operations J f , which can be performed by a set of qualified
machines M f

k . For each machine m ∈M f
k in this set, Algorithm 1 considers all operations

s ∈S sharing machine m and other similarly qualified operations on m. The set Ls of lots,
located at these operations or prior to these operations on their routes, is retrieved. The depth
of lot retrieval is estimated by factoring the sum of process times with a calibrated add-on
coefficient ω ≥ 1, which in this paper is fixed to 2. Akin to λ , this coefficient helps us to
provide a more accurate estimation of the overall cycle time of the lots in the fab.

Algorithm 1 generates the WIP having a first level of interference with lot f . By virtue of
the highly cyclical nature of the fabrication process, and given that lots are not hampered by
other lots requiring processing by disjoint machines at a given point in time, the first degree
of interference is a representative WIP approximation.

4.2. Disjunctive graph modeling and evaluation

Many state-of-the-art solution methods for complex job-shop scheduling problems are based
on the disjunctive graph representation (Roy and Sussmann 1964; Ovacik and Uzsoy 1997;
Adams, Balas, and Zawack 1988; Dauzère-Pérès and Paulli 1997). Given its applicability, let
us adopt the disjunctive graph representation to model the problem when a lot is about to enter
a time constraint tunnel. This representation captures all the relevant data, namely: (i) the set
of machines required for processing and their qualifications, (ii) the WIP that might have a
significant impact on lot f traversing TCT, and (iii) the process flow and routing information
of all the lots.

To do this, let G(J ∪{S,E},C ∪D) be a disjunctive graph. The set of all operations J
defines the set of nodes together with the dummy start node S and end node E. Let C denote
the set of oriented conjunctive arcs, which model the precedence constraints between the
nodes. The set of disjunctive arcs D models all the possible configurations of operations on
the processing machines. Arcs are weighted with processing times, which are both machine-
and operation- dependent. The length of the longest path between any two nodes belonging
to a route of a given lot is to the cycle time of this lot between the corresponding operations.

S

j1
1 j1

2 j1
3

j2
1 j2

2 j2
3

j3
1 j3

2 j3
3

E

Figure 3.: Conjunctive graph representation. Conjunctive arcs are plain for the routes, and
dotted for the sequence on machines (Lima et al. 2017).

Given the number of operations and machines to consider (see the description of the in-
dustrial instances in Section 6.1), the time-varying cardinality of the admissible domain of
lot schedules suffers of the curse of dimensionality. The selection and orientation of the dis-
junctive arcs (see Figure 3) can be efficiently performed by using the list scheduling greedy
heuristic proposed in (Sadeghi et al. 2015) and improved in (Lima et al. 2017). A new priority-
oriented version of this method is formalized in Algorithm 2.

Algorithm 2 relies on a random selection of nodes from a list of nodes available to be
scheduled ReadyList, according to a given dispatching policy investigated in Section 5. This
allows feasible schedules to be always determined as long as the required machine capacity
is available by: (i) distinguishing the subset of unscheduled operations (set ReadyList) from

8

Algorithm 2 : Priority-based list scheduling algorithm (TCT,J ,J f)

1: currentTime= 0
2: Initialize the state of machines m ∈M to their current state idlem to 0 if busy and 1, otherwise
3: Initialize and sort by increasing values of completion time c`k an ordered set ProcessingList

with all j`k already being processed by the set of machines M at run time, ` ∈L
4: Initialize an ordered set ReadyList= (J ∪J f)\ProcessingList
5: while ReadyList 6= /0 do
6: for j`k ∈ ReadyList do
7: Update DAS`
8: Update π`

total

9: end for
10: πTotal = ∑ j`k∈ReadyList

π`
total

11: while all operations j`k ∈ ReadyList have not been checked do
12: localSum= 0
13: Let rand to be a random integer between 0 and πTotal

14: for all j`k ∈ ReadyList do
15: if j`k is not checked then
16: localSum= localSum+π`

total

17: if rand≤ localSum then
18: Let m ∈M `

k such that idlem = 0 and m is the first such machine
19: c`k = currentTime+ p`km
20: idlem = 1
21: ProcessedList= ProcessingList∪{ j`k}
22: Sort ProcessingList
23: ReadyList= ReadyList\{ j`k}
24: Mark j`k as checked
25: πTotal = πTotal−π`

total

26: end if
27: end if
28: end for
29: end while
30: j`k = ProcessingList[0]
31: currentTime= c`k
32: while c`k ≤ currentTime and |ProcessingList| ≥ 1 do
33: ProcessingList= ProcessingList\{ j`k}
34: Randomly insert j`k in ReadyList

35: idlem = 0, where m is the machine that was processing j`k
36: j`k = ProcessingList[0]
37: end while
38: end while

the operations being processed (set ProcessingList) in the set of all operations J ∪J f

under evaluation, (ii) updating the priority of lots in L ∪{ f}, and (iii) assigning operations
with the highest priority to an available machine. Being extremely efficient at generating
schedules, Algorithm 2 is used to quickly obtain a fairly large number of samples for the
sampling-based approach provided in Section 5.

5. Accelerated sampling approach based on a triggering threshold

Given the complex structure and time-varying states of TCTs, deriving an analytical relation-
ship to evaluate the satisfaction of a TCT by a given lot seems impossible. Following our

9

previous work (Lima et al. 2017), let us statistically infer the successful releasing of a lot
in a given TCT via a sampling-based probability estimation approach based-on a triggering
threshold. Consistent with the TCT structure and its state at a given point in time, a sequence
of binary response experiments is performed by using Algorithm 3.

Let ξse ∼ Be(p) be a Bernoulli random variable representing that a lot satisfies the time
constraint tse ∈ T with the probability of success P{ξse = 1}. Denote by {Xi}i≥1

se a series of
independent Bernoulli trials performed by Algorithm 3. The sample space of each individual
trial is X i

se ∈ {0,1}.
To determine the empirical probability p̂se of P{ξse = 1}, the cycle time between two

operations j f
s and j f

e of lot f is computed for each experiment:

c f
e − c f

s ,

where c f
s and c f

e are the completion times of operations j f
s , j f

e ∈J . Under the independent
Bernoulli trial assumption, the estimated probability of satisfying tse ∈ T is calculated as
follows:

p̂se = P̂
{

c f
e − c f

s ≤ tse
}
=

n

∑
i=1

X i
se

n
,∀tse ∈T

where n is the sampling size and X i
se = 1 if the following inequality holds, i = 1,n:

c f
e − c f

s ≤ tse, ∀tse ∈T

Sampling-based methods are conventionally categorized into two main classes (Crombecq,
Laermans, and Dhaene 2011; Liu, Ong, and Cai 2018; Mendo and Hernando 2006).

• One-shot sampling: For a fixed sampling size, all the observations are gathered at once.
The following exploitation is then based on this dataset without evaluating any addi-
tional samples later. Without prior knowledge on the estimators of interest, it remains
difficult, if not impossible, to predetermine an appropriate sample size. Focused on
the problem under study, Sadeghi et al. (2015) highlighted, via several computational
experiments, the difficulty to determine the right number of runs, and the drawbacks re-
lated to the unreliability of the obtained results by a one-shot sampling-based approach.
• Sequential sampling: Samples are generated in an iterative manner, i.e. they are ana-

lyzed from previous iterations to draw new representative samples. To limit the com-
putational time expenses required by sampling-based approaches, Lima et al. (2017)
improved the work of Sadeghi et al. (2015) by transforming the one-shot design into
an iterative process, which is stopped when a sampling convergence condition is sat-
isfied. To go further in meeting industrial requirements, we propose a new version of
the sequential sampling-based method of Lima et al. (2017) by introducing a triggering
threshold.

Note that in the problem under study, nor the probability P{ξse = 1}, neither other distri-
bution parameters of ξse are available analytically. Without any knowledge on the safety of a
given TCT, the probability that a lot leaves the TCT on time is determined based on a spe-
cially generated sequential sampling set. More precisely, the exploration strategies and sam-
pling efficiency are discussed in Section 5.1. For the sake of computational time reduction,
Section 5.2 addresses the sampling convergence. The integration of a triggering threshold is
discussed in Section 5.3.

10

5.1. Exploration and sampling efficiency

Let us discuss two dispatching policies investigated empirically in (Lima et al. 2017):

• Pure random dispatching policy. Lots are consecutively assigned to machines with re-
spect to a uniform distribution on the set of unscheduled operations ReadyList. While
the condition of the stopping rule is not met, feasible schedules are generated by a list
scheduling algorithm.
• Priority-based random dispatching policy. In industrial practice, each lot is usually

endowed with both a base priority at the beginning of its product route and a total
priority. The base priority is fixed and depends on extrinsic factors (e.g. the importance
of the original order, the type of lot, the date), while the total priority can vary and is
used to smooth the production flow (i.e. to absorb delays). In accordance with these
priorities, dispatching rules are defined, with respect to which lots are consecutively
assigned to machines.

One of the most frequently used dispatching rules in semiconductor manufacturing,
is the so-called standard dispatching rule. This rule expresses the total priority as a
function of a base priority factor and the waiting time at each operation. Let π`

base be
the base priority of lot ` ∈ L and π`

total its total priority, then:

π
`
total(π

`
base,DAS

`) = π
`
base(1+DAS`)

where DAS` (the short form of Day At Step) is the time spent by lot ` waiting to be
processed in a given operation. Note that this rule aims at minimizing the total tardiness
of lots per unit of base priority.

Based on the standard dispatching rule, let us tailor the algorithm proposed in (Lima
et al. 2017), in order to select the available lots to be scheduled in compliance with their
total priority at the current time, instead of a uniformly random drawing scheme. The
probability of selection P`

select of a lot ` ∈ L is thus calculated as follows:

P`
select =

π`
total(π

`
base,DAS

`)

∑
k∈L

π
k
total(π

k
base,DAS

k)

The standard dispatching rule is thus explicitly integrated in Algorithm 2. Without ne-
glecting the overall variability, Algorithm 2 lies on the priority system adopted by a
semiconductor manufacturing facility. Consequently, the most critical lots have a higher
probability of being selected.

The sampling representativeness is essentially based on two pillars, namely space-
fillingness and non-collapsingness (Simpson, Lin, and Chen 2001; Crombecq, Laermans, and
Dhaene 2011). With regard to the non-collapsing property, the probability to extract the same
schedule is negligible for both dispatching policies: (i) by virtue of a random space-filling
based design, and (ii) given that the composition of ReadyList and ProcessingList are
highly variable and their sizes are significant.

The pure random dispatching policy tends to uniformly sample the entire admissible sched-
ule domain, ensuring that every feasible solution in the domain has an equiprobable chance to
be selected. The priority-based dispatching policy pushes forward not only feasible solutions
from the admissible set, but also realistic ones from an industrial standpoint.

For particular production settings and compared to the priority-based dispatching pol-
icy, the sampling approach operating with the pure random policy needs to generate much

11

more samples in order to be able to exhibit realistic results. One drawback, particular to the
priority-based dispatching policy, lies in the time effort required to constantly update lot prior-
ities. However, this computational expense remains negligible with respect to the calculations
needed to be performed based on the pure random policy for constructing an industrially
representative sampling set.

5.2. Sampling convergence

Based on {Xi}i≥1
se , we are primarily interested in the point estimator p̂se, for which the follow-

ing features hold:

• The parameter p̂se represents both the mean of the sampling distribution and the prob-
ability that a lot satisfies the time constraint tse ∈ T . That is, {Xi}i≥1

se is a consistent
estimator for the unknown P{ξse = 1}.
• If n is sufficiently large, the sampling distribution of p̂se is approximately normal, and

the confidence interval for P{ξse = 1} is:

p̂se−Zα/2

√
p̂se(1− p̂se)

n
≤ p≤ p̂se +Zα/2

√
p̂se(1− p̂se)

n

where α is the probability of type I error and Zα/2 is the percentage point of the normal
distribution N(0,1) such that P{z≥ Zα/2}= α

2 .

Generally speaking, the reliability of a point estimation via sampling-based approaches is
expressed in terms of either the related confidence level with a given error interval, or accu-
racy/precision measures (e.g. mean-square error, root mean square deviation). For a desired
accuracy level, the required number of trials depends on the statistical properties about the
estimate of interest. Nevertheless, as explained in Section 5.1, in many studies of complex
systems via simulation, the sampling size is either fixed in advance, or a sequential proce-
dure is applied, in the framework of which the sampling size is iteratively determined by the
simulation output, while using knowledge acquired from the simulation itself.

The point estimator p̂se is closer to the true value as the sampling size n increases. How-
ever, to confirm the successful releasing of a lot in a given TCT, the sampling size increases as
the true probability P{ξse = 1} decreases, ∀tse ∈T . To provide accurate responses in a com-
petitive computational time, we can afford to be less rigorous with respect to the confidence
interval, since small probabilities that a lot exits a TCT on time are out of practical interest.

Denote by D̂i
se = {p̂i

se,1− p̂i
se} the empirical probability distribution associated to each

tse ∈ T and Di =
{
Di

se
}

tse∈T the output vector after the ith iteration in Algorithm 3. Let
us measure the distance between two probability distributions of each TC obtained at two
successive iterations in terms of the Euclidean norm d2:

d2(D̂i−1
se , D̂i

se) = ‖(p̂i−1
se − p̂i

se),
(
(1− p̂i−1

se)− (1− p̂i
se)
)
‖2 =

=

√
(p̂i−1

se − p̂i
se)

2 +[(1− p̂i−1
se)− (1− p̂i

se)]
2 =

√
2(p̂i−1

se − p̂i
se)

2 =
√

2|p̂i−1
se − p̂i

se| (1)

Lot f is considered to exceed a TCT if at least one time constraint tse ∈ T is not re-
spected. Accordingly, the distance d between two successive output vectors Di = {D̂i

se}tse∈T
and Di−1 = {D̂i−1

se }tse∈T is calculated via the infinite norm ∀i > 0:

d∞(D
i−1,Di) = ‖Di−Di−1‖∞ = max

tse∈T

{
d2(D̂i−1

se , D̂i
se)
}

12

For simplicity, let us discard the constant coefficient in expression (1), since it does not
affect the convergence evaluation. Let ε be the desired precision. Following a preliminary
study, let us assume a minimal increment MI predetermined, and consider an initial replication
count IC so that, for iteration i > 0 of Algorithm 2 in Algorithm 3, the replication count is
RCi = RCi−1 + MI. The generation of new samples stops when the following inequality is
verified:

d∞(D
i,Di−1)≤ ε (2)

5.3. Sampling triggering threshold

Prior to this work, Lima et al. (2017) proposed a sampling-based approach drawn on the fol-
lowing considerations: (i) The sampling set is entirely generated at each iteration, i.e. it does
not inherit the samples generated during previous iterations, (ii) A weak convergence crite-
rion is defined as a stopping condition (see Inequality (2)). In what follows, let us improve
this sampling procedure by using the following ingredients, that rely on the fact that the col-
lection {Xi}i≥1

se is independent and identically distributed, and thus that incremental sampling
techniques are applicable:

• The initial iteration count IC is sufficiently representative and can be estimated in the
framework of a preliminary observation phase (Lima et al. 2017).
• In compliance with the decision maker specifications, the point estimators p̂se,∀tse ∈

T , are evaluated using:
◦ θ : A nominal value for each point estimator p̂se,∀tse ∈T ,
◦ θ −β : A triggering threshold, where β ∈ [0,1−θ] is a tolerance margin.
Let us express the distance between a point estimator p̂se and the nominal value θ

by means of a triggering threshold θ −β . A point estimator p̂se is considered far from
the nominal value θ if p̂se < θ − β , and has an insignificant probability to reach the
nominal value θ . The successful release of a lot in a TCT implies that p̂se≥ θ ,∀tse ∈T .
Consequently, the existence of at least one point estimator p̂se far from the nominal
value θ , has a prohibitive effect on the successful release of a lot in a TCT.

Given that the initial iteration count IC is sufficiently representative to evaluate the
distance between all point estimators and nominal value θ , it is not relevant from a
practical point of view to continue the sampling process if ∃tse ∈ T such that p̂i

se <
θ −β .
• Apart from the convergence-based stopping condition (2), let us translate the triggering

threshold into algorithm stopping conditions. The algorithm execution stops when at
least one of the following inequalities holds: d∞(D

i−1,Di)≤ ε

p̂i
se ≥ θ , ∀tse ∈T

p̂i
se < θ −β , ∃tse ∈T

(3)

The set of inequalities (3) involves relevant implications to the industrial decision sup-
port in both cases: (i) If we are confident that, according to the current iteration, there
is a high probability level that the lot crosses all TCs with at least a confidence level of
θ , or (ii) One can already provide the corresponding negative output when there exists
at least one TC with a probability below θ −β .
• Define the sampling procedure as follows:

◦ Let the initial sampling set contain RC= IC iterations,

13

◦ Add newly generated MI samples to the previous sampling set at each iteration,
◦ Stop when at least one inequality in (3) is verified.

Algorithm 3 : List scheduling algorithm with triggering threshold (J f ,TCT,IC,MI,ε,θ ,β)

1: J = Algorithm 1 (J f)
2: RC= IC

3: D1 = /0 is the array containing the current resulting values of
{

p̂se
}

tse∈T
4: upperStoppingCondition= false

5: lowerStoppingCondition= false

6: i = 1
7: repeat
8: Di−1 =Di

9: Di = Algorithm 2 (TCT,J ,J f) iterated RC times
10: Compute d∞(D

i,Di−1)
11: if p̂n

se > θ ,∀p̂i
se ∈ D̂i then

12: upperStoppingCondition= true

13: end if
14: if ∃tse ∈T such that p̂i

se < θ −β then
15: lowerStoppingCondition= true

16: end if
17: i = i+1
18: RC = RC+MI

19: until upperStoppingCondition = true or lowerStoppingCondition = true or
d∞(D

i,Di−1)≤ ε

The incremental sampling approach based on a triggering threshold is formalized in Algo-
rithm 3. By virtue of its design, the proposed accelerated probability estimation approach has
several advantages. The strengthened stopping condition via a triggering threshold θ −β can
significantly decrease the execution time of the sampling procedure. The decision maker has
thus the possibility to explicitly indicate the desired decision-support accuracy, besides the
convergence precision ε .

6. Numerical experiments

Highly heterogeneous industrial instances have been used to perform extensive computational
experiments for a twofold purpose: (i) to evaluate the competitiveness of Algorithm 3 with
respect to the sampling-based approach of Lima et al. (2017) in terms of computational time
and solution quality (see Section 6.3), and (ii) to empirically examine the resilience of Al-
gorithm 3 against different possible use cases in the fab, by observing the behavior and the
magnitude of the output fluctuations for different state of the TCTs (see Section 7).

6.1. Instance description

Industrial instances I ∈ {1,2, . . . ,10} have been constructed by taking a full fab snapshot
of a concatenation of different models and reports, some of which are directly linked to the
Manufacturing Execution System of the fab. They have been selected over an horizon of four
consecutive months, with a gap of one month between the second and third selected months.

14

In each month, two instances were selected spread at least one week apart. Five representative
TCTs have been thus selected: TCT1, TCT2, TCT3, TCT4, TCT5. Note that these TCTs
cover all the critical fab workshop areas, that are the most affected by time constraints. Each
TCT includes various numbers of operations, and can contain up to four time constraints. As
shown in Table 1, the instances sizes are very large with an average of 600 lots per instance,
7,000 operations to schedule, and between 30 and 200 machines. Note that the instances are
ordered chronologically.

Table 1.: Description of industrial instances

I TCT1 TCT2 TCT3 TCT4 TCT5

Nodes # Lots # Nodes # Lots # Nodes # Lots # Nodes # Lots # Nodes # Lots
1 - - 3,729 545 796 256 3,944 685 5,161 707
2 64,231 380 - - 734 268 - - 5,356 673
3 56,388 404 4,322 639 1,044 346 2,058 577 4,743 666
4 - - - - 1,308 437 4,277 864 3,455 640
5 - - 4,918 774 1,262 492 4,130 859 3,650 689
6 - - 4722 741 2,213 554 2,430 407 5,821 846
7 - - 5,550 807 2,391 558 - - 6,191 866
8 - - 5,107 745 1,979 476 2,423 428 5,962 872
9 - - - - 1,529 466 - - - -
10 - - - - 1,589 467 - - - -

Due to machines breakdowns or recipe qualifications issues when instances were recorded,
a small disparity can be observed relative to the available instances per TCT. The selected
instances can be sensitive to machine breakdowns or even planned maintenance activities,
since it is not possible to exactly know the state of the machines before it changes. As far
as instances I ∈ {9,10} are concerned, the lack of corresponding data for TCT4 is due to a
modification of its modeling in the fab related to its stringent impact on production. This
however sheds an interesting light on the results obtained for TCT4.

6.2. Parameter selection

Let us exploit the findings obtained during a preliminary observation phase discussed in (Lima
et al. 2017) and assume that ε = 0.05, IC= 30 and MI= 20. The value of the convergence pre-
cision parameter ε is context-dependent and, in our case, particularly suited to the industrial
problem at hand. The preliminary observation phase showed that 30 is a sufficient starting
initial iteration count, as the convergence is usually achieved around 60 replications for the
priority-based scheduling policy. Thus, a reasonable half of the representative solution space
is initially explored. The parameter choice for ε , IC and MI are reinforced by the numerical
experiments in Section 6.3.

To study the sensitivity of the triggering threshold, different values of θ and β have been
selected. Note that when θ +β > 1, the upper bound min{1,θ +β} is taken. From a purely
industrial point of view, these parameters would be set according to the requirements of deci-
sion makers, in particular regarding the nominal value θ .

• θ ∈{0.8,0.9}: These values are specially high to better comply with the problem indus-
trial dimension and a low risk approach, which are relevant when dealing with TCTs.
• β ∈ {0.05,0.1,0.2}: These values allow for a good assessment of the tolerance margin

impact both on the decision support provided by Algorithm 3 and its overall computa-
tional time.

Computational experiments have been carried out on a workstation with 8-core Intel(R)
Xeon(R) CPU E3-1240 v5 clocked @ 3.50 giga-hertz.

15

0 0.5 1

2

3

TC1.2

TC1.2

TC1.1

TC1.1

Probability

In
st

an
ce

Algorithm (Lima et al. 2017)

0 0.6 0.8 1

2

3

TC1.2 7

TC1.2 7

TC1.1 7

TC1.1 7

Probability

In
st

an
ce

Algorithm 3: θ = 0.80,β = 0.20

0 0.91

2

3

TC1.2 7

TC1.2 7

TC1.1 7

TC1.1 7

Probability

In
st

an
ce

Algorithm 3: θ = 0.90,β = 0.05

Figure 4.: Computational analysis: TCT1

0 0.5 1

1

3

5

6

7

8

TC2.4

TC2.4

TC2.4

TC2.4

TC2.4

TC2.4

TC2.3

TC2.3

TC2.3

TC2.3

TC2.3

TC2.3

TC2.2

TC2.2

TC2.2

TC2.2

TC2.2

TC2.2

TC2.1

TC2.1

< 0.05 TC2.1

TC2.1

< 0.05 TC2.1

TC2.1

Probability

In
st

an
ce

Algorithm (Lima et al. 2017)

0 0.6 0.8 1

1

3

5

6

7

8

TC2.4

TC2.4 7

TC2.4

TC2.4 7

TC2.4

TC2.4

TC2.3

TC2.3

TC2.3

TC2.3

TC2.3

TC2.3

TC2.2

TC2.2

TC2.2

TC2.2

TC2.2

TC2.2

TC2.1

TC2.1

< 0.05 TC2.1 7

TC2.1 7

< 0.05 TC2.1 7

TC2.1

Probability

In
st

an
ce

Algorithm 3: θ = 0.80,β = 0.20

0 0.91

1

3

5

6

7

8

TC2.4

TC2.4 7

TC2.4

TC2.4 7

TC2.4 7

TC2.4 7

TC2.3

TC2.3

TC2.3

TC2.3 7

TC2.3 7

TC2.3

TC2.2

TC2.2

TC2.2

TC2.2

TC2.2

TC2.2

TC2.1

TC2.1

TC2.1 7

TC2.1 7

< 0.05 TC2.1 7

TC2.1

Probability

In
st

an
ce

Algorithm 3: θ = 0.90,β = 0.05

Figure 5.: Computational analysis: TCT2

6.3. Numerical analysis

Sampling-based approach in (Lima et al. 2017) versus Algorithm 3. For each TCT and
each instance, the savings of Algorithm 3 compared to Algorithm (Lima et al. 2017) are given
in the last two columns of Tables B1-B5, and are calculated as follows:

∆n =
1
6 ∑

θ∈{0.8,0.9},
β={0.05,0.1,0.15}

[
n
(
Algorithm (Lima et al. 2017)

)
−n
(
Algorithm 3(θ ,β)

)]

∆CPU =
1
6 ∑

θ∈{0.8,0.9},
β={0.05,0.1,0.15}

[
CPU

(
Algorithm (Lima et al. 2017)

)
−CPU

(
Algorithm 3(θ ,β)

)]

Figures 4-8 and Tables B1-B5 show the impact of the stopping conditions based on a
triggering threshold, in terms of the output quality and computational times. With negligible
output quality losses, Algorithm 3 reduces the computational times by about 45%.

Let us consider in particular instances I ∈{2,3} of TCT1, for which the number of iterations
and execution time are significantly larger: 402 seconds for instance I = 2 and 378 seconds
for instance I = 3 versus 125 seconds and 152 seconds (see Table B1). All of this is done for
a fairly similar output quality (see Figures 4-8). Note that TCT1, which includes only a single

16

0 0.5 1

1

2

3

4

5

6

7

8

9

10

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2

TC3.1

TC3.1

TC3.1

TC3.1

< 0.05 TC3.1

< 0.05 TC3.1

< 0.05 TC3.1

< 0.05 TC3.1

< 0.05 TC3.1

< 0.05 TC3.1

TC3.1

Probability

In
st

an
ce

Algorithm (Lima et al. 2017)

0 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2 7

TC3.2 7

TC3.2

TC3.2

TC3.1

TC3.1

TC3.1 7

< 0.05 TC3.1 7

TC3.1 7

TC3.1 7

< 0.05 TC3.1 7

< 0.05 TC3.1 7

< 0.05 TC3.1 7

TC3.1 7

< 0.05 TC3.1 7

Probability

In
st

an
ce

Algorithm 3: θ = 0.80,β = 0.20

0 0.91

1

2

3

4

5

6

7

8

9

10

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2

TC3.2 7

TC3.2 7

TC3.2 7

TC3.2

TC3.1

TC3.1

TC3.1 7

< 0.05 TC3.1 7

TC3.1 7

TC3.1 7

< 0.05 TC3.1 7

< 0.05 TC3.1 7

< 0.05 TC3.1 7

TC3.1 7

TC3.1 7

Probability

In
st

an
ce

Algorithm 3: θ = 0.90,β = 0.05

Figure 6.: Computational analysis: TCT3

TC located in a very loaded area of the fab counting more than 60,000 nodes, is a notable
exception in terms of CPU time (see Table 1). In this respect, it is important to observe the
linear scalability of Algorithm 3 depending on number of nodes in the graph.

The most notable improvement over Algorithm (Lima et al. 2017) comes from the incre-
mental sampling procedure and the strengthening of the stopping conditions via the set of
conditions (3). As exhibited in the numerical results, this upgrade leads to a drastic decrease
of the computational times by up to 65%, lower than one minute for many instances (see
Tables B1-B5).

Impact of the triggering threshold and role of stopping conditions (3). As expected and
shown in Figures 4-8, the larger β , the more pessimistic the decision support, while the exe-
cution time trends upward (see Tables B1-B5).

Unsurprisingly, the threshold θ has no significant impact on the CPU time, since θ is
context-dependent and expresses the level of risk tolerated by decision makers. On the con-
trary, the tolerance margin β affects the CPU time. As highlighted for example by TCT4 (in-
stance I = 1), the iteration count required to achieve one of the stopping conditions is larger
for β = 0.20 (see Table B4). This trend is verified across all instances except for extreme
cases, for which the initial obtained probability is very low (see instances I ∈ {3,4} of TCT3
in Table B3).

As reflected in Figure 6 for TCT3 (instances I = 3 and up), there is no interest in continuing
to iterate when the tunnel is clearly not passing. Generally speaking, Inequalities (3) are easier
to fulfill than Inequality (2) (see the penultimate column in Tables B1-B5). However, there
are cases when Inequality (2) is clearly verified, e.g. instance I = 1 of TCT3.

17

0 0.6 0.8 1

1

3

4

5

6

8

TC4.4

TC4.4

TC4.4

TC4.4

TC4.4

TC4.4

TC4.3

TC4.3

TC4.3

TC4.3

TC4.3

TC4.3

TC4.2

TC4.2

TC4.2

TC4.2

TC4.2

TC4.2

TC4.1

TC4.1

TC4.1

TC4.1

TC4.1

TC4.1

Probability

In
st

an
ce

Algorithm (Lima et al. 2017)

0 0.6 0.8 1

1

3

4

5

6

8

TC4.4 7

TC4.4

TC4.4

TC4.4

TC4.4

TC4.4

TC4.3

TC4.3

TC4.3 7

TC4.3

TC4.3 7

TC4.3 7

TC4.2

TC4.2

TC4.2

TC4.2 7

TC4.2

TC4.2

TC4.1

TC4.1

TC4.1

TC4.1 7

TC4.1 7

TC4.1 7

Probability

In
st

an
ce

Algorithm 3: θ = 0.80,β = 0.20

0 0.91

1

3

4

5

6

8

TC4.4 7

TC4.4

TC4.4

TC4.4

TC4.4

TC4.4

TC4.3

TC4.3

TC4.3 7

TC4.3 7

TC4.3 7

TC4.3 7

TC4.2

TC4.2

TC4.2

TC4.2 7

TC4.2

TC4.2

TC4.1

TC4.1

TC4.1

TC4.1 7

TC4.1 7

TC4.1 7

Probability

In
st

an
ce

Algorithm 3: θ = 0.90,β = 0.05

Figure 7.: Computational analysis: TCT4

7. Managerial implications

The management of time constraints is a challenging task, requiring to balance between prod-
uct yield and cycle time, whose complexity is growing with the increasing number of TCTs
induced by the evolution of product technologies. Nowadays, the decision of releasing a lot
in a TCT is usually manual. This is a time consuming and stressful task, as decision makers
have to make critical decisions in a short amount of time on potentially extremely expensive
products all day long. Decision makers are under pressure to maximize the throughput of
TCTs without violating time constraints to prevent lots to be scrapped or reworked. Hence,
there is a strong need for reliable and relevant decision support.

The proposed sampling-based approach helps to support the transition from a human gate-
keeping decision to whether or not to release a lot in a TCT, towards an automated lot release
system. Such a system could be used without human intervention to release lots in TCTs,
or jointly with a dispatching or scheduling system. In this line, the output of Algorithm 3
provides insights from different perspectives.

From a qualitative standpoint, the comparison between the estimated probability and the
nominal value θ provides an immediate information regarding the possibility of releasing a
lot in the context encased by the instance. For example, a lot has a high probability of not
exceeding TC5.1-TC5.3, way above θ in most configurations for TCT5, as shown in Figure 8.
On the other hand, it is readily apparent that TC5.4 has very low probability values, to the
point where it would be pointless to release a lot at that given point in time. In addition,
the result analysis can also provide valuable insights on the position of blocking elements
in TCTs. Since TC5.4 is the last TC of TCT5, one might assume that a machine is down
at the end of the tunnel or a WIP accumulation blocks the last few operations. Of course,
these elements strictly speaking are not a sufficient proof to accurately identify the root of the
problem, but in combination with the decision maker’s expertise, they can contribute to, or
hasten, the process of detecting issues to solve inside the tunnel.

TCT5 is also an example of how it is possible to characterize whether the tunnel is in a

18

0 0.5 1

1

2

3

4

5

6

7

8

TC5.4

TC5.4

< 0.05 TC5.4

TC5.4

TC5.4

< 0.05 TC5.4

< 0.05 TC5.4

TC5.4

TC5.3

TC5.3

TC5.3

TC5.3

TC5.3

TC5.3

TC5.3

TC5.3

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

Probability

In
st

an
ce

Algorithm (Lima et al. 2017)

0 0.6 0.8 1

1

2

3

4

5

6

7

8

TC5.4 7

TC5.4

TC5.4 7

TC5.4

TC5.4 7

TC5.4 7

< 0.05 TC5.4 7

TC5.4 7

TC5.3

TC5.3

TC5.3 7

TC5.3

TC5.3

TC5.3 7

TC5.3 7

TC5.3 7

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.1

TC5.1 7

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

Probability

In
st

an
ce

Algorithm 3: θ = 0.80,β = 0.20

0 0.91

1

2

3

4

5

6

7

8

TC5.4 7

TC5.4

< 0.05 TC5.4 7

TC5.4

TC5.4 7

< 0.05 TC5.4 7

TC5.4 7

TC5.4 7

TC5.3

TC5.3

TC5.3 7

TC5.3

TC5.3

TC5.3 7

TC5.3 7

TC5.3 7

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.2

TC5.1

TC5.1 7

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

TC5.1

Probability

In
st

an
ce

Algorithm 3: θ = 0.90,β = 0.05

Figure 8.: Computational analysis: TCT5

passing or non-passing state. This is dependent on whether there are machine breakdowns,
planned maintenance activities, or considerable WIP in the TCT. Based on the probability
estimate and nominal value θ , it is possible to determine whether or not to release a lot. For
example, TCT5 clearly presents a passing behavior for instance I = 4. On the contrary, TCT3 (a
small TCT in terms of number of nodes) shows degrading results starting from instance I = 2
and onward, which reflects the load up of this specific area of the fab over the months. As
shown in Figure 6, TCT3 becomes non passing after instance I = 2 even for relaxed triggering
thresholds, which can be explained by the priorization of a specific technology that does not
include the product type of the lot under study.

From a quantitative standpoint, even though the number of iterations can statistically
speaking appear low, the output given by Algorithm 3 can be converted into useful infor-
mation on the situation inside TCTs at a given point in time. For example, let us examine
instance I = 5 of TCT4, and to a lesser extent instance I = 8 in Table B4. The results for
TC4.1 are around 50%, while the results for TC4.2-TC4.4 are almost all above θ = 0.80.
Being the first TC in TCT4, the decision maker has the most leverage on TC4.1, in terms of
lot speed up and manual release of other lots through the tunnel. Despite the low probabil-
ity of successful traversal of TC4.1, the decision maker, aware of the favorable situation of
TC4.2-TC4.4, might send the lot, while prioritizing it or speeding it up to guarantee the sat-
isfaction of TC4.1. In this particular case, a 50% chance of exiting TC4.1 on time is a useful
information, as the decision would not have been the same, in the situation when a lot has e.g.
less that a 30% probability to pass through TC4.2-TC4.4.

The nominal value θ of the point estimator defines how much risk can be taken in the
decision support provided by Algorithm 3. The large values used for θ are consistent with a
very low risk approach when managing time constraints. Direct feedback from the decision
makers, i.e. the time constraint regulators, are important to fine tune this parameter.

19

To summarize, the numerical experiments conducted on large-scale real-life instances
show the industrial applicability of the proposed decision support approach. The results have
been obtained in less than one minute in most cases, a computational time which is very close
to near real time from a production point of view. Besides the computational competitiveness
of the proposed approach, it appears to be: (i) Flexible via the introduced triggering threshold,
(ii) Resilient against heterogeneous instances, and (iii) Powerful in terms of decision support.

8. Conclusion and perspectives

This paper focuses on the problem of managing time constraint tunnels, particularly relevant
in semiconductor manufacturing. Together with an accurate problem representation, that is
able to capture the industrial features and to benefit from its real-life practices, a sampling-
based probability estimation approach is proposed. Being drawn on efficient state-of-the-
art methods, this approach extends the previous research of Sadeghi et al. (2015) and Lima
et al. (2017) preponderantly in two ways: (i) an accelerated version of the algorithm given in
(Lima et al. 2017) is provided, and (ii) the appropriateness of the problem modeling jointly
with the industrial soundness of the solution method is empirically highlighted via extensive
computational experiments conducted on real-life instances. We believe that the proposed
decision tool can be used in other production systems subject to time constraints.

In spite of the practical interest and decision support offered by the proposed problem
modeling jointly with an efficient solution method, there are still several ways in which the
decision tool can be improved:

• By introducing stochastic machine state changes into the list scheduling algorithm to
account for unplanned machine breakdowns,
• By explicitly integrating batching machine processes,
• By extending the approach to the simultaneously release of multiple lots in a given

tunnel.

The last research direction raises a number of open questions (Lima et al. 2019). What
is the maximum number of lots that can be released in a given TCT, while satisfying all
corresponding time constraints? If lots have different priorities, how to evaluate and construct
the best successful lot mix? How to quantify and handle the correlation between lots sent in
the same TCT?

Acknowledgments

This work has been partially financed by the ANRT (Association Nationale de la Recherche
Technique) through the PhD number 2015/0899 with CIFRE funds and a cooperation contract
between STMicroelectronics and Mines Saint-Etienne.

20

Appendix A. Notations

Table A1.: Notations

L Set of lots, indexed by ` ∈L
J Set of operations, indexed by j ∈J
M Set of machines, indexed by m ∈M
T set of time constraints of a given TCT

f Lot about to enter a TCT
tse ∈T Time constraint starting with j•s and ending after j•e , j•s , j•e ∈J

c f
e Completion time of operation j f

e ∈J
p`km Machine-dependent processing time
DAS` Time spent by lot ` waiting to be processed in a given operation
G(J ∪{S,E},C ∪D) Disjunctive graph defined by: (i) The set of nodes J , a fictitious start node S and a fictitious

end node E, and (ii) The union of the set of conjunctive arcs C and the set of disjunctive arcs D
π`
base Base priority of lot ` ∈L

π`
total Total priority of lot ` ∈L

P`
select Probability to select lot ` ∈L

ξse ∼ Be(p) Bernoulli random variable
{Xi}i≥1

se Series of independent Bernoulli trials
p̂se Empirical probability that a lot satisfies constraint tse ∈T
D̂i

se = {p̂i
se,1− p̂i

se} Empirical probability distribution associated to tse ∈T
n Sampling size
θ Nominal value for the point estimator
β ∈ [0,1−θ] Tolerance margin
θ −β Triggering threshold
IC Initial replication count
MI Minimal replication increment
ε Convergence precision

Appendix B. Computational results

Table B1.: 1,2Computational results for TCT1

I Algorithm (Lima et al. 2017) Algorithm 3
∆n ∆CPU

TC 1.1 TC 1.2 n CPU θ β TC 1.1 TC 1.2 n CPU

2 0.68 0.77 90 402

0.80
0.05 0.77 0.80 30 125

60 277 (-69%)

0.10 0.57 0.73 30 125
0.20 0.73 0.67 30 125

0.90
0.05 0.57 0.77 30 125
0.10 0.73 0.73 30 124
0.20 0.77 0.77 30 124

3 0.57 0.51 70 378

0.80
0.05 0.67 0.33 30 152

40 226 (-60%)

0.10 0.50 0.53 30 152
0.20 0.57 0.40 30 153

0.90
0.05 0.60 0.33 30 153
0.10 0.73 0.53 30 152
0.20 0.50 0.43 30 151

Mean 50 252 (-65%)
1. The relatives gaps are given in parenthesis.
2. The running times (CPU) are given in seconds.

21

Table B2.: 1,2Computational results for TCT2

I Algorithm (Lima et al. 2017) Algorithm 3
∆n ∆CPU

TC 2.1 TC 2.2 TC 2.3 TC 2.4 n CPU θ β TC 2.1 TC 2.2 TC 2.3 TC 2.4 n CPU

1 1.00 1.00 1.00 0.92 50 26

0.80
0.05 1.00 1.00 1.00 0.87 30 15

10 6 (-23%)

0.10 1.00 1.00 1.00 0.93 30 15
0.20 1.00 1.00 1.00 0.94 50 26

0.90
0.05 1.00 1.00 1.00 1.00 30 15
0.10 1.00 1.00 1.00 0.92 50 26
0.20 1.00 1.00 1.00 0.92 50 26

3 1.00 1.00 1.00 0.80 50 57

0.80
0.05 1.00 1.00 1.00 0.80 50 56

13 17 (-30%)

0.10 1.00 1.00 0.97 0.70 30 33
0.20 1.00 1.00 1.00 0.60 30 32

0.90
0.05 1.00 1.00 1.00 0.67 30 33
0.10 1.00 1.00 1.00 0.70 30 32
0.20 1.00 0.98 1.00 0.88 50 56

5 0.02 0.96 1.00 0.98 50 76

0.80
0.05 0.03 0.97 0.97 1.00 30 44

20 31 (-41%)

0.10 0.10 1.00 1.00 0.97 30 45
0.20 0.03 1.00 1.00 0.93 30 45

0.90
0.05 0.10 0.93 1.00 0.93 30 44
0.10 0.03 0.97 1.00 0.97 30 45
0.20 0.13 0.90 1.00 1.00 30 45

6 0.22 0.98 0.84 0.78 50 70

0.80
0.05 0.20 1.00 0.80 0.87 30 40

20 30 (-43%)

0.10 0.20 1.00 0.87 0.93 30 41
0.20 0.23 1.00 0.83 0.67 30 40

0.90
0.05 0.30 1.00 0.83 0.87 30 40
0.10 0.20 1.00 0.87 0.80 30 41
0.20 0.17 0.97 0.90 0.70 30 41

7 0.02 1.00 0.88 0.96 50 92

0.80
0.05 0.03 1.00 0.90 0.90 30 53

20 39 (-42%)

0.10 0.03 1.00 0.87 0.93 30 53
0.20 0.00 1.00 0.93 1.00 30 52

0.90
0.05 0.03 1.00 0.80 0.80 30 53
0.10 0.03 1.00 0.93 0.97 30 53
0.20 0.00 0.97 0.93 0.93 30 53

8 1.00 1.00 0.98 0.90 50 76

0.80
0.05 1.00 1.00 0.96 0.80 50 75

3 6 (-8%)

0.10 1.00 0.97 1.00 0.93 30 44
0.20 1.00 1.00 1.00 0.90 50 75

0.90
0.05 1.00 1.00 1.00 0.82 50 75
0.10 1.00 1.00 0.98 0.92 50 75
0.20 0.98 1.00 1.00 0.84 50 75

Mean 14 22 (-31%)
1. The relatives gaps are given in parenthesis.
2. The running times (CPU) are given in seconds.

22

Table B3.: 1,2Computational results for TCT3

I Algorithm (Lima et al. 2017) Algorithm 3
∆n ∆CPU (s)

TC 3.1 TC 3.2 n CPU (s) θ β TC 3.1 TC 3.2 n CPU (s)

1 0.84 0.98 50 2

0.80
0.05 0.78 1.00 50 2

-3 0 (0%)

0.10 0.86 0.96 50 1
0.20 0.80 0.90 50 2

0.90
0.05 0.96 0.94 50 2
0.10 0.87 0.99 70 2
0.20 0.80 0.92 50 1

2 0.60 1.00 70 2

0.80
0.05 0.53 1.00 30 1

33 1 (-50%)

0.10 0.57 1.00 30 1
0.20 0.57 1.00 70 2

0.90
0.05 0.60 1.00 30 1
0.10 0.67 1.00 30 1
0.20 0.63 1.00 30 1

3 0.08 1.00 50 5

0.80
0.05 0.03 1.00 30 3

20 2 (-40%)

0.10 0.10 1.00 30 3
0.20 0.03 1.00 30 3

0.90
0.05 0.00 1.00 30 3
0.10 0.00 1.00 30 3
0.20 0.03 1.00 30 3

4 0.04 0.98 50 9

0.80
0.05 0.07 1.00 30 5

20 4 (-44%)

0.10 0.00 1.00 30 5
0.20 0.07 1.00 30 6

0.90
0.05 0.07 1.00 30 5
0.10 0.00 1.00 30 5
0.20 0.03 1.00 30 5

5 0.04 1.00 70 15

0.80
0.05 0.13 1.00 30 6

40 9 (-60%)

0.10 0.03 1.00 30 6
0.20 0.07 0.97 30 6

0.90
0.05 0.10 1.00 30 6
0.10 0.00 1.00 30 6
0.20 0.00 1.00 30 6

6 0.00 0.60 50 16

0.80
0.05 0.00 0.40 30 10

20 7 (-44%)

0.10 0.00 0.53 30 9
0.20 0.00 0.47 30 9

0.90
0.05 0.00 0.53 30 9
0.10 0.00 0.57 30 9
0.20 0.00 0.33 30 9

7 0.00 0.44 70 25

0.80
0.05 0.00 0.60 30 10

40 15 (-60%)

0.10 0.00 0.60 30 10
0.20 0.03 0.47 30 10

0.90
0.05 0.00 0.50 30 10
0.10 0.03 0.50 30 10
0.20 0.00 0.63 30 10

8 0.00 0.82 50 10

0.80
0.05 0.03 0.80 30 6

20 4 (-40%)

0.10 0.03 0.80 30 6
0.20 0.03 0.87 30 6

0.90
0.05 0.00 0.87 30 6
0.10 0.00 0.90 30 6
0.20 0.00 1.00 30 6

9 0.02 0.98 50 9

0.80
0.05 0.03 1.00 30 5

20 4 (-44%)

0.10 0.03 1.00 30 5
0.20 0.07 1.00 30 6

0.90
0.05 0.07 1.00 30 5
0.10 0.10 1.00 30 5
0.20 0.03 1.00 30 5

10 0.06 1.00 50 9

0.80
0.05 0.03 1.00 30 5

20 4 (-44%)

0.10 0.03 1.00 30 5
0.20 0.03 1.00 30 5

0.90
0.05 0.07 1.00 30 5
0.10 0.07 0.97 30 5
0.20 0.00 1.00 30 5

Mean 23 5 (-43%)
1. The relatives gaps are given in parenthesis.
2. The running times (CPU) are given in seconds.

23

Table B4.: 1,2Computational results for TCT4

I Algorithm (Lima et al. 2017) Algorithm 3
∆n ∆CPU (s)

TC 4.1 TC 4.2 TC 4.3 TC 4.4 n CPU (s) θ β TC 4.1 TC 4.2 TC 4.3 TC 4.4 n CPU (s)

1 0.98 1.00 0.96 0.72 50 37

0.80
0.05 0.97 1.00 1.00 0.63 30 21

10 9 (-41%)

0.10 1.00 1.00 0.98 0.70 50 36
0.20 0.96 1.00 0.98 0.74 50 36

0.90
0.05 1.00 1.00 1.00 0.63 30 20
0.10 1.00 1.00 0.97 0.67 30 21
0.20 1.00 1.00 0.96 0.64 50 36

3 1.00 1.00 0.98 0.98 50 23

0.80
0.05 1.00 1.00 1.00 0.97 30 14

10 5 (-65%)

0.10 1.00 1.00 1.00 1.00 30 13
0.20 1.00 1.00 0.98 1.00 50 23

0.90
0.05 1.00 1.00 1.00 0.97 30 13
0.10 1.00 1.00 1.00 1.00 50 23
0.20 1.00 1.00 1.00 0.98 50 23

4 0.88 0.90 0.22 1.00 50 84

0.80
0.05 0.93 0.90 0.30 1.00 30 48

20 36 (-18%)

0.10 0.90 0.90 0.33 1.00 30 48
0.20 0.93 0.93 0.23 1.00 30 48

0.90
0.05 0.90 0.93 0.30 1.00 30 48
0.10 0.80 0.93 0.30 1.00 30 48
0.20 0.93 0.97 0.23 1.00 30 48

5 0.56 0.91 0.84 1.00 70 117

0.80
0.05 0.60 0.83 0.87 1.00 30 47

37 64 (-13%)

0.10 0.47 0.83 0.77 1.00 30 47
0.20 0.56 0.76 0.88 1.00 50 81

0.90
0.05 0.50 0.83 0.73 1.00 30 47
0.10 0.30 0.80 0.83 1.00 30 47
0.20 0.43 0.93 0.90 1.00 30 47

6 0.32 0.96 0.36 1.00 50 19

0.80
0.05 0.47 0.93 0.27 1.00 30 11

20 8 (-79%)

0.10 0.50 0.97 0.27 1.00 30 11
0.20 0.40 1.00 0.27 1.00 30 11

0.90
0.05 0.37 0.97 0.33 1.00 30 11
0.10 0.43 0.93 0.30 1.00 30 11
0.20 0.23 0.97 0.20 1.00 30 11

8 0.73 1.00 0.59 1.00 70 25

0.80
0.05 0.57 1.00 0.63 1.00 30 10

33 13 (-60%)

0.10 0.73 1.00 0.67 1.00 30 10
0.20 0.76 0.97 0.60 1.00 70 25

0.90
0.05 0.63 0.97 0.77 1.00 30 10
0.10 0.73 1.00 0.83 1.00 30 10
0.20 0.70 1.00 0.83 1.00 30 10

Mean 22 22 (-46%)
1. The relatives gaps are given in parenthesis.
2. The running times (CPU) are given in seconds.

24

Table B5.: 1,2Computational results for TCT5

I Algorithm (Lima et al. 2017) Algorithm 3
∆n ∆CPU (s)

TC 5.1 TC 5.2 TC 5.3 TC 5.4 n CPU (s) θ β TC 5.1 TC 5.2 TC 5.3 TC 5.4 n CPU (s)

1 1.00 1.00 0.99 0.63 70 69

0.80
0.05 1.00 1.00 0.98 0.76 50 44

27 30 (-44%)

0.10 1.00 1.00 0.97 0.67 30 26
0.20 1.00 1.00 0.96 0.66 50 48

0.90
0.05 1.00 1.00 1.00 0.67 30 26
0.10 1.00 1.00 1.00 0.67 30 26
0.20 1.00 1.00 0.99 0.79 70 63

2 0.44 1.00 1.00 1.00 50 43

0.80
0.05 0.33 1.00 1.00 1.00 30 24

20 19 (-44%)

0.10 0.20 1.00 1.00 1.00 30 24
0.20 0.43 1.00 1.00 1.00 30 24

0.90
0.05 0.27 1.00 1.00 1.00 30 24
0.10 0.43 1.00 1.00 1.00 30 24
0.20 0.23 1.00 1.00 1.00 30 24

3 1.00 1.00 0.44 0.02 50 59

0.80
0.05 1.00 1.00 0.63 0.03 30 34

20 26 (-44%)

0.10 1.00 1.00 0.57 0.07 30 33
0.20 1.00 1.00 0.50 0.07 30 33

0.90
0.05 1.00 1.00 0.53 0.00 30 34
0.10 1.00 1.00 0.50 0.00 30 33
0.20 1.00 1.00 0.67 0.10 30 33

4 0.98 1.00 1.00 0.98 50 46

0.80
0.05 1.00 1.00 1.00 0.97 30 26

7 7 (-15%)

0.10 1.00 1.00 1.00 1.00 30 26
0.20 1.00 1.00 1.00 0.92 50 46

0.90
0.05 1.00 1.00 1.00 0.94 50 45
0.10 0.96 1.00 1.00 0.92 50 46
0.20 0.94 1.00 1.00 0.96 50 45

5 1.00 1.00 0.84 0.30 50 57

0.80
0.05 1.00 1.00 0.90 0.37 30 31

20 25 (-44%)

0.10 1.00 1.00 0.80 0.40 30 32
0.20 1.00 1.00 1.00 0.33 30 32

0.90
0.05 1.00 1.00 0.90 0.50 30 31
0.10 1.00 1.00 0.90 0.23 30 32
0.20 1.00 1.00 0.90 0.43 30 32

6 1.00 1.00 0.37 0.04 70 153

0.80
0.05 1.00 1.00 0.23 0.00 30 62

40 91 (-59%)

0.10 1.00 1.00 0.40 0.03 30 62
0.20 1.00 1.00 0.43 0.10 30 62

0.90
0.05 1.00 1.00 0.27 0.00 30 62
0.10 1.00 1.00 0.37 0.07 30 62
0.20 1.00 1.00 0.30 0.03 30 62

7 1.00 1.00 0.62 0.02 50 108

0.80
0.05 1.00 1.00 0.63 0.07 30 62

20 45 (-42%)

0.10 1.00 1.00 0.77 0.27 30 64
0.20 1.00 1.00 0.73 0.03 30 63

0.90
0.05 1.00 1.00 0.57 0.10 30 63
0.10 1.00 1.00 0.67 0.10 30 62
0.20 1.00 1.00 0.50 0.00 30 62

8 1.00 1.00 0.46 0.10 50 106

0.80
0.05 1.00 1.00 0.70 0.03 30 61

20 45 (-42%)

0.10 1.00 1.00 0.57 0.03 30 61
0.20 1.00 1.00 0.47 0.17 30 61

0.90
0.05 1.00 1.00 0.37 0.20 30 61
0.10 1.00 1.00 0.57 0.07 30 61
0.20 1.00 1.00 0.40 0.13 30 61

Mean 22 36 (-42%)
1. The relatives gaps are given in parenthesis.
2. The running times (CPU) are given in seconds.

25

References

Adams, Joseph, Egon Balas, and Daniel Zawack. 1988. “The shifting bottleneck procedure for job shop
scheduling.” Management science 34 (3): 391–401.

Barz, Christiane, and Kumar Rajaram. 2015. “Elective patient admission and scheduling under multiple
resource constraints.” Production and Operations Management 24 (12): 1907–1930.

Cho, Lucky, Hangmi Michelle Park, Jennifer K Ryan, Thomas C Sharkey, Chihyun Jung, and Detlef
Pabst. 2014. “Production scheduling with queue-time constraints: Alternative formulations.” In IIE
Annual Conference. Proceedings, 282. Institute of Industrial and Systems Engineers (IISE).

Crombecq, Karel, Eric Laermans, and Tom Dhaene. 2011. “Efficient space-filling and non-collapsing
sequential design strategies for simulation-based modeling.” European Journal of Operational Re-
search 214 (3): 683–696.

Dauzère-Pérès, Stéphane, and Jan Paulli. 1997. “An integrated approach for modeling and solving
the general multiprocessor job-shop scheduling problem using tabu search.” Annals of Operations
Research 70: 281–306.

Feng, Jianguang, Chengbin Chu, and Ada Che. 2018. “Cyclic jobshop hoist scheduling with multi-
capacity reentrant tanks and time-window constraints.” Computers & Industrial Engineering 120:
382–391.

Johnzén, Carl, Stéphane Dauzère-Pérès, and Philippe Vialletelle. 2011. “Flexibility measures for qual-
ification management in wafer fabs.” Production Planning and Control 22 (1): 81–90.

Jung, Chihyun, Detlef Pabst, Myoungsoo Ham, Marcel Stehli, and Marcel Rothe. 2014. “An effective
problem decomposition method for scheduling of diffusion processes based on mixed integer linear
programming.” IEEE Transactions on Semiconductor Manufacturing 27 (3): 357–363.

Kaihara, Toshiya, Shinji Kurose, and Nobutada Fujii. 2012. “A proposal on optimized scheduling
methodology and its application to an actual-scale semiconductor manufacturing problem.” CIRP
Annals-Manufacturing Technology 61 (1): 467–470.

Kim, Hyun-Jung, and Jun-Ho Lee. 2017. “A Branch and Bound Algorithm for Three-Machine Flow
Shop with Overlapping Waiting Time Constraints.” IFAC-PapersOnLine 50 (1): 1101–1105.

Kitamura, Shoichi, Kazuyuki Mori, and Akira Ono. 2006. “Capacity planning method for semicon-
ductor fab with time constraints between operations.” In SICE-ICASE, 2006. International Joint
Conference, 1100–1103. IEEE.

Klemmt, Andreas, and Lars Mönch. 2012. “Scheduling jobs with time constraints between consecutive
process steps in semiconductor manufacturing.” In Proceedings of the Winter Simulation Confer-
ence, 194. Winter Simulation Conference.

Knopp, Sebastian, Stéphane Dauzère-Pérès, and Claude Yugma. 2017. “A batch-oblivious approach
for Complex Job-Shop scheduling problems.” European Journal of Operational Research 263 (1):
50–61.

Kobayashi, Akihiro, Takahiro Kuno, and Sumika Arima. 2013. “Re-entrant flow control in Q-time con-
straints processes for actual applications.” In e-Manufacturing & Design Collaboration Symposium
(eMDC), 2013, 1–4. IEEE.

Krämer, Franz-Josef, Mohsen El Hafsi, and Sherman X Bai. 1997. “Production flow control for a
manufacturing system with flexible routings.” Production and Operations Management 6 (1): 37–
56.

Lee, Jun-Ho, Cong Zhao, Jingshan Li, and Chrissoleon T Papadopoulos. 2018. “Analysis, design, and
control of Bernoulli production lines with waiting time constraints.” Journal of Manufacturing Sys-
tems 46: 208–220.

Lee, Yih-Yi, CT Chen, and Chester Wu. 2005. “Reaction chain of process queue time quality control.”
In Semiconductor Manufacturing, 2005. ISSM 2005, IEEE International Symposium on, 47–50.
IEEE.

Li, Minqi, Feng Yang, Reha Uzsoy, and Jie Xu. 2016. “A metamodel-based Monte Carlo simulation
approach for responsive production planning of manufacturing systems.” Journal of Manufacturing
Systems 38: 114 – 133.

Lima, Alexandre, Valeria Borodin, Stéphane Dauzère-Pérès, and Philippe Vialletelle. 2017. “Analyzing
different dispatching policies for probability estimation in time constraint tunnels in semiconductor

26

manufacturing.” In 2017 Winter Simulation Conference (WSC), 3543–3554.
Lima, Alexandre, Valeria Borodin, Stéphane Dauzère-Pérès, and Philippe Vialletelle. 2019. “Sampling-

based release control of multiple lots in time constraint tunnels.” Computers in Industry 110: 3 – 11.
Liu, Haitao, Yew-Soon Ong, and Jianfei Cai. 2018. “A survey of adaptive sampling for global meta-

modeling in support of simulation-based complex engineering design.” Structural and Multidisci-
plinary Optimization 57 (1): 393–416.

Maleck, Christian, and Tobias Eckert. 2017. “A comparison of control methods for production areas
with time constraints and tool interruptions in semiconductor manufacturing.” In Electronics Tech-
nology (ISSE), 2017 40th International Spring Seminar on, 1–6. IEEE.

Maleck, Christian, Gerald Weigert, Detlef Pabst, and Marcel Stehli. 2017. “Robustness analysis of an
MIP for production areas with time constraints and tool interruptions in semiconductor manufactur-
ing.” In Simulation Conference (WSC), 2017 Winter, 3714–3725. IEEE.

Mendo, Luis, and José M Hernando. 2006. “A simple sequential stopping rule for Monte Carlo simu-
lation.” IEEE Transactions on Communications 54 (2): 231–241.

Ovacik, I.M., and R. Uzsoy. 1997. Decomposition methods for complex factory scheduling problems.
Kluwer Academic Publishers.

Pappert, Falk Stefan, Tao Zhang, Oliver Rose, Fabian Suhrke, Jonas Mager, and Thomas Frey. 2016.
“Impact of time bound constraints and batching on metallization in an opto-semiconductor fab.” In
Winter Simulation Conference (WSC), 2016, 2947–2957. IEEE.

Robinson, Jennifer K. 1998. “Capacity planning in a semiconductor wafer fabrication facility with time
constraints between process steps.” PhD diss., Citeseer.

Roy, B, and B Sussmann. 1964. “Les Problèmes d’Ordonnancement avec Contraintes Disjonctives.”
Note DS n.9 bis, SEMA .

Sadeghi, Rezvan, Stéphane Dauzère-Pérès, Claude Yugma, and Guillaume Lepelletier. 2015. “Produc-
tion control in semiconductor manufacturing with time constraints.” In Advanced Semiconductor
Manufacturing Conference (ASMC), 2015 26th Annual SEMI, 29–33.

Simpson, Timothy W, Dennis KJ Lin, and Wei Chen. 2001. “Sampling strategies for computer experi-
ments: design and analysis.” International Journal of Reliability and Applications 2 (3): 209–240.

Wang, Bailin, Kai Huang, and Tieke Li. 2018. “Permutation flowshop scheduling with time lag con-
straints and makespan criterion.” Computers & Industrial Engineering 120: 1–14.

Wang, Mengchang, Sandeep Srivathsan, Edward Huang, and Kan Wu. 2018. “Job Dispatch Control for
Production Lines With Overlapped Time Window Constraints.” IEEE Transactions on Semiconduc-
tor Manufacturing 31 (2): 206–214.

Wu, Cheng-Hung, Yu-Ching Cheng, Ping-Ju Tang, and Jiun-Yu Yu. 2012. “Optimal batch process
admission control in tandem queueing systems with queue time constraint considerations.” In Pro-
ceedings of the Winter Simulation Conference, 204. Winter Simulation Conference.

Wu, Cheng-Hung, Wen-Chi Chien, Ya-Tang Chuang, and Yu-Ching Cheng. 2016. “Multiple product
admission control in semiconductor manufacturing systems with process queue time (PQT) con-
straints.” Computers & Industrial Engineering 99: 347–363.

Wu, Cheng-Hung, James T Lin, and Wen-Chi Chien. 2010. “Dynamic production control in a serial
line with process queue time constraint.” International Journal of Production Research 48 (13):
3823–3843.

Wu, Cheng-Hung, James T Lin, and Wen-Chi Chien. 2012. “Dynamic production control in parallel
processing systems under process queue time constraints.” Computers & Industrial Engineering 63
(1): 192–203.

Yugma, Claude, Stéphane Dauzère-Pérès, Christian Artigues, Alexandre Derreumaux, and Olivier
Sibille. 2012. “A batching and scheduling algorithm for the diffusion area in semiconductor manu-
facturing.” International Journal of Production Research 50 (8): 2118–2132.

Yurtsever, Tanju, Erhan Kutanoglu, and Jennifer Johns. 2009. “Heuristic based scheduling system for
diffusion in semiconductor manufacturing.” In Winter Simulation Conference, 1677–1685.

27

	Introduction
	Literature review
	Problem statement
	Problem modeling
	Work-In-Process retrieval
	Disjunctive graph modeling and evaluation

	Accelerated sampling approach based on a triggering threshold
	Exploration and sampling efficiency
	Sampling convergence
	Sampling triggering threshold

	Numerical experiments
	Instance description
	Parameter selection
	Numerical analysis

	Managerial implications
	Conclusion and perspectives
	Notations
	Computational results

