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Abstract 

We derive a general structure that encompasses important coefficients of inter-rater agreement 

such as the S-coefficient, Cohen’s kappa, Scott’s pi, Fleiss’ kappa, Krippendorff’s alpha and 

Gwet’s AC1. We show that these coefficients share the same set of assumptions about rater 

behavior; they only differ in how the unobserved category proportions are estimated. We 

incorporate Bayesian estimates of the category proportions and propose a new agreement 

coefficient with uniform prior beliefs. To correct for guessing in the process of item 

classification, the new coefficient emphasizes equal category probabilities if the observed 

frequencies are unstable due to a small sample, and the frequencies increasingly shape the 

coefficient as they become more stable. The proposed coefficient coincides with the S-

coefficient for the hypothetical case of zero items; it converges to Scott’s pi, Fleiss’ kappa and 

Krippendorff’s alpha as the number of items increases. We use simulation to show that the 

proposed coefficient is as good as extant coefficients if the category proportions are equal and 

that it performs better if the category proportions are substantially unequal. 

Keywords:  inter-rater agreement, qualitative judgments, nominal categories 
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A New Coefficient of Inter-Rater Agreement:  

The Challenge of Highly Unequal Category Proportions 

  

Coding of qualitative items into nominal categories is a common task in the social 

sciences (e.g., Hughes & Garrett, 1990). Popular applications include content analysis, survey 

research and meta analysis (Perreault & Leigh, 1989). Content analysis classifies text, or other 

forms of communication, into content categories. Survey research often relies on open-ended 

questions of which the answers need to be categorized. Meta analysis requires measurement 

of the dimensions that describe the various settings in published empirical studies, which 

involves categorization if the dimensions are nominal. 

 Reproducibility, or inter-rater agreement, is essential for meaningful categorization of 

qualitative items (Kassarjian, 1977; Krippendorff, 2004). A situation in which different raters 

code the items very differently would imply poorly identified categories, threatening the 

validity of any subsequent analysis. Thus, inter-rater agreement should always be established 

and reported using appropriate coefficients (Lombard, Snyder-Duch, & Bracken, 2002; 

Stemler, 2004). 

The literature contains a large number of easy-to-compute agreement coefficients. 

However, these coefficients take vastly different values for the same classification of items if 

the category frequencies are highly unequal. The differences arise from how the various 

coefficients correct for the notion that raters may agree on items by chance. If raters’ 

judgments involve guessing, the literature disagrees about whether the categories are equally 

likely to be picked (Bennett, Alpert, & Goldstein, 1954; Brennan & Prediger, 1981; Perreault 

& Leigh, 1989) or the category probabilities should depend on the observed category 

frequencies (Cohen, 1960; Fleiss, 1971; Krippendorff, 2004; Scott, 1955). 
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Agreement coefficients relying on equal category probabilities ignore all information 

contained in the category frequencies. They do not capture that it is relatively easy to attain a 

high percentage of agreement if the category proportions are substantially unequal, resulting 

in a very mild correction for agreement by chance. Alternatively, frequency-based coefficients 

represent the unobserved true category proportions by the observed relative frequencies 

(Krippendorff, 2004). In so doing, these coefficients address the issue that rater agreement 

becomes more likely as the category proportions become more unequal (Stemler & Tsai, 

2008). However, frequency-based coefficients may become unstable if raters classify a small 

number of items; these coefficients are relatively sensitive to small-sample noise. For 

example, one or two more item assignments to a category with a very low frequency may 

substantially alter the value of a frequency-based coefficient. The present study focuses on 

these two classes of chance-corrected agreement coefficients: equal-probability coefficients 

and frequency-based coefficients.  

First, we review several important chance-corrected agreement coefficients, both 

based on equal probabilities and based on category frequencies. We show that these 

coefficients share a common set of (implicit) assumptions about rater behavior and that they 

follow from one general coefficient of inter-rater agreement that incorporates the unobserved 

category proportions; the extant coefficients only differ in how they estimate these 

proportions. Thus, we derive an overarching framework of agreement coefficients.  

Second, we propose a new agreement coefficient that fits within the overarching 

framework and incorporates Bayesian estimates of the category proportions. It starts from 

equal category probabilities, but moves closer to traditional frequency-based coefficients as 

raters categorize more items and the relative frequencies thus become more precise. The new 

coefficient coincides with the S-coefficient for the hypothetical case of zero items and 

converges to Scott’s pi, Fleiss’ kappa and Krippendorff’s alpha as the sample size increases. It 
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accounts for all information in the category frequencies, but discounts this information based 

on how imprecise it is. 

 Third, we employ the overarching framework to run a simulation that compares the 

performances of the various agreement coefficients. The proposed coefficient is as good as 

the other coefficients in scenarios with equal category proportions; it performs better if the 

category proportions are substantially unequal. For the latter set of scenarios, we show that 

the S-coefficient and Gwet’s AC1 do not perform well in general, whereas Cohen’s kappa, 

Scott’s pi, Fleiss’ kappa and Krippendorff’s alpha are imprecise for small samples. We also 

provide two examples to illustrate the properties of the new coefficient. 

A Review of Agreement Coefficients 

 We consider R raters (or coders or judges) who classify each of N items (or units or 

subjects) into one of C mutually exclusive categories, that is, one of the C levels of a 

categorical variable. The simplest agreement coefficient is the hit rate H, which is the number 

of agreements across all pairs of raters and all items, expressed as a fraction of the maximum 

attainable; this maximum is the number of items, N, times the number of rater pairs,  

(
𝑅
2

) = 𝑅(𝑅 − 1)/2. 

If 𝐹𝑐
(𝑖)

 denotes the number of raters assigning item i to category c, the number of pairwise 

rater agreements for item i equals 

∑ (𝐹𝑐
(𝑖)

2
)𝐶

𝑐=1 = ∑ 𝐹𝑐
(𝑖)

(𝐹𝑐
(𝑖)

− 1)/2𝐶
𝑐=1 , 

so the number of pairwise agreements across all items becomes ∑ ∑ 𝐹𝑐
(𝑖)

(𝐹𝑐
(𝑖)

− 1)/2𝐶
𝑐=1

𝑁
𝑖=1  

(Fleiss, 1971). Thus, the hit rate can be written as 

𝐻 =
∑ ∑ 𝐹𝑐

(𝑖)
(𝐹𝑐

(𝑖)
− 1)/2𝐶

𝑐=1
𝑁
𝑖=1

𝑁𝑅(𝑅 − 1)/2
=

1

𝑁
∑ ∑

𝐹𝑐
(𝑖)

(𝐹𝑐
(𝑖)

− 1)

𝑅(𝑅 − 1)

𝐶

𝑐=1

𝑁

𝑖=1

.                          (1) 
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If 𝑅 = 2, (1) reduces to the fraction of items on which both raters agree (Fleiss, 1971). 

Unfortunately, despite its ongoing popularity, the hit rate (or percentage agreement) is not a 

suitable agreement coefficient and should never be reported as the only measure (Grayson & 

Rust, 2001; Hughes & Garrett, 1990; Krippendorff, 2004; Lombard et al., 2002). The problem 

is that the hit rate in (1) does not exclude agreements that occur merely by chance. For 

example, a situation with 𝐶 = 2 equally large categories and 𝑅 = 2 raters who guess the 

categories of all items corresponds to classification without intrinsic value, but with an 

expected hit rate of 50%. 

S-Coefficient (and Equivalent Coefficients) 

As good agreement coefficients discard agreement by chance, they usually take the 

following form: 

𝐼 =
𝐻 − 𝐻chance

1 − 𝐻chance
,                                                                 (2) 

where 𝐻chance is the hit rate that is expected by chance alone. The numerator in (2) is the 

extent to which the hit rate H exceeds 𝐻chance; the denominator in (2) rescales the coefficient 

to ensure that the (theoretical) maximum value is 𝐼 = 1; the other benchmark value 𝐼 = 0 

corresponds with 𝐻 = 𝐻chance. Assuming that all C categories are equally likely to be picked, 

there are 𝐶2 possible combinations for any pair of raters of which C combinations result in 

agreement. Thus, 𝐻chance = 𝐶/𝐶2 = 1/𝐶. Substitution into (2) results in the S-coefficient by 

Bennett, Alpert and Goldstein (1954): 

𝐼𝑆 =
𝐻 − 1/𝐶

1 − 1/𝐶
= (𝐻 −

1

𝐶
)

𝐶

𝐶 − 1
.                                                 (3) 

This agreement coefficient has been rediscovered several times (Zwick, 1988), resulting in 

Guilford’s G, Maxwell’s RE coefficient, Janson and Vegelius’ C and Brennan and Prediger’s 

𝜅𝑛 (Brennan & Prediger, 1981; Holley & Guilford, 1964; Janson & Vegelius, 1979; Maxwell, 

1977).  
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The S-coefficient and equivalent coefficients assume equal category probabilities to 

correct for agreement by chance; they do not account for the category frequencies. Proponents 

consider this a desirable property and base their arguments on symmetric treatment of the 

categories and lack of prior knowledge about the true category proportions (Perreault & 

Leigh, 1989). Their perspective is reasonable if the relative frequencies are unstable due to a 

very small sample or if the relative frequencies are approximately equally large. However, 

insensitivity to the category proportions seems undesirable if the relative frequencies are 

stable and highly skewed. For example, a hit rate of 95% is excellent if two categories are 

equally large, but the same percentage becomes less impressive if one of the two categories 

contains, say, 99% of the items; a hit rate of 99% is attainable by assigning all items to the 

large category, though researchers usually want to classify both categories (Krippendorff, 

2004; Morrison, 1969). Thus, agreement coefficients relying on equal category probabilities 

apply only a very mild correction for agreement by chance; they do not capture that it is 

relatively easy to attain a high hit rate H if the category proportions are substantially unequal. 

Cohen’s Kappa 

 Cohen’s kappa assumes 𝑅 = 2 raters (Cohen, 1960). Though lacking a natural 

extension to more than two raters, it is feasible to take the average of kappa values across all 

pairs of raters (Conger, 1980). Cohen’s kappa defines the hit rate expected by chance as 

𝐻chance = ∑(𝐹1,𝑐/𝑁)(𝐹2,𝑐/𝑁)

𝐶

𝑐=1

,                                                 (4) 

where 𝐹1,𝑐 is the number of items that rater 1 assigns to category c, and 𝐹1,𝑐/𝑁 is the 

corresponding fraction of items; frequency 𝐹2,𝑐 and fraction 𝐹2,𝑐/𝑁 are defined similarly for 

rater 2. If the two raters pick categories in accordance with these fractions, (𝐹1,𝑐/𝑁)(𝐹2,𝑐/𝑁) 

is the probability that both raters pick category c; 𝐻chance is the sum across all categories. By 

substituting (4) into (2), we obtain 



A NEW COEFFICIENT OF INTER-RATER AGREEMENT                                                                                      7 

𝐼Cohen =
𝐻 − ∑ (𝐹1,𝑐/𝑁)(𝐹2,𝑐/𝑁)𝐶

𝑐=1

1 − ∑ (𝐹1,𝑐/𝑁)(𝐹2,𝑐/𝑁)𝐶
𝑐=1

.                                           (5) 

Because 𝐻chance in (4) is directly computed from the observed frequencies, Cohen’s kappa in 

(5) is potentially unstable for small samples, with low N. The extant literature provides 

extensive discussions of the advantages and disadvantages of Cohen’s kappa relative to other 

agreement coefficients (e.g., Banerjee, Cappozzoli, McSweeney, & Sinha, 1999; Feinstein & 

Cicchetti, 1990; Krippendorff & Fleiss, 1978; Zwick, 1988).  

Scott’s Pi, Fleiss’ Kappa and Krippendorff’s Alpha 

 Scott’s pi is similar to Cohen’s kappa, but the category probabilities are the same for 

both raters and reflect the true category proportions (Scott, 1955). By combining the 

frequencies from both raters, the proportion of category c can be estimated as (𝐹1,𝑐 +

𝐹2,𝑐)/2𝑁, so the probability that both raters pick category c is ([𝐹1,𝑐 + 𝐹2,𝑐]/2𝑁)2. The 

probability of agreement by chance becomes 

𝐻chance = ∑([𝐹1,𝑐 + 𝐹2,𝑐]/2𝑁)
2

𝐶

𝑐=1

.                                               (6) 

This structure is similar to the proportional chance criterion in discriminant analysis 

(Morrison, 1969). Substitution into (2) yields Scott’s pi: 

𝐼Scott =
𝐻 − ∑ ([𝐹1,𝑐 + 𝐹2,𝑐]/2𝑁)

2𝐶
𝑐=1

1 − ∑ ([𝐹1,𝑐 + 𝐹2,𝑐]/2𝑁)
2𝐶

𝑐=1

.                                           (7) 

It coincides with Cohen’s kappa if 𝐹1,𝑐 = 𝐹2,𝑐 for 𝑐 = 1, … , 𝐶. 

Fleiss’ kappa is a straightforward extension of Scott’s pi to more than 𝑅 = 2 raters: 

𝐼Fleiss =
𝐻 − ∑ (∑ 𝐹𝑟,𝑐

𝑅
𝑟=1 /𝑅𝑁)

2𝐶
𝑐=1

1 − ∑ (∑ 𝐹𝑟,𝑐
𝑅
𝑟=1 /𝑅𝑁)

2𝐶
𝑐=1

.                                           (8) 

Furthermore, we obtain Krippendorff’s alpha (in the context of nominal data) by applying a 

small-sample correction to (8), where 𝑅𝑁 is the sample size: 
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𝐼Kripp =
𝐻 − ∑ (∑ 𝐹𝑟,𝑐

𝑅
𝑟=1 /𝑅𝑁)([∑ 𝐹𝑟,𝑐

𝑅
𝑟=1 − 1]/[𝑅𝑁 − 1])𝐶

𝑐=1

1 − ∑ (∑ 𝐹𝑟,𝑐
𝑅
𝑟=1 /𝑅𝑁)([∑ 𝐹𝑟,𝑐

𝑅
𝑟=1 − 1]/[𝑅𝑁 − 1])𝐶

𝑐=1

.                    (9) 

For large 𝑅𝑁, 𝐼Kripp converges to 𝐼Scott for two raters and 𝐼Fleiss for any number of raters. 

Whereas Fleiss’ kappa in (8) immediately uses the observed relative frequencies to define the 

probability distribution of the categories for both raters, Krippendorff’s alpha in (9) 

recalculates this probability distribution for the second rater by excluding the first rater’s 

choice for the item. Thus, the probability that the first rater picks category c remains 

∑ 𝐹𝑟,𝑐
𝑅
𝑟=1 /𝑅𝑁, but the probability that the second rater also picks category c becomes 

(∑ 𝐹𝑟,𝑐
𝑅
𝑟=1 − 1)/(𝑅𝑁 − 1), where both the frequency of category c and the total frequency 

across categories have been decreased by one. Put differently, the probability of agreement by 

chance is based on sampling with replacement for Fleiss’ kappa, whereas it is based on 

sampling without replacement for Krippendorff’s alpha. A powerful feature of the latter 

coefficient is that its general form extends to non-nominal coding, though the calculations 

tend to become complex (Lombard et al., 2002; Stemler & Tsai, 2008). Similar to Cohen’s 

kappa, all three agreement coefficients are highly dependent on the observed category 

frequencies, making them potentially unstable for small samples. They usually provide values 

that are very similar to Cohen’s kappa (Stemler & Tsai, 2008). 

Gwet’s AC1 Coefficient 

 Gwet’s AC1 defines the probability of agreement by chance as the joint probability 

that at least one rater needs to guess the item’s category and the outcome is agreement, where 

the probability of agreement conditional on guessing is defined as 1/𝐶 for all categories 

(Gwet, 2008): 

𝐼Gwet =
𝐻 − 𝐻chance

1 − 𝐻chance
      with      𝐻chance =

1

𝐶 − 1
∑ (

∑ 𝐹𝑟,𝑐
𝑅
𝑟=1

𝑅𝑁
) (1 −

∑ 𝐹𝑟,𝑐
𝑅
𝑟=1

𝑅𝑁
)

𝐶

𝑐=1

.   (10) 
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For 𝑅 = 2 and 𝐶 = 2, 𝐻chance in (10) can be written as 1 − 𝐻chance in (6) for Scott’s pi. In 

general, 𝐼Gwet uses the relative frequencies of categories in the opposite direction, resulting in 

a correction for agreement by chance that is even milder than the correction used in the S-

coefficient; 𝐼Gwet takes values that are far from Scott’s pi and similar frequency-based 

coefficients if the category proportions are highly unequal.  

Perreault-Leigh Coefficient 

 Unlike the previously discussed coefficients, Perreault and Leigh (1989) do not start 

from agreement coefficient (2), but take a model-based approach for 𝑅 = 2 raters. Their 

coefficient, 𝐼PerrLeigh, is the probability that a rater’s judgment of an item’s category is 

accurate, meaning that the rater assigns the item to its correct category without guessing. All 

raters are assumed to have the same probability of accurate judgment. Whenever a rater’s 

judgment of an item’s category is not accurate, the rater is assumed to randomly pick a 

category, with equal category probabilities. For fraction 𝐼PerrLeigh
2 of the items, both raters 

make accurate judgments and thus choose the same category. For the other fraction 1 −

𝐼PerrLeigh
2, at least one of the two raters is not able to make an accurate judgment. Because 

raters, uncertain about an item’s category, pick any category with probability 1/𝐶, the 

probability of pairwise rater agreement is also 1/𝐶. The hit rate H is the fraction of items for 

which both raters make accurate judgments plus the fraction of items for which at least one 

rater is not able to make an accurate judgment but there is agreement by chance: 

𝐻 = 𝐼PerrLeigh
2 + (1 − 𝐼PerrLeigh

2)
1

𝐶
.                                         (11) 

Solving (11) with respect to 𝐼PerrLeigh yields the Perreault-Leigh coefficient: 

𝐼PerrLeigh = √(𝐻 −
1

𝐶
)

𝐶

𝐶 − 1
,                                                 (12) 
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which is defined as zero if 𝐻 < 1/𝐶. Because the Perreault-Leigh coefficient is the square 

root of the S-coefficient, the S-coefficient becomes the square of the Perreault-Leigh 

coefficient. This confirms intuition: The chance-corrected probability of pairwise rater 

agreement is the probability that both raters make accurate judgments and thus assign an item 

to its correct category without guessing. We conclude that the S-coefficient is the Perreault-

Leigh coefficient in the form of an agreement coefficient. 

Summary 

Popular agreement coefficients can be divided into three broad classes: (1) coefficients 

that do not correct for raters’ guesses in the process of item classification (i.e., the simple hit 

rate, or equivalently, the percentage agreement), (2) coefficients that correct for agreement by 

chance without accounting for the observed category frequencies (i.e., the S-coefficient and 

equivalent coefficients), and (3) coefficients that correct for agreement by chance and account 

for the category frequencies (i.e., Cohen’s kappa and other frequency-based coefficients). In 

the next sections, we first present a general framework that encompasses the chance-corrected 

agreement coefficients in classes 2 and 3; we show that these coefficients have a common 

structure that is consistent with an extension of the Perreault-Leigh model of rater behavior. 

Next, we refine this framework to obtain a new agreement coefficient that incorporates all 

information in the observed frequencies (the attractive feature of class 3), but discounts this 

information based on how imprecise it is (avoiding the weakness of class 3). Although 

Krippendorff’s alpha also entails a (minor) small-sample correction, it does not use Bayesian 

updating principles to smooth out small-sample noise. We will use simulation to compare the 

performances of the various coefficients. 

General Framework 

 We take a model-based approach that resembles the influential work of Perreault and 

Leigh (1989), which has received over 1500 Google Scholar citations. Rust and Cooil (1994) 
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used a similar set of assumptions to derive a coefficient that is equivalent to the Perreault-

Leigh coefficient for 𝑅 = 2 raters but considers the modal judgment across raters, instead of 

individual rater judgments. Whereas Perreault and Leigh (1989) assumed equal category 

probabilities, we adjust this assumption to derive a general structure that is compatible with 

all discussed agreement coefficients in classes 2 and 3. We need the following assumptions: 

1. Each rater acts independently. 

2. Each rater makes an accurate judgment of an item’s correct category with probability 

𝐼𝑟. 

3. If a judgment is not accurate, the rater picks category c for the item with probability 

𝑝𝑐, 𝑐 = 1, … , 𝐶. 

4. The researcher represents (𝑝1, … . , 𝑝𝐶) by the category proportions (𝜋1, … . , 𝜋𝐶). 

Assumption 1 is a standard assumption and implies that raters do not communicate with each 

other (Krippendorff, 2004; Rust & Cooil, 1994). Assumptions 2 and 3 follow Perreault and 

Leigh (1989), where 𝐼𝑟 is the probability of accurate judgment and raters pick a category 

probabilistically whenever they are unable to make an accurate judgment. Assumption 4 

captures the researcher’s belief that the category probabilities in Assumption 3 can be 

approximated by the corresponding category proportions: Raters are motivated to do the 

coding well and they use the notion that an item’s correct category is more likely a large 

category, with large 𝜋𝑐, than a small one. Raters may already have some initial ideas about 

the category proportions or they may remember previous outcomes during the coding process 

and use availability heuristics (Tversky & Kahneman, 1974).  

It follows from the assumptions that each rater’s probability of assigning an item to 

category c, not conditional on whether the rater’s judgment is accurate, coincides with the 

category’s proportion 𝜋𝑐, as this probability is the outcome of two possible situations: 
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1. The rater makes an accurate judgment and the item’s correct category is c, with joint 

probability 𝐼𝑟𝜋𝑐. 

2. The rater does not make an accurate judgment and picks category c in accordance with 

the category’s proportion, with joint probability (1 − 𝐼𝑟)𝜋𝑐. 

Thus, the relative frequencies of categories converge to the unobserved category proportions 

if raters classify many items. In contrast, the original Perreault-Leigh process (leading to the 

S-coefficient) would imply unconditional probability 𝐼𝑟𝜋𝑐 + (1 − 𝐼𝑟)(1/𝐶) for category c, 

which is unequal to 𝜋𝑐 if 𝐼𝑟 ≠ 1 and 𝜋𝑐 ≠ 1/𝐶; the Perreault-Leigh process implies that the 

relative frequencies of categories tend to be more equal than the category proportions. 

Derivation of General Agreement Coefficient for Two Raters 

 The hit rate H is the fraction of items on which both raters agree. Building on 

Assumptions 1-4, agreement occurs in three possible situations: 

1. Both raters make accurate judgments for an item, which occurs with probability 𝐼𝑟
2. 

2. No rater makes an accurate judgment for an item, but the raters agree by chance. The 

probability that both raters pick category c by chance is (1 − 𝐼𝑟)2𝑝𝑐
2. Summing over 

all possible categories 𝑐 = 1, … , 𝐶 yields probability ∑ (1 − 𝐼𝑟)2𝑝𝑐
2𝐶

𝑐=1 . 

3. One rater makes an accurate judgment for an item and the other rater is correct by 

chance. If the item’s correct category is c, this probability is 2𝐼𝑟(1 − 𝐼𝑟)𝑝𝑐; 

multiplication by two occurs because the two raters are interchangeable. Summing 

over all possible correct categories and their probabilities of occurrence yields the 

probability not conditional on the correct category:  ∑ 𝑝𝑐[2𝐼𝑟(1 − 𝐼𝑟)𝑝𝑐]𝐶
𝑐=1 . 

The hit rate is the result of all three scenarios: 

𝐻 = 𝐼𝑟
2 + (1 − 𝐼𝑟)2 ∑ 𝑝𝑐

2

𝐶

𝑐=1

+ 2𝐼𝑟(1 − 𝐼𝑟) ∑ 𝑝𝑐
2

𝐶

𝑐=1

= 𝐼𝑟
2 + (1 − 𝐼𝑟

2) ∑ 𝑝𝑐
2

𝐶

𝑐=1

.       (13) 

Solving (13) with respect to 𝐼𝑟 yields 
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𝐼𝑟 = √ 
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

.                                                         (14) 

It immediately follows that the squared probability of accurate judgment, 𝐼𝑟
2, takes the form 

of a chance-corrected agreement coefficient: 

𝐼𝑟
2 =

𝐻 − ∑ 𝑝𝑐
2𝐶

𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

.                                                         (15) 

This again confirms intuition: the probability that both raters make accurate judgments is the 

chance-corrected probability of pairwise agreement. 

Going Beyond Two Raters 

The structures in (14) and (15) remain the same if more than two raters are involved in 

the coding process. The appendix proves that Assumptions 1-4 indeed imply probability 

coefficient (14), and thus agreement coefficient (15), for 𝑅 = 3 raters. That is, for any feasible 

set of category proportions (𝑝1, … , 𝑝𝐶), incorporating (14) into Assumption 2 yields a process 

of item classification with expected hit rate H. Because the derivations become cumbersome 

for more than three raters, we use simulation to show that (14) is valid for any number of 

raters. We generate 10,000 scenarios by combining four hit rates H with five values of R, five 

values of C, and 100 sets of category probabilities (𝑝1, … , 𝑝𝐶). We take H = .60, .70, .80, 

or .90; R = 4, 5, 6, 10, or 20; C = 2, 3, 4, 10, or 20; and we draw (𝑝1, … , 𝑝𝐶) from the uniform 

Dirichlet(1, …, 1) distribution that accounts for the logical property that ∑ 𝑝𝑐
𝐶
𝑐=1 = 1. In each 

of the 10,000 scenarios, we take Assumptions 1-4, with 𝐼𝑟 defined by (14), as the data 

generating process and simulate raters’ classifications of 500,000 items. We establish that 𝐼𝑟 

in (14) is correct by showing that the simulated hit rate H matches the scenario’s true hit rate. 

Across all scenarios, the mean absolute deviation between the simulated hit rate and the actual 

hit rate is a negligible .0002; the largest absolute deviation is .0017. 
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Same Structure, Different Estimates of Category Proportions  

The chance-corrected agreement coefficients in classes 2 and 3 can be written as (15) 

and therefore have the same structure. However, they use different estimates of the category 

proportions 𝑝𝑐, 𝑐 = 1, … , 𝐶, in (15). For example, the S-coefficient imposes 𝑝𝑐 = 1/𝐶, Scott’s 

pi and Fleiss’ kappa estimate 𝑝𝑐 as the category’s average relative frequency across raters, and 

Cohen’s kappa uses the corresponding geometric average for two raters. Concretely, we have 

𝐼𝑆 =
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 =
1

𝐶
; 

𝐼Scott =
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 =
𝐹1,𝑐 + 𝐹2,𝑐

2𝑁
; 

𝐼Fleiss =
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 =
∑ 𝐹𝑟,𝑐

𝑅
𝑟=1

𝑅𝑁
; 

𝐼Cohen =
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 = √(
𝐹1,𝑐

𝑁
) (

𝐹2,𝑐

𝑁
) ; 

𝐼Kripp =
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 = √(
∑ 𝐹𝑟,𝑐

𝑅
𝑟=1

𝑅𝑁
) (

∑ 𝐹𝑟,𝑐
𝑅
𝑟=1 − 1

𝑅𝑁 − 1
) ; 

𝐼Gwet =
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 = √
1

𝐶 − 1
(

∑ 𝐹𝑟,𝑐
𝑅
𝑟=1

𝑅𝑁
) (1 −

∑ 𝐹𝑟,𝑐
𝑅
𝑟=1

𝑅𝑁
),        (16) 

where the left part is the general structure (15), derived from Assumptions 1-4, and the right 

part is the specific estimate of category proportion 𝑝𝑐 that is substituted into (15) to obtain the 

corresponding agreement coefficient. Thus, Assumptions 1-4 lead to all chance-corrected 

agreement coefficients, implying that these assumptions can act as the data generating process 

in a simulation that compares the performances of the various coefficients. 

Proposed Agreement Coefficient 

 We introduce a new agreement coefficient by extending the general framework with a 

fifth assumption: 
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5. The researcher does not know the category proportions (𝜋1, … . , 𝜋𝐶), but holds prior 

beliefs that are captured by the Dirichlet(𝛼1, … . , 𝛼𝐶) distribution, with probability 

density function 

𝑓(𝜋1, … . , 𝜋𝐶) =
Γ(∑ 𝛼𝑐

𝐶
𝑐=1 )

∏ Γ(𝛼𝑐)𝐶
𝑐=1

∏ 𝜋𝑐
𝛼𝑐−1

𝐶

𝑐=1

,        𝜋𝐶 = 1 − ∑ 𝜋𝑐

𝐶−1

𝑐=1

. 

A key property of this distribution is that 𝜋𝑐 has expected value 𝛼𝑐/ ∑ 𝛼𝑐̃
𝐶
𝑐̃=1 , 𝑐 = 1, … , 𝐶. 

Furthermore, the sum of parameter values, ∑ 𝛼𝑐̃
𝐶
𝑐̃=1 , reflects the degree of certainty in the 

prior beliefs; larger ∑ 𝛼𝑐̃
𝐶
𝑐̃=1  corresponds to less variance in the distribution. An important 

special case occurs if (𝛼1, … . , 𝛼𝐶) = (1, … ,1), as the Dirichlet distribution becomes uniform.  

For 𝐶 = 2, the Dirichlet distribution coincides with the more familiar beta distribution, 

with two parameters, 𝛼1 > 0 and 𝛼2 > 0. Figure 1 visualizes the beta density of 𝜋1 (with 

𝜋2 = 1 − 𝜋1) for different values of 𝛼1 and 𝛼2. The figure shows that the beta distribution, 

and thus the Dirichlet distribution, is able to capture a wide range of possible prior beliefs 

about the category proportions, including bimodal U-shapes (small 𝛼1 and 𝛼2, bottom left), 

inverted-U shapes (large 𝛼1 and 𝛼2, top right), a flat uniform pattern (𝛼1 = 1 and 𝛼2 = 1, 

middle), inverted-J shapes (small 𝛼1 and large 𝛼2, top left), and J-shapes (large 𝛼1 and small 

𝛼2, bottom right). On the diagonal, from bottom left to top right, the two parameters 𝛼1 and 

𝛼2 take the same values, implying that the expected value of 𝜋1 (and of 𝜋2 = 1 − 𝜋1) is ½. 

Whereas the prior beliefs on the diagonal are always that the categories have equal 

proportions, the degree of certainty of these beliefs increases when moving in the top right 

direction; the distribution ultimately becomes a zero-variance spike as both 𝛼1 and 𝛼2 tend to 

infinity.  

Bayesian Estimates of Category Proportions 

We use Bayesian principles to obtain estimates of the true category proportions and 

substitute these estimates into (15) to obtain a new agreement coefficient. Bayesian updating 
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blends the (Dirichlet) prior beliefs about the category proportions with the observed category 

frequencies to obtain overall estimates. It acknowledges that the observed frequencies contain 

valuable information about the true category proportions, but also recognizes that the 

information is imperfect due to a limited sample size. Prior beliefs largely shape the Bayesian 

estimates of the category proportions if the number of items N is very small, but the observed 

relative frequencies will increasingly dominate as they become more stable due to larger N.  

The category frequencies 𝐹 ≡ (∑ 𝐹𝑟,1
𝑅
𝑟=1 , … , ∑ 𝐹𝑟,𝐶

𝑅
𝑟=1 ) are outcomes of a 

multinomial distribution with probabilities (𝜋1, … . , 𝜋𝐶). Conjugacy of this multinomial 

distribution and the Dirichlet(𝛼1, … . , 𝛼𝐶) distribution of (𝜋1, … , 𝜋𝐶) implies that the 

distribution of (𝜋1, … , 𝜋𝐶), after incorporating 𝐹, is again Dirichlet (e.g., Rossi, Allenby, & 

McCulloch, 2005): 

(𝜋1, … . , 𝜋𝐶)|𝐹 ~ Dirichlet (𝛼1 + ∑ 𝐹𝑟,1

𝑅

𝑟=1

, … , 𝛼𝐶 + ∑ 𝐹𝑟,𝐶

𝑅

𝑟=1

).                     (17) 

The researcher’s best estimate of the proportion of category c is the expected value of 𝜋𝑐 from 

(17): 

𝑝𝑐 = 𝐸(𝜋𝑐|𝐹) =
𝛼𝑐 + ∑ 𝐹𝑟,𝑐

𝑅
𝑟=1

∑ (𝛼𝑐̃ + ∑ 𝐹𝑟,𝑐̃
𝑅
𝑟=1 )𝐶

𝑐̃=1

=
𝛼𝑐 + ∑ 𝐹𝑟,𝑐

𝑅
𝑟=1

∑ 𝛼𝑐̃
𝐶
𝑐̃=1 + 𝑅𝑁

.                      (18) 

Substitution into (15) yields a Bayesian agreement coefficient that incorporates both prior 

expectations, characterized by the parameters (𝛼1, … , 𝛼𝐶), and the observed frequencies in F: 

𝐼𝑟
2 =

𝐻 − ∑ 𝑝𝑐
2𝐶

𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 =
𝛼𝑐 + ∑ 𝐹𝑟,𝑐

𝑅
𝑟=1

∑ 𝛼𝑐̃
𝐶
𝑐̃=1 + 𝑅𝑁

.                           (19) 

We note that (19) captures Scott’s pi, Fleiss’ kappa and the S-coefficient as limiting cases. 

Limiting Case: Scott’s Pi and Fleiss’ Kappa 

To eliminate the impact of prior beliefs, one may impose maximum uncertainty on 

these beliefs by letting (𝛼1, … . , 𝛼𝐶) → (0, … ,0) in the Dirichlet(𝛼1, … . , 𝛼𝐶) distribution; the 

observed category frequencies would completely determine the value of the agreement 



A NEW COEFFICIENT OF INTER-RATER AGREEMENT                                                                                      17 

coefficient. Substituting (𝛼1, … . , 𝛼𝐶) into (19) yields Fleiss’ kappa, that is, 𝐼Fleiss in (16). 

Furthermore, Fleiss’ kappa becomes Scott’s pi, 𝐼Scott, if 𝑅 = 2.  

Limiting Case: S-Coefficient 

 To eliminate the role of the observed category frequencies, and thus avoid Bayesian 

updating, one may assume complete certainty in the prior beliefs by letting (𝛼1, … . , 𝛼𝐶) →

(∞, … , ∞); the prior beliefs would completely determine the value of the agreement 

coefficient. Substituting (𝛼1, … . , 𝛼𝐶) into the right part of (19) yields 𝑝𝑐 = 𝛼𝑐/ ∑ 𝛼𝑐̃
𝐶
𝑐̃=1 , 𝑐 =

1, … , 𝐶. This, in turn, becomes 𝑝𝑐 = 1/𝐶, 𝑐 = 1, … , 𝐶, if the prior beliefs are equal category 

proportions, that is, 𝛼1 = ⋯ = 𝛼𝐶. We indeed obtain the S-coefficient, 𝐼𝑆 in (16). 

Agreement Coefficient With Uniform Prior Beliefs 

Scott’s pi and Fleiss’ kappa require multimodal prior beliefs about the category 

proportions in order to reflect maximum uncertainty (i.e., the most bottom left location on the 

diagonal in Figure 1); the S-coefficient requires a zero-variance spike distribution for the prior 

beliefs in order to reflect complete certainty (i.e., the most top right location on the diagonal 

in Figure 1). Thus, both types of coefficients are located on the diagonal, but they occupy 

extreme locations; both multimodal and zero-variance prior beliefs are unrealistic. We 

propose a uniform prior distribution to operationalize the Bayesian agreement coefficient 

(19). The uniform prior is still located on the diagonal in Figure 1, but it takes its position 

between the two extremes. Similar to the S-coefficient, the prior beliefs are equal category 

proportions, but unlike the S-coefficient, these beliefs are held with uncertainty. The amount 

of updating of the uniform prior depends on the number of items N, and thus stability of the 

observed relative frequencies. The estimated category proportions remain relatively equal if N 

is small, whereas they become proportional to the category frequencies for large N. 

Substituting uniform prior beliefs, that is, (𝛼1, … . , 𝛼𝐶) = (1, … ,1), into (19) yields 

𝐼𝑟
2 =

𝐻 − ∑ 𝑝𝑐
2𝐶

𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

      with      𝑝𝑐 =
1 + ∑ 𝐹𝑟,𝑐

𝑅
𝑟=1

𝐶 + 𝑅𝑁
.                               (20) 
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This coefficient coincides with the S-coefficient if 𝑁 = 0; it converges to Scott’s pi, Fleiss’ 

kappa and Krippendorff’s alpha if 𝑁 → ∞. The new agreement coefficient (20) is located 

between these extant agreement coefficients. 

Performance Comparison 

We run a simulation to assess how well the proposed agreement coefficient (20) 

performs relative to other agreement coefficients. We take Assumptions 1-4 as the data 

generating process; we use the scenario’s true probability of accurate judgment, 𝐼true, in 

Assumption 2; we use the scenario’s true category proportions 𝑝1 and 𝑝2 = 1 − 𝑝1 in 

Assumptions 3-4. All discussed chance-corrected agreement coefficients are compatible with 

this data generating process, as all of them obey structure (15) and thus follow from 

Assumptions 1-4; these coefficients only incorporate different estimates of the true category 

proportions, 𝑝1 and 𝑝2 = 1 − 𝑝1, leading to different estimates of 𝐼true
2, the scenario’s true 

level of chance-corrected agreement. 

We obtain the scenarios by picking 𝐼true = .50, .70, or .90; or equivalently, 𝐼true
2 

= .25, .49, or .81; and taking 𝑝1 = .50, .70, .90, or .95 (equal category proportions, moderate 

symmetry, high asymmetry, or very high asymmetry). Furthermore, we vary the sample size 

by taking N = 50, 100, 200, or 1000; we set the number of raters at R = 2, 3, or 4. In each 

scenario, we generate 100,000 samples of item categorizations and compute the mean 

absolute error (MAE), that is, the mean absolute deviation between 𝐼true
2 and the value of the 

agreement coefficient computed from each sample. Tables 1 to 3 report the differences in 

MAE between the proposed agreement coefficient and each of the other agreement 

coefficients; negative values mean that our coefficient has smaller MAE and is therefore more 

accurate. As Scott’s pi is the two-rater version of Fleiss’ kappa, we do not report it separately.  

 The tables show that all coefficients perform well if the category proportions are equal 

(i.e., if 𝑝1 = .50); differences in MAE are .002 or less. It is striking that the S-coefficient does 
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not perform better than the other coefficients, as scenarios with equal category proportions 

seem ideal for a coefficient imposing equal category probabilities. We conclude that choosing 

the right agreement coefficient is no major issue if the categories are (approximately) equally 

large. 

Table 1 shows that the S-coefficient and Gwet’s AC1 do not perform well if the 

category proportions are highly unequal (𝑝1 = .90 or 𝑝1 = .95). This is already evident for 

small samples, like 𝑁 = 50. Furthermore, the differences in performance between these two 

coefficients and the proposed coefficient increase as the sample size (in terms of both N and 

R) increases. 

 Tables 2 and 3 show that the proposed agreement coefficient also performs better than 

Fleiss’ kappa (Scott’s pi), Krippendorff’s alpha and Cohen’s kappa if the category proportions 

are highly unequal (𝑝1 = 0.90 or 𝑝1 = 0.95). In particular, this holds for small N; we indeed 

argued that frequency-based coefficients are imprecise for small samples. However, the 

differences in performance disappear as the sample size increases, because the proposed 

coefficient ultimately converges to Fleiss’ kappa and Krippendorff’s alpha. 

 Thus, all agreement coefficients perform similarly if the category proportions are 

(approximately) equal, but the proposed coefficient outperforms the other coefficients if the 

category proportions are substantially unequal. 

Two Examples 

To further illustrate the new agreement coefficient (20), we provide two examples with 

highly unequal category proportions; these examples have been taken from published work. 

Table 4 shows the contingency tables; Table 5 provides the values of the agreement 

coefficients. 
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Example 1: Perreault and Leigh (1989) 

 Perreault and Leigh’s study considers a situation in which two raters code 100 items 

into two categories. Both raters independently classify 90 items (90%) into the large category 

and 10 items (10%) into the small category; they agree on the small category only once. 

Because the raters agree on 82 out of 100 items, the hit rate is 82%. Table 5 shows that the 

proposed agreement coefficient (20) takes value .034, whereas Scott’s pi, Fleiss’ kappa and 

Cohen’s kappa are exactly zero and Krippendorff’s alpha is virtually zero. Furthermore, the S-

coefficient and Gwet’s AC1 are much larger: .64 and .78. Thus, the value of the proposed 

coefficient is between the values of extant coefficients that rely on equal category 

probabilities (in class 2) and the values of traditional frequency-based coefficients (in class 3). 

This is due to the Bayesian small-sample correction. The Bayesian estimates of the true 

category proportions, computed from the right part of (20), are .896 and .104. These numbers 

are close to the empirical relative frequencies, 90% and 10% (as used in Scott’s pi and Fleiss’ 

kappa), but are slightly adjusted toward the prior of equal category proportions (as used in the 

S-coefficient) to account for the somewhat small sample size. 

Example 2: Gwet (2008) 

 Example 2a in Tables 4 and 5 is based on 125 items. For 118 items (94.4%), both 

raters conclude that these items belong to the large category. However, the two raters disagree 

on the other seven items and thus never agree on the small category. Again, the proposed 

agreement coefficient (20) is very different from the S-coefficient and Gwet’s AC1 (.089 

versus .89 and .94). Furthermore, it is substantially larger than the traditional frequency-based 

coefficients that even take negative values. The new agreement coefficient acknowledges 

raters’ complete disagreement on items belonging to the small category, but its Bayesian 

small-sample correction discounts this outcome; zero agreement may have been a 

coincidence. 
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 In Example 2b, we multiply all cells in the contingency table by four. Thus, the pattern 

remains the same (i.e., complete disagreement on the small category), but the sample size 

increases substantially. Whereas Krippendorff’s alpha decreases marginally, from −.025 to 

−.028, because of a minor small-sample correction, the proposed agreement coefficient 

decreases substantially, from .089 to .004. Because of the larger sample size, the new 

coefficient recognizes that the complete misclassification of the small category is unlikely a 

coincidence. The other agreement coefficients do not entail small-sample corrections and 

keep the same values as before. 

Discussion 

 We presented an overarching framework of agreement coefficients and showed that 

popular equal-probability coefficients and frequency-based coefficients share a common set 

of assumptions about rater behavior. All discussed coefficients can be obtained from the 

derived general coefficient of inter-rater agreement by incorporating different estimates of the 

category proportions. Furthermore, we put forward Bayesian estimation of the category 

proportions and developed a new coefficient. An extensive simulation showed that the 

proposed coefficient is as good as the other coefficients if the category proportions are 

(approximately) equal, and that the coefficient outperforms the other coefficients if the 

category proportions are substantially unequal. The simulation identified conditions in which 

extant coefficients perform well, but also identified conditions in which these coefficients 

become less suitable. 

By incorporating Bayesian estimates of the unobserved category proportions, the 

proposed coefficient accounts for all information in the observed category frequencies but 

discounts this information based on how imprecise it is. The Bayesian small-sample 

correction combines the strengths of equal-probability coefficients and frequency-based 

coefficients. The new coefficient is relatively similar to the S-coefficient (i.e., equal category 
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probabilities) if the number of items is small, whereas it converges to several frequency-based 

coefficients as the number of items increases. The coefficient reconciles the two classes of 

chance-corrected agreement coefficients. Standard reference tables can be used to interpret its 

value. For example, a value above .60 may be interpreted as substantial rater agreement and a 

value above .80 may be interpreted as excellent rater agreement (Landis & Koch, 1977). 

However, others posit that agreement coefficients should only be used to establish that 

chance-corrected agreement exceeds zero (Uebersax, 2002). 

The overarching framework, with its explicit assumptions that are shared by all 

discussed coefficients, demonstrates the boundaries of application of popular chance-

corrected agreement coefficients. First, these coefficients are based on the assumption that 

raters make either completely accurate or completely random assignments, whereas actual 

item classifications tend to be characterized by degrees of uncertainty. Raters usually have 

enough information to avoid completely random assignment, but may not have enough 

information to be entirely certain about the correct category. For example, raters are often 

able to eliminate candidate categories but may be in doubt about the final category, because of 

either imprecisely defined categories or item characteristics that are consistent with multiple 

categories (Varki, Cooil, & Rust, 2000). Second, it follows from the assumptions that popular 

chance-corrected agreement coefficients treat all raters and all items in the same way; these 

coefficients are computed from aggregate numbers: category frequencies and counts of 

pairwise agreement. Thus, these coefficients ignore rater-specific characteristics, item-specific 

characteristics, and possible interactions (e.g., Kenny, 2004); rater characteristics make item 

classification easier (or harder) for some raters than for other raters; item characteristics make 

some items easier (or harder) to categorize than other items. 

We do not propose a new model of how raters assign items to categories, but show 

that one has to accept a set of assumptions in order to use either popular extant agreement 
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coefficients or the new coefficient. The assumptions can be relaxed, but this would result in 

classes of coefficients that are much harder to compute and that often require numerical 

optimization (e.g., Cooil & Rust, 1995; Dillon & Mulani, 1984; Varki et al., 2000). 

Conclusion 

 The present study makes a theoretical contribution by developing an overarching 

framework capturing important coefficients of inter-rater agreement. Furthermore, it makes a 

practical contribution by presenting a new and easy-to-compute coefficient that is particularly 

suitable for highly unequal category proportions. We hope that the proposed coefficient will 

become an important tool for assessing the quality of qualitative judgments. 
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Table 1 

Comparison of Proposed Coefficient, S-Coefficient, and Gwet’s AC1  

   MAE of 𝐼𝑟
2 relative to 𝐼𝑆 MAE of 𝐼𝑟

2 relative to 𝐼Gwet 

   p1 =.50 p1 =.70 p1 =.90 p1 =.95 p1 =.50 p1 =.70 p1 =.90 p1 =.95 

Itrue = .50 R = 2 N = 50 .001 −.030 −.325 −.420 .001 −.098 −.428 −.483 

Itrue
2 = .25  N = 100 .000 −.047 −.367 −.463 .000 −.125 −.471 −.526 

  N = 200 .000 −.064 −.399 −.501 .000 −.149 −.504 −.565 

  N = 1000 .000 −.094 −.444 −.559 .000 −.181 −.549 −.623 

 R = 3 N = 50 .001 −.049 −.368 −.472 .000 −.128 −.471 −.535 

  N = 100 .000 −.065 −.398 −.501 −.000 −.150 −.503 −.564 

  N = 200 .000 −.080 −.421 −.530 .000 −.166 −.526 −.593 

  N = 1000 .000 −.102 −.453 −.572 −.000 −.189 −.559 −.635 

 R = 4 N = 50 .001 −.059 −.386 −.492 −.000 −.142 −.489 −.555 

  N = 100 .000 −.074 −.411 −.517 .000 −.161 −.516 −.580 

  N = 200 .000 −.088 −.431 −.541 −.000 −.174 −.536 −.605 

  N = 1000 .000 −.105 −.458 −.577 .000 −.192 −.563 −.641 

Itrue = .70 R = 2 N = 50 .001 −.008 −.167 −.213 .002 −.045 −.236 −.256 

Itrue
2 = .49  N = 100 .000 −.020 −.212 −.260 .001 −.067 −.282 −.302 

  N = 200 .000 −.032 −.245 −.302 .000 −.087 −.316 −.346 

  N = 1000 .000 −.058 −.290 −.363 .000 −.117 −.361 −.406 

 R = 3 N = 50 .001 −.017 −.201 −.253 .001 −.064 −.271 −.296 

  N = 100 .000 −.030 −.237 −.291 .000 −.084 −.308 −.334 

  N = 200 .000 −.042 −.263 −.326 .000 −.100 −.334 −.369 

  N = 1000 .000 −.064 −.298 −.374 .000 −.123 −.369 −.417 

 R = 4 N = 50 .001 −.024 −.217 −.269 .001 −.075 −.287 −.312 

  N = 100 .000 −.036 −.249 −.305 .000 −.092 −.320 −.348 

  N = 200 .000 −.048 −.272 −.337 .000 −.107 −.343 −.380 

  N = 1000 .000 −.067 −.302 −.379 −.000 −.126 −.374 −.422 

Itrue = .90 R = 2 N = 50 .001 .006 −.007 .002 .002 .001 −.032 −.014 

Itrue
2 = .81  N = 100 .000 .001 −.041 −.042 .001 −.009 −.067 −.058 

  N = 200 .000 −.004 −.065 −.075 .000 −.018 −.091 −.091 

  N = 1000 .000 −.015 −.096 −.119 .000 −.036 −.123 −.135 

 R = 3 N = 50 .001 .003 −.026 −.020 .001 −.006 −.052 −.036 

  N = 100 .000 −.002 −.055 −.060 .000 −.015 −.082 −.076 

  N = 200 .000 −.007 −.076 −.089 .000 −.024 −.102 −.105 

  N = 1000 .000 −.018 −.101 −.126 .000 −.039 −.128 −.142 

 R = 4 N = 50 .001 .001 −.037 −.031 .001 −.010 −.063 −.047 

  N = 100 .000 −.004 −.064 −.071 .000 −.019 −.090 −.087 

  N = 200 .000 −.009 −.081 −.097 .000 −.028 −.108 −.113 

  N = 1000 .000 −.019 −.104 −.129 .000 −.041 −.131 −.145 

Note. Objective is true chance-corrected agreement, 𝐼true
2; MAE = mean absolute error; 𝐼𝑟

2 = 

proposed coefficient; 𝐼𝑆 = S-coefficient; 𝐼Gwet = Gwet’s AC1.  
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Table 2 

Comparison of Proposed Coefficient, Fleiss’ Kappa, and Krippendorff’s Alpha  

   MAE of 𝐼𝑟
2 relative to 𝐼Fleiss MAE of 𝐼𝑟

2 relative to 𝐼Kripp 

   p1 =.50 p1 =.70 p1 =.90 p1 =.95 p1 =.50 p1 =.70 p1 =.90 p1 =.95 

Itrue = .50 R = 2 N = 50 −.000 −.002 −.018 −.056 .002 −.000 −.015 −.052 

Itrue
2 = .25  N = 100 −.000 −.000 −.006 −.018 .000 −.000 −.005 −.017 

  N = 200 −.000 −.000 −.002 −.006 .000 −.000 −.002 −.006 

  N = 1000 −.000 −.000 −.000 −.001 .000 .000 −.000 −.000 

 R = 3 N = 50 −.000 −.001 −.012 −.035 .001 −.000 −.010 −.033 

  N = 100 −.000 −.000 −.004 −.012 .000 −.000 −.003 −.011 

  N = 200 −.000 −.000 −.001 −.004 .000 −.000 −.001 −.004 

  N = 1000 −.000 −.000 −.000 −.000 .000 −.000 −.000 −.000 

 R = 4 N = 50 −.000 −.001 −.009 −.028 .001 −.000 −.008 −.027 

  N = 100 −.000 −.000 −.003 −.009 .000 −.000 −.002 −.008 

  N = 200 −.000 −.000 −.001 −.003 .000 −.000 −.001 −.003 

  N = 1000 −.000 −.000 −.000 −.000 .000 −.000 −.000 −.000 

Itrue = .70 R = 2 N = 50 −.000 −.001 −.019 −.070 .001 −.000 −.017 −.066 

Itrue
2 = .49  N = 100 −.000 −.000 −.006 −.021 .000 −.000 −.005 −.020 

  N = 200 −.000 −.000 −.002 −.006 .000 −.000 −.002 −.006 

  N = 1000 −.000 −.000 −.000 −.001 .000 −.000 −.000 −.000 

 R = 3 N = 50 −.000 −.001 −.012 −.049 .000 −.000 −.011 −.048 

  N = 100 −.000 −.000 −.004 −.013 .000 −.000 −.003 −.013 

  N = 200 −.000 −.000 −.001 −.004 .000 −.000 −.001 −.004 

  N = 1000 −.000 −.000 −.000 −.000 .000 −.000 −.000 −.000 

 R = 4 N = 50 −.000 −.001 −.009 −.039 .000 −.000 −.008 −.037 

  N = 100 −.000 −.000 −.003 −.010 .000 −.000 −.003 −.010 

  N = 200 −.000 −.000 −.001 −.003 .000 −.000 −.001 −.003 

  N = 1000 −.000 −.000 −.000 −.000 .000 −.000 −.000 −.000 

Itrue = .90 R = 2 N = 50 −.000 −.001 −.014 −.051 .001 −.000 −.013 −.049 

Itrue
2 = .81  N = 100 −.000 −.000 −.004 −.016 .000 −.000 −.003 −.015 

  N = 200 −.000 −.000 −.001 −.004 .000 .000 −.001 −.004 

  N = 1000 −.000 −.000 −.000 −.000 .000 .000 −.000 −.000 

 R = 3 N = 50 −.000 −.000 −.009 −.039 .000 −.000 −.009 −.038 

  N = 100 −.000 −.000 −.002 −.011 .000 −.000 −.002 −.010 

  N = 200 −.000 −.000 −.001 −.003 .000 −.000 −.001 −.002 

  N = 1000 −.000 −.000 −.000 −.000 .000 .000 −.000 −.000 

 R = 4 N = 50 −.000 −.000 −.007 −.034 .000 −.000 −.007 −.033 

  N = 100 −.000 −.000 −.002 −.008 .000 −.000 −.001 −.008 

  N = 200 −.000 −.000 −.001 −.002 .000 −.000 −.000 −.002 

  N = 1000 −.000 −.000 −.000 −.000 .000 −.000 −.000 −.000 

Note. Objective is true chance-corrected agreement, 𝐼true
2; MAE = mean absolute error; 𝐼𝑟

2 = 

proposed coefficient; 𝐼Fleiss = Fleiss’ kappa; 𝐼Kripp = Krippendorff’s alpha.  
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Table 3 

Comparison of Proposed Coefficient and Cohen’s Kappa for Two Raters 

  MAE of 𝐼𝑟
2 relative to 𝐼Cohen 

  p1 =.50 p1 =.70 p1 =.90 p1 =.95 

Itrue = .50 N = 50 .002 .000 −.015 −.051 

Itrue
2 = .25 N = 100 .001 .000 −.005 −.016 

 N = 200 .000 .000 −.002 −.005 

 N = 1000 .000 .000 −.000 −.000 

Itrue = .70 N = 50 .001 −.000 −.017 −.066 

Itrue
2 = .49 N = 100 .000 −.000 −.005 −.020 

 N = 200 .000 −.000 −.002 −.006 

 N = 1000 .000 −.000 −.000 −.000 

Itrue = .90 N = 50 .000 −.000 −.014 −.050 

Itrue
2 = .81 N = 100 .000 −.000 −.003 −.016 

 N = 200 .000 −.000 −.001 −.004 

 N = 1000 .000 −.000 −.000 −.000 

Note. Objective is true chance-corrected agreement, 𝐼true
2; MAE = mean absolute error; 𝐼𝑟

2 = 

proposed coefficient; 𝐼Cohen = Cohen’s kappa.  
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Table 4 

Contingency Tables in the Examples 

 Contingency table  Remark 

Example 1: 81 9 90  Independence, unequal proportions 

Perreault and Leigh (1989) 9 1 10   

 90 10    

Example 2a: 118 5 123  Disagreement on small category 

Gwet (2008) 2 0 2   

 120 5    

Example 2b: 472 20 492  Multiplied all cells by four 

Gwet (2008) - adjusted 8 0 8   

 480 20    
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Table 5 

Agreement Coefficients in the Examples 

 Example 1 Example 2a Example 2b 

Hit rate H (percentage agreement) 82% 94.4% 94.4% 

Proposed agreement coefficient (𝐼𝑟
2 in (20)) .034 .089 .004 

Scott’s pi & Fleiss’ kappa (𝐼Scott & 𝐼Fleiss in (16)) .000 −.029 −.029 

Krippendorff’s alpha (𝐼Kripp in (16)) .005 −.025 −.028 

Cohen’s kappa (𝐼Cohen in (16)) .000 −.023 −.023 

S-coefficient (𝐼𝑆 in (16)) .640 .888 .888 

Gwet’s AC1 (𝐼Gwet in (16)) .780 .941 .941 
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Figure 1. Shapes of the beta density for different values of its two parameters, 𝛼1 and 𝛼2. 
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Appendix 

We consider 𝑅 = 3 raters. The maximum number of pairwise agreements is 3𝑁, 

which is the number of rater pairs (
3
2

) times the number of items N. Consistent with Fleiss 

(1971), we define the hit rate H as the number of agreements across all pairs of raters and all 

items, divided by the maximum, 3𝑁.  

Situations in which all three raters agree on an item’s classification correspond to three 

pairwise agreements. These situations are the following: 

1. All three raters make accurate judgments for the item, which occurs with probability 

𝐼𝑟
3. 

2. Two raters make accurate judgments and the third rater is correct by chance. If the 

correct category is c, this probability is (
3
2

) 𝐼𝑟
2(1 − 𝐼𝑟)𝑝𝑐; the binomial coefficient is 

the number of combinations in which two raters make accurate judgments and the 

third rater is correct by chance. Summing over all possible correct categories and their 

probabilities of occurrence yields the probability not conditional on the correct 

category:  ∑ 𝑝𝑐[3𝐼𝑟
2(1 − 𝐼𝑟)𝑝𝑐]𝐶

𝑐=1 . 

3. One rater makes an accurate judgment and the other two raters are correct by chance. 

If the correct category is c, this probability is (
3
1

) 𝐼𝑟(1 − 𝐼𝑟)2𝑝𝑐
2; the binomial 

coefficient is again the number of valid rater combinations. Summing over all possible 

correct categories and their probabilities of occurrence yields the probability not 

conditional on the correct category: ∑ 𝑝𝑐[3𝐼𝑟(1 − 𝐼𝑟)2𝑝𝑐
2]𝐶

𝑐=1 . 

4. No rater makes an accurate judgment, but all raters agree by chance. The probability 

that all three raters pick category c by chance is (1 − 𝐼𝑟)3𝑝𝑐
3. Summing over all 

possible categories 𝑐 = 1, … , 𝐶 yields ∑ (1 − 𝐼𝑟)3𝑝𝑐
3𝐶

𝑐=1 . 
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Taking everything together, the number of pairwise agreements due to items with unanimous 

agreement equals 

3𝑁 (𝐼𝑟
3 + 3𝐼𝑟

2(1 − 𝐼𝑟) ∑ 𝑝𝑐
2

𝐶

𝑐=1

+ 3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

+ (1 − 𝐼𝑟)3 ∑ 𝑝𝑐
3

𝐶

𝑐=1

),       (A1) 

where we multiply by 3𝑁 because there are N items and each item with unanimous agreement 

contributes three pairwise agreements. 

Situations in which two raters agree on an item’s classification and the third rater 

disagrees correspond to one pairwise agreement: 

5. Two raters make accurate judgments and the third rater is incorrect by chance. If the 

correct category is c, this probability is (
3
2

) 𝐼𝑟
2(1 − 𝐼𝑟)(1 − 𝑝𝑐). Summing over all 

possible correct categories and their probabilities of occurrence yields the probability 

not conditional on the correct category: ∑ 𝑝𝑐[3𝐼𝑟
2(1 − 𝐼𝑟)(1 − 𝑝𝑐)]𝐶

𝑐=1 . 

6. One rater makes an accurate judgment, one rater is correct by chance and one rater is 

incorrect by chance. If the correct category is c, this probability is (3!)𝐼𝑟(1 −

𝐼𝑟)2𝑝𝑐(1 − 𝑝𝑐). Summing over all possible correct categories and their probabilities of 

occurrence yields the probability not conditional on the correct category: 

∑ 𝑝𝑐[6𝐼𝑟(1 − 𝐼𝑟)2𝑝𝑐(1 − 𝑝𝑐)]𝐶
𝑐=1 . 

7. No rater makes an accurate judgment, but two raters agree by chance. For agreed 

category c, this probability is (
3
2

) (1 − 𝐼𝑟)3𝑝𝑐
2(1 − 𝑝𝑐). Summing over all possible 

categories yields ∑ 3(1 − 𝐼𝑟)3𝑝𝑐
2(1 − 𝑝𝑐)𝐶

𝑐=1 . 

8. One rater makes an accurate judgment, whereas the other two raters agree on an 

incorrect category by chance. If the correct category is c, the probability is 

(
3
1

) 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑘
2

𝑘≠𝑐 . Summing over all possible correct categories and their 
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probabilities of occurrence yields the probability not conditional on the correct 

category: ∑ 𝑝𝑐[3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑘
2

𝑘≠𝑐 ]𝐶
𝑐=1 , which we can rewrite as 

3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐 [∑ 𝑝𝑘
2

𝐶

𝑘=1

− 𝑝𝑐
2]

𝐶

𝑐=1

= 3𝐼𝑟(1 − 𝐼𝑟)2 [(∑ 𝑝𝑐

𝐶

𝑐=1

) (∑ 𝑝𝑘
2

𝐶

𝑘=1

) − ∑ 𝑝𝑐
3

𝐶

𝑐=1

]

= 3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2

𝐶

𝑐=1

− 3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

. 

Taking everything together, the number of pairwise agreements due to items with non-

unanimous agreement equals 

𝑁 (3𝐼𝑟
2(1 − 𝐼𝑟) ∑ 𝑝𝑐(1 − 𝑝𝑐)

𝐶

𝑐=1

+ 6𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2(1 − 𝑝𝑐)

𝐶

𝑐=1

+ 3(1 − 𝐼𝑟)3 ∑ 𝑝𝑐
2(1 − 𝑝𝑐)

𝐶

𝑐=1

+ 3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2

𝐶

𝑐=1

− 3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

)

= 3𝑁 (𝐼𝑟
2(1 − 𝐼𝑟) ∑ 𝑝𝑐(1 − 𝑝𝑐)

𝐶

𝑐=1

+ 2𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2(1 − 𝑝𝑐)

𝐶

𝑐=1

+ (1 − 𝐼𝑟)3 ∑ 𝑝𝑐
2(1 − 𝑝𝑐)

𝐶

𝑐=1

+ 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2

𝐶

𝑐=1

− 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

),       

(A2) 

where we multiply by 𝑁 because there are N items and each item with non-unanimous 

agreement contributes one pairwise agreement.  

The hit rate H is the total number of pairwise agreements, that is, (A1) plus (A2), 

divided by the maximum number of agreements, 3𝑁: 
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𝐻 = (𝐼𝑟
3 + 3𝐼𝑟

2(1 − 𝐼𝑟) ∑ 𝑝𝑐
2

𝐶

𝑐=1

+ 3𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

+ (1 − 𝐼𝑟)3 ∑ 𝑝𝑐
3

𝐶

𝑐=1

)

+ (𝐼𝑟
2(1 − 𝐼𝑟) ∑ 𝑝𝑐(1 − 𝑝𝑐)

𝐶

𝑐=1

+ 2𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2(1 − 𝑝𝑐)

𝐶

𝑐=1

+ (1 − 𝐼𝑟)3 ∑ 𝑝𝑐
2(1 − 𝑝𝑐)

𝐶

𝑐=1

+ 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2

𝐶

𝑐=1

− 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

). 

By combining the second term in the first set of brackets with the first term in the second set 

of brackets and doing the same for the next two terms, we obtain 

𝐻 = 𝐼𝑟
3 + (𝐼𝑟

2(1 − 𝐼𝑟) ∑ 𝑝𝑐

𝐶

𝑐=1

(𝑝𝑐 + (1 − 𝑝𝑐)) + 2𝐼𝑟
2(1 − 𝐼𝑟) ∑ 𝑝𝑐

2

𝐶

𝑐=1

)

+ (2𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2(𝑝𝑐 + (1 − 𝑝𝑐))

𝐶

𝑐=1

+ 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

)

+ ((1 − 𝐼𝑟)3 ∑ 𝑝𝑐
2(𝑝𝑐 + (1 − 𝑝𝑐))

𝐶

𝑐=1

) + 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2

𝐶

𝑐=1

− 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

, 

which we can rewrite as  

𝐻 = 𝐼𝑟
3 + 𝐼𝑟

2(1 − 𝐼𝑟) + 2𝐼𝑟
2(1 − 𝐼𝑟) ∑ 𝑝𝑐

2

𝐶

𝑐=1

+ 2𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2

𝐶

𝑐=1

+ 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

+ (1 − 𝐼𝑟)3 ∑ 𝑝𝑐
2

𝐶

𝑐=1

+ 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
2

𝐶

𝑐=1

− 𝐼𝑟(1 − 𝐼𝑟)2 ∑ 𝑝𝑐
3

𝐶

𝑐=1

. 

(A3) 

By combining the first two terms in the right-hand side of (A3), combining all terms 

containing ∑ 𝑝𝑐
2𝐶

𝑐=1 , and noticing that the two terms containing ∑ 𝑝𝑐
3𝐶

𝑐=1  cancel out, we 

simplify (A3) into 
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𝐻 = 𝐼𝑟
2 + [2𝐼𝑟

2(1 − 𝐼𝑟) + 2𝐼𝑟(1 − 𝐼𝑟)2 + (1 − 𝐼𝑟)3 + 𝐼𝑟(1 − 𝐼𝑟)2] ∑ 𝑝𝑐
2

𝐶

𝑐=1

= 𝐼𝑟
2 + (1 − 𝐼𝑟)[2𝐼𝑟

2 + 2𝐼𝑟(1 − 𝐼𝑟) + (1 − 𝐼𝑟)2 + 𝐼𝑟(1 − 𝐼𝑟)] ∑ 𝑝𝑐
2

𝐶

𝑐=1

= 𝐼𝑟
2 + (1 − 𝐼𝑟)[2𝐼𝑟 + (1 − 𝐼𝑟)2 + 𝐼𝑟 − 𝐼𝑟

2] ∑ 𝑝𝑐
2

𝐶

𝑐=1

= 𝐼𝑟
2 + (1 − 𝐼𝑟)(1 + 𝐼𝑟) ∑ 𝑝𝑐

2

𝐶

𝑐=1

= 𝐼𝑟
2 + (1 − 𝐼𝑟

2) ∑ 𝑝𝑐
2

𝐶

𝑐=1

. 

(A4) 

Solving (A4) with respect to 𝐼𝑟 yields 

𝐼𝑟 = √ 
𝐻 − ∑ 𝑝𝑐

2𝐶
𝑐=1

1 − ∑ 𝑝𝑐
2𝐶

𝑐=1

.                                                          (A5) 

 


